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Abstract. Let A be a complete discrete valuation ring with possibly imperfect residue field.
The purpose of this paper is to give a notion of conductor for Galois representations over A
which agrees with the classical Artin conductor when the residue field is perfect. The definition
rests on two results of perhaps wider interest: there is a moduli space that parametrizes the ways
of modifying A so that its residue field is perfect, and any Galois-theoretic object over A can
be recovered from its pullback to the (residually perfect) discrete valuation ring corresponding
to the generic point of this moduli space. Finally, I show that this conductor extends the non-
logarithmic variant of Kato’s conductor to representations of rank greater than one.

Introduction

Let A be a complete discrete valuation ring of residue characteristic p > 0. If
the residue field of A is perfect, there is a satisfactory theory [26, IV, VI] of
ramification over A. For example, let ρ be a Galois representation over A, which
is a continuous action of an absolute Galois group of the fraction field of A on a
finite-rank complex (for now) vector space. Then there is a non-negative integer,
the Artin conductor of ρ, that measures the extent to which ρ is ramified. If, on the
other hand, we allow the residue field ofA to be imperfect, ramification overA is
still quite mysterious. This prevents us from understanding, say, ramification in
codimension one of local systems on arithmetic surfaces.

The work in this paper began with the observation that much about ramifi-
cation over A can be understood by simply changing base to various extensions
with perfect residue field and of relative ramification index one. The first main
point (1.4) is that such extensions make up the (perfect-field-valued) points of a
natural representable moduli problem. The universal residual perfection Au of A
is the A-algebra corresponding to the representing object itself. It is not a dis-
crete valuation ring – but, in a sense, only because its residue ring is not a field
(and actually not even noetherian). The generic residual perfection Ag of A is
the A-algebra corresponding to the fraction field of the representing object. It is
a complete discrete valuation ring with perfect residue field. Both Au and Ag are,
of course, unique up to unique isomorphism.
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It may be useful to keep a geometric analogue in mind. If we think of complete
residually perfect discrete valuation rings as being like germs of curves, then it
is natural to regard Au as the universal jet on A transverse to the maximal ideal
and Ag as the generic jet.

There is an explicit description (1.10) of these rings in the first section. For
example, if A = Fp(x)[[y]], then we have

Au ∼= Fp(x̄)[u1, u2, . . . ]
p−∞

[[y]] and

Ag ∼= Fp(x̄, u1, u2, . . . )
p−∞

[[y]],

where theA-algebra structures are determined by the data x �→ x̄+u1y+u2y
2 +

· · · and y �→ y. If A = Ẑ[x](p), we have

Au ∼= W
(
Fp(x̄)[u1, u2, . . . ]

p−∞)
and

Ag ∼= W
(
Fp(x̄, u1, u2, . . . )

p−∞)
,

where W denotes the functor of Witt vectors and the A-algebra structures are

given by sending x to (x̄, up1 , u
p2

2 , . . . ).
In the second section, I give some properties ofAu andAg. The most important

is that the fraction field of A is algebraically closed in the fraction field of Ag.
And hence the second main point: a Galois representation ρ overA is determined
by its pullback ρ|Ag to Ag. Therefore any invariant of ρ, such as a measure of
ramification, can be recovered (in principal) from ρ|Ag .

Second, I give some evidence that in defining “non-logarithmic” (or “Artin”)
conductors for Galois representations over A, the most simple-minded way of
proceeding along these lines is correct: the conductor ar(ρ) of ρ should be the
classical Artin conductor of ρ|Ag . (Logarithmic, or “Swan”, conductors are more
subtle. See below.) Taking this as the definition, we have the following result.

Theorem (A). Let ρ and ρ ′ be Galois representations over A.

(1) ar(ρ) is a non-negative integer.
(2) ar(ρ ⊕ ρ ′) = ar(ρ)+ ar(ρ ′)
(3) If ρ is trivialized by a residually separable extension of A, then ar(ρ) agrees

with the classical Artin conductor of ρ.
(4) ar(ρ) is zero if and only if ρ is unramified.
(5) ar(ρ) equals the codimension of the subspace of inertia invariants if and only

if ρ is tame.

This theorem is an elementary consequence of the basic properties ofAg proved
in section 2. The proof of a slightly stronger version is written down in section 3.

For Galois representations of rank one, Kato [17] has introduced a logarith-
mic conductor. As first observed in the work [20] of Matsuda (who credits it to
T. Saito), this conductor has a non-logarithmic variant, which we denote arK(·).
The second part of the paper is devoted to the proof of the following result.
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Theorem (B). LetK andKg denote the fraction fields ofA andAg. If χ is a class
in H 1(K,Q/Z) and χ ′ is its image in H 1(Kg,Q/Z), then arK(χ) = arK(χ

′).

