
Sel. Math. New Ser. (2016) 22:595–629
DOI 10.1007/s00029-015-0198-6

Selecta Mathematica
New Series

Boolean Witt vectors and an integral Edrei–Thoma
theorem

James Borger1 · Darij Grinberg2

Published online: 4 November 2015
© Springer Basel 2015

Abstract Asubtraction-free definition of the bigWitt vector constructionwas recently
given by the first author. This allows one to define the bigWitt vectors of any semiring.
Here we give an explicit combinatorial description of the big Witt vectors of the
Boolean semiring.We do the same for two variants of the bigWitt vector construction:
the Schur Witt vectors and the p-typical Witt vectors. We use this to give an explicit
description of theSchurWitt vectors of the natural numbers,which canbe viewed as the
classification of totally positive power series with integral coefficients, first obtained
by Davydov. We also determine the cardinalities of some Witt vector algebras with
entries in various concrete arithmetic semirings.

Keywords Witt vector · Semiring · Symmetric function · Schur positivity · Total
positivity · Boolean algebra

Mathematics Subject Classification Primary 13F35; Secondary 16Y60 · 05E05 ·
05E10

James Borger: Supported by the Australian Research Council, DP120103541 and FT110100728.

B James Borger
james.borger@anu.edu.au

Darij Grinberg
darijgrinberg@gmail.com

1 Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia

2 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307,
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-015-0198-6&domain=pdf


596 J. Borger, D. Grinberg

1 Introduction

Recently in [5], the first author gave an extension of the big Witt vector functor to a
functor W on (commutative) semirings—in other words, a definition of Witt vectors
that does not require subtraction. Witt vectors are usually thought of as being related
to the p-adic numbers or, more broadly, the finite adeles. For example, the (relative) de
Rham–Witt complex, in its single-prime form, computes crystalline cohomology; in
its multiple-prime form, it formally unifies the crystalline cohomologies at all primes.
(See, e.g., [3,6,12–14,17].) But the extension of the Witt construction to semirings
shows that positivity also plays a role, and thus so does the archimedean prime. One
striking expression of this is thatW (N) is countable and has no zero divisors, and there-
fore can connect to analytic mathematics in ways that W (Z), which is pro-discrete
and has many zero divisors, cannot. For instance, there is a canonical injective homo-
morphism from W (N) to the ring of entire functions on C. In [4], it was argued that it
is reasonable to think ofW (Z) as Z⊗F1 Z, where F1 is the hypothetical field with one
element; so it is notable thatW (N), a more fundamental alternative, has some analytic
nature.

For reasons like these, one would like to understand better the range of positivity
phenomena that can occur in Witt vectors. Here a special place is held by the Boolean
semiring B = {0, 1}, with 1 + 1 = 1. This is because, aside from the fields, it is the
unique nonzero semiringwhich has no quotients other than itself and 0. (SeeGolan [11,
p. 87].) One might imagine B as the residue field of N at the infinite prime. In fact, as
we show in (7.9), any semiring A not containing −1 necessarily admits a map to B,
much as any ring not containing 1/p admits a map to some field of characteristic p.
In particular, there is a map W (A) → W (B), and hence structure related to Boolean
Witt vectors is necessarily present in theWitt vectors of any semiring that is not a ring.
So not only is an understanding of W (B) helpful in understanding positivity in Witt
vectors, it is all but required.

The purpose of this paper is then to give an explicit description of W (B). From
the point of view above, this would be analogous to the description of Witt vectors of
fields of characteristic p in concrete p-adic terms (which incidentally explains why
p-adic phenomena appear in theWitt vectors of any ring not containing 1/p). We also
give an explicit description W Sch(B), where W Sch is the Schur Witt vector functor
of [5].

In order to state our main results precisely, we need to recall the basic definitions
of W and W Sch for semirings. For details, see [5]. Let �Z denote the usual ring
of symmetric functions in the formal variables x1, x2, . . . . It is the inverse limit in
the category of graded rings of the rings Z[x1, . . . , xn]Sn of symmetric polynomials,
where the transition maps are given by f (x1, . . . , xn) �→ f (x1, . . . , xn−1, 0), and
where each variable xi has degree 1. Then �Z has two standard Z-linear bases: the
monomial symmetric functions (mλ)λ∈P and the Schur symmetric functions (sλ)λ∈P ,
both of which are indexed by the set P of partitions. (We refer the reader to chapter 1
of Macdonald’s book [18] for the basics on symmetric functions.) If we write �N =⊕

λ∈P Nmλ and �Sch = ⊕
λ∈P Nsλ, where N = {0, 1, . . . }, then by some standard

positivity facts in the theory of symmetric functions, both are subsemirings of �Z and
we have �Sch ⊆ �N. For any semiring A, we then define
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W (A) = Homsemiring(�N, A), W Sch(A) = Homsemiring(�
Sch, A).

We call these the sets of big Witt vectors and Schur Witt vectors with entries in
A. When A is a ring, both agree with the usual ring of big Witt vectors defined by
HomAlgZ(�Z, A) in the sense that any map from�Sch or�N to A extends uniquely to
�Z. The semiring structures onW (A) andW Sch(A) are the unique functorial ones that
agreewith the usualWitt vector ring structurewhen A is a ring. Their existence follows
from some further standard positivity results in the theory of symmetric functions.

Our main result is the following combinatorial description of W (B) and W Sch(B):

Theorem 1.1 (1) There is a bijection

N
2 ∪ {∞} ∼−→W (B)

sending (x, y) to the unique Witt vector satisfying, for all λ ∈ P,

mλ �−→
{
0 if λx+1 ≥ y + 1

1 otherwise,
(1.1.1)

and sending ∞ to the unique Witt vector satisfying mλ �→ 1 for all λ ∈ P.
(2) In these terms, the semiring structure on W (B) is given by the laws

(x, y) + (x ′, y′) = (x + x ′,max{y, y′}), (0, y) · (0, y′) = (0,min{y, y′}),
0 = (0, 0), 1 = (1, 0), ∞ + z = ∞ = ∞ · ∞, ∞ · (0, y) = (0, y),

and the pointwise partial order on W (B) (with 0 < 1) corresponds to the usual,
componentwise partial order on N

2 with terminal element ∞.
(3) The obvious analogues of parts (1) and (2) for W Sch(B) and the Schur basis

(sλ)λ∈P also hold except that the semiring structure on WSch(B) is given by the
laws

(x, y) + (x ′, y′) = (x + x ′, y + y′), (0, y) · (0, y′) = (yy′, 0),
0 = (0, 0), 1 = (1, 0), ∞ + z = ∞ = ∞ · ∞, ∞ · (0, y) = ∞.

The proof is in Sects. 4 and 5.We also describe the�N-semiring structure onW (B)

and the�Sch-semiring structure onW Sch(B). Observe that both kinds of BooleanWitt
vectors form countably infinite sets. For rings, this never happens.

At this point, it should be mentioned that Connes has also proposed a notion of
Witt vectors with entries in certain B-algebras [7]. See also Connes–Consani [8]. His
construction is an analogue for p = 1 of the p-typical Witt vector ring W(p)(K ) with
entries in a perfect field K of characteristic p. Both the characteristic of the input ring
K and the typicality of the Witt construction are imagined to be 1. In these terms,
our Boolean Witt vectors have only the characteristic of the input set to 1. The Witt
vector functors themselves are the usual big (and, below, p-typical) functors, although
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extended to semirings. Itwould be interesting to know if there are any relations between
the two approaches.

In Sects. 6 and 7, we use the combinatorial description of Boolean Witt vectors
above to determine W Sch(N). Our approach is by analyzing the diagram

1 + tZ[[t]] �� 1 + tR+[[t]] �� 1 + tB[[t]]

W Sch(N) ��
��

σ

��

W Sch(R+) ��
��

σ

��

W Sch(B)

σ

��

(1.1.2)

where R+ = {x ∈ R | x ≥ 0}. The maps σ send any Witt vector a to the series∑
n≥0 a(en)tn , where

en =
∑

i1<···<in

xi1 · · · xin ∈ �Sch

is the nth elementary symmetric function, and the horizontal maps are the functorial
ones. (The semiring map R+ → B is the unique one. It sends 0 to 0 and all x > 0
to 1.) The proof is a short argument linking the combinatorial description of W Sch(B)

given above with an analytical description of the real column in (1.1.2) given by the
Edrei–Thoma theorem from the theory of total positivity, as recalled in Sect. 6. The
result is the following:

Theorem 1.2 The map σ is a bijection from W Sch(N) to the set of integral series
f (t) ∈ 1 + tZ[[t]] of the form

f (t) = g(t)

h(t)
,

for some (necessarily unique) integral polynomials g(t), h(t) ∈ 1+ tZ[t] such that all
the complex roots of g(t) are negative real numbers and all those of h(t) are positive
real numbers.

This theorem is obviously equivalent to the following one, which was apparently
first observed by Davydov [9] (end of the proof of theorem 1) and deserves to be more
widely known:

Theorem 1.3 An integral series f (t) ∈ 1 + tZ[[t]] is totally positive if and only if it
is of the form

f (t) = g(t)

h(t)
,

for some integral polynomials g(t), h(t) ∈ 1 + tZ[t] such that all the complex roots
of g(t) are negative real numbers and all those of h(t) are positive real numbers.
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Davydov’s argument also uses the Edrei–Thoma theorem, but where we use the
combinatorial calculation of W Sch(B), he uses a theorem of Salem’s [21].

Let us now return to Theorem (1.1). Observe that W (B) and W Sch(B) are isomor-
phic as partially ordered sets, since both agree with N

2 ∪ {∞}, but that they are not
isomorphic as semirings. The reason they both agree with N

2 ∪ {∞} as sets is ulti-
mately that nonzero rectangular partitions, which are indexed by N

2, have a certain
primality role in the combinatorics of both monomial and Schur symmetric functions.
In fact, most of the arguments for W (B) and for W Sch(B) are remarkably parallel. It
would be interesting to have a conceptual reason why this should be so.

This surprising coincidence continues with the p-typical Witt vectors, which are
the subject of Sect. 8. Let p be a prime number, and letW(p) denote the p-typical Witt
functor for semirings, as defined in [5] and recalled in (8.1) below.

Theorem 1.4 W(p)(B) is canonically isomorphic to N
2 ∪ {∞} as a partially ordered

set.With respect to this identification, the semiring structure onW(p)(B) is independent
of p, for p > 2.

Here the connection with partitions is lost. So perhaps it is unreasonable to expect
the coincidence in this case to have a deeper meaning. The semiring structure on
W(p)(B) is described explicitly in (8.3) below. It is not isomorphic to either W (B) or
W Sch(B).

In Sect. 9, we establish some countability results forWitt vectors of other semirings,
such as N[x] and the truncations N/(n = n + 1) of N. The final surprise of this paper
is that for the truncations, there is a jump at n = 3:

Theorem 1.5 W (N/(n = n + 1)) is countable if and only if n ≤ 2. The same is true
for W Sch(N/(n = n + 1)).

It would be interesting to improve on such cardinality statements and determine
the algebraic structure of more Witt vector algebras explicitly, as we have done for
Boolean Witt vectors. One could start with N[x] or N/(2 = 3), for example.

2 Background and conventions

We will follow the conventions and notations of [5]. Let us recall some of the ones
that have not already appeared in the introduction.

