
ERGODIC THEORY, FRACTAL TOPS AND COLOUR
STEALING

MICHAEL BARNSLEY

Abstract. A new structure that may be associated with IFS and superIFS
is described. In computer graphics applications this structure can be rendered
using a new algorithm, called the “colour stealing”.

1. Ergodic Theory and Fractal Tops

The goal of this lecture is to describe informally some recent realizations and work
in progress concerning IFS theory with application to the geometric modelling and
assignment of colours to IFS fractals and superfractals. The results will be described
in the simplest setting of a single IFS with probabilities, but many generalizations
are possible, most notably to superfractals.
Let the iterated function system (IFS) be denoted

(1.1) {X; f1, ..., fN ; p1, ..., pN}.
This consists of a finite set of contraction mappings

(1.2) fn : X→ X, n = 1, 2, ..., N
acting on the compact metric space

(1.3) (X, d)
with metric d so that for some

(1.4) 0 ≤ l < 1

we have

(1.5) d(fn(x), fn(y)) ≤ l · d(x, y)
for all x, y ∈ X. The pn’s are strictly positive probabilities with
(1.6)

X
n

pn = 1.

The probability pn is associated with the map fn.
We begin by reviewing the two standard structures (one and two) that are

associated with the IFS 1.1, namely its set attractor and its measure attractor, with
emphasis on the Collage Property, described below. This property is of particular
interest for geometrical modelling and computer graphics applications because it is
the key to designing IFSs with attractor structures that model given inputs. Then
we describe a new structure (three), the fractal top of an IFS.
Let

(1.7) (H(X), h)

Date : December 10, 2003.

1



2 MICHAEL BARNSLEY

denote the compact metric space consisting of the compact non-empty subsets of
X, together with the Hausdorff metric. Define

(1.8) F : H(X)→ H(X)

by

(1.9) F (A) =
[
n

fn(A)

Then F is a contraction mapping on (H(X), h) with contractivity factor l and
has a unique fixed point A such that

(1.10) F (A) = A

and we have

(1.11) lim
n→∞An = A, where An+1 := F (An).

From Equation 1.10 A has the self-referential property

(1.12) A =
[
n

fn(A).

Equation 1.11 is the basis of the deterministic algorithm (e.g. in R2) where one
starts from a set A0 and computes a sequence of successive approximations {An}
to A. However, it is often more convenient to use the following Markov Chain
Monte Carlo algorithm (MCMC or random iteration algorithm) as the basis of
practical algorithms to compute approximations to A (for example when the fn’s
are projective transformations acting on ¤.) In this approach, we select an i.i.d.
sequence of symbols

(1.13) σ1σ2σ3... ∈ {1, 2, ...,N}∞
with probabity pn being associated with the choice σk = n. We also select x0 ∈ X
and let

(1.14) xn+1 = fσn+1(xn).for n ≥ 0.
Then almost always the limit set of {xn} is A. The proof is based on the ergodic
theorem and the result is much more general. It provides in many case an efficient
simple fast way to make pictures of A, and "zooms" on those pictures.
We are going to describe three structures that it is natural to associate with

an IFS. Each structure describes or adds detail to A. Each structure may be
computed by relatives of this random iteration algorithm.Of particular importance
to modelling applications, each structure has what I call the Collage Property:
namely
(1) the structure depends "continuously" on the parameters used to define it

(coefficients of transformations, probabilities, ...);
(2) the structure has a self-referential property analagous to "A is made of N

transforms of itself";
(3) the structure can be computed efficiently, given the maps and other parame-

ters.
These properties enable interactive geometrical modelling of the structures. What

do I mean here? Well we have for example the estimate

(1.15) h(A,B) ≤ h(B,F (B))

1− l
.



FRACTAL TOPS 3

Figure 1. The point set attractor of an IFS of four projective
transformations in R2. This illustrates the first structure asso-
ciated with an IFS. It possesses the Collage Property and may be
computed by random iteration.