For present purposes, the interest in this result is the following:

Corollary. Let ρ be a rank-one Galois representation over A. Then the non-
logarithmic Kato conductor of ρ agrees with ar(ρ).

The intuitive reason why the theorem should be true is that the order of any
differential form on A should remain unchanged when the form is pulled back
to Ag and that conductors of rank-one representations are essentially pole orders
of differential 1-forms. When A is of equal characteristic, this has meaning and,
once the necessary foundations are laid, is essentially a proof. In fact, the obser-
vation that there are residually perfect extensions with this property is what led
to the definition of the general Artin conductor. In mixed characteristic, however,
this provides little more than motivation, and most of this paper is spent pushing
it through to a real proof.

Kato’s original, logarithmic conductor is not, however, always invariant under
pullback toAg, and so the naive logarithmic analogue of ar(·) does not necessarily
agree with Kato’s conductor. For some brief thoughts on logarithmic conductors
for representations of higher rank, see 3.3.

Of course, there is an “upper” filtration (3.5) of the absolute Galois group
corresponding to this paper’s conductor, and it satisfies the Hasse-Arf property
simply because residually separable extensions do.Abbes and Saito [1] also have a
non-logarithmic Q�0-indexed upper filtration. It is tempting to hope the two agree
(shifted by one); a proof of this would imply the interesting result that Abbes and
Saito’s filtration also satisfies the Hasse-Arf property. Boltje-Cram-Snaith [4] and
Zhukov [30] also have approaches to non-abelian ramification theory; the relations
with them are even more mysterious.

Let me briefly describe the remaining sections. In section 4, I recall Kato’s
theory, prove some basic results, and define the Kato-Artin conductor. The proof
of theorem B when A is of equal characteristic is in section 5. It uses Matsuda’s
refinement [20] of Kato’s refined Swan conductor. Because the proof in equal
characteristic is so much simpler than the proof in mixed characteristic, I encour-
age the reader to read it first. The basic technique in mixed characteristic is to use
Kato’s description [17, 4.1] (following Bloch-Kato [3]) of certain graded pieces of
cohomology groups in terms of explicitK-theoretic symbols and then understand
how these symbols behave under pullback to Ag. Section 7 contains a commuta-
tive diagram that encodes this behavior, and section 8 gives the proof in mixed
characteristic. In the final section, I prove the corollary above.

It is a pleasure to thank the Massachusetts Institute of Technology for its hos-
pitality and the National Science Foundation for support while I was writing this
paper.
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Conventions

Throughout, p denotes a fixed prime number, and A denotes a discrete valuation
ring, held fixed in each subsection, whose residue field has characteristic p. Its
fraction field and residue field are denoted by K and k.

All other conventions and notation are quite common, but I will state them
anyway:

All rings are commutative and contain 1, and all ring maps preserve 1. The
fraction field of a domain R is denoted Fr(R). An extension of a field is a homo-
morphism to another field. An extension of a discrete valuation ring is an injective
local homomorphism to another discrete valuation ring. In both cases, we usu-
ally refer to the target of the morphism, rather than the morphism itself, as the
extension.

We say a ring A as above is of mixed characteristic if K has characteristic
0, and is of equal characteristic if K has characteristic p. Variants of the words
residue and generic refer to the residue and fraction fields of A. We also use the
same words to refer to extensions. For example, we might say B/A is residually
purely inseparable or is generically Galois. An extensionB/A is unramified (resp.
tame) if it is finite and residually separable and its ramification index is one (resp.
not divisible by p). The notations eB/A, fB/A, and f sep

B/A denote the ramification
index, residue degree, and separable residue degree of the extensionB/A, andU •

A

denotes the filtration ofA∗ withU 0
A = A∗ andUi

A = 1+piA for positive integers i.

1. The moduli of residual perfection

The purpose of this section is to define the category CRPA of complete residual
perfections of A, to prove the objects are parametrized by a moduli space, and
to give a concrete description of this moduli space. Our general reference for
categorical terminology will be Mac Lane’s book [19].

1.1. An Fp-algebra R is perfect if the endomorphism F : x �→ xp of R is an
isomorphism. The perfection Rpf = Rp

−∞
of an Fp-algebra R is the universal

perfect Fp-algebra thatRmaps to. It is the colimit of the iterates ofF . For any Fp-
algebra S, let PerfAlgS be the full subcategory of the category of S-algebras whose
objects are perfect.

