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Introduction
The main aim of this article is to describe the mechanics of certain types
of operations on rings (e.g. A-operations on special A-rings or differentia-
tion operators on rings with derivation). En route we meet the very
useful notion of a representable functor from rings to rings. If B, R
are rings, then the set Hom^(J5,i2) of ring homomorphisms does not,
in general, have a ring structure (unlike, for instance, the case where
G, H are abelian groups, in which case Homg(G,H) is naturally an
abelian group). However, we shall show in § 1 that, if B also has a
'co-ring' structure (in which case we call it a hiring) then this induces
a natural ring structure on Homg?(J5,i2). In this case, the functor
R \-> Hom^jB, R) is said to be represented by the biring B.

In §2, we demonstrate that this functor has a left adjoint, which
we denote by R h-» B © R to bring out the analogy with the abelian group
case (where H h» G® H is left adjoint to H h> Homg((r,fi)).

When, in §4, we come to discuss natural operations on a certain class
of rings, there are many constructions we may perform. Given a collec-
tion T of operations on a ring, we may give T a ring structure by addition
and multiplication of the values of operations. We are also interested
in the value of an operation on the sum and product of two elements in
terms of its value on those elements. This may be given by imposing a
co-ring structure on T in which, for example, the effect of an operation on
the sum of two elements is determined by the £co-sum' of that operation
on the tensor product of the elements. Finally, given two operations on
a ring, we may form the composite of one followed by the other. We
insist that the identity operation is in T. All these requirements add up
to the notion of a 'biring triple' in § 3.

In § 4 we discuss the class of rings on which the operations in T act
and in §§5, 6 we concentrate on the particular examples afforded by
special A-rings and rings with derivation. There follow three appendices
which contain material supplementary to that in the main text which
would otherwise have interrupted the flow of the exposition.
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A point needs to be made concerning the constructions and methods

of proof given. Since this article only exists because the notions of
category theory allow the idea of a binary operation on a ring RxR -» R
to be dualized giving a co-operation R ->- R®R, to give honour where
it is due, all proofs et cetera should be given in terms of commutative
diagrams. However, a classical training in modern algebra makes it
more easy to talk about elements and to refer to a binary operation
taking a, b e R into a.b e R. All the constructions and proofs given
could be explained in terms of maps or elements. For reasons of lucidity,
we sometimes give one, sometimes the other, and often both. We leave
it in the safe hands of the reader to construct the alternative method
where only one is given. In conclusion, we remark that describing every-
thing in terms of maps will give appropriate generalizations of many
notions in other categories besides the category of rings.

NOTATION. Throughout the article, the word 'ring' is to be read as
an abbreviation for 'commutative ring with unit', and 'ring homo-
morphism' for 'unit-preserving ring homomorphism'.

The ring of integers will be denoted by Z, and for any ring R the
unique ring homomorphism Z ->• R will be denoted by j .

We shall denote the category of rings and ring homomorphisms by Si,
and the category of sets and functions by fina.

In order that the category & should have coproducts (given by tensor
product), it is essential to include the null ring 0 in 3%\ e.g. Z2®Z3 = 0.

The dual of a category <£ will be denoted by ^o p . If X and Y are
objects of ^ , the set of morphisms from I to 7 will be denoted by
Hom^(X, Y).

A covariant functor will be called left exact if it preserves difference
kernels and products and right exact if it preserves difference cokernels
and coproducts (3). A contravariant functor will be called left exact if
it takes coproducts to products and difference cokernels to difference
kernels.

We regard a terminal object as a product indexed over the empty set,
and an initial object as a coproduct indexed over the empty set. I t
follows, for example, that a contravariant left exact functor takes initial
objects to terminal objects.

1. Representable functors
The notion of ring, or, indeed, of any Q-algebra (1), can be defined

in any category with products and a terminal object (9). The category
3& of rings and ring homomorphisms has an initial object Z, and
coproducts; if R and S are rings, their coproduct in & is the tensor
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product R®8. It follows that ^ o p is a satisfactory category in which
to define an Q-algebra.

DEFINITION 1.1. A biring B is a ring for which i?op is a ring in 8&ov.

Alternatively we could say that B is a biring if the affine scheme
Spec(J3) is a ring in the category of schemes (2).

More explicitly, a biring B is a ring together with ring homomorphisms
a: B -> B®B (co-addition),
/x: B -> B®B (co-multiplication),
o: B->Z (co-zero),
v: B -» B (co-additive inverse),
i: B^Z (co-unit),

which define the co-ring structure. That is to say, they satisfy the
axioms given in Appendix A. The symbols a, /x, o, v, i will be used
generically for co-addition, co-multiplication, co-zero, co-additive inverse,
co-unit respectively.