2.1 Modules and algebras over N

The set N of natural numbers is {0, 1, . . . }. The category ModN of N-modules is by
definition the category of commutative monoids. The monoid operation is denoted +,
and the identity is 0. The set of N-module homomorphisms M → N will be denoted
ModN(M, N ), and similarly for other categories.

AnN-algebra (or a semiring) is anN-module Awith a second commutative monoid
operation × which is bilinear with respect to +, in the sense that for any a ∈ A, the
map x �→ a × x is an endomorphism of the monoid (A,+). The identity of × is



600 J. Borger, D. Grinberg

denoted 1, and a × x is typically written ax . The category of N-algebras is denoted
AlgN.

The Boolean semiring B is defined to be the quotient N/(1 + 1 = 1), or simply
{0, 1} with 1 + 1 = 1.

2.2 Partitions and symmetric functions

We will generally follow Macdonald’s book [18]. In particular, a partition λ is a
sequence (λ1, λ2, . . . ) ∈ N

∞ such that λ1 ≥ λ2 ≥ · · · and λi = 0 for sufficiently
large i . The set of partitions will be denoted P . We will write ab for the partition
(a, a, . . . , a, 0, . . . )with a occurring b times. The nth power-sum symmetric function
in �N will be denoted by ψn :

ψn =
∑

i

xni

instead of the more common pn .

2.3 Witt vectors

As mentioned in the introduction, W (A) is an N-algebra for any N-algebra A. The
binary operations +,× on W (A) are induced by co-operations on the representing
object �N:

�+,�×: �N −→ �N ⊗N �N. (2.3.1)

In terms of symmetric functions in the formal variables x1, x2, . . . , they are given by
the following rules:

�+: f (. . . , xi , . . . ) �→ f (. . . , xi ⊗ 1, 1 ⊗ xi , . . . )

�×: f (. . . , xi , . . . ) �→ f (. . . , xi ⊗ x j , . . . ).

For example, we have

�+(ψn) = ψn ⊗ 1 + 1 ⊗ ψn,

�×(ψn) = ψn ⊗ ψn .

These equations are the properties of �+ and �× we will most often use, and in fact
they determine �+ and �× uniquely and hence furnish alternative definitions.

Similarly, the additive andmultiplicative units 0, 1 ∈ W (A) are induced by co-units

ε+, ε×: �N −→ N (2.3.2)

given by
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ε+: f (. . . , xi , . . . ) �→ f (0, 0, 0, . . . )

ε×: f (. . . , xi , . . . ) �→ f (1, 0, 0, . . . ).

The same statements hold for �Sch instead of �N.
For any x ∈ A, the anti-Teichmüller lift {x} ∈ W Sch(A) is defined by

{x}: sλ �→
{
xr if λ = 1r

0 otherwise.
(2.3.3)

So for example, we have

σ({x}) = 1 + xt + x2t2 + · · · = (1 − xt)−1. (2.3.4)

See [5, (6.10)] for the basic properties of anti-Teichmüller lifts. (Note that the symbol
σ denotes a different map in [5], corresponding to different sign conventions. There
two maps σ++ and σ−− are defined. Here σ means σ++ , whereas there it means σ−− .)

We end with some words on composition structures, which will have a small part in
this paper. Consider a composition N-algebra Q, such as�N or�Sch. (See (3.3) in [5]
for the general definition.) Then the Q-Witt vectors WQ(A) = AlgN(Q, A) have not
only an algebra structure but also an action of Q. For f ∈ Q, a ∈ WQ(A), the element
f (a) ∈ WQ(A) is the map Q → A given by

f (a): g �→ a(g ◦ f ),

where ◦ denotes the composition operation on Q—this is simply plethysm of sym-
metric functions in all examples in this paper. In fact, WQ is the right adjoint of the
forgetful functor from Q-semirings to semirings. This generalizes the fact that the big
Witt functor is the right adjoint of the forgetful functor from λ-rings to rings.

3 Orders on Witt vectors

This section introduces some generalities on preorders. They have only a small part
in this paper; so it can be skipped and consulted as needed.

3.1 AlgN-preorders

Recall that a preorder is a reflexive transitive relation. Let us say that a relation ≤ on
an N-algebra A is an AlgN-preorder if it is a preorder and satisfies the implication

a ≤ b and a′ ≤ b′ �⇒ a + a′ ≤ b + b′ and aa′ ≤ bb′. (3.1.1)

This implication is equivalent to requiring that the graph of ≤ be a sub-N-algebra of
A× A. Hence anAlgN-preorder is the same as a preorder object over A in the category
AlgN.



602 J. Borger, D. Grinberg

The most important example for this paper is the difference preorder defined by

a ≤ b ⇐⇒ ∃c ∈ A such that b = a + c. (3.1.2)

It is the strongest AlgN-preorder such that c ≥ 0 for all c ∈ A. A second example is
a ≤ b ⇔ a = b; a third is a ≤ b for all a, b, which agrees with (3.1.2) when A is a
ring.

3.2 Preorders on Witt vectors

Let Q be a composition N-algebra, for example �N or �Sch. (See (3.3) in [5] for the
general definition.) Then given any preorder ≤ on an N-algebra A, we can define a
preorder on the algebraWQ(A) = HomAlgN(Q, A)ofWitt vectors: Fora, b ∈ WQ(A),
we write

a � b ⇐⇒ a(x) ≤ b(x) for all x ∈ Q. (3.2.1)

Observe that if ≤ is a partial order (that is, it satisfies a ≤ b ≤ a ⇒ a = b), then so
is �.

Now assume that ≤ is an AlgN-preorder. Then � is also an AlgN-preorder. Indeed,
if R ⊆ A × A denotes the graph of ≤, then WQ(R) is a subalgebra of WQ(A × A) =
WQ(A) × WQ(A) and is clearly the graph of �. In fact, WQ(R) is a sub-Q-semiring
ofWQ(A)×WQ(A). So� is a preorder in the category of Q-semirings. Equivalently,
it is an AlgN-preorder satisfying

a � b �⇒ f (a) � f (b) (3.2.2)

for any f ∈ Q.
Finally observe that if a subset S ⊆ Q generates Q as an N-algebra, then for all

a, b ∈ WQ(A), we have

a � b ⇐⇒ a(s) ≤ b(s) for all s ∈ S. (3.2.3)

Indeed, since R is a subalgebra of A× A, the map (a, b): Q → A× A factors through
R if and only if the image of S is contained in R.

3.3 The preorders in this paper

The preorder ≤ on N-algebras will always be understood to be the difference preorder
of (3.1.2), and the preorder � onWitt vectorsWQ(A) will always be understood to be
the one induced by the difference preorder on A.

The following result implies that for all the composition N-algebras Q that appear
in this paper—namely �N, �Sch, and �N,(p)—the difference preorder ≤ on WQ(A)

is stronger than �.
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Proposition 3.4 For a, c ∈ WQ(A), we have

a � a + c, (3.4.1)

as long as Q has the property that for all x ∈ Q, we have ε+(x) ≤ x, where ε+: Q →
N denotes the additive co-unit of Q.

Proof Given any element z = ∑
i xi ⊗ yi ∈ Q ⊗N Q, write xi = ε+(xi ) + x ′

i , for
some elements x ′

i ∈ Q. Then we have

z =
∑

i

(
ε+(xi ) + x ′

i

) ⊗ yi =
∑

i

ε+(xi ) ⊗ yi +
∑

i

x ′
i ⊗ yi ≥ (ε+ ⊗ id)(z).

When z = �+(x) for some x ∈ Q, this simplifies to �+(x) ≥ 1 ⊗ x . Applying the
homomorphism c⊗a: Q⊗N Q → A to this inequality, we obtain (c+a)(x) ≥ a(x).
Since this holds for all x ∈ Q, we have c + a � a. ��

4 W(B)

The purpose of this section is to determine W (B).

4.1 Partition ideals

Recall that P denotes the set of partitions. Let us say that a subset I ⊆ P is a partition
ideal if the following implication holds for all λ,μ ∈ P:

λ ∈ I, λ ⊆ μ �⇒ μ ∈ I.

Here, ⊆ stands for the inclusion ordering of partitions, i.e., two partitions λ and μ

satisfy λ ⊆ μ if and only if λi ≤ μi for all i (including those for which μi = 0).
For any symmetric function g ∈ �N, let us say the (monomial) constituents of g

are the partitions ν such that gν �= 0 in the unique decomposition g = ∑
ν gνmν ,

gν ∈ N, where the mν are the monomial symmetric functions. The reason for the
optional modifier monomial here and below is that we will consider Schur analogues
of these concepts in the next section.

Let us say that a partition ideal I is (monomial) prime if I �= P and whenever
partitions λ,μ ∈ P have the property that every constituent of mλmμ is in I , then
either λ or μ lies in I .

For any linear map f ∈ ModN(�N, B), write

pker( f ) = {λ ∈ P | f (mλ) = 0}.

We will call pker( f ) the (monomial) partition kernel of f .
Understanding W (B) hinges on knowing the constituents of the product of two

monomial symmetric functions. This is a combinatorial problem which is not very
deep:
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Proposition 4.2 Let λ and μ be two partitions. Then the constituents of the product
mλmμ are the partitions ν which can be obtained by picking a permutation σ of the
set {1, 2, 3, . . . } and rearranging the sequence

(
λ1 + μσ(1), λ2 + μσ(2), λ3 + μσ(3), . . .

)

in weakly decreasing order.

Proof Clear. ��
Corollary 4.3 Let λ and μ be two partitions. Then, every constituent ν of mλmμ

satisfies λ ⊆ ν and μ ⊆ ν.

Proof Let ν be a constituent of mλmμ. Due to (4.2), there exists a permutation σ of
the set {1, 2, 3, . . .} such that ν is the weakly decreasing permutation of the sequence(
λ1 + μσ(1), λ2 + μσ(2), λ3 + μσ(3), . . .

)
. But for each positive integer i , at least i

terms of the sequence
(
λ1 + μσ(1), λ2 + μσ(2), λ3 + μσ(3), . . .

)
are ≥ λi (since at

least i terms of the sequence (λ1, λ2, λ3, . . .) = λ are ≥ λi ). Hence, for each positive
integer i , at least i terms of ν (which is a permutation of this sequence) are≥ λi . Since
ν is a partition, this entails νi ≥ λi . Thus, λ ⊆ ν, and similarly μ ⊆ ν. ��

Thenext proposition ismore technical andwill be used to classify the primepartition
ideals:

Proposition 4.4 Let λ and μ be two partitions, and i and j be two positive integers
such that λi > μi , λi > λi+1, μ j > λ j , and μ j > μ j+1. Let λ̄ denote the result of
diminishing the i th part of λ by 1, and let μ̄ be the result of diminishing the j th part
of μ by 1. Then, for every constituent ν of mλ̄mμ̄, we have either λ ⊆ ν or μ ⊆ ν.

Proof Since λi > μi andμ j > λ j , we have i �= j . Thus, we can assume by symmetry
that i < j .

Fix a constituent ν of mλ̄mμ̄. Putting (4.2) into words, we see that the constituents
of mλ̄mμ̄ are found by combining rows of λ̄ with rows (possibly with zero boxes) of
μ̄, such that no two rows of λ̄ are combined with the same row of μ̄ and vice versa.
Let us consider the matching between rows of λ̄ and rows of μ̄ that gives rise to the
constituent ν. We distinguish between two cases, depending on whether (i) the i th row
of λ̄ is combined with a nonzero-length row of μ̄ or (ii) with a zero-length row of μ̄.