1.2. Let CRPA be the full subcategory of the category of A-algebras consisting
of objects B such that B is flat (i.e., B is torsion-free as an A-module), B is com-
plete with respect to the ideal pAB, and B/pAB is perfect. (Note that the second
condition forces morphisms to be continuous.) For an object B ∈ CRPA, let pB
denote the ideal pAB (which will usually be prime), let B denote B/pB , and if x
is an element of B, let x̄ denote its image in B. If f : B → B ′ is a morphism
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in CRPA, let f̄ denote its reduction B → B ′. Let sB denote the unique multipli-
cative section [26, II §4 Prop. 8] of the map B → B. Since sB(x) is the unique
lift of x that has a pm-th root for all integers m, every morphism f : B → B ′

in CRPA satisfies

f ◦ sB = sB ′ ◦ f̄ . (1.2.1)

1.3. If π ∈ A is a uniformizer and x is an element of an object B ∈ CRPA, then
there are unique elements x0, x1, · · · ∈ B such that x = sB(x0)+ sB(x1)π + · · · .
We call these the coefficients of x (with respect to π ). If f : B −→C is a mor-
phism in CRPA, then (1.2.1) implies that the coefficients of f (x) are simply the
images under f̄ of the coefficients of x.

1.4. Theorem. The category CRPA has an initial object Au, and the functor

CRPA → PerfAlgAu, B �→ B

is an equivalence of categories.

In other words, the functor CRPA → PerfAlgA defined by B �→ B is a
representable moduli problem with universal object Au.

It is a pleasant exercise to give a hands-off proof of this theorem using Freyd’s
method [19]. But we will need more precise information about Au, and so we
will give a quite explicit presentation of it in terms of a p-basis of k lifted to A.

1.5. Let π ∈ A be a uniformizer, and let T be a lift toA of a p-basis ofA. (A good
general reference for information on p-bases is EGA [10, Ch. 0 §21].) Let RT be
the polynomial algebra A[ut,j | t ∈ T , j ∈ Z>0]. We will see below that Rpf

T is
naturally Au, the moduli space we seek.

1.6. Lemma. LetQ be a residually perfect discrete valuation ring that is a subring
of A with the property that A/Q is an extension of ramification index one. Let B
be aQ-algebra that is complete with respect to an ideal I that contains the image
of the maximal ideal of Q. Let n be a positive integer, and let ϕ′ : A → B/In

be a Q-linear homomorphism. For every t ∈ T , let xt ∈ B be a lift of ϕ′(t).
Then there is a unique Q-linear map ϕ : A → B such that ϕ′ = ϕ mod I n

and ϕ(t) = xt for all t ∈ T .

Proof. Since B is complete with respect to I , it suffices by induction to prove the
existence and uniqueness of ϕ modulo I n+1. Let �1

A/Q denote the A-module of
Kähler differentials with respect toQ. SinceA/Q is formally smooth [10, 19.7.1],
some lift A → B/In+1 of ϕ′ exists, and so the set of such lifts is a torsor under

HomA(�
1
A/Q, I

n/In+1) = HomA(A⊗A �
1
A/Q, I

n/In+1)

= HomA(
⊕

t∈T
Adt, I n/In+1)

with the obvious action. It follows that the image of T can be lifted arbitrarily and
that any such lift determines ϕ mod I n+1.
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1.7. Construction. Functors U : CRPA → PerfAlg
R

pf
T

and V : PerfAlg
R

pf
T

→
CRPA.

Let B be an object of CRPA. For t ∈ T and j ∈ Z>0, let vt,j ∈ B denote the
j -th coefficient (1.3) with respect to π of the image of t inB. The data ut,j �→ vt,j
gives B the structure of an RT -algebra. Since B is perfect, it has a unique com-
patible Rpf

T -algebra structure; U(B) is then B with this Rpf
T -algebra structure. It

is easy to see this is functorial.
LetS be a perfectRpf

T -algebra. IfA is of equal characteristic, setV (S) = S[[π̃ ]],
where π̃ is a free variable. Then V (S) is an Fp[[π̃ ]]-algebra, and π̃ �→ π makesA
into an Fp[[π̃ ]]-algebra. By 1.6, there is a unique Fp[[π̃ ]]-linear map A → V (S)

such that for all t ∈ T ,

t �→ t̄ +
∑

j�1

ut,j π̃
j .

If A is of mixed characteristic, let C be the Cohen subring [7, pp. 82–83] of A
determined by T . It is a complete discrete valuation ring of absolute ramification
index one that contains T , and A/C is a finite residually trivial extension. LetW
be the ring of Witt vectors [13, 0.1] with coefficients in S and let sW : S → W

denote the Teichmüller section. Again by 1.6 (taking Q = Zp), there is a unique
map C[X] → W [[π̃ ]] such that X �→ π̃ and for all t ∈ T , we have

t �→ sW (t̄)+
∑

j�1

sW (ut,j )π̃
j .

View A as a quotient of C[X] using the map X �→ π , and put V (S) = A⊗C[X]

W [[π̃ ]].
In either case, it is easy to see that V is a functor from PerfAlg

R
pf
T

to the
category of A-algebras.