If Bx and B2 are birings, a ring homomorphism

is a biring homomorphism if

J ' 2 1

is a homomorphism of rings in 8&ov. That is to say, / 'commutes' with
the biring structure. The explicit definition of what this means is given
in Appendix A.

In this way we obtain a category 88 of birings and biring homo-
morphisms. If Bx and B2 are birings, we can give Bx® B2 a canonical
biring structure by defining

a = ( l ^ J ® I2)(a1® a2),

where t: Bx ® B2 -» B2 ® Bx is the interchange homomorphism defined by
^(61®62) = 62®61 (bx e Bv b2 G B2).

It may be verified that a, p, o, v, i satisfy the axioms of Appendix A,
and that the canonical maps of Bx and B2 into Bx ® B2 are biring homo-
morphisms. It follows that Bx® B2 is the coproduct of Bx and B2 in the
category 88.

By taking
a = /x = canonical isomorphism: Z -> Z ® Z, and o = v = t = lz ,
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we may give Z a biring structure, albeit a trivial one. If B is a biring,
the unique ring homomorphism j : Z -> B is easily verified to be a biring
homomorphism, so that Z is an initial object in $8.

The whole raison d'etre of the definition of biring rests upon the fact
that any left exact contravariant functor F: 0k -*• gnu lifts to a
functor 9S -* &.

Because of the left exactness we have F(Z) = {e}, a one element set,
and i ^ ® i?2) = F(RX) x F{R2). If B is a biring, then the functions

F(<x): F(B)xF{B)-+F{B),
F(p): F(B)xF(B)^F(B),
F(o): {e}^F(B),
F(v): F(B)->F(B),
F(c): {e}^F(B)

are the addition, multiplication, zero, additive inverse, unit, respectively,
of a ring structure on F(B).

More particularly, the functor Hom^,: 0Z°v x0l H» gnu extends in a
natural way to a functor ^ o p x M -> 01. That is to say, if B is a biring
and ^ a ring, then the co-ring structure of B induces a ring structure
on the set Hom^-B, R).

We denote the functor R h> Horn ̂ (B, R) by B*, and such a functor
from 01 to 0k we call representable.

It is important to note that the sum and product of two elements
/, g e Homa(i?,jR) is not necessarily the 'pointwise' sum and product
of/and g.

771

If R®R > R is the homomorphism defined by m(r®r') = rr', then
f+g is the homomorphism

aB >
and fg is the homomorphism

a f®a mB >B®B J > R®R

In terms of elements, we have
(f+9)(b) =

(fg)(b) =

for any b e B, where
= £ Bj ® 5y.

i
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Take care not to confuse the identity map 1B e 1Hom.3i(B,B) with the

t j o j
unit element B —> Z —> B or with the zero element B —> Z —> B
of Horn ̂ (£,.5).

We give some examples of representable functors from £% to 0t.
EXAMPLE 1. The identity functor Im\ 3% -> 8% is represented by the

biring / = Z[e] given by

/x(e) = e®e,

o(e) = 0,

v{e) = -e,

i(e) = 1.
The natural isomorphism Hom^(/, R) ->• R assigns to the homomorphism
f: I -*• It the element /(e) e R. Conversely, for every r e R we may
define a homomorphism r: / ->• R by the condition r(e) = r.

EXAMPLE 2. The formal power series ring functor
R H- JK[[*]]

is represented by the biring P = Z[XO,XV ...] given by

r+s=n
o(Xn) = 0,

= 0 i fm>0 5 l (Z 0 ) = l.
The natural isomorphism Horn. ̂ (P, R) ^-R[[t]] assigns to the homo-
morphism f:P->R the formal power series 2 f(Xn)tn- The identity

map 1P corresponds to the generic power series 2 Xj,11 e P[[£]], and
nS*0

every power series over R is the image of this under an appropriate
homomorphism from P to R.

We note that the polynomial ring functor
R h> R[t]

is not representable. For, if it were representable by a biring B, the
identity map 1B would correspond to a 'generic polynomial' in B[t],
We have only to ask ourselves what the degree of a generic polynomial
is to see that there can be no such thing.
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If <p: Bx -> B2 is a biring homomorphism, it induces a natural map

9?*: i?2* -*• -#i*- A Yoneda-type argument ((3) 112) gives

PROPOSITION 1.2. Every natural map p : B2* -> B{* is of the form <p*
for a unique biring homomorphism <p: -Sx -^ B2.

Proof. We define <p = ^B^B2)
 e Homg2(JBlJ52)) and then prove that <p

is a biring homomorphism.

2. The functor 0
In this section a functor will be defined which plays a central role in

what follows. The symbol © has been chosen to show an analogy with ®.
Using this functor, we shall prove in this section that the composite of
two representable functors from 01 to 01 is representable, and that a
functor from ^ to 01 is representable if and only if it has a left adjoint.