So if we want to choose transformations so that the fixed point A is close to a target
B, we simply have to choose maps so that

(1.16) B '
[
n

fn(B)

In other words, we can start from B, the set we are trying to model, and choose
maps based on their effect on B. Then the MCMC algorithm allows us to fine tune
our approxation interactively.
EXAMPLE: This illustrates the first structure associated with an IFS, its

point set attractor A. This possesses the Collage Property: the leafy structure
of the attractor in Figure 1 is no accident. To create it I actually started from
a leaf and used "Collage" software to find the maps. (**After the lecture and
during drinks I will be delighted to demonstrate how this works in practice.) The
following four projective transformations are used. In order from top to bottom
these represent maps 1,2,3, and 4 respectively. Map #1 represents the main frond,
Map#2 the stem, and Maps#3 and #4 represent the two lowest main fronds, on
the left and the right at the bottom.

(1.17) f(x, y) = (
ax+ by + c

gx+ hy + j
,
dx+ ey + f

gx+ hy + j
)

a b c d e f g h j
1.90080 -0.072 0.1857 0.01539 1.6914 0.0277 0.5626 -0.20119 2.0052
0.0020 -0.044 0.0755 0.0027 -0.044 0.104 0.0025 -0.0877 0.154
0.96543 -0.3519 0.05809 1.31389 -0.0651 -0.191 1.34823 -0.30675 0.0747
-0.3252 -0.0581 -0.0289 -1.229 -0.0011 0.1991 -1.2815 0.243 -0.0585
The second structure that it is natural to associate with an IFS, and which

possesses the Collage Property, is the invariant measure of the MCMC process. The
IFS with probabilities is associated with a contraction mapping

(1.18) M : P(X)→ P(X)



4 MICHAEL BARNSLEY

Figure 2. This illustrates the second structure associated with
an IFS. It is the invariant measure of the IFS, with probabilities.
It too has the Collage Property. The IFS is the same as the one
used in Figure 1.

where (P(X), dMK) is the compact metric space consisting of the set of normalized
Borel measures on X with the Monge-Kantorovitch metric, and where

(1.19) Mµ =
X
n

pnfn ◦ µ

(f ◦ µ) (B) := µ(f−1(B)) for any Borel set B ⊂ X. This map too is a contraction
and its fixed point can be thought of as a self-referential measure

(1.20)
X
n

pnfn ◦ µ = µ.

It can be computed by MCMC, and obeys the Collage estimate

(1.21) dMK(µ, µB) ≤
dMK(µB,MµB)

1− l

So the invariant measure of an IFS with probabilities has the Collage Property.
In two dimensional examples as above one now starts from a greyscale image, its
degrees of brightness representing the measure. Then one adjusts not only the
maps, but also the probabilities, applied to the target image, to try and make the
result look as much as possible like the target image, as in the following example.
EXAMPLE: The same maps are used as above. In fact this IFS consists of

a "stem" map, with associated weight 0.05(approx.), a "main frond" map, with
associated weight 1.8(approx.), and to lateral frond maps both with weights 0.5
(approx.). In Figure 2 the attractor is rendered in shades of green, with brightest
green representing pixels with greatest measure. The probabilies are obtained by
normalizing the weights. The image was computed using random iteration, and
reveals far more structure (indeed, the new structure, the measure itself) than
Figure 1.
The third structure is the fractal top. This too is naturally associated with

the IFS, appears to possess the Collage Property, and provides a fascinating rich
new object that provides new insights into the behaviour of attractors of IFS in



FRACTAL TOPS 5

the overlapping case and has immediate application (as will demonstrate) to low
bandwidth digital content creation applications.
In the case of fractal tops we exploit the ordering of the maps implicit in the def-

inition of an IFS. To illustrate, suppose that we have two maps with an overlapping
attractor. Define a mapping (the "tops mapping")

(1.22) T : H(Ω×X)→ H(Ω×X)
where Ω = {1, 2, ..., N}∞ denotes the code space asssociated with the IFS, equipped
with the usual metric to make it into a compact metric space, as follows:

(1.23) T (Θ) = Top(T1(Θ), ..., TN (Θ))

for all Θ ∈ H(Ω× X) where
(1.24) Tn(Θ) = {Tn(ω, x) = (nω, fn(x)|(ω, x) ∈ Ω×X}
where nω means the concatenation of the string ω with n on the front. Clearly
Ω has a natural lexigraphic ordering and all spaces involved are compact. In the
above, for any pair of sets A and B in H(Ω×X) we define
(1.25) Top(A,B) = {(ω, x) ∈ A ∪B|ω > ' whenever (',x) ∈ A ∪B}
OBSERVATION: T possesses a unique fixed point, Υ ∈ H(Ω × X). We call