Case (i). If the i th row of λ̄ is combined with a row of μ̄ with at least one box, then
the resulting row has at least λ̄i + 1 = λi boxes. Hence, in this case, the partition ν

has at least i rows of length ≥ λi (namely, the row obtained by combining the i th row
of λ̄ with its match, and also the rows obtained by combining the first i − 1 rows of
λ̄ with their matches). In other words, νi ≥ λi . Together with λ̄ ⊆ ν (which follows
from (4.3)), this yields λ ⊆ ν, which completes the proof in case (i).

Case (ii). If the i th row of λ̄ is combined with a row of μ̄ with zero boxes, then the
resulting row has λ̄i ≥ μi ≥ μ j boxes. But the first j − 1 rows of μ̄, whatever they
are combined with, also have at least μ̄ j−1 = μ j−1 ≥ μ j boxes. So there are at least
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j rows in ν with at least μ j boxes. Consequently, ν j ≥ μ j . Together with μ̄ ⊆ ν (this
is a consequence of (4.3)), this results in μ ⊆ ν, which completes the proof in case
(ii). ��

Next we include a fact we will not use until Sect. 9:

Proposition 4.5 Let λ and μ be two partitions.

(1) Let λ + μ denote the partition (λ1 + μ1, λ2 + μ2, λ3 + μ3, . . .). Then, λ + μ is
a constituent of mλmμ.

(2) Let λ � μ denote the partition obtained by sorting the components of the vector
(λ1, μ1, λ2, μ2, λ3, μ3, . . .) in weakly decreasing order. Then, λ � μ is a con-
stituent of mλmμ.

(3) If λ and μ are both nonzero, then mλmμ has at least two distinct nonzero con-
stituents.

Proof (1) Apply (4.2) where σ is the identity permutation.
(2) Apply (4.2) where σ has the property that σ(1), . . . , σ (b) are all greater than

the length of λ, where b is the length of μ.
(3) Since λ and μ are both nonzero, the partitions λ + μ and λ � μ have different

lengths, and are thus distinct. (The length of the former is the maximum of the lengths
of λ and μ, while the length of the latter is the sum.) They are also nonzero and, by
parts (1) and (2), constituents of mλmμ. ��
Proposition 4.6 Let 2P denote the set of subsets of P.

(1) The map f �→ pker( f ) is a bijection ModN(�N, B) → 2P .
(2) pker( f ) is a partition ideal if and only if f satisfies f (x) = 0 ⇒ f (xy) = 0.
(3) pker( f ) is a prime partition ideal if and only if f is an N-algebra map.

Proof (1) Linear maps �N → B are in bijection with set maps P → B, which are in
bijection with subsets of P .

(2) From (4.2), it follows that for any partition λ, we have

m1mλ =
∑

μ

aμmμ,

where the sum is over all partitions μ obtained by adding a single box to (the Young
diagram of) λ, and the aμ are at least 1. Therefore we have

f (m1mλ) =
∑

μ

aμ f (mμ).

If λ ∈ pker( f ) and if f satisfies f (x) = 0 ⇒ f (xy) = 0, thenwe have f (m1mλ) = 0
and hence f (mμ) = 0 for all μ obtained by adding one box to λ. It then follows by
induction that f (mμ) = 0 for all μ with λ ⊆ μ, which means that pker( f ) is a
partition ideal.

Conversely, suppose pker( f ) is a partition ideal. Let λ ∈ pker( f ). Since for
any partition μ, every constituent ν of mλmμ satisfies λ ⊆ ν (by (4.3)), we have
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f (mλmμ) = 0. The general implication f (x) = 0 ⇒ f (xy) = 0 then follows.
Indeed, write x = ∑

λ xλmλ, y = ∑
μ yμmμ. Since f (x) = 0, it follows that when-

ever xλ �= 0, we have λ ∈ pker( f ) and hence f (mλmμ) = 0. Therefore we have

f (xy) =
∑

λ,μ

xλyμ f (mλmμ) = 0.

(3) First observe that under either assumption, we have pker( f ) �= P and f (1) = 1.
Indeed, if f is an N-algebra map, then we have 1 = f (1) = f (m0) and hence
pker( f ) �= P . Conversely, if pker( f ) is a prime partition ideal, then there is a partition
λ such that λ /∈ pker( f ). Since pker( f ) is an ideal, we have 0 /∈ pker( f ) and hence
that f (1) = f (m0) = 1.

Now suppose that f is anN-algebra map and that λ,μ are partitions such that every
constituent of mλmμ is in pker( f ). Then we have f (mλ) f (mμ) = f (mλmμ) = 0. It
follows that either λ ∈ pker( f ) or μ ∈ pker( f ), and hence that pker( f ) is prime.

Conversely, suppose pker( f ) is prime. By part (2), it is enough to show that if
f (x) = f (y) = 1 then f (xy) = 1. In this case, x has a constituent λ /∈ pker( f ) and y
has a constituentμ /∈ pker( f ). Since pker( f ) is prime,mλmμ must have a constituent
not in pker( f ). This is also a constituent of xy. Therefore f (xy) = 1. ��
Proposition 4.7 For integers x, y ∈ N, consider the partition ideal

I(x,y) = {λ ∈ P | (y + 1)x+1 ⊆ λ},

where (y + 1)x+1 denotes the partition (y + 1, . . . , y + 1) with y + 1 occurring x + 1
times. Then I(x,y) is prime. Conversely, every nonempty prime partition ideal is of this
form.

Proof Let us first show that I(x,y) is prime. Let λ and μ be partitions, and suppose all
the constituents of mλmμ are in I(x,y). By symmetry, we may assume λx+1 ≥ μx+1.
Wewill show λ ∈ I(x,y). Let ν denote the partition obtained by sorting the components
of the vector

(λ1 + μ1, . . . , λx + μx , λx+1, μx+1, λx+2, μx+2, . . . )

in weakly decreasing order. Then ν is a constituent of mλmμ (due to (4.2)), and hence
we have ν ∈ I(x,y). Further the sorting does not change the first x + 1 components,
and so we have λx+1 = νx+1 ≥ y + 1 and hence λ ∈ I(x,y).

For the converse, let I be a nonempty prime partition ideal. Let us first show that
I contains a unique minimal element with respect to ⊆. Since I is nonempty, there
exists some minimal element. Now suppose for a contradiction that we have two
distinct minimal elements λ,μ ∈ I . Then λ � μ, and so there exists an integer i such
that λi > μi and λi > λi+1. Likewise, there is a j such that μ j > λ j and μ j > μ j+1.
Now let λ̄ denote the result of diminishing the i th part of λ by 1, and let μ̄ be the result
of diminishing the j th part of μ by 1. By (4.4), for every constituent ν of mλ̄mμ̄, we
have either λ ⊆ ν or μ ⊆ ν, and hence ν ∈ I . Therefore, since the partition ideal I is
prime, either λ̄ or μ̄ must lie in I , and so either λ or μ is not minimal.
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It remains to show that the minimal element π of I is of the form (y + 1)x+1. This
is equivalent to showing that if π is contained in the union of two partitions λ and μ

(that is, we have πi ≤ λi or πi ≤ μi for all i), then we have π ⊆ λ or π ⊆ μ. But
for any constituent ν of mλmμ, we have λ ⊆ ν and μ ⊆ ν, by (4.3). It follows that
πi ≤ νi for all i . In other words, ν lies in I . Since I is prime, we have λ ∈ I or μ ∈ I ,
and hence π ⊆ λ or π ⊆ μ. ��

4.8 Explicit description of W(B)

Here we prove parts (1)–(2) of Theorem (1.1). Following the notation there, for x, y ∈
N, let (x, y) denote the element of W (B) = AlgN(�N, B) corresponding under (4.6)
to the prime partition ideal I(x,y). Thus we have

(x, y): mλ �→
{
0 if λx+1 ≥ y + 1
1 otherwise

Also let ∞ ∈ W (B) denote the element corresponding to the empty partition ideal,
which is vacuously prime; so ∞: mλ �→ 1. This defines a map

N
2 ∪ {∞} ∼−→W (B), (4.8.1)

which is a bijection by (4.6)–(4.7). In these terms, the�N-semiring structure onW (B)

is given by the following proposition.

Proposition 4.9 (1) Under the unique N-algebra map N → W (B), the image of an
element x is (x, 0). In particular, we have 0 = (0, 0), 1 = (1, 0), and (x, 0) +
(x ′, 0) = (x + x ′, 0) for all x, x ′ ∈ N.

(2) We have (x, 0) + (0, y) = (x, y), for all x, y ∈ N.
(3) We have (0, y) + (0, y′) = (0,max{y, y′}) and (0, y)(0, y′) = (0,min{y, y′}),

for all y, y′ ∈ N.
(4) We have ∞ + z = ∞ for all z ∈ W (B).
(5) We have ∞ · ∞ = ∞ and ∞ · (0, y) = (0, y) for all y ∈ N.
(6) For any nonzero partition λ, we have mλ(∞) = ∞ and mλ(0, y) = (0, [y/λ1]),

where [y/λ1] denotes the greatest integer at most y/λ1.
(7) The bijection (4.8.1) identifies the partial order � on W (B) with the component-

wise partial order on N
2 ∪ {∞}. That is, we have (x1, y1) � (x2, y2) if and only

if x1 ≤ x2 and y1 ≤ y2, and z � ∞ for all z ∈ W (B).

Proof (1) Let f denote the image of x under the map N → W (N). Then we have
σ( f ) = σ(1)x = (1 + t)x = 1 + · · · + t x . Thus f : �N → N satisfies f (m1x+1) =
f (ex+1) = 0 and f (m1x ) = f (ex ) = 1. Therefore its image in W (B) has the same
properties; so its image is (x, 0).

(2) Let I denote the partition kernel of the homomorphism �N → B given by
(x, 0) + (0, y). By the above, I is empty or is of the form I(x ′,y′). So it is enough to
show that the partition (y + 1)x+1 is an element of I but that yx+1 and (y + 1)x are
not.
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Recall that we have

�+(mλ) =
∑

μ,ν

mμ ⊗ mν,

where μ and ν run over all partitions such that the vector (μ1, ν1, μ2, ν2, . . . ) is a
permutation of λ. Therefore λ is in the kernel of (x, 0) + (0, y) if and only if for all
such decompositions of λ, we have either 1x+1 ⊆ μ or (y + 1)1 ⊆ ν.

Applying this to λ = (y+1)x+1, we get terms of the formm(y+1)i ⊗m(y+1) j where
i + j = x + 1. If i > 0, then (y + 1)i contains (y + 1)1. Otherwise, j = x + 1, in
which case (y + 1)x+1 contains 1x+1. So (y + 1)x+1 is in the partition kernel I .

On the other hand, we can decompose λ = yx+1 into μ = 0 and ν = yx+1. Then μ

does not contain 1x+1 and ν does not contain (y + 1)1. So yx+1 is not in I . Similarly
(y+1)x decomposes into μ = (y+1)x and ν = 0, the first of which does not contain
1x+1 and the second of which does not contain (y + 1)1. So (y + 1)x is not in I .