1.8. Proposition. The image of V is in CRPA.

Proof. Let S be a perfectRpf
T -algebra. Of the propertiesV (S) is required to satisfy

to be in CRPA, the only one that is not immediately clear is flatness over A in
mixed characteristic. To show this, it suffices to show the element π ⊗ 1 = 1 ⊗ π̃
is not a zero-divisor in V (S).

Let g(X) denote the Eisenstein polynomial that generates the kernel of the
surjection C[X] → A, and let h(π̃) denote its image in W [[π̃ ]]. We will show π̃

is not a zero-divisor in the ring V (S) = W [[π̃ ]]/(h(π̃)). Let f1(π̃) and f2(π̃) be
elements of W [[π̃ ]] such that π̃f2(π̃) = h(π̃)f1(π̃).

Suppose f1(0) �= 0. Then h(0), which is the image of g(0) under the map
C→W , is a zero-divisor. But since g(X) is an Eisenstein polynomial, this implies
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p is a zero-divisor inW , which is impossible. Therefore, we have f1(0) = 0 and,
hence,

f2(π̃) = h(π̃)
f1(π̃)

π̃
∈ h(π̃)W [[π̃ ]].

Thus f2(π̃) reduces to zero in V (S), and so π̃ is not a zero-divisor in V (S).

1.9. Construction. Natural transformations η : 1 → UV and ε : VU → 1
Let B be an object of CRPA and S be an object of PerfAlg

R
pf
T

. Let η(S) be the
map

S−→UV (S), x �→ sV (S)(x).

If A is of equal characteristic, let ε(B) be the composite VU(B) = B[[π̃ ]] −→B

defined by π̃ �→ π and b �→ sB(b) for b ∈ B. It is a homomorphism of rings
because sB is [26, II Prop. 8].

IfA is of mixed characteristic, there is a unique mapW(B)−→B that reduces
to the identity [26, II Prop. 10]. Then, π̃ �→ π determines a mapW(B)[[π̃ ]] −→B

and, hence, a map

ε(B) : VU(B) = V (B) = A⊗C[X] W(B)[[π̃ ]] −→B.

It is easy to see ε is natural in B and η is natural in S.

1.10. Theorem. 〈V,U ; η, ε〉 is an adjoint equivalence between CRPA and
PerfAlg

R
pf
T

.

The proof is nothing more than a straight-forward verification of the so-called
triangular identities (εV ◦ V η = 1 and Uε ◦ ηU = 1) and is left to the reader.

1.11. Proposition. Let B be an object of CRPA. If B is noetherian or a domain,
then B is the same. If B is a field, then B is a discrete valuation ring.

Proof. Suppose B is noetherian. Since gr(B) is isomorphic to B[X], it is noethe-
rian. This implies B is noetherian [2, 10.25].

Now supposeB is a domain anda andb are non-zero elements ofBwithab=0.
Since a uniformizer π of A is not a zero-divisor in B, we can assume a, b �∈ πB,
but this immediately contradicts the fact that B is a domain.

WhenB is a field, it is easy to see that every element outside pB is a unit. ThusB
is a noetherian local ring whose maximal ideal is generated by a non-nilpotent
element and, hence, a discrete valuation ring [26, I §2].

1.12. BecauseRpf
T is the initial object of PerfAlg

R
pf
T

, its imageV (Rpf
T ) is the initial

object of CRPA, but we will denote it Au to reflect the fact that it is independent
of T (up to unique isomorphism). It is called the universal residual perfection
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of A. The generic residual perfection Ag of A is defined to be V (Fr(Rpf
T )). It is

also independent of T . We will often denote its residue field Ag by kg.
It follows from the previous proposition that Au is a domain (it is in fact inte-

grally closed) and Ag is a discrete valuation ring. More generally, it follows that
the points of Au with values in perfect fields are the same as complete residually
perfect extensions of A of ramification index one.

1.13. Note that if B is an extension of A of ramification index one, then CRPB
is a subcategory of CRPA, and so there is a unique map Au → Bu. If it happens
that T can be extended to a lift T ′ ⊂ B of a p-basis for B, this map is the same
as the map associated by 1.10 to the obvious map RT → RT ′ . We will consider
the functoriality of the generic residual perfection in the next section.

1.14. It is not hard to show that the filtration

FnR
pf
T = A[ut,j | t ∈ T , 1 � j � n]pf

of RT is independent of the choices of T and π . Though its role in this paper is
small, this filtration is important and should not be ignored. (See 3.3.)

2. Properties

As in the previous section,Au andAg will denote the universal and generic residual
perfections of A, and Kg will denote the fraction field of Ag.