Let B be a biring and B a ring. Define B © R to be the quotient of
the free ring on the set of ordered pairs (b, r) (b e B, r e B) by the ideal
generated by all expressions of the form

(6162,r)-(61>r)(6a,r),

(6,1)-i(6),
(6,0)-o(6),

where b, 6l5 62 G B, rx, r2, r e R, and

We denote the image of (6, r) in B © R by 6 © r. .
Let 9?: B -> 5 ' be a biring homomorphism and / : R -» i2' be a ring

homomorphism.
We define a ring homomorphism

: BQ)R->B'Q)R'
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It is easily verified that in this way we obtain a functor

0 : 0&*m->9l.
We denote the functor R h-> B 0 R by B*.

THEOREM 2.1. B# is left adjoint to B*. More generally, there is an
isomorphism

d{B,S,R): Horn^tf Q8,R)^ Kom^S,Hom^(£,jR)),
natural in the three variables B (e 88) and R, S (e S%).

Proof. Let / : BQS - » R be a ring homomorphism. We define

W)(s)}(b)=f(bQs) (beB,seS).
Conversely, a ring homomorphism g: S ->• Horn a^{B,R) defines

0-%): BQS-+R
by

COROLLARY 2.2. Since B% is a left adjoint, it is right exact, i.e. it preserves
co-products and initial objects ((9) 528-32).

We can write this as

It follows that, if R has a biring structure, so has B%(R). Hence, we
obtain

COROLLARY 2.3. 0 : ^ x & -+ & extends to a functor <%*<%-><%.

THEOREM 2.4. Let B, C be birings. Then

If 6: B -> B', <p: C -> C are biring homomorphisms, then

Proof. For a ring R we have
C*B*(R) = Homa(

= Horna{B QC,R) = (BQ C)*(R).
The fact that B^C* = (B © C% now follows from the uniqueness of left
adjoints, and the rest of the theorem is trivial.

We can restate part of Theorem 2.4 as
COROLLARY 2.5. The composite of two representable functors is

representable, and 0 is an associative operation.
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THEOREM 2.6. A functor F: & -> 01 is representable if and only if it
has a left adjoint.

Proof. The condition is necessary by Theorem 2.1. To prove
sufficiency, let G be the left adjoint of F. Then G preserves co-products
and initial objects ((9) 528-32) and so, if B is a biring, so is G{B). For
any biring R we have

F(R) = Homa(/, #(£)) = B.omm(G(I),R) = G(I)*(R).
So F is represented by the biring G(I).

3. Biring triples
For any biring B, we may define biring homomorphisms B -> B © / ,

B -> I © B by 6 h> 6 © e, 6 h> e © 6 respectively. These may be shown
to be isomorphisms of birings by writing down the obvious inverse map
in each case.

DEFINITION 3.1. A bi-ring triple (T,TT,T)) consists of a bi-ring T and
homomorphisms of birings

n: TQT-+T,
rj: I-+T,

such that the following diagrams commute:

TQTQT TQT

(1)

IQT

(2)

Note that (T^,^^.,^^) is a triple and (T7*,^*,^*) is a co-triple in the
usual sense ((4) (8)). Such triples and co-triples will be called representable.
For the definitions of a triple, see Appendix B.
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We shall indulge in the usual abuse of notation and refer to the biring

triple T rather than {T,ir,r]). If x, ye T, it will be convenient, and
suggestive, to denote 7r{xQy) by x-y and refer to this binary operation
on T as composition. We also denote 17(e) e T by the symbol eT or
simply e when there is no possibility of confusion. We call eT the identity
element of T (not to be confused with the unit element 1 e T). In §4,
it will be seen that elements of T correspond to operations on a certain
class of rings. The elements x + y, xy will correspond to the pointwise
sum and product respectively of the operations corresponding to x and y.
The element x-y will correspond to the composite operation y followed
by x. (The order of composition is because operations will be written
on the left.) Diagram (1) indicates that composition is associative and
(2) shows that e is a two-sided identity under composition. In fact e
will correspond to the identity operation whereas the unit, 1 e T, will
correspond to the operation sending every element of a given ring into
the unit element of that ring. It is to be emphasized that IT and 77 are
biring homomorphisms and this imposes extra conditions on composition
and on the element e.

A map from the biring triple (T,7r, 77) to {T',TT',T)') is a biring
homomorphism 6: T -> T' such that the following diagrams commute:

TQT > T'0 T

(3)

(4)

Equivalently 6 is a biring homomorphism such that 8(x-y) = d(x)-0(y)
and 6(eT) = eT.

This gives a category y of biring triples and maps of biring triples.
It is clear that the canonical isomorphism I © / -> / makes / into an
initial object for ST.

More generally, using the biring I, we may define a functor T from
the category of semigroups to the category of biring triples.