(3) The image of any power sum ψr = ∑
i x

r
i under �+ is ψr ⊗ 1 + 1 ⊗ ψr .

Therefore the partition r1 is in the partition kernel of (0, y) + (0, y′) if and only if r
is greater than y and y′. Therefore we have (0, y) + (0, y′) = (0,max{y, y′}).

Similarly, we have �×(ψr ) = ψr ⊗ ψr , and so the partition r1 is in the partition
kernel of (0, y)(0, y′) if and only if r is greater than y or y′. Therefore we have
(0, y)(0, y′) = (0,min{y, y′}).

(4) Since ∞ + z ≥ ∞, we have ∞ + z � ∞, by (3.4), and hence ∞ + z = ∞.
(5) The map �× is injective because it has a retraction, for example the multiplica-

tive co-unit ε×. Therefore for any partition λ, the tensor �×(mλ) is a nonempty sum
of basic tensors mμ ⊗ mν , all of which pair with (∞,∞) to make 1. Therefore we
have (∞ · ∞)(mλ) = 1 for all λ, and hence ∞ · ∞ = ∞.

We have �×(ψr ) = ψr ⊗ ψr which pairs with ((0, y),∞) to make (0, y)(ψr ),
which is 0 if and only if r > y. Therefore the partition r1 is in pker(∞ · (0, y)) if and
only if r > y. Thus we have pker(∞ · (0, y)) = I(0,y), and hence (0, y) · ∞ = (0, y).

(6) The value of mλ(∞) ∈ W (B) = AlgN(�N, B) at mμ ∈ �N is by definition the
value of ∞ atmμ ◦mλ. Since λ is nonzero, mλ is a sum of infinitely many monomials
in x1, x2, . . . . Therefore mμ ◦ mλ is the sum of at least one such monomial and is
hence nonzero. It follows that ∞(mμ ◦ mλ) = 1 for all μ and hence mλ(∞) = ∞.

Similarly, the value of mλ(0, y) at ψr is (0, y)(ψr ◦ mλ). But this is 1 if and only
if rλ1 ≤ y. Therefore (mλ(0, y))(ψr ) is 1 if and only if r ≤ [y/λ1]. And so we have
mλ(0, y) = (0, [y/λ1]).

(7) Both sides of the first part are clearly equivalent to I(x1,y1) ⊇ I(x2,y2). The second
part holds because ∞ corresponds to the empty partition ideal. ��

4.10 An interpretation of the algebraic structure on W(B)

We can express the description ofW (B) given above in terms of the Dorroh extension,
a general construction in commutative algebra over N. Let us first recall it.

Let f : A → B be a homomorphism of N-algebras. The Dorroh extension D( f ) is
defined to be A × B with the usual, product N-module structure and with a multipli-
cation law given by the formula
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(x, y)(x ′, y′) = (xx ′, f (x)y′ + y f (x ′) + yy′).

One can check that this is an N-algebra structure on D( f ) with multiplicative identity
(1, 0). For example, if B is additively cancellative, then themap D( f ) → A×B send-
ing (x, y) to (x, f (x)+ y) is an injective homomorphism with image {(a, b) | f (a) ≤
b}.

Now let N′ denote N∪{∞}with the N-algebra structure where addition is max and
multiplication ismin. Let f denote the uniqueN-algebramapN → N

′. (So f (n) = ∞
unless n = 0.) Define a set map g: D( f ) → W (B) by (x, y) �→ (x, y) if y �= ∞ and
(x,∞) �→ ∞. Then g is a surjective N-algebra morphism. It follows thatW (B) is the
quotient of D( f ) obtained by identifying all elements of the form (x,∞).

The algebra N
′ can perhaps be demystified by observing that it is isomorphic to

the image of the ghost map w: W (B) → B
∞. (See (6.2.1) of [5].) Indeed, for a Witt

vector of the form (0, y), its image under the ghost map is the bit vector 〈z1, z2, . . .〉
with zr = 1 if r ≤ y and otherwise zr = 0. Every other Witt vector has image
〈1, 1, . . .〉. Clearly addition and multiplication of such bit vectors are given by taking
the maximum and minimum of the corresponding y values. One might say thatW (B)

can in essence be recovered by applying a general construction to the image of the
ghost map. It would be interesting if something like this holds more generally.

It would also be interesting to give an explicit description ofW (A) as a�N-semiring
for any B-algebra A. This would be tantamount to having an explicit understanding of
multiplication, the coproducts�+ and�×, and all right plethysmmaps f �→ f ◦mλ on
the semiring B⊗N�N = ⊕

λ Bmλ of symmetric functions with Boolean coefficients.

5 WSch(B)

The purpose of this section is to determine W Sch(B). We will see in this section that
it behaves very similarly to W (B) in several ways. To stress these similarities, we are
going to have the present section mirror Sect. 4 as closely as we can.

5.1 Schur constituents and Schur prime ideals

For any symmetric function g ∈ �Sch, let us say the (Schur) constituents of g are the
partitions ν such that gν �= 0 in the unique decomposition g = ∑

ν gνsν , gν ∈ N,
where the sν are the Schur symmetric functions.

Let us say that a partition ideal I is (Schur) prime if I �= P and whenever partitions
λ,μ ∈ P have the property that every Schur constituent of sλsμ is in I , then either λ

or μ lies in I . It will follow from (5.10) below that Schur primality is equivalent to
monomial primality; the distinction between the two concepts is only needed until we
prove that.

For any linear map f ∈ ModN(�Sch, B), write

pker( f ) = {λ ∈ P | f (sλ) = 0}.

We will call pker( f ) the (Schur) partition kernel of f .
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5.2 Constituents of products of Schur functions

The combinatorial lemmas about monomial constituents ofmλmμ that came to our aid
in studying W (B) have Schur analogues. These analogues rest upon the Littlewood–
Richardson rule, which is a formula for the coefficient of sν in the product sλsμ. In
order to be clear about the form of the rule we will use, we will fix some terms. For
the basic terminology of tableaux, see Stanley’s book [24, section 7.10, p. 309].

The reverse reading word of a tableau T is defined to be the word obtained as
follows: Write down the first row of T in reverse order (that is, from right to left); after
it, write down the second row of T in reverse order; after it, the third one, and so on.

A word w whose letters are positive integers is said to be a lattice permutation if
and only if every positive integer i and every j ∈ {0, 1, . . . , n} (where n is the length
of w) satisfy the following condition: The number of i’s among the first j letters of w

is at least as large as the number of i + 1’s among the first j letters of w.
A skew semistandard tableau T is said to be a Littlewood–Richardson tableau if

and only if its reverse reading word is a lattice permutation.
If a tableau T is filled with positive integers, then the type of the tableau T is defined

to be the sequence (n1, n2, n3, . . .), where nk is the number of boxes of T filled with
the integer k. Note that the type of a tableau T is not necessarily a partition, but it is a
partition whenever T is a Littlewood–Richardson tableau.

For any partitions λ, μ and ν, we let cν
λμ denote the number of Littlewood–

Richardson tableaux of shape ν/λ and typeμ. When λ � ν, this number is understood
to be 0. It is easy to see that cν

λμ = 0 unless |λ| + |μ| = |ν|. It is much less obvi-
ous that cν

λμ = cν
μλ for all partitions λ, μ and ν. The numbers cν

λμ are called the
Littlewood–Richardson coefficients.

The Littlewood–Richardson rule then states

sλsμ =
∑

ν∈P

cν
λμsν . (5.2.1)

for any partitions λ,μ. One can find a proof in Stanley’s book [24, theorem A1.3.3, p.
432, appendix to Chapter 7]. For other points of view, see Sagan’s book [20, theorem
4.9.4] or van Leeuwen [26, 1.4.4–1.4.5].

The following analogue of (4.2) is then clear.

Proposition 5.3 Let λ and μ be two partitions. Then the Schur constituents of the
product sλsμ are precisely those partitions ν for which there exists a Littlewood–
Richardson tableau of shape ν/λ and type μ.

A corollary analogous to (4.3) results:

Corollary 5.4 Let λ and μ be two partitions. Then, every Schur constituent ν of sλsμ
satisfies λ ⊆ ν and μ ⊆ ν.

Proof Let ν be a Schur constituent of sλsμ. Due to (5.3), there exists a Littlewood–
Richardson tableau of shape ν/λ and type μ. As a consequence, the shape ν/λ must
be well defined, so that λ ⊆ ν. Similarly, μ ⊆ ν. ��
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There is also a counterpart of (4.4) in the Schur function setting:

Proposition 5.5 Let λ andμ be two partitions, and let i and j be two positive integers
such that λi > μi , λi > λi+1, μ j > λ j , and μ j > μ j+1. Let λ̄ denote the result of
diminishing the i th part of λ by 1, and let μ̄ be the result of diminishing the j th part
of μ by 1. Then, for every Schur constituent ν of sλ̄sμ̄, we have either λ ⊆ ν or μ ⊆ ν.

Proof Since λi > μi andμ j > λ j , we have i �= j . Thus, we can assume by symmetry
that i < j .

For every partition γ , let γ\i denote the result of removing the i th part from the
partition γ . By the definition of λ̄, we have λ̄\i = λ\i .

Fix a Schur constituent ν of sλ̄sμ̄. Then, by (5.3), there exists a Littlewood–
Richardson tableau of shape ν/λ̄ and type μ̄. Denote this tableau by T . Since T
exists, we have λ̄ ⊆ ν. In particular, νi ≥ λ̄i ≥ μi ≥ μ j (since i < j).

First suppose that the i th row of ν/λ̄ is nonempty. Then we have νi ≥ λ̄i + 1 = λi .
Since ν is a Schur constituent of sλ̄sμ̄, we have by (5.4) that λ̄ ⊆ ν. Therefore we have
λ ⊆ ν, which finishes the proof in this case.

Now suppose that the i th row of ν/λ̄ is empty. In this case, we will show μ ⊆ ν.
Since we have μ̄ ⊆ ν, as above, it is enough to show ν j ≥ μ j .

We can obtain a new tableau T ′ from the tableau T by removing its (empty) i th
row and then moving each row below the i th one up by one unit of length. This new
tableau T ′ is a Littlewood–Richardson tableau of shape ν\i/λ̄\i and type μ̄ (since the
original tableau T was a Littlewood–Richardson tableau of shape ν/λ̄ and type μ̄).
Hence, there exists a Littlewood–Richardson tableau of shape ν\i/λ̄\i and type μ̄. By
(5.3) (applied to λ̄\i , μ̄ and ν\i instead of λ, μ and ν), this yields that ν\i is a Schur
constituent of the product sλ̄\i sμ̄. By (5.4) (again applied to λ̄\i , μ̄ and ν\i instead of

λ, μ and ν), this yields that λ̄\i ⊆ ν\i and μ̄ ⊆ ν\i . But the partition μ̄ has at least
j − 1 parts at least μ j (namely, its first j − 1 parts, which as we know are unchanged
from μ). Since μ̄ ⊆ ν\i , this implies that the partition ν\i also has at least j − 1 parts
at least μ j . Hence, the partition ν has at least j parts at least μ j (because it contains
all the parts of ν\i , along with νi which as we know is at least μ j ). In other words,
ν j ≥ μ j . ��

Wewill need twomore facts about Schur constituents. The following is an analogue
of (4.5). It will also be used only in Sect. 9.