Υ the fractal top associated with the IFS.Υ possesses the Collage Property. In
two dimensional case finite resolution approximations to Υ may be computed by a
variant of the random iteration algorithm applied to the IFS

(1.26) {Ω×X;T1(ω, x), ..., TN (ω, x); p1, ..., pN}
(keeping track of the highest value of ω encountered at each pixel, as random
iteration proceeds). It is also observed that Υ can be computed deterministically
by direct iteration of T ; that is, for any Θ0 ∈ Ω×X,
(1.27) T ◦n(Θ0)

weakly→ Υ

See Figure **. This has the benefit of avoiding wasted computation; a sequence of
approximations to the fractal top can be computed directly. Finally, Υ appears to
depend continuously on the maps of the IFS.and another image

2. Elementary Description of Colour Stealing

2.1. Basic Idea. Start with two iterated function systems (IFSs) and an input
image. Run the random iteration algorithm, applying the same random choice to
each IFS simultaneously. One of the IFSs produces a sequence of points that lie on
the input image. The other IFS produces a sequence of points that are coloured
according to the colour value of the other IFS, read off from the input picture.

2.2. Example 1. SET-UP: Start from two IFSs, (the DRAWING IFS and the
COLOURING IFS,) and an INPUT IMAGE, a coloured Red Green Blue (RGB)
image, such as a photograph of a natural scene. Here I choose the following IFSs.
The first IFS corresponds to the image that I want to render. In this case it is a
fern. It acts on a suitably positioned rectangle ¤A ⊂ R2. This DRAWING IFS is
(2.1)
DRAWING IFS:.. {¤A; f1, f2, f3, f4; p1 = 0.01, p2 = 0.125, p3 = 0.125, p4 = 0.84}



6 MICHAEL BARNSLEY

Figure 3. This is the fractal top associated with the same IFS
used in the other figures. This illustrates the third structure
associated with an IFS. The color is assigned to the fractal top via
color stealing.

Figure 4. Close up on the fractal top in Figure 3. Details of the
structure are revealed by colour-stealing.

where

(2.2) STEM: f1(x, y) = (0.0x− 0.03y, 0.0x+ 0.18y),

(2.3) LEFT FROND: f2(x, y) = (0.2x− 0.2y, 0.2x+ 0.2y + 0.1),

(2.4) RIGHT FROND: f3(x, y) = (−0.2x+ 0.2y, 0.2x+ 0.2y + 0.1),

(2.5) MAIN FROND: f4(x, y) = (0.85x+ 0.0y, 0.0x+ 0.85y + 0.2).

Recall that if the random iteration is applied using this IFS starting at the point
(x0, y0) = (0, 0) (which lies upon the attractor), a sequence of points is generated
{(xn, yn) : n = 1, 2, 3, ...}which lie upon the fern attractor. Normally these points



FRACTAL TOPS 7

are rendered according to the frequency with which corresponding pixels are visited
(measure theory rendering- brighter colours for more frequently visited points...) or
simply by marking the points in fixed colours, say green (set attractor rendering.)
In the present case we have chosen the probabilities so that the IFS generates the
attractor quite rapidly and uniformly. However we are going to colour the points
according to the location of the output point of the COLOURING IFS.
The COLOURING IFS acts upon second rectangle ¤B ⊂ R2 that corresponds

to the support of the INPUT IMAGE.
(2.6)
COLOURING IFS:.. {¤B; g1, g2, g3, g4; p1 = 0.01, p2 = 0.125, p3 = 0.125, p4 = 0.84}
where

(2.7) RECTANGLE#1: g1(x, y) = (0.2x, 0.2y),

(2.8) RECTANGLE#2: g2(x, y) = (0.8x+ 0.2, 0.2y),

(2.9) RECTANGLE#3: g3(x, y) = (0.2x, 0.8y + 0.2),

(2.10) RECTANGLE#4: g4(x, y) = (0.8x+ 0.2, 0.8y + 0.2).