Let 0 be a semigroup with identity element e and let the composite
of gv g2 e 0 be denoted by gx-g^ Define Y(G) to be the free commutative
ring with unit on the symbols g e G. Then we have canonical ring
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homomorphisms ug: I -+X¥(G) given by ug(e) = g and we see that

~ ® I. The biring structure on / induces a biring structure on
gsO

in which a(g) = g®l + l®g, et cetera. We make Y(O) into a biring
triple by defining rj: I -» T(G) to be ue and -n\ Y(O) 0 T(£) -* T(<?) to
be the biring homomorphism induced by the composition Tt{gx 0 g2) = gt • g%.
In terms of maps, IT is defined by the commutativity of diagram (5) for
all pairs of elements gv g2 e 0.

(5)

The most trivial example of this construction is given by T^e}) = / .
Conversely, we may define a functor A from the category of biring

triples to the category of semigroups. This requires a little explanation.
Recall from § 1 Example 1 that, if T is a biring, it is canonically isomorphic
to Horn 0,(7, T). Consider the subset Hom^(7, T) of Horn #(1, T) which
consists of biring homomorphisms from / to T. If x e T, we denote by
x: I -> T the ring homomorphism defined by x(e) — x.

From the definition of a biring homomorphism, we have immediately

LEMMA 3.2. x e Homa(/, T) if and only if
OL{X) = z ® l + l®a;,
ix{x) = x®x,
o(x) = 0,
v{x) = — x,
i(x) = 1.

We shall call an element of T satisfying the conditions of Lemma 3.2
super-primitive. If x and y are super-primitive, it may be verified that
x -y is super-primitive and so the set of super-primitive elements is a
semigroup which we denote by A(T). The identity element of A(T) is e.

Alternatively, this may be developed in terms of maps as follows.
If <p, «/f G Hom^(/, T), we define <p-ijj E Hom£B(7, T) by

T) =
It is easily verified that this gives an associative binary operation on
Hom£B(7, T) with rj as a two-sided identity element. In this way, using
Lemma 3.2, we obtain a functor A:&~-+Sfytft (where Sfytft is the
category of semigroups) given by T K Homa(7, T).



REPRESENTABLE FUNCTORS AND OPERATIONS ON RINGS 629
THEOREM 3.3. Y: Sfgtfi -> 2T is left adjoint to

A: F -
Proof. Let ( J b e a semigroup and T a triple. Given a semigroup

homomorphism <p\ G -> A(T), we obtain a biring triple map <p: ^(G) ->• T
denned by

T = 1 T.

Conversely, we need to prove that, given a map h: Y(G) -» T of biring
triples, we obtain a unique semigroup homomorphism <p: G -»• A{T) such
that <p = h. Since the elements of ^(G) are polynomials in the symbols
g E G, we must show that the only super-primitive elements of ^(6?)
are the symbols g E G themselves. The only elements of T((9) satisfying
oc(x) = £®H-l®a; are those of the form x = 2 £^7 (where Cff are integers).

If also fj.(x) = x®x, then ^Cgg®g = ^E^CgCg^®g'', and so CgCg> = 0 if
o ao'

g ¥" g' and Cg
2 = Cg. This implies that at most one, say Cgo, can be non-

^ero and, if it is non-zero, Cgo = 1. Since i(x) = 1, we have x ^ 0 and so
x = g0 for some g0 e G.

This proves that AX¥(G) = (? and hence that *F is left adjoint to A.

4. Modules over biring triples
DEFINITION 4.1. A module over a biring triple {T,7T,rj) is a pair (R,K)

where R is a ring and K: T QR -> R is a ring homomorphism such that
the following diagrams commute:

(1)

TOR R

(2)
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We shall abuse language and call R a T-ring. In the usual notation
((4) (6)) for triples and co-triples, a T-ring is a T*-comodule or a
T+-module (see Appendix B). We call K the structure map of (R,K).
If x, y E T, we have already decided to write x-y for TT(X © y); similarly,
if R is a jT-ring and r e R, we shall denote K(X Q r) by x • r.

We may describe a T-ring R in terms of the pairing T xR -» R given
by (x, r) \-> x © r. We define an action of T®T on R®R by
(x ®y)-(r®s) = (x - r) ® (y • s) and recall that the multiplication

m: R®R -> R
is given by m(r®s) = rs. Then diagrams (1), (2) are equivalent to the
relations

(x-y)-r = x-(yr),
e-r = r,

for all x, y e T, r e R.
The fact that xQr f-> x-r is a ring homomorphism is equivalent to

the relations
(x±y)-r = x-r±yr,

x • (r + s) = m{a{x) - (r ® s)),
*Y • I ^ O l lYYi I n f ' v l • I ty* / v \ O i l
*Aj l / O I llv\lA*\*Kit \ l \Q/ O I I,

x-1 = i(x),
rc-0 = o(x),

for all x,y e T,r, s e R.
We may consider the elements of T as operations on i2. Then x-y is

composition of operations y followed by x and e is the identity operation.
Sum and product of operations are performed pointwise; I e T sends
every element of R into 1 e R. The rest of the above axioms imply that
the action of T on the ring structure of R is determined by the co-ring
structure of T.