Proposition 5.6 Let λ and μ be two partitions.

(1) λ + μ is a Schur constituent of sλsμ.
(2) λ � μ is a Schur constituent of sλsμ, where � is as in (4.5).
(3) If λ and μ are both nonzero, then sλsμ has at least two distinct nonzero Schur

constituents.

Proof (1) By (5.3), it is enough to show that there exists a Littlewood–Richardson
tableau of shape (λ + μ) /λ and type μ. Such a tableau can be made by filling the i th
row of the diagram (λ + μ) /λ with the number i for every positive integer i .

(2) For any partition γ , let γ ′ denote the conjugate partition. Since there is a Z-
algebra isomorphism ω: �Z → �Z satisfying ω

(
sγ

) = sγ ′ for every partition γ , it
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is enough to check that (λ � μ)′ is a Schur constituent of sλ′sμ′ . But since we have
λ′ + μ′ = (λ � μ)′, we are done by part (1).

(3) Since λ and μ are nonzero, λ + μ and λ � μ are distinct and nonzero. By parts
(1) and (2), they are also Schur constituents of sλsμ. ��

5.7 Remark

When λ and μ are two partitions, the two partitions λ+μ and λ�μ are, respectively,
the highest and the lowest Schur constituents of sλsμ with respect to the so-called
dominance order on partitions (also known as the majorization order)—the order in
which a partition γ is at least a partition δ of the same size if and only if every positive
integer i satisfies γ1 + γ2 + · · · + γi ≥ δ1 + δ2 + · · · + δi .

Proposition 5.8 Let λ andμ be two partitions. Let x be a positive integer. Let ν denote
the partition obtained by sorting the components of the vector

(λ1 + μ1, . . . , λx + μx , λx+1, μx+1, λx+2, μx+2, . . . )

in weakly decreasing order. Then ν is a Schur constituent of sλsμ.

Proof According to (5.3), it is enough to show that there exists a Littlewood–
Richardson tableau of shape ν/λ and type μ. We are going to construct such a tableau
T .

Indeed, we are going to give two ways to construct such a T—one explicit way
which we will only sketch, and one less explicit one which we will detail.

First construction of T: Let us first notice that νi = λi + μi for every i ∈
{1, 2, . . . , x}, so that the i th row of ν/λ has length μi for every i ∈ {1, 2, . . . , x}.
Let us fill this row with i’s. Thus, the first x rows of ν/λ are filled.

Now, for every cell (i, j) of ν/λ with i > x , we fill the cell (i, j) with x plus the
number of all u ∈ {x + 1, x + 2, . . . , i} satisfying λu < j .

This gives us a tableau T of shape ν/λ, which the reader can verify to be a
Littlewood–Richardson tableau of type μ (the verification is not trivial, but does not
require any new ideas). This proves the existence of such a tableau and thus concludes
the proof of (5.8).

Second construction of T: For every partition γ and any integer y, let γ≤y denote the
partition

(
γ1, γ2, . . . , γy

)
, and let γ>y denote the partition

(
γy+1, γy+2, . . .

)
. Clearly,

ν≤x = λ≤x + μ≤x and ν>x = λ>x � μ>x , where the operators + and � on partitions
are defined as in (5.6).

Since ν≤x = λ≤x + μ≤x , the result (5.6)(1) (applied to λ≤x and μ≤x instead of
λ and μ) implies that ν≤x is a Schur constituent of sλ≤x sμ≤x . Hence, by (5.3), there
exists a Littlewood–Richardson tableau of shape ν≤x/λ≤x and type μ≤x . Let T1 be
such a tableau.

Since ν>x = λ>x � μ>x , the result (5.6)(2) (applied to λ>x and μ>x instead
of λ and μ) implies that ν>x is a Schur constituent of sλ>x sμ>x . Hence, by (5.3),
there exists a Littlewood–Richardson tableau of shape ν>x/λ>x and type μ>x . Let
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T2 be such a tableau. Denote by T̂2 the result of moving the tableau T2 south (i.e.,
down) by x rows and adding x to each of its entries. It is easy to see that T̂2 is
a Littlewood–Richardson tableau of shape ν/ (ν1, ν2, . . . , νx , λx+1, λx+2, λx+3, . . .).
Hence, T̂2 doesn’t intersect T1, and moreover, each cell of T̂2 lies strictly southwest of
each cell of T1. Thus, it is rather clear that overlaying T1 with T̂2 gives us a Littlewood–
Richardson tableau of shape ν/λ and typeμ. This once again proves that such a tableau
exists, and as we know this establishes (5.8). ��
Proposition 5.9 Let 2P denote the set of subsets of P.

(1) The map f �→ pker( f ) is a bijection ModN(�Sch, B) → 2P .
(2) pker( f ) is a partition ideal if and only if f satisfies f (x) = 0 ⇒ f (xy) = 0.
(3) pker( f ) is a Schur prime partition ideal if and only if f is an N-algebra map.

Proof Proceed as in (4.6), but invoke (5.3) and (5.4) instead of (4.2) and (4.3). (Notice
that the aμ in the proof of part (2) are now all equal to 1 according to the Pieri rule.)

��
It turns out that the Schur prime partition ideals are exactly the monomial prime

partition ideals. Indeed, we have the following analogue of (4.7):

Proposition 5.10 For integers x, y ∈ N, consider the partition ideal

I(x,y) = {λ ∈ P | (y + 1)x+1 ⊆ λ}

as defined in (4.7). Then I(x,y) is Schur prime. Conversely, every nonempty Schur
prime partition ideal is of this form.

Proof This proof proceeds by adapting the proof of (4.7). The changes that are required
(like replacing “prime” by “Schur prime,” and referring to (5.5) and (5.4) instead of
(4.4) and (4.3)) are almost all obvious; the only nontrivial change is to replace the
reference to (4.2) by a reference to (5.8). ��
Proposition 5.11 Let ∞ denote the element of W Sch(B) satisfying ∞(sλ) = 1 for all
partitions λ, and let {1} ∈ W Sch(B) be as in (2.3.3). Then we have

(1) pker(x + {1}y) = I(x,y), for all x, y ∈ N

(2) ∞ + z = ∞, for all z ∈ W Sch(B)

(3) ∞ · z = ∞, for all nonzero z ∈ W Sch(B)

(4) sλ(∞) = ∞, for all nonzero partitions λ.

Proof (1) For clarity, given any z ∈ N, let us write fz : �Sch → B for the image of
z under the unique semiring map N → W Sch(B). So if we let I denote the partition
ideal pker( fx + {1} fy), we need to show I = I(x,y).

In the case where y = 0, the argument is identical to that for (4.9)(1). On the other
hand, if x = 0, then we have ({1} fy)(sλ) = fy(sλ′), where λ′ is the conjugate partition
of λ. (See for example [5, (6.11)].) And so this case follows from the previous one.

Now consider the general case. By (5.9) and (5.10), I is either empty or of the form
I(x ′,y′). Therefore it is enough to show the three statements

(y + 1)x+1 ∈ I, yx+1 /∈ I, (y + 1)x /∈ I. (5.11.1)
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Since we have

�+(sλ) =
∑

μ,ν

cλ
μνsμ ⊗ sν,

by the definition of addition of Witt vectors, we have

( fx + {1} fy)(sλ) =
∑

μ,ν

cλ
μν · fx (sμ) · ({1} fy)(sν).

Therefore a partition λ is in I if and only if we have μ ∈ pker( fx ) whenever cλ
μν ≥ 1

and ν /∈ pker({1} fy). Combining this with the two initial cases above we see that λ is
in I if and only if the following implication holds:

(
cλ
μν ≥ 1 and ν1 ≤ y

) �⇒ μx+1 ≥ 1.

We will now use this criterion to show each of the three statements in (5.11.1).
First consider λ = (y + 1)x+1, and assume cλ

μν ≥ 1 and ν1 ≤ y. Then there is a
Littlewood–Richardson tableau of shape λ/ν and type μ. Since ν1 ≤ y, the diagram
of λ/ν contains the entire rightmost column of λ. Therefore all entries in that column
of the tableau must be distinct, and hence μ has length at least x + 1.

Now consider λ = yx+1, and set ν = λ and μ = 0. Then there is clearly a
Littlewood–Richardson tableau of shape λ/ν and type μ, and further we have ν1 ≤ y
but μx+1 = 0. Therefore yx+1 /∈ I . Similarly, for λ = (y + 1)x , take ν = 0 and
μ = λ. We have ν1 ≤ y, and there is clearly a Littlewood–Richardson tableau of
shape λ/ν = λ and type μ = λ, but μx+1 = 0. Therefore (y + 1)x /∈ I .

(2) Since ∞ + z ≥ ∞, we have ∞ + z � ∞, by (3.4), and hence ∞ + z = ∞.
(3) By distributivity and parts (1) and (2), it is enough to check this for the N-

module generators z = 1, {1},∞. It is clear for z = 1. For z = {1}, it holds because
multiplication by {1} is an involution which preserves WSch(B) \ {∞}, by part (1),
and hence fixes ∞. When z = ∞, the argument is that of (4.9)(2) but with the Schur
basis instead of the monomial one.

(4) By definition
(
sλ(∞)

)
(sμ) = ∞(sμ ◦ sλ). So the statement to be shown is

equivalent to the statement sμ ◦ sλ �= 0 for all partitions μ. Since λ �= 0, we can write
sλ = y1 + y2 + · · · , where each yi is a monomial in the formal variables x1, x2, . . .
with coefficient 1. Therefore we have sμ ◦ sλ = sμ(y1, y2, . . . ), but this is nonzero
since all Schur functions are nonzero. ��

5.12 Explicit description of WSch(B)

Here we prove part (3) of Theorem (1.1), although we use slightly different notation.
It follows from (5.9), (5.10) and (5.11)(1) that we have a bijection

N[η]/(η2 = 1) ∪ {∞} ∼−→W Sch(B) (5.12.1)
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sending x + yη to x + {1}y and sending ∞ to ∞. It is an isomorphism of N-algebras
if we give the left-hand side the N-algebra structure extending that on N[η]/(η2 = 1)
and satisfying∞+z = ∞ and∞·z = ∞, for z �= 0. This follows from (5.11) and the
equality {1}2 = 1. It is also clearly order preserving, as in (4.9)(7). The�Sch-semiring
structure on N[η]/(η2 = 1) ∪ {∞} induced by this isomorphism is the unique one
satisfying sλ(∞) = ∞ and

sλ(η) =
{

ηr if λ = (1r )

0 otherwise.

Proposition 5.13 In terms of the bijections (4.8.1) and (5.12.1), the map W (B) →
W Sch(B) sends any element of the form (x, 0) to x = x + {1}0. It sends all other
elements to ∞.

Proof By (4.9)(1), the pair (x, 0) is the image of x under the unique map N → W (B);
so it must map to x inW Sch(B). Therefore all that remains is to show that the preimage
of∞ under the mapW (B) → W Sch(B) contains all other elements. By algebraic laws
listed in Theorem (1.1), it is enough to show the preimage of ∞ contains ∞ and all
elements of the form (0, y), where y ≥ 1.