We start the random iteration of the second IFS at the point (w0, v0) = (0, 0)
and generate a sequence of points {(wn, vn) : n = 1, 2, 3, ...} by applying the same
sequence of random choices that we used for the DRAWING IFS. That is, the
two IFS’s are run in parallel, using only one sequence of random indices, selected
according to the probabilities p1,..., p4. The point (xn, yn) is rendered in the colour
of the point (wn, vn) ∈ INPUT IMAGE.
A beautiful coloured fern often appears on ¤A. See Figure 5 for a couple of

examples.
I sometimes call this algorithm the code space colouring algorithm, for obvious

reasons. The beauty of the images that it produces it comes in part from these facts
(i) continuity of the map from codespace to fractal, which means that the map IN-
PUT PICTURE to FRACTAL has a high degree of continuity; (ii) natural images
have wonderful colour palettes inherently, with areas of varying types of continuity
and special distributions of discontinuities, with colours that are naturally harmo-
nious or complementary - these are stolen and wrapped seeming unrecognizably,
often, but preserving many of their properties, around the fractal.
A few comments. Images vary smoothly if the input image is varied smoothly,

leading to lovely animation. Images also vary smoothly when the COLOURING
IFS is adjusted smoothly. There is no need to worry about the initial points, any
values will do, as long as the two IFSs are run for a while before plotting begins.
The example here of the fern has been chosen mainly for pedagogical reaons. Very
powerful imaging systems are envisaged, using this algorithm to render complex
and beautiful image sequences for content industry applications. One can think of
this method as a variant of texture mapping, where the objective of the mapping
is not a collection of polygons, but is instead a (collection of) fractals.

2.3. Example 2. Remarkable continuous image trasformations, that change frac-
tal dimensions are obtained as in this this example, and many others in the same
vein. Apply Example 1 except choose the following DRAWING IFS, which corre-
sponds simply to a different tiling of the square by rectangles, from the one in the



8 MICHAEL BARNSLEY

Figure 5. Showing the same IFS rendered using two different
INPUT IMAGES, parts of which are also in the picture.

COLOURING IFS:
(2.11)
DRAWING IFS:.. {¤A; f1, f2, f3, f4; p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 = 0.25}

where

(2.12) #1: f1(x, y) = (0.5x, 0.5y),

(2.13) #2: f2(x, y) = (0.5x+ 0.5, 0.5y),

(2.14) #3: f3(x, y) = (0.5x, 0.5y + 0.5),

(2.15) #4: f4(x, y) = (0.5x+ 0.5, 0.5y + 0.5).

In this case the output image is a continuous distortion of the INPUT IMAGE
- it appears fast by random iteration. A pair of images corresponding to two such
distortions is shown in Figure 6



FRACTAL TOPS 9

Figure 6. Input image (left) and output image, using the code
space colouring algorithm as in Example 2.

2.4. Example 3. The same technique can be applied to V-Variable fractals, but
the implementation details are a bit more complicated, requiring several more
image-sized buffers with various contents.( Another version of the algorithm based
on random iteration to make V-variable fractals can be done also.) Here I describe
the case N=Arbitrary, V=Arbitrary, M=4. The COLOURING IFS and the INPUT
IMAGE are chosen the same as in the above two examples. The idea here is that
the functions in the IFSs that constitute the superIFS are assumed to "correspond"
as in this example: all of the functions f11 , f

2
1 , ...f

N
1 correspond to the stem of the

fern, all of the functions f12 , f
2
2 , ...f

N
2 correspond to the left frond of the fern, ...and

so on.... The to any point on any V-variable fractal we can associate a colouring
code (I should mention here that I always use a "Z-buffer" as mentioned elsewhere,
to resolve conflicts involving overlapping points) as illustrated here:

(2.16) POINT ON A V-VARIABLE FRACTAL: f13 ◦ f21 ◦ f42 ◦ f24 ◦ fN4 ...

corresponds to colouring code

(2.17) 31244...

and is coloured according to the colour of the point

(2.18) g3 ◦ g1 ◦ g2 ◦ g4 ◦ g4....
in the INPUT IMAGE. The point is that corresponding parts of the successive V-
variable fractals, produced by the random iteration algorithm, are coloured in the
same way.,

2.5. Example 4. I should mention here that I think that there are many implica-
tions coming from this new class of algorithms, for image compression as well as
computer graphics, that really need to be explored. For example, if one uses the
SAME IFS for both the DRAWING IFS and the COLOURING IFS, but different
resolutions on the INPUT IMAGE and the OUTPUT IMAGE, one obtains differ-
ent resolutions for the two, but the way in which the resolution is changed can be
very subtle.

