Plethystic algebra

J. Borger, B. Wieland, Plethystic algebra, Advances in Mathematics 194/2 (2005), pp 246-283

Abstract: The notion of a Z-algebra has a non-linear analogue, whose purpose it is to control operations on commutative rings rather than linear operations on abelian groups. These plethories can also be considered non-linear generalizations of cocommutative bialgebras. We establish a number of category-theoretic facts about plethories and their actions, including a Tannaka-Krein-style reconstruction theorem. We show that the classical ring of Witt vectors, with all its concomitant structure, can be understood in a formula-free way in terms of a plethystic version of an affine blow-up applied to the plethory generated by the Frobenius map. We also discuss the linear and infinitesimal structure of plethories and explain how this gives Bloch's Frobenius operator on the de Rham-Witt complex.

Download: pdf