If (R, K) and (Rr, K') are both T-rings, a ring homomorphism/: R -> R'
is said to be a map of T-rings if the diagram

TQM ^ ^ >TQ>li'

(3)

commutes.
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This is equivalent to saying that / commutes with T-action, i.e.

f(x-r) = X'f(r),xeT,rGR.
In this way, we obtain a category MT of T-rings and maps of T-rings.
The next proposition shows that 0tT shares some of the satisfactory

properties of 8%.

PROPOSITION 4.2. 8fcT has an initial object and coproducts.

Proof. The canonical isomorphism T © Z ~ Z of Corollary 2.2. makes Z
into a T-ring in a unique way. If R is a T-ring, the canonical ring
homomorphism j : Z -+ R is easily seen to be a map of T-rings. Hence
Z is initial in 8ft.1'.

If (R, K) and (R',K') are T-rings, then R®R' is made into a T-ring
via the structure map

TQ(R®R')~ {TQR)®(TQR') *®" > R®R'.
The canonical injections of R and R' into R®R' are maps of T-rings
and so R®R' is the co-product of R and R' in 0tT.

Given T-rings R, R', we may define an action of T®T on R®R' by
(̂ i ® h)' (r ® r) = (h'r>) ®ih'r')- On using the axiom

x-irfa) = mi^ix)-^®^)),
where rx = r® 1, r2 = \®r', Proposition 4.2 implies that the canonical
T-action on R ® R' is given by the rather baroque-looking identity

x-(r®r') = fx(x)-(r®r').

We may make T itself into a T-ring by giving it the structure map
IT : T 0 T -> T. In Appendix C, it is shown that T may be thought of
as the 'free' T-ring on one generator.

THEOREM 4.3. If R is a T-ring, then there is a bijective map
Hom^(T,R) -> R defined by cp h> <p(e), where cp\ T -> R is any map of
T-rings.

Proof. If x e T then cp(x) = <p(x-e) = x-cp(e) and so <p is determined on
the whole of T by its value on e and conversely.

COROLLARY 4.4. Given a T-ring R and an element r e R, there exists
a unique map of T-rings <pr\ T -*• R in which <pr(e) = r.

Note the analogy between T considered as a T-ring and a ring A
considered as a module over A. The element e e T occupies the analogous
position to the unit 1 e A (in that if M is an A -module, a module homo-
morphism 9: A -» M is defined uniquely by the element 0(1) e M).
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We may consider the concept of a natural operation on the category &T.
A natural operation a assigns to each T-ring a map of sets aR\ R -> R
such that, if / : R -» R' is a map of ^-rings, then the diagram

(4)

commutes.
We denote the collection of natural operations by Op(^r) . The elements

of T may be considered as natural operations and it is a direct consequence
of Corollary 4.4 that these are the only ones, for the natural operation a
corresponds to the element aT(e) e T. We may induce a ring structure
on the set of natural operations by addition and multiplication of values.
Thus, if a, r are natural operations, then CT + T and or are defined by

{<rr)B{r) = aR{r)rR{r),
for all r G R. Of course there is another binary operation defined on
Op(^r) given by composition of operations:

(vr)R(r) = oR(TR(r)) (r E B).
Evidently we have

THEOREM 4.5. O p ( ^ r ) is isomorphic to T as a ring, under the map
a h> aT{e). Composition of operations corresponds to composition in T and
the identity operation corresponds to e.

We shall now identify the elements of T with natural operations.
As in Theorem 4.5, a natural operation a corresponds to oT{e) e T.
Conversely, x e T corresponds to cr where aR(r) = x-r for any element r
of the T-ring R. In terms of maps, x determines x: I -> T by £(e) = x
and a is determined by the identity

B _̂ L> B = B -^U / O R - ^ t T 0 R - ^ R
for a T-ring R.

Of particular interest are natural operations which are themselves ring
homomorphisms. Such a natural operation we shall call an Adams
operation. Since the composite of two ring homomorphisms is a ring
homomorphism, the Adams operations form a semigroup under
composition.
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PROPOSITION 4.6. The semigroup of Adams operations is

= E.oma(I,T).

Proof. The semigroup A(T) is the subset of super-primitive elements.
Now x e T is super-primitive if and only if x: I -»> T is a biring homo-
morphism. In this case x © lR is a ring homomorphism and so, by the
identity above, the corresponding operation aR is a ring homomorphism.
Conversely, for any element x e T, we have

x-{e®e) = (JL{X),

X'{-e) = v{x),
X'\ = l(x),

x-0 — o(x).
If also aR: R -> R, given by aR(r) = x• r, is a ring homomorphism for

any ring R, we see that

x - (e ® e) = x ® x,
x-( — e) = —x,

x-l = 1,
z-0 = 0,

and so x is super-primitive.
In § 3, we gave a functorial method of constructing a biring triple X¥{G)

from a semigroup G. Using Proposition 4.6, we may describe the structure
of a xF((?)-ring.