2.6. Applications. Production of textures: start from one picture of a texture
and make many other related ones. Valuable in Digital Content Production for
computer games, animation, internet multimedia.



10 MICHAEL BARNSLEY

Figure 7. 2-variable fractal coloured with code space colouring algorithm.

Figure 8. Another 2-variable fractal (lying on the same super-
fractal) coloured by the code space colouring algorithm.



FRACTAL TOPS 11

Figure 9. A 2-variable fractal coloured using one of the input
images in Figure 1.

3. Detailed Description of Single IFS Random Iteration Colour
Stealing.

Again, to help develop the main ideas, we give here a description of one way of
implementing Colour Stealing with Priority Ordering using Random Iteration with
a Single IFS, in contrast to the situation with a SuperIFS.
First we describe the image buffer that will correspond to the eventual output

image. Let the array ¤A denote an image buffer, that is, an array of red, green,
and blue pixel values, with an additional entry at each pixel, a certain real number
p that is called the priority associated with the pixel. Thus, we write
(3.1)
(array) ¤A = (rmA,nA , gmA,nA , bmA,nA , pmA,nA) mA = 1, ...,MA, nA = 1, ..., NA.

The positive integers MA and NA give the dimensions of the array. We also write
¤A(⊂ R2) to denote a rectangular subset of the euclidean plane R2; this rectan-
gle is partitioned into sub-rectangles indexed by the coordinates (mA, nA); each
sub-rectangle corresponds to a pixel with colour components rmA,nA , gmA,nA , and
bmA,nA , and with an associated priority value. Let the discretization map

(3.2) DA : ¤A(⊂ R2)→ (array) ¤A

be defined by

(3.3) DA(a) = (mA, nA),



12 MICHAEL BARNSLEY

the index of the unique subrectangle of ¤A(⊂ R2) to which a belongs, for all
a ∈ ¤A(⊂ R2).
Similarly we describe a second image buffer that corresponds to the input image

from which colours will be stolen, (maybe a digital photograph of a painting by
Cezanne, Renoir, or Seurat.) Let the array ¤B denote an array of red, green, and
blue pixel values,
(3.4)
(array) ¤B = (rmB,nB , gmB,nB , bmB ,nB ), mB ∈ {1, ...,MB}, nB ∈ {1, ..., NB}.

These values are assumed to be given, or input, at the start of the algorithm. They
will be used to determine the colour values of the array ¤A. There is no priority
value in this case. The positive integers MB and NB give the dimensions of the
array ¤B. As above write ¤B ⊂ R2 to denote a rectangular subset of the euclidean
plane R2, partitioned into sub-rectangles indexed by the coordinates (mB, nB); each
sub-rectangle corresponds to a pixel with colour components rmB,nB , gmB,nB , and
bmB ,nB . Also, we define a discretization map

(3.5) DB : ¤B(⊂ R2)→ (array) ¤B

by

(3.6) DB(b) = (mB, nB),

the index of the unique subrectangle of ¤B(⊂ R2) to which b belongs, for all
b ∈ ¤B(⊂ R2).
Now let there be given an IFS, to be called drawing IFS,

(3.7) {¤A ⊂ R2; f1, ..., fN ; p1, ..., pN}
with attractor A ⊂ ¤A ⊂ R2. N is a positive integer and the pns are non-negative
numbers summing to unity, representing probabilities. The functions fn for all
n ∈ {1, ..., N} map from ¤A ⊂ R2 into itself and are such that the attractor A
of the IFS is unique and can be computed using the standard random iteration
algorithm. The probabilities are assumed to be such that when the standard random
iteration algorithm is applied using the IFS, an efficient job is made of plotting or
drawing the attractor A, at the resolution of the array ¤A.
And let there be given a second IFS, to be called the colouring IFS

(3.8) {¤B ⊂ R2; g1, ..., gN ; p1, ..., pN}
with attractor B ⊂ ¤B ⊂ R2. The functions gn for all n ∈ {1, ..., N} map from
¤B ⊂ R2 into itself and are such that the attractor B of the IFS is unique and can
be computed using the standard random iteration algorithm.
We need one more IFS, the prioritizing IFS,

(3.9) {[0, 1] ⊂ R;h1, ..., hN ; p1, ..., pN}
where

(3.10) hn(x) = p1 + ...+ pn−1 +
�+ 2xpn
2 + 2�

for all n = 1, ..., N, for all x ∈ [0, 1], where p0 := 0. This IFS is such that its
attractor is totally disconnected, a cantor set contained in the real interval [0, 1].
Let D : [0, 1]→ [0, 1] be a discretization map.
The basic colour stealing random iteration algorithm proceeds as follows.