2.1. Proposition. Let B be an extension of A. If eB/A = 1 and B/A is residually
separable, then there exists a unique map Ag −→Bg of A-algebras.

Note that we do not require thatB/A be residually algebraic, and soB satisfies
these assumptions if and only if B/A is formally smooth [10, 19.6.1,19.7.1].

Proof. By 1.4, it is enough to show there is a unique map Ag −→Bg of Au alge-
bras. Since Ag is the fraction field of Au, there is clearly at most one. To show
there is at least one, we just have to check that the map Au → Bg is an inclusion.
Since any p-basis for A can be extended to one for B, this follows immediately
from 1.10 and 1.13.

2.2. Proposition. LetB be a finite étale extension ofA. IfC is an object of CRPA,
then C ⊗A B is an object of CRPB .

Proof. Since B ⊗A C is finite étale over C, which is perfect, it is perfect (by, for
example, [10, 21.1.7]). Since C ⊗A B is a finitely generated free C-module, it is
complete. Therefore, C ⊗A B is an object of CRPB .
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2.3. Proposition. Let B be a finite étale extension of A. Then the induced maps

B ⊗A A
u → Bu and B ⊗A A

g → Bg

of B-algebras are isomorphisms.

Proof. By 2.2, both B ⊗A A
u and B ⊗A A

g are in CRPB , and so by 1.4, it is
enough to show they are isomorphisms after tensoring withB. SinceB/A is finite
and separable, any p-basis for A is one for B. Again, 1.10 and 1.13 complete the
proof.

The rest of the results in this section are devoted to the proof of the following
theorem.

2.4. Theorem. Fix a separable closure of Kg. Then the map GKg → GK of
absolute Galois groups is surjective. The induced maps of inertia groups and wild
inertia groups are also surjective.

2.5. Remark. It would be interesting to see if the analogous result is true for
some motivic Galois group. For example, whenA is of equal characteristic, is the
functor from crystals (of whatever kind) on K to crystals on Kg fully faithful?

2.6. Lemma. K is algebraically closed in Kg.

Proof. IfA is residually perfect, thenKg = K and the result is trivially true. Now
assumeA is not residually perfect. LetL/K be a finite subextension ofKg/K , and
letB be the normalization ofA inL. Since eAg/A = 1, we have eB/A = 1. SinceA
is separably closed in Ag, the extension B/A is residually purely inseparable. It
is therefore enough to show it is residually separable.

Suppose there is an element ā ∈ A − (A)p that has a p-th root in B. We
will derive a contradiction (working only modulo p2

A). Let a ∈ A/p2
A be a lift

of ā and let x ∈ B/p2
B be a lift of p

√
ā. Then there is an element y ∈ B such

that a = xp + πy.
Let θ denote the map B −→Ag/p2

AA
g, and let s denote the multiplicative sec-

tion of the map Ag/p2
AA

g −→Ag. Since the set {ā} can be extended to a p-basis

ofA, there is (by, say, 1.10) an element u ∈ Ag −Apf
such that θ(a) = s(ā)+πu.

Take v ∈ Ag such that θ(x) = s(x̄)+ πv. Then we have

s(ā)+ πu = θ(a)

= θ(x)p + πy

= (s(x̄)+ πv)p + πy

= s(x̄p)+ πy

and thus u = y ∈ Apf
. Since this cannot be, we have our contradiction.
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2.7. A finite extensionB ofA is said to be monogenic if there is an element x ∈ B
that generates B as an A-algebra. For example, any finite extension that is gener-
ically and residually separable is monogenic [26, III §6 Prop. 12].

2.8. Lemma. Let B be a finite generically separable extension of A. Then B/A
is monogenic if and only if B ⊗A A

g is a discrete valuation ring. In this case, we
have f sep

B⊗AA
g/Ag = f

sep
B/A.

Proof. Suppose B ⊗A A
g is a discrete valuation ring. Then we have

Ag ⊗A �
2
B/A = �2

B⊗AA
g/Ag = 0,

where, as usual, �2
∗/∗ denotes the second exterior power of the module of rel-

ative Kähler differentials. Therefore, �2
B/A is zero. The extension B/A is then

monogenic by de Smit [8, 4.2].
Now suppose B/A is monogenic. By 2.6, the ring B ⊗A A

g is a domain.
By 2.3, it suffices to assume B/A is residually purely inseparable, in which case
it is enough to show that B ⊗A A

g is generated as an Ag-algebra by the root of an
Eisenstein polynomial.

There is [5, Prop. 1] a finite extension A′ of A such that eA′/A = f
sep
A′/A = 1

andB⊗AA
′ is a discrete valuation ring with fB⊗AA

′/A′ = 1. By Zorn’s lemma, we

can assume the residue field of A′ is A
pf

at the expense of allowing A′ to be inte-
gral, rather than finite, over A. Now let x ∈ B be a generator of the A-algebra B
and let f (X) ∈ A[X] be its characteristic polynomial over A. Put

y = x ⊗ 1 − 1 ⊗ sAu(x̄) ∈ B ⊗A A
u.