PROPOSITION 4.7. Let G be a semigroup with identity, then a Y(G)-ring
is a ring R together with a ring endomorphism 6g: R ->• R for each g e G
such that 6e = 1R and QgiQgi = 9gi.gi- A map of W(G)-rings is a ring homo-
morphism / : R -> R' such that d'gf = fdgfor each g e G.

Proof. ^(G) is the polynomial ring in the symbols g e G. Since
AW(G) = G, the super-primitive elements of X¥(G) are precisely the
elements g e G. Thus the natural operations corresponding to the
elements g e G are ring homomorphisms and every other natural opera-
tion is a unique polynomial in these symbols. So all natural operations
are determined by their action. Define dg: R -> R by 6g(r) = g-r and
the proposition will follow.

As particular examples of this phenomenon, let Z+ be the additive
semigroup of non-negative integers, Z the additive group of integers,
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and Z2 the group with two elements. Then a T(Z+)-ring is a ring with
endomorphism, a T(Z)-ring is a ring with automorphism and a x¥(Z2)-nng
is a ring with an involutory automorphism.

5. Special A-rings
We give a brief review of the theory of special A-rings. The notion was

first defined by Grothendieck (7). Examples of special A-rings occur in
K-theory (5). A full exposition may be found in (6).

A X-ring is defined to be a commutative ring R with unit together
with an enumerable family of maps (of the underlying set) An: R -»• R
(n = 0,1,2,...) satisfying, for all x, y e R,

(1) A°(s) = 1,

(2) \i(x) = x,

(3)
r=0

A X-homomorphism is defined in the obvious way as a ring homomorphism
commuting with the A-operations.

If 1 + i2[[£]]+ denotes the set of formal power series in t, with coefficients
in a ring R and constant term 1, then 1+-#[[£]]+ has a unique A-ring
structure (7) subject to the following conditions.

(4) The structure is functorial in R.
(5) Addition in l+i2[[£]]+ is the usual multiplication of power series.
(6) Multiplication satisfies (1 + at) o (1 + bt) = 1+abt.
(7) Xn(l+at) = I (n> 2).
The 'zero' of l+i?[[^]]+ is 1 and the 'unit' is 1 + t. Alternatively, as

described in ((6) Part I), this structure may be given in terms of
'universal polynomials'. If £1} ..., £r, r)v ..., rjs are indeterminates and
ari} Tt are the ith..elementary symmetric functions in tjv ..., £r and 77̂  ..., ^s,
respectively, let:

(8) Pn{ax, ...,an\ T15 . . . , T J be the coefficient of tn in

(9) Pnm{crx, ...,anm) be the coefficient of tn in

. n (i+^...^o.
il<...<im

From (5), (6) and distributivity we have

which may be written as

(11)
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By naturality (4), a standard argument in symmetric function theory
((6) Part I) gives the following identity in 1

(12)

If a;l5 ..., xr are elements in an arbitrary A-ring such that Aw(a;i) = 0
(n ^ 2), then from (3) by induction on r,

(13)

£ on«")o(l+ S KA = 1+ S Pn(av...,an; 61,...,6J«»

Hence, using (5), (6), (7),

= n
which may be written as

(15) A»(l + 5 ^

Again, using naturality of the structure on 1

(16)

Note that if R is a A-ring, the map X(: R ^ I + R[[t]]+ given by
X((x) = 1 + 2 An(x)£n is homomorphic from the additive group of R to the
'additive' group of 1 + R[[t]]+ by (1), (2), (3), and (5).

A A-ring is said to be special if \ is a A-homomorphism. Thus a A-ring R
is special if (1)—(3) are satisfied together with:

(17) A,(l) = l - K or A»(l) = 0 (n>2);

(18) \n(xy)Pn(\*(z),...,\"(x); A%), ...,A%));

(19) A»(A»(*)) = Pw,JAMa;),..., A»»(aO).
Conditions (17)—(19) state that A/ preserves the identity, preserves
multiplication, and commutes with the A-operations respectively.

THEOREM 5.1 (Grothendieck). For any ring R, l+R[[t]]+ is special.

Proof. See (6).