Let λ be a partition, and put r = ∑
i λi . Then it is easily seen that there is at

least one semistandard Young tableau of shape λ and type 1r . So the Kostka number
Kλ,1r is at least 1. Therefore we have sλ = m1r + · · · ≥ m1r , and hence (0, y)(sλ) ≥
(0, y)(m1r ) = 1 for any y ≥ 1. Therefore any such (0, y) maps to ∞ in W Sch(B).
Last, ∞ also maps to ∞, because the map ∞: �N → B is 1 on all nonzero elements
of �N and therefore on all Schur functions sλ. ��

5.14 Remark

Observe that while the map W (A) → W Sch(A) is injective when A has additive
cancellation, it is not so in general. Indeed, this fails for A = B.

6 Total positivity

In this section, we recall the relationship between the Schur Witt vectors and Schoen-
berg’s theory of total positivity. It gives another technique for understanding Witt
vectors of R+ and hence of semirings that map to R+. All details can be found in
section 7 of [5].

6.1 Total positivity

As in the introduction, consider the map

σ : W Sch(A)−→ 1 + t A[[t]]
a �−→ 1 + a(e1)t + a(e2)t

2 + · · · ,
(6.1.1)
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where the en are the elementary symmetric functions

en =
∑

i1<···<in

xi1 · · · xin ∈ �Sch.

It is a bijection if A is a ring and an injection if A has additive cancellation.
Following Schoenberg [22], one says that a formal real series f (t) = ∑

i∈Z ai t i

is totally positive if all the minors of the infinite matrix (ai− j )i, j are ≥ 0. The con-
nection between total positivity and W Sch is given by two standard facts in the theory
of symmetric functions, that �Sch agrees with the N-linear span of the skew Schur
functions and that the skew Schur functions are the minors of the matrix (ei− j )i, j . It
follows that for any subring B ⊆ R, the map (6.1.1) restricts to a bijection

σ : W Sch(B ∩ R+)
∼−→ {

totally positive series in 1 + t B[[t]]}.

The classification of the totally positive series given by the Edrei–Thoma theorem then
amounts to the following:

Theorem 6.2 The map σ : W (R) → 1 + tR[[t]] restricts to a bijection

W Sch(R+)
∼−→

{

eγ t

∏∞
i=1(1 + αi t)

∏∞
i=1(1 − βi t)

|αi , βi , γ ∈ R+,
∑

i

(αi + βi ) < ∞
}

(6.2.1)

This was conjectured by Schoenberg [22] and proved by Aissen–Schoenberg–
Whitney [2] and, in the final step, Edrei [1,10]. It was independently discovered and
proved by Thoma in his work [25] on the asymptotic character theory of symmetric
groups. Both arguments use hard results in the theory of entire functions. Later, proofs
entirely within asymptotic character theory emerged out of the work of Vershik [27],
Kerov [15], Okounkov [19] and Olshanski [16].

The following is an easy consequence of (6.2) (see section 7 of [5]):

Corollary 6.3 The map σ : W (R) → 1 + tR[[t]] restricts to bijections

W (R+)
∼−→

{

eγ t
∞∏

i=1

(1 + αi t) | αi , γ ∈ R+,
∑

i

αi < ∞
}

W (N)
∼−→ { f (t) ∈ 1 + tZ[t] | all complex roots of f (t) are negative reals} .

The algebra W Sch(N) is determined in the following section.

7 Edrei–Thoma and Boolean Witt vectors

The purpose of this section is to describe the map on Witt vectors induced by the map
R+ → B in terms of the power-series description of W (R+) and the combinatorial
description of W (B). We then use this to prove Theorem (1.2), or equivalently (1.3).
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Proposition 7.1 (1) In terms of (6.3) and (1.1), the functorial map W (R+) → W (B)

satisfies

eγ t f (t) �−→
{

(deg f (t), 0) if γ = 0

(deg f (t), 1) if γ �= 0,
(7.1.1)

for any polynomial f (t). It sends all other series to ∞.
(2) In terms of (6.2) and (1.1), the functorial map W Sch(R+) → W Sch(B) sends

any rational function f (t)/g(t) in lowest terms to the pair (deg f (t), deg g(t)).
It sends all other series to ∞.

Proof (1) Let ϕ denote the functorial map ϕ: W (R+) → W (B). Let z ∈ W (R+) be
a Witt vector. By (6.3), we can write

σ(z) = eγ t
∞∏

i=1

(1 + αi t).

Let r ≤ ∞ be the number of nonzero αi . Abusing notation, let us still write r for the
image of r under the map N ∪ {∞} → W (B). (So r = (r, 0) for r �= ∞.) By (4.9), it
is enough to show ϕ(z) = r if γ = 0, and ϕ(z) = r + (0, 1) if γ �= 0. It is also enough
to consider separately the cases where γ = 0 and where all αi = 0; this is because
the map σ identifies addition of Witt vectors with multiplication of power series.

First suppose γ = 0. Then we have z(mλ) = mλ(α1, α2, . . . ) for all partitions λ.
(For example, one can observe that z is the image of

∑
i [αi ] under the mapN[R+]̂ →

W (R+) from the convergent monoid algebra. See (7.6) and (4.12.1) in [5].) If r = ∞,
this is zero for no λ, and if r < ∞, it is zero if and only if λr+1 ≥ 1. Therefore the
partition ideal corresponding to ϕ(z) is the empty one if r = ∞ and is I(r,0) if r < ∞.
Hence we have ϕ(z) = r , whether r is infinite or not.

Now suppose γ �= 0 and αi = 0 for all i . Then we have

exp(γ t) = σ(z) = exp

⎛

⎝−
∑

n≥1

z(ψn)
(−t)n

n

⎞

⎠ ,

and hence z(m11) = z(ψ1) = γ �= 0 and z(m21) = z(ψ2) = 0. Therefore ϕ(z) has
partition kernel I(0,1), and so ϕ(z) = (0, 1).

(2) Let ϕSch denote the functorial mapW Sch(R+) → W Sch(B). By (6.2) and (6.3),
any element z ∈ W Sch(R+) is of the form x +{1}y for some x, y ∈ W (R+). Because
anti-Teichmüller lifts are functorial, we have ϕSch(x +{1}y) = ϕSch(x)+{1}ϕSch(y).
Therefore by (5.11), we are reduced to the case z ∈ W (R+), and this follows from
(5.13) and part (1) above. ��

7.2 Remark

The Edrei–Thoma Theorem (6.2) provides a discrete invariant associated to a totally
positive series, namely the pair consisting of the number of zeros and the number
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of poles, or ∞ if the series is not a rational function. By (7.1)(2), we may interpret
this invariant as the image of the corresponding Witt vector under the natural map
W Sch(R+) → W Sch(B). So we have the satisfying fact that the coarse invariant
coming from the Boolean Witt vectors discussed in the introduction agrees with the
obvious discrete invariant given by the Edrei–Thoma theorem.

7.3 Remark

The map W Sch(R+) → W Sch(B) is surjective, but W (R+) → W (B) is not.

Lemma 7.4 Given any a ∈ W Sch(R+), we have limk→∞ minλ�k a(sλ) = 0, where
λ � k means that λ is a partition of k.

Proof Let k ∈ N. By Schur–Weyl duality, every vector space V over C satisfies

V⊗k ∼=
⊕

λ�k
Mλ ⊗ Lλ (V )

as Sk ×GL(V )-modules, where Mλ is the irreducible Sk-module corresponding to the
partition λ, and Lλ is the Schur functor corresponding to the partition λ. Taking the
GL(V )-character of this isomorphism, we obtain

sk1 =
∑

λ

dim (Mλ) · sλ,

where we sum over partitions λ satisfying
∑

i λi = k. Applying the ring homomor-
phism a to this equality, we obtain

a(s1)
k =

∑

λ

dim (Mλ) · a (sλ) . (7.4.1)

Writing ck = minλ�k a(sλ), we then have

a(s1)
k ≥ ck

∑

λ

dim (Mλ) ≥ ck

(
∑

λ

dim(Mλ)
2

)1/2

= ck
√
k!,

since the sum of the squares of the dimensions of all irreducible Sk-modules is |Sk | =
k!. It then follows that ck → 0 as k → ∞. ��

7.5 Proof of Theorem (1.2)

For any Witt vector a ∈ W Sch(N), Lemma (7.4) implies there must be a partition λ

such that a(sλ) = 0. In other words, the image of a in W Sch(B) is not ∞. Therefore
by (7.1)(2) and the Edrei–Thoma Theorem (6.2), the series σ(a) ∈ 1 + tR[[t]] is of
the form g(t)/h(t), where g(t) and h(t) are polynomials in 1+ tR[t] such that all the
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complex roots of g(t) are negative real numbers and all those of h(t) are positive real
numbers. Now invoke the fact that if the ratio of two coprime polynomials in 1+ tC[t]
has integral coefficients when expanded as a power series in t , then the polynomials
themselves have integral coefficients. (To show they have rational coefficients, one
can observe that g(t) and h(t) are invariant under any field automorphism of C, but
there are also choice-free arguments. Then to show the coefficients are integral, one
can argue as in the solution to exercise 1a of chapter 4 of [23].) ��

7.6 Remark

Another way of expressing Theorem (1.2) is that we have an isomorphism of N-
algebras

W (N) ⊗N N[η]/(η2 = 1)
∼−→W Sch(N)

which is the natural map on the factor W (N) and sends 1 ⊗ η to the anti-Teichmüller
lift {1} ∈ W Sch(N). In fact, each factor on the left side has a compatible�Sch-semiring
structure making the map an isomorphism of �Sch-semirings.

7.7 Remark: partition-ideal phenomena in general W(A)

As discussed in the introduction, phenomena related to N
2 and partition ideals will

be present in W (A) (and W Sch(A)) whenever A is not a ring. This is simply because,
by (7.9) below, every nonring A admits a map to B and hence there is always a map
W (A) → W (B). This is analogous to the presence of p-adic phenomena in Witt
vectors of rings admitting a map to a field of characteristic p, or equivalently rings not
containing 1/p. But in the case of B, there is more structure: The set of maps A → B

has a partial order given by pointwise application of the partial order 0 < 1 of B. So
in fact there is a family of partition-ideal phenomena indexed by this partially ordered
set.

For example, consider the case where A is a zerosumfree domain (that is, it is
nonzero and satisfies the implication x + y = 0 ⇒ x = y = 0 and the implication
xy = 0 ⇒ x = 0 or y = 0) and f is the N-algebra map A → B sending all nonzero
elements to 1. This is the unique maximal element of the partially ordered set and
hence gives a particularly natural way in which partition-ideal phenomena appear.
The following is an immediate a consequence of (1.1).

Corollary 7.8 Let A be a zerosumfree domain, and let a ∈ W (A) be a Witt vector
such that a(mλ) = 0 for some λ ∈ P. Then there is a unique pair (x, y) ∈ N

2 such
that a(mλ) = 0 if and only if λx+1 ≥ y + 1. The analogous statement is true for
W Sch(A) and the Schur basis (sλ)λ∈P .

We conclude this section with the proposition invoked above.

Proposition 7.9 (1) An N-module M is a group if and only if B ⊗N M = 0.
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(2) An N-algebra A is a ring if (under the axiom of choice) and only if there exists no
N-algebra homomorphism A → B.

Proof (1) If M is a group, then it is clear that B ⊗N M = 0. Conversely, suppose
B ⊗N M = 0. Since B is N/(2 = 1), the module B ⊗N M is the quotient of M by the
equivalence relation ≈ generated by relations 2x = x for all x ∈ M . That is, ≈ is the
transitive closure of the reflexive symmetric relation ∼ defined by

a ∼ b ⇐⇒ a = z + 2x + y, b = z + x + 2y for some x, y, z ∈ M.