Then y generatesB⊗AA
u as anAu-algebra, the image of y in (B ⊗A Au)red = Au

is zero, and the polynomial

g(X) = f (X + sAu(x̄)) ∈ Au[X]

is the characteristic polynomial of y over Au. We will show g(X)|Ag is an Eisen-
stein polynomial.

First, note that since ȳ = 0, we have g(X)|Ag ≡ Xn mod pAg , where n is the
degree of B/A. All that remains is to show g(0)|Ag /∈ p2

Ag . Hence, it is enough to
show g(0)|Au /∈ p2

AA
u and, therefore, even g(0)|A′ /∈ p2

A′ . But since y|A′ gener-
atesB⊗AA

′ as anA′-algebra and sinceB⊗AA
′ is a discrete valuation ring,g(X)|A′

is an Eisenstein polynomial. Therefore, g(0)|A′ /∈ p2
A′ and g(X)|Ag is an Eisenstein

polynomial.

2.9. Lemma. Let B be a finite, generically Galois extension of A. Let B ′ be the
integral closure of the domain B ⊗A A

g. Then f sep
B ′/Ag = f

sep
B/A.
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Proof. By 2.3, it is enough to assumeB/A is residually purely inseparable. LetG
be the generic Galois group ofB/A. Then 2.6 impliesG is also the generic Galois
group of B ′/Ag. Let C ′ be the maximal étale subextension of B ′/Ag. Then C ′

corresponds to a normal subgroup ofG and, hence, to a generically Galois subex-
tension C of B/A. Since the extension B/A is residually purely inseparable and
eC′/A = 1, the ramification index ofC/A is one and its Galois group is a p-group.

Now let D be a monogenic subextension of C/A. Then D ⊗A A
g is a dis-

crete valuation ring by 2.8. Since D ⊗A A
g/Ag is a subextension of C ′/Ag, it

is étale. Now, the residue field of D ⊗A A
g is (D ⊗A A

g)red. Since D is a finite
purely inseparable extension of A, this reduced quotient is Ag. Thus, the étale
extension D ⊗A A

g/Ag is trivial, and therefore, so is D/A.
But since the generic Galois group of C/A is a p-group and since all exten-

sions of degree p are monogenic, the only way for all monogenic subextensions
of C/A to be trivial is if C/A itself is trivial. And this can happen only if C ′/Ag

is trivial.

Proof. (of 2.4) It follows from 2.6 that K is separably closed in Kg. The surjec-
tivity of GKg → GK is just the translation of this into Galois theory.

The image of the inertia subgroup ofGKg is then a closed normal subgroupN
ofGK and is contained in the inertia subgroup ofGK . LetM be the corresponding
extension of K . Now, for any finite extension B of A that is contained in M , we
see, by lemma 2.9, thatB/A is unramified. Therefore,N is the entire inertia group
of K .

Since the wild inertia groups are the unique (pro-)p-Sylow subgroups of the
corresponding inertia groups [29, Ch. I, 1.1], the surjectivity of the map between
wild inertia groups follows immediately.

2.10. Questions. The maps A → Au and A → Ag are faithfully flat. How can
we best understand the descent data? The generic descent data? What can be said
about the structure of the exact sequence

1 → H → GKg → GK → 1?

Since Ag is residually perfect, the classfield theory of Hazewinkel and Serre [12]
gives a description of the abelianization ofGKg . Does this give a classfield theory
describing the abelianization of GK? When K is a higher local field, how does
the classfield theory of Kg relate to Kato and Parshin’s classfield theory [14,22]
of K?

3. Conductors

3.1. Fix a field	whose characteristic is notp, and let ρ be a Galois representation
overA, that is, a homomorphism ρ : G−→ Aut(V ), whereG is the Galois group
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of a finite generically Galois extension B of A and V is a finite-rank 	-module.
For any i ∈ N, let Gi be the kernel of the map G → Aut(B/pi+1

B ). Define

arBn (ρ) = e−1
B/A

∑

i�0

|Gi | codim V Gi ,

where | · | denotes cardinality and codim V Gi is the codimension of the subspace
ofGi-invariants. We call arBn (ρ) the naive Artin conductor of ρ with respect to B.
It is a non-negative rational number. If B/A is residually separable, then arBn (ρ)
is left unchanged if we replace B with a larger generically Galois and residually
separable extension of A. In this case, we will use the notation arn(ρ).