FRACTAL TOPS 13

1. Initialize the image array ¤A to zero, that is, set

(3.11) rmA,nA = gmA,nA = bmA,nA = 0 for all mA = 1, ...,MA, nA = 1, ..., NA.

2. Initialize random iteration for the drawing, colouring, and prioritizing IFSs
by selecting

(3.12) a ∈ A, b ∈ B, x = 0.

3.Randomly select σ ∈ {1, ..., N} with σ = n with probability pn.
4. Calculate

(3.13) newa = fσ(a), newb = gσ(b), and newx = hσ(x).

5. Calculate

(3.14) (mA, nA) = DA(newa), and (mB, nB) = DB(newb).

6. If D(newx) > pmA,nA then set

(3.15) (rmA,nA , gmA,nA , bmA,nA , pmA,nA) = (rmB,nB , gmB,nB , bmB ,nB ,D(newx))

7. If sufficiently many iteration steps have been implemented, then output the
digital image array ¤A to storage, display and/or printer. Otherwise update a, b,
and x according to

(3.16) a = newa, b = newb, and x = newx

and go to step 3.

3.1. A Few Illustrative Images. In this Section there are presented a few sample
images, to give an advance taste of a few of the many image types that are discussed
in this article.
Another picture:aThe following images show some other colour stealing images

using very simple IFSs. At least a hint of the fascination and attractiveness of such
images is provided.

4. Generalizations

It is natural to extend these notions to V -variable fractals, superIFS and super-
fractal to include the case of maps contractive on the average, more than a finite
number of maps, more than a finite number of IFSs, IFSs with a variable number
of maps, IFSs operating on sets which are not necessarily induced by point maps,
other methods of constructing the probabilities for a superIFS, probabilities that
are dependent upon position etc. But for reasons of simplicity and in order to
illustrate key features we have not treated these generalizations at any length.

5. Acknowledgements

These notes describe an independent part of an ongoing collaboration with John
Hutchinson at the Australian National University on Superfractals. This work has
benefitted from his frequent discussions, his warm encouragement, and from the
stimulating environment that he and his research group provide at the ANU.



14 MICHAEL BARNSLEY

Figure 10. This image was produced by random iteration with an
IFS of four maps acting on R2, with a simple colouring IFS. Prior-
ity ordering, associated with the Theory of Fractal Tops, was used.
This image can be made to "come alive", its colours and textures
shimmering and changing in subtle and beautiful ways, by shifting
the image from which the colours are stolen. This can be done in
"real time". The graininess of this image is produced by cutting
off computation before the image is fully rendered. Such graini-
ness can be efficiently avoided by following some of the techniques
described in this paper. See also Figures 11 and 12.

References

[1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, NY, 1988.
[2] M. F. Barnsley and S. Demko, Iterated Function Systems and the Global Construction of

Fractals, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 399(1985), pp. 243-275.
[3] M.F.Barnsley and L.F. Barnsley, Fractal Transformations, To appear.in a collection of articles

about fractals, companion to the documentary film, “The Colours of Infinity” (GordonFilms
1995).

[4] M.F.Barnsley, J.E.Hutchinson, O. Stenflo A Fractal Valued Random Iteration Algorithm and
Fractal Hierarchy (2003) submitted for publication.

[5] M.F.Barnsley, J.E.Hutchinson, O. Stenflo V-Variable Fractals and Superfractals (2003) sub-
mitted for publication.

[6] J. Elton, An Ergodic Theorem for Iterated Maps, Ergodic Theory Dynam. Systems, 7(1987),
pp. 481-488.

[7] J. E. Hutchinson, Fractals and Self-Similarity, Indiana. Univ. Math. J., 30 (1981), pp. 713-749



FRACTAL TOPS 15

Figure 11. Similar to Figure 10.

Australian National University, Canberra, ACT, Austalia
E-mail address : Mbarnsley@aol.com



16 MICHAEL BARNSLEY

Figure 12. Similar to Figure 10.

Figure 13



FRACTAL TOPS 17

Figure 14

Figure 15

Figure 16