Now the set of additively invertible elements of M is closed under taking both sums
and summands; so it follows that if a ∼ b, then a is additively invertible if and only
if b is additively invertible. Since ≈ is the transitive closure of ∼, the same is true of
≈. Since we have assumed M/≈ is 0, we have a ≈ 0 for any element a ∈ M . Thus a
is additively invertible, and so M is a group.

(2) If A is a ring, then it is clear there are no maps A → B. Conversely, if A is
not a ring, then by part (1), we have B ⊗N A �= 0, and so by Zorn’s lemma B ⊗N A
has a minimal nonzero quotient N-algebra B. Since B is nonzero and has no nonzero
quotients, it must be a field or B. (See Golan [11, p. 87].) But since B admits a map
from B, it cannot be a field. Therefore we have B = B, and hence there is a map
A → B. ��

8 W( p)(B)

Let p be a prime number. In this section, we determine the p-typical Witt vectors of
B. The result is straightforward, but we include it for completeness.

8.1 p-typical Witt vectors

Let us recall some definitions and basic results from section 8 of [5]. Write

ψ =
∑

i

x p
i , d =

(∑
i xi

)p − ∑
i x

p
i

p
, di, j = d◦i ◦ ψ◦ j ∈ �N,

for all i, j ∈ N, where ◦ denotes the plethysm operation. The N-algebra �N,(p) of
p-typical symmetric functions is then defined to be the sub-N-algebra of�N generated
by the set {di, j | i, j ∈ N}, and the set of p-typical Witt vectors with entries in a given
N-algebra A is defined by

W(p)(A) = AlgN(�N,(p), A).

By (8.3) of [5], the relations d p
i, j = pdi+1, j +di, j+1 generate all the relations between

the di, j . Therefore if we write ai, j = a(di, j ), we have the identification

W(p)(A) =
{
(ai, j ) ∈ AN

2 | a p
i, j = pai+1, j + ai, j+1

}
. (8.1.1)
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As shown in [5], there is a unique structure of a composition N-algebra on �N,(p)
compatible with that of �N. As always, W(p)(A) is then naturally an N-algebra with
an action of �N,(p) defined by f (a): g �→ a(g ◦ f ) for all f, g ∈ �N,(p) and
a ∈ W(p)(A). Therefore, in terms of (8.1.1), we have

d(a)i, j = ai+1, j , ψ(a)i, j = ai, j+1. (8.1.2)

8.2 W( p)(B)

In the particular case A = B, Eq. (8.1.1) simplifies to

W(p)(B) =
{
(ai, j ) ∈ B

N
2 | ai, j = 0 ⇔ ai, j+1 = ai+1, j = 0

}
. (8.2.1)

Since any ai, j is either 0 or 1, we see that W(p)(B) is identified with the set of subsets
I ⊆ N

2 satisfying (i, j) ∈ I ⇐⇒ (i + 1, j), (i, j + 1) ∈ I . Since any such subset I ,
if nonempty, is determined by its unique element (i, j) with i + j minimal, we have
a bijection

N
2 ∪ {∞} ∼−→W(p)(B) (8.2.2)

sending (x, y) to the Witt vector (ai, j ) with ai, j = 0 ⇔ i ≥ x, j ≥ y and sending ∞
to theWitt vector with ai, j = 1 for all i, j . By (3.2.3), this bijection is an isomorphism
of partially ordered sets, where W(p)(B) has the partial order �, where N

2 has the
componentwise order

(x, y) ≤ (x ′, y′) ⇐⇒ x ≤ x ′ and y ≤ y′,

and where ∞ is a terminal element. Under this bijection, (8.1.2) becomes

d(x, y) = (x−1, y), ψ(x, y) = (x, y−1), d(∞) = ∞, ψ(∞) = ∞, (8.2.3)

where we understand that negative coordinates are rounded up to zero.

Proposition 8.3 The N-algebra structure on N
2∪{∞} inherited from (8.2.2) satisfies

the following properties for all x, x ′, y, y′ ∈ N:

(1) The image of n ∈ N under the unique algebra map N → N
2 ∪ {∞} is (n, 0) if

n ≤ 1 (or rather n ≤ 2 if p = 2) and is ∞ otherwise.
(2) (x, 0) + (x ′, 0) = ∞ if x, x ′ ≥ 2
(3) (0, y) + (0, y′) = (0,max{y, y′})
(4) (x, 0) + (0, y) = (x, y)
(5) ∞ + z = ∞ for all z ∈ N

2 ∪ {∞}
(6) (x, 0)(x ′, 0) = ∞ for x, x ′ ≥ 2
(7) (0, y)(0, y′) = (0,min{y, y′})
(8) (x, 0)(0, y) = (0, y) if x ≥ 1
(9) ∞(0, y) = (0, y)

(10) ∞(x, 0) = ∞ if x ≥ 1.
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Proof We will identify any element of N
2 ∪ {∞} with its image in W(p)(B) under the

bijection (8.2.2).
(1) Let ϕ denote the map N → W(p)(N). Since it is �N,(p)-equivariant, we have

(ϕ(n))i,0 = (
d◦i (ϕ(n))

)
0,0 = (

ϕ(d◦i (n))
)
0,0 = d◦i (n).

Nowforn ∈ N,wehaved(n) = (n p−n)/p. Thus for p ≥ 3,wehaved(0) = d(1) = 0
and d(m) ≥ 2 for m ≥ 2. Therefore if n ≤ 1, the smallest i such that d◦i (n) = 0 is
n, and no such i exists if n ≥ 2. This finishes the proof for p ≥ 3. The statement for
p = 2 follows similarly from d(0) = d(1) = 0, d(2) = 1, and d(m) ≥ 3 for m ≥ 3.

(2) By part (1), we have (x, 0) + (x ′, 0) � (2, 0) + (2, 0) = 2 + 2 = ∞.
(3) Since the power sum d0, j = ψ◦ j is primitive for the co-addition map �+, we

have ((0, y) + (0, y′))0, j = (0, y)0, j + (0, y′)0, j . This evaluates to 0 if and only if
y, y′ ≤ j . Therefore ((0, y) + (0, y′))i, j is zero for (i, j) = (0,max{y, y′}) but not
for any smaller (i, j). Thus we have (0, y) + (0, y′) = (0,max{y, y′}).

(4) If either x or y is zero, the statement followsbecause (0, 0) is the additive identity,
by part (1). So assume x, y ≥ 1. By (8.2.3), it is enough to show ψ◦y−1((x, 0) +
(0, y)) = (x, 1). Because we have

ψ◦y−1((x, 0) + (0, y)) = (x, 0) + (0, 1),

it is enough to show (x, 0) + (0, 1) = (x, 1) for x ≥ 1. Since we have

ψ((x, 0) + (0, 1)) = ψ(x, 0) + ψ(0, 1) = (x, 0) + (0, 0) = (x, 0),

(x, 0) + (0, 1) is either (x, 0) or (x, 1), again by (8.2.3). To rule out (x, 0), we can
show

d((x, 0) + (0, 1)) � (x − 1, 1).

This holds because we have

�+(d) = d ⊗ 1 + 1 ⊗ d + · · ·

and hence

d((x, 0) + (0, 1)) = d(x, 0) + d(0, 1) + · · ·
� d(x, 0) + d(0, 1)

= (x − 1, 0) + (0, 1)

= (x − 1, 1),

by (3.4) and induction on x .
(5) By (3.4), we have ∞ + z � ∞ and hence ∞ + z = ∞.
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(6) Since � is an AlgN-preorder, we have (x, 0)(x ′, 0) � (2, 0)(2, 0). Therefore it
is enough to show (2, 0)2 = ∞. We have

�×(d) = ψ ⊗ d + d ⊗ ψ + pd ⊗ d (8.3.1)

and hence

d((2, 0)(2, 0)) = ψ(2, 0)d(2, 0) + d(2, 0)ψ(2, 0) + pd(2, 0)2

= (2, 0)(1, 0) + (1, 0)(2, 0) + p(1, 0)2

= (2, 0) + (2, 0) + p(1, 0)

= ∞ + p(1, 0)

= ∞,

by (8.2.3) and parts (1), (2) and (5). It follows that (0, 2)2 = ∞.
(7) For any j , the element d0, j = ψ◦ j is group-like under �×. Therefore we have

(
(0, y)(0, y′)

)
0, j = (

(0, y)
)
0, j · (

(0, y′)
)
0, j ,

which is 0 if and only if j ≥ min{y, y′}. Therefore (
(0, y)(0, y′)

)
i, j is zero for

(i, j) = (0,min{y, y′}) but not for any smaller (i, j). It follows that (0, y)(0, y′) is
(0,min{y, y′}).

(8) As in part (7), we have
(
(x, 0)(0, y)

)
0, j = (x, 0)0, j (0, y)0, j , for any j ∈ N.

Since x ≥ 1, we have (x, 0)0, j = 1, and so
(
(x, 0)(0, y)

)
0, j is (0, y)0, j . Thus we

have (x, 0)(0, y) = (0, y).
(9) As in part (8), we have

(∞(0, y)
)
0, j = (0, y)0, j , and so ∞(0, y) = ∞.

(10) By part (1), the element (1, 0) is the multiplicative identity; so the result is
clear for x = 1. If x ≥ 2, then (8.3.1) and (3.4) imply

d(∞(x, 0)) � ψ(∞)d(x, 0) = ∞(x − 1, 0),

which evaluates to ∞ by induction. Therefore we have d(∞(x, 0)) = ∞ and hence
∞(x, 0) = ∞. ��
Proposition 8.4 Consider the canonical map W (B) → W(p)(B), in the coordinates
given by the bijections (4.8.1) and (8.2.2). If x ≤ 1 (or rather x ≤ 2 for p = 2), then
an element (x, y) ∈ N

2 is sent to (x, z), where z is the smallest element of N such that
pz > y. All other elements are sent to ∞.

Proof It is clear that ∞ is sent to ∞. For elements of the form (x, 0), the result
follows from part (1) of (8.3). Now consider an element of the form (0, y) ∈ W (B).
Then (0, y)(ψp j ) = 0 if and only if p j > y. Therefore the image a ∈ W(p)(B) of
(0, y) is (0, z), where z is the smallest element of N such that pz > y.

For an element of the form (x, y) ∈ W (B), we have (x, y) = (x, 0) + (0, y). So
the result follows from the previous cases and parts (4) and (5) of (8.3). ��
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8.5 Remarks

The set of p-typical symmetric functions of length k is defined to be the sub-N-
algebra of �N generated by the subset {di, j | i + j ≤ k}, and the functor it represents
is defined to be W(p),k , the p-typical Witt functor of length k. Then we have the
following analogue of (8.2.1):

W(p),k(B) =
{
(ai, j ) ∈ B

Tk | ai, j = 0 ⇔ ai, j+1 = ai+1, j = 0 for i + j ≤ k − 1
}

,

where Tk = {(i, j) ∈ N
2 | i + j ≤ k}. But there is no analogue of (8.2.2). Indeed, the

triangular array

(ai, j ) =
⎛

⎝
0
1 1
1 1 0

⎞

⎠

has two blocks of zeros yet defines an element of W(p),2(B).
This also shows that the mapW(p),4(B) → W(p),3(B) is not surjective, because the

element above does not lift toW(p),4(B). In fact, as one easily checks, this element lifts
to W(p),3(R+), and so the map W(p),4(R+) → W(p),3(R+) is not surjective either.