The functor R h» 1 +-R[[^]]+ is representable. If Q = Z[«sl5 ...,sn,...] is
the free commutative ring on an enumerable set of generators, the co-ring
structure is given by:
co-addition:

ot{sn) = l®sn + sn®l+ Zsr®sn_r,
r = l
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co-multiplication:
p(sn) = Pn(s1®l,...,sn®l; l®sv ...,l®sn),

co-zero:

o(sn) = 0,
co-unit:

*(«i) = !> '(*«) = 0 (n > 1),
co-additive inverse:

n-l

v(Sl) = -sv and inductively v(sn) = -sn- £ "foX-r
r = l

The functor jft h> 1 +-#[[£]]+ is naturally equivalent to R \-> Q.*(R) where
<p e &*{R) is identified with 1+ £ ??(sn)*n e 1+ .«[[«]]+.

Define -n: Q, ©Q -» Q by
(20) 7r(sm 0 «n) = sm• sn = Pniin{sv ...,smn),

and 7): / -» Q. by

(21) 17(6) = « r

Since Theorem 5.1 is equivalent to the fact that (Cl*, n*, r)*) is a co-triple,
it follows from Proposition 1.2 that (Q, TT, rj) is a bi-ring triple.

Given an Q-ring R, we may define a A-ring structure on R by putting
Xn(r) = sn-r. From the definition of an fl-ring, it follows immediately
that the A-structure on R satisfies (l)-(3) and (17)—(19) and so R is a
special A-ring. Conversely, a special A-ring is an Q-ring. Also maps of
Q-rings are precisely A-homomorphisms.

From the results of §4, we state Propositions 5.2-5.4 without proof.
PROPOSITION 5.2. The tensor product of special X-rings is a special X-ring

and the canonical maps Rx -> R1®R2, R2 -+ RX®R2 are X-homomorphisms.

PROPOSITION 5.3. The free special X-ring on one generator is

Q. = Z[s l 5 . . . , sn,...] where Xn(sx) = sn.

If R is a special X-ring, the X-homomorphisms from QtoR are in one-to-one
correspondence with R under the relation 9 h> fl^).

A natural operation T on the category of special A-rings is a set map
rR: R -> R for each special A-ring R such that frR = rsf for each
A-homomorphism / : R -> S. The set of natural operations forms a ring
under addition and multiplication of values.

PROPOSITION 5.4. The ring of natural operations on the category of
special X-rings is isomorphic to Q, (as a ring) under the map r i-> r ^ ) .
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From this it follows that we may consider elements of Q as natural

operations. Composition of the operation y e Q followed by x e Cl is
given by x-y and the identity operation is sx e Q. Since sn-r = Xn{r),
the identification of Q with the ring of natural operations amounts to
identifying sn and Xn. An arbitrary natural operation T takes ^ e O
into another element of Q, which is a polynomial with integer coefficients
T Q ^ ) =f(s1, ...,sn). This implies that T = f(X1, ...,Xn) with the above
identification. Thus we have

COROLLARY 5.5. A natural operation is a polynomial in the X-operations.

In the remainder of this section, we shall identify elements of Q. with
natural operations and so an element of Q is a polynomial in the
A-operations.

THEOREM 5.6. A(Q.) is isomorphic to Zx, the multiplicative semigroup
of positive integers.

Proof. We define a semigroup homomorphism
h: Zx-*A(Q.)

by
h(k) = 0& (k > 0),

where ifjk is the usual Adams operation (5) defined inductively by
./r1 = A1 and

(22) ifjn = \ ( - l ) r - 1 Ay i - r - ( - l)nnXn.
r = l

It is well known that the Adams operations are ring homomorphisms and
that i/jm-ifjn = ifjmn (6); so h is well defined.

Since the i/ffc are all distinct, h is a monomorphism.
Now h induces a map of biring triples

h. Y(Zx)^a
The essential point to notice is that, over the field of rationals Q, the
equation (22) can be solved to give the Xn in terms of the ijjk. Since the
Aw generate Q, this means that

is an isomorphism. It follows that, if a super-primitive element is not in
the image of h, it must be a torsion element. But Q. has no torsion.
Hence h is an epimorphism and the theorem is proved.

Alternatively, for the last part, we could use
PROPOSITION 5.7. In any biring triple, a super-primitive element is not

a torsion element.
5388.3.20 Y
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Proof. Let u be super-primitive and suppose that nu = 0 for some
integer n. Then n = m(u) = i{nu) = 0. Hence u is not a torsion element.

6. Rings with derivation
Let D be the biring Z[80, ...,8n,...] where

q+s=n

o(8n) = 0,

*(80) = 1, l(8B) = 0 (» ^ 1).

Define 77: / -> D by ^(e) = So and TT : D © 2) -> 2) by ir(8m • 8n) = 8m+n.
The functor i2 h> D*(R) assigns to R the ring of formal power series of

tn

the type 2 a
n ~i where an e R. (Note that the fraction \/n! is to be

n

thought of as a normalization factor and we certainly do not expect to
divide an by n\ in R.) The map f:D->R corresponds to the series

The homomorphism rj*R: D*(R) -> R assigns to a power series its
constant term and TT*R: D*(R) ^-D*(D*(R)) is the homomorphism
assigning to the power series p(t) in one variable the power series
ptfi + tz) in two variables tv t2.