Let L denote the fraction field of B. Then by 2.4, L⊗K K
g is a finite Galois

extension of Kg, and its Galois group is canonically isomorphic to G. Let ρ|Ag

denote the resulting representation of Gal(L ⊗K K
g/K). Define the Artin con-

ductor ar(ρ) of ρ to be arn(ρ|Ag). We have the following slightly stronger version
of theorem A:

3.2. Theorem. Let A, ρ,G, V, and B be as above, and let ρ ′ be another Galois
representation over A. Then we have the following:

(1) ar(ρ ⊕ ρ ′) = ar(ρ)+ ar(ρ ′).
(2) ar(ρ) is a non-negative integer.
(3) ar(ρ) = 0 if and only if ρ is unramified, i.e., G0 acts trivially on V .
(4) If B/A is monogenic, then ar(ρ) = arBn (ρ).
(5) The following are equivalent:

(a) ρ is tame, i.e., the p-Sylow subgroup of G0 acts trivially on V
(b) ar(ρ) = codim (V G0)

(c) ar(ρ) � codim (V G0)

Proof. Statement 1 follows from the additivity of the naiveArtin conductor. State-
ment 2 follows from the classical Hasse-Arf theorem [26, VI §2] (if the charac-
teristic of 	 is not zero, see [27, 19.3]) and the non-negativity of the naive Artin
conductor. Statement 3 follows from the statement about inertia groups in 2.4.

Now consider statement 4. Let G′ be the generic Galois group of the exten-
sion B⊗AA

g/Ag. By 2.8, the tensor productB⊗AA
g is a discrete valuation ring.

A short argument then shows that for all i ∈ N, we have

Gi = G′
ei = · · · = G′

ei+e−1,

where e = eB⊗AA
g/B . Therefore, arBn (ρ) = arB⊗AA

g

n (ρ|Ag) = ar(ρ).
As for statement 5, if ρ is tame, then there is some generically Galois and

residually separable extension B of A such that ρ|B is trivial. Since B/A is resid-
ually separable, it is monogenic, and so statement 4 implies ar(ρ) = m. If, on
the other hand, we have ar(ρ) � m, then ρ|Ag is tame, 2.4 therefore implies ρ is
tame.
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3.3. Remark. As mentioned in the introduction, logarithmic conductors are more
subtle than non-logarithmic ones. For χ ∈ H 1(K,Q/Z), let swK(χ) be Kato’s
Swan conductor [17, 2.3], which equals the logarithmic order of the pole of his
refined Swan conductor. Then there can be classes χ (those that Matsuda says are
of type II [20, 3.2.10]) such that swK(χ) = swK(χ |Ag) + 1. Because of this, the
naive Swan analogue of ar(·) does not always agree with Kato’s Swan conductor.
I believe that by taking into account the filtration F•Au ofAu (see 1.14) and using
Kato’s refined conductor in the context of perfect residue fields [15], one could
give a good definition of a logarithmic conductor. Indeed, using the techniques of
Matsuda (see section 5), it is easy to see how to recover the Kato-Swan conductor
of χ from the refined Swan conductor of χ |Ag in equal characteristic.

3.4. Remark. It may also be worth mentioning that the conductor ar(·) probably
does not satisfy an induction formula. Let A′/A be a finite generically separable
extension, ρ ′ a Galois representation over A′, and ρ the induced representation
over A. If A is perfect, then [26, VI §2]

ar(ρ) = fA′/Aar(ρ)+ dim(ρ)vA(D), (3.4.1)

where D denotes the discriminant of A′/A. In general, the refined conductor of ρ
should be the norm, in some suitable sense, of the refined conductor of ρ ′. WhenA
is perfect, the conductor determines the refined conductor up to an element ofA∗,
and then 3.4.1 would follow from such a norm formula for refined conductors.
But when A is not perfect, the refined conductor contains more information than
the conductor together with a unit. In fact, even in the abelian case, the conductor
of ρ ′ probably does even determine the conductor of ρ in general.

3.5. There is, however, an apparently satisfactory theory of the upper filtration.
In the notation of 3.1, since G is naturally identified with Gal(L⊗K K

g/Kg), it
inherits a Q�0-indexed upper filtration [26, IV §3]. This filtration is both stable
under passage to quotients and has integral jumps on abelian quotients for the
simple reason that the same facts are true for residually separable extensions. We
also have the usual relation to conductors: following Katz [18, 1.1], there is a
break decomposition V = ⊕xV (x), with respect to G• , and we have

ar(ρ) = codim (V G0)+
∑

x∈Q�0

x dim V (x).