9 Complements: countability of some Witt vector algebras

If A is uncountable, then bothW (A) andW Sch(A) are uncountable because the Teich-
müller map A → W (A) is injective. If A is countable, we have the following partial
result when it admits an embedding into R+:

Theorem 9.1 Let A be a countable sub-N-algebra of R+.

(1) If A is not dense, then W (A) and W Sch(A) are countable.
(2) If A is dense and of the form B ∩ R+ for some subring B ⊆ R, then W (A) and

W Sch(A) are uncountable.

Proof (1) As in (7.5), the series associated to any element of W Sch(A) is of the form
f (t)/g(t), where f (t) and g(t) are polynomials with coefficients in the smallest
subfield K ⊆ R containing A. Since K is countable, there are only countably many
such series. Further, W (A) is countable because it is a subset of W Sch(A).

(2) For the same reason, here it is enough to show W (A) is uncountable. First
observe that a Witt vector y ∈ W (R) lies in W (R+) if and only if, for all k ≥ 0, there
exists a Witt vector x ∈ W (R+) such that σ(y) ≡ σ(x) mod tk+1. Indeed, to have
y ∈ W (R+) it is enough to have y(mλ) ≥ 0 for all partitions λ. But each such mλ is
a polynomial in finitely many elementary symmetric functions e1, . . . , ek . Choosing
x ∈ W (R+) such that σ(y) ≡ σ(x) mod tk+1, we have y(mλ) = x(mλ) ≥ 0.

Combining this with the equality W (B ∩ R+) = W (B) ∩ W (R+), we see that
it is enough to show there are uncountably many series in 1 + t B[[t]] that can be
approximated arbitrarily well in the t-adic topology by series of the form σ(x), where
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x ∈ W (R+). In fact, it will be convenient to consider approximations by a slightly
restricted class of series. So first letW ′(R) denote the subset of 1+ tR[[t]] consisting
of series of the form

∏
j (1 + b j t), for some reals b1 > b2 > · · · > 0. Then by (6.3),

we have W ′(R) ⊆ σ(W (R+)). Second, for any integer k ≥ 0, let W ′
k(B) denote the

intersection of 1 + t B[[t]]/(tk+1) and the image of the truncation map

W ′(R) → 1 + tR[[t]]/(tk+1), f (t) �→ f (t) mod tk+1.

Then the inverse limit limk W ′
k(B), viewed as a subset of 1+ tR[[t]], consists of series

with coefficients in B that can be approximated arbitrarily well in the t-adic topology
by elements of W ′(R). By the remarks above, it is contained in σ(W (B ∩ R+)).

Therefore it is enough to show that limk W ′
k(B) is uncountable. Since W ′

0(B) is
nonempty, it is enough to show that the fibers of the truncation maps W ′

k(B) →
W ′

k−1(B) have infinitely many elements (or even two). So consider an element f̄ (t) ∈
W ′

k−1(B), and choose a lift f (t) = ∏
j (1 + b j t) ∈ W ′(R). Then for all sufficiently

small ε ∈ R, the polynomial εtk + ∏k
j=1(1+ b j t) is still of the form

∏k
j=1(1+ b′

j t),
where b′

1 > · · · > b′
k > bk+1. For such ε, write

fε(t) =
k∏

j=1

(
1 + b′

j t
) ∞∏

j=k+1

(1 + b j t) ∈ W ′(R).

Then we have
fε(t) = f (t) + εtk mod tk+1. (9.1.1)

Therefore the series fε(t) are distinct for distinct ε, and they reduce to f̄ (t) modulo
tk . Further, we have fε(t) ∈ W ′

k(B) if (and only if) the kth coefficient of fε(t) lies
in B. Since A is dense in R+ and since B contains ±A, we know that B is dense in
R. Therefore Eq. (9.1.1) guarantees that there are infinitely many sufficiently small
ε ∈ R such that the kth coefficient of fε(t) lies in B. In other words, the fiber of the
map W ′

k(B) → W ′
k−1(B) over the arbitrary element f̄ (t) is infinite. ��

9.2 Examples

Since one can embed N[x1, x2, . . . ] as a nondense sub-N-algebra of R+, we see
that W (A) and W Sch(A) are countable for any sub-N-algebra A of N[x1, x2, . . . ].
In particular, we have countability for A = N[α], where α is any transcendental
number. This holds even when |α| < 1, in which case A is dense in R+. So the
condition A = B ∩ R+ in (9.1)(2) cannot be removed. Similarly,W (A) andW Sch(A)

are countable for the dense subalgebra A = N[2 − √
2] ⊆ R+, because 2 − √

2 is
conjugate to 2 + √

2, which is greater than 1.
Examples where W (A) and W Sch(A) are uncountable include A = N[1/m] for

any m = 2, 3, . . . and A = N[√2 − 1] = Z[√2] ∩ R+.
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Finally, we emphasize that there are dense sub-N-algebras R+ to which (9.1)(2)
does not apply—for example N[√3− 1]. At the time of this writing, we do not know
whether either W (A) or W Sch(A) is countable for any such algebras A.

Theorem 9.3 Let n be a nonnegative integer, and write A = N/(n = n + 1).

(1) W (A) is countable if and only if n ≤ 2.
(2) W Sch(A) is countable if and only if n ≤ 2.

Note the contrast between the uncountability for n ≥ 3 and the countability of
W (N) and W Sch (N), given by (6.3) and (1.2).

Proof (1) When n = 0, the result is clear, and when n = 1, it follows immediately
from (4.8).

Now consider the case n = 2. For any a ∈ W (A), write

pker(a) = {λ ∈ P | a(mλ) = 0}.

A basic result we will use more than once is the following. Let λ be a partition, and
write dλ(a) = ∑

ν /∈pker(a) b
ν
λλ, where m

2
λ = ∑

ν∈P bν
λλmν ; then we have

dλ(a) ≥ 2 �⇒ a(mλ) = 2 (9.3.1)

Indeed, since all elements in A are multiplicatively idempotent, we have

a(mλ) = a(mλ)
2 = a

(
m2

λ

)
=

∑

ν

bν
λλa(mν) ≥ dλ(a) ≥ 2

and hence a(mλ) = 2.
Now consider the map ϕ: W (A) → W (B) induced by the unique N-algebra map

A → B. Since W (B) is countable, it is enough to show that for each z ∈ W (B), there
are only finitely many a ∈ W (A) such that ϕ(a) = z.

First consider the case z = ∞. Then for any nonzero partition λ, the symmetric
function m2

λ has at least two monomial constituents, by (4.5). Further, neither con-
stituent is in pker(a) since pker(a) = ∅. Therefore we have a(mλ) = 2, by (9.3.1).
Since we also have a(m0) = a(1) = 1, there is at most one Witt vector a such that
ϕ(a) = ∞.

It remains to consider the case z = (x, y), where x, y ∈ N. It is enough to show
that any a ∈ ϕ−1(z) is determined by its values a(mux ) for u ≤ 2y + 1, because
there are only finitely many possibilities for such values. We will do this by saying
explicitly how these values determine each a(mλ); we will do this by considering a
nested sequence of cases in λ.

If λx+1 ≥ y + 1, then we have λ ∈ pker(a) and hence a(mλ) is zero. In particular,
the value of a(mλ) is determined. Therefore we may assume λx+1 ≤ y. First suppose
λx+1 > 0. Clearly m2

λ has the monomial constituent

ν = (2λ1, . . . , 2λx , λx+1, λx+1, . . . ).
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Since λx+1 > 0, if we view ν as a vector, we can write it as the sum of two distinct
permutations of λ. In other words, the mν term in m2

λ is a cross term, and so its
coefficient bν

λλ is at least 2. Further we have νx+1 = λx+1 ≤ y, and so ν /∈ pker(a).
Therefore we have dν(a) ≥ 2, and hence a(mλ) can only be 2, by (9.3.1). In particular,
its value is determined when λx+1 > 0.

Thereforewemay assume λx+1 = 0.Now suppose there exists i with 1 ≤ i ≤ x−1
such that λi > λi+1. Then m2

λ has two monomial constituents ν:

(2λ1, . . . , 2λx ), (2λ1, . . . , 2λi−1, λi + λi+1, λi+1 + λi , 2λi+2, . . . , 2λx ).

Since λi > λi+1, the two differ at position i and are hence distinct. Also, both have
length at most x . So neither lies in I(x,y) = pker(a). Thus we have dλ(a) ≥ 2, and
again by (9.3.1) the value of a(mλ) is determined.

Therefore we may assume there is no such i , and hence that λ = ux , for some
u. For any integers p, q ≥ y + 1, the only constituent of mpxmqx which does not
belong to I(x,y) is (p + q)x , and this constituent appears with coefficient 1. This
implies f (mpx ) f (mqx ) = f (m(p+q)x ), and so by induction the values f (mux ) for
u = y + 1, . . . , 2y + 1 determine f (mux ) for any u ≥ 2y + 2. This finishes the proof
when n = 2.

Finally, consider the case n ≥ 3.
LetU be any subset of the set of all nonzero partitions.Clearly, there are uncountably

many choices for thisU . To showW (A) is uncountable, we will construct an element
of W (A) corresponding to U and show that all such elements of W (A) are distinct.

Define an N-linear map f : �N → A by

f (mλ) =

⎧
⎪⎨

⎪⎩

1 if λ = 0

n − 1 if λ ∈ U

n otherwise,

for every partition λ. Clearly, the subsetU can be uniquely reconstructed from thismap
f , since n−1 �= n in A.Wewill now show that f is an element ofW (A). To prove this,
we must verify that f is an N-algebra homomorphism. Since f (1) = f (m0) = 1, it
is enough to prove that f

(
mλmμ

) = f (mλ) f
(
mμ

)
for any partitions λ and μ.

If λ = 0 or μ = 0, this is obvious, since m0 = 1. So we may assume λ and μ are
nonzero. Therefore we have

f (mλ) f
(
mμ

) ≥ (n − 1) (n − 1) ≥ n

since n ≥ 3. Because every element of A which is at least n must be equal to n, this
yields f (mλ) f

(
mμ

) = n.
On the other hand, (4.5)(3) shows that mλmμ has at least two distinct nonzero

constituents. That is, there exist two distinct nonzero partitions α and β such that
mλmμ ≥ mα + mβ . Therefore we have

f
(
mλmμ

) ≥ f
(
mα + mβ

) = f (mα) + f (mβ) ≥ (n − 1) + (n − 1) ≥ n
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since n ≥ 3 again. As above, this yields f
(
mλmμ

) = n and hence

f
(
mλmμ

) = n = f (mλ) f
(
mμ

)
.

Thus f is an element of W (A).
Therefore W (A) has at least as many elements as there are subsets of nonzero

partitions. Hence, it has uncountably many.
(2) For n �= 2, the arguments above also work in the Schur basis, instead of the

monomial one. One simply appeals to (5.12) instead of (4.8), and (5.6)(3) instead of
(4.5)(3). When n = 2, the modifications we need to make are more elaborate. So we
shall not record them here. ��
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