Suppose R is a 2)-ring. Then So is the identity operator, Sx is a
derivation, and 8n is the nth. iterated power (under composition) of 8X.
Conversely, a ring with derivation can be given a canonical D-hng
structure. For example, if S is the ring of real-valued C°° functions on
the real line, then S has a natural 2)-ring structure given by 8n-f = f{n).

A map of 2)-rings is precisely a ring homomorphism commuting with
derivation.

The only Adams operation in D is So.

Appendix A
The axioms for a ring B to be a biring are as follows.
Let 1: B -» B be the identity map of B, let t: B®B -> B®B be the

homomorphism defined by t(x ® y) = y®x (x, y e B), and let m: B ® B -> B
be the homomorphism defined by m(x®y) = xy (x,y e B). The following
diagrams must be commutative.
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B.I. Co-addition a: B -> B®B is co-associative.

B®B

B.2. Co-addition is co-commutative.

B.3. Co-zero, o:

-B®B'

B.4. Co-additive inverse, v: B -» B.

B 2 >B®B-

B®Z

1®1

B.5. Co-multiplication /x: J5 -> B®B is co-associative.



640 D. 0. TALL AND G. C. WRAITH
B.6. Co-multiplication is co-commutative.

B.7. Co-unit, i:

7?-

7?®Z

B<r

B.8. Co-distributivity.

B

I 1®

B&B-
I

If ^ and B2 are birings, and f:B1->B2a, ring homomorphism, then /
is a biring homomorphism if the following diagrams commute.



REPRESENTABLE FUNCTORS AND OPERATIONS ON RINGS 641
Appendix B

A triple (F,p,q) on a category ^ is a functor F: *€ -> *€ together with
natural maps p: F2 -> F, q: Iv -> F such that the following diagrams
commute.

p*F
Fa >F2

F*p

• > • * '

A natural map 6: F -> F' is a map of triples if the diagrams

F-

commute.
If (F,p, q) is a triple, an i^-module is a pair (X, | ) where X is an object

of ^ and | : F(X) - > I a map of ^ such that the diagrams

F(X)

commute.
If (X, £) and (X', | ' ) are JP-modules, a map / : X -> X' is a map of

JP-modules if the diagram

commutes.
If Y is an object of ^ , then (F(Y),pY) is easily verified to be an

.F-module, which we call the free module on Y.
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Appendix C

Free modules of hiring triples.
Let <p: T -» U be a map of biring triples. We may define a 'pull-back'

functor

by (R, K) h> (R, K(<P O 1R)) for each tf-ring (R, K).
In particular, ffl: MT ->• 011 ~ ^ is simply the forgetful functor from

T-rings to rings.

THEOREM. Sb* has a right adjoint

and a left adjoint R h> U QTR, which will be defined below.

The notation has been chosen to suggest the obvious analogy! First
of all, let us show that Horne t / , R) is sensible notation.

Proposition 4.2 shows that $T is a good category to define co-rings in.
It also shows that M9 is right exact. Hence, if X is a co-ring in
M*(X) is a co-ring in 3%T.

Now U is a co-ring in &u, and hence, by pull-back, a co-ring in
(we abuse notation by not distinguishing between ^V{U) and U at this
point). So the set Horn^{U', R) has a well-defined ring structure. We
make it into a ?7-ring by defining

(u-f)(u')=f(u-uf)
for all u, u' G U, f e Hom^r(?7, R).

Given a map of T-rings ^(S) > R, we define a map of {7-rings

S > Ho rne t / , R) by {g(s)}(u) — h(u-s). Conversely, given g we define
h by h(s) = {g(s)}(r)(e)).

If R is a T-ring, define UQTR to be the ideal generated by all
expressions of the form

u• <p(x) Qr — uQx-r

(ueU,xeT,rG R). Denote the image of u © r in U QTR by u QTr.
We make U QTR into a J7-ring by defining

u-(u' QTr) = wu' QTr.

Given a map of T-rings R > ^(S) we define a map of tarings

g(uQTr) = u-h{r).
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Conversely, given g we define h by

h(r) = g(rj(e)QTr).
In particular, the functor T%: M ->• 8fcT\ R -> T © i2 is left adjoint to

the forgetful functor 0fa\ @T ~+ 0t, and so we call TQR the free T-ring
on the ring R.

The forgetful functor 01 -> Sno has a left adjoint which sends
{a,b,c,...,} to Z[a,b,c,...]. Since left adjoints preserve co-products and
AS = \J{s] we see that the free ring on S is just

seS

® Z[s].
seS

Hence, the free T-ring on a set S is

\seS I seS

since T © Z[>] ~ T.
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