4. Kato’s theory

The purpose of this section is to collect some results in Kato’s theory [17]. Let us
first recall the basics.
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4.1. Let F be a field and let n > 0 and r be integers. If n is invertible in F ∗,
let Z/n(r) be the r-th Tate twist of the constant sheaf Z/n on the étale topology
(of Grothendieck [11]) of F . If the characteristic of F is p > 0, write n = mps ,
where p � m, and let Z/n(r) be the complex

Z/m(r)⊕Ws�
r
F,log[−r]

of abelian sheaves on Spec(F )ét. Here, Ws�
r
F,log is the piece of degree r of the

logarithmic part [13, I 5.7] of the deRham-Witt complex Ws�
•
F on Spec(F )ét.

For positive integers q, write Hq
n (F ) = Hq(F,Z/n(q − 1)), and let Hq(F )

be the colimit of Hq
n (F ) over the integers n (ordered by divisibility). The natural

mapHq
n (F ) → Hq(F ) is an isomorphism ofHq

n (F )with the n-torsion ofHq(F ).
I will usually identify the two without comment.

Let

hF : F ∗ −→H 1(F,Z/n(1))

be the connecting homomorphism of the Kummer triangle

Z/n(1)−→ Gm
n−→ Gm −→ Z/n(1)[1].

(When n is a power of the characteristic of F , the existence of such a triangle
follows from the theory of the de Rham-Witt complex [13, I 3.23.2, I 5.7.1].)
LetKM

r (F ) denote the r-th MilnorK-group [21] of F . Then there is a homomor-
phism

KM
r (F )−→Hr(F,Z/n(r)),

also denoted hF , sending {x1, . . . , xr} (for x1, . . . , xr ∈ F ∗) to the cup product

hF (x1) ∪ · · · ∪ hF (xr).
For χ ∈ H

q
n (F ), let {χ, x1, . . . , xr} denote χ ∪ hF ({x1, . . . , xr}). Taking the

colimit over integers n, we get a pairing

Hq(F )⊗KM
r (F )−→Hq+r (F ).

We will use {χ, x1, . . . , xr} to denote the image of χ ⊗ {x1, . . . , xr} under this
pairing as well.

If the characteristic of F is p, let ξs : Ws�
q−1
F � H

q
ps (F ) denote the higher

Artin-Schreier maps [17, 1.3].

4.2. For any non-negative integer n, let filnHq(K) be the subgroup of classes χ
that have the property {χ |A′, 1 + pnApA′ } = 0 for every henselian extension A′

of A. This gives [17, 2.2, 6.3] an exhaustive increasing filtration of Hq(K). The
Kato-Swan conductor (or logarithmic Kato conductor) of a class χ ∈ Hq(K) is
the smallest integer n such that χ ∈ filnHq(K). It is denoted swK(χ).
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4.3. Let Ã denote the henselization of the localization of the polynomial alge-
bra A[T ] at the ideal generated by pA. Then Ã is a henselian discrete valuation
ring, and for any uniformizer π of A, we have [17, 6.3]

χ ∈ filnH
q(K) ⇐⇒ {χ |Ã, 1 + πn+1T } = 0.

We will denote the fraction field of Ã by K̃ and the residue field by k̃.

4.4. The map Hq(k) → Hq(K) extends naturally to an exact sequence

0 −→Hq(k)−→ fil0H
q(K)−→Hq−1(k)−→ 0.

Given a uniformizer π of A, the map ψ �→ {ψ,π} is a splitting [17, 6.1].

4.5. The reduction map

(A− {0})/U 1
A −→ k

gives k the structure of a log ring [16, 1.1]. Let ω1
k = ω1

k/Z denote the k-module of
absolute Kähler differentials with respect to this log structure [16, 1.7]. For q ∈ N,
let ωqk denote the q-th exterior power of ωqk . There is a natural exact sequence

0 −→�
q

k −→ω
q

k

res−→�
q−1
k −→ 0.

(Of course,�•
k means�•

k/Z.) Given a uniformizerπ ofA, the mapη �→ η∧dlog(π)
is a splitting.

4.6. There is a unique map λA : ωq−1
k −→ fil0H

q
p (K) that gives rise to a map of

sequences

0 �� �
q−1
k

��

ξ1
����

ω
q−1
k

��

λA
����

�
q−2
k

��

ξ1
����

0

0 �� H
q
p (k) �� fil0H

q
p (K) �� H

q−1
p (k) �� 0

respecting the splittings in 4.4 and 4.5 (for every uniformizer π of A).
The following theorem [17, 5.1, 5.2, 5.3] is fundamental.

4.7. Theorem. Let n be a positive integer. Then for any class χ ∈ filnHq(K),
there is a unique element η ∈ p−n

A ⊗Aω
q

k such that for every henselian extensionA′

of A and every element z of pnAA
′, we have

{χ, 1 + z} = λA′(zη).

Furthermore, the function χ �→ η induces an injective homomorphism

κn : grnH
q(K)−→ p−n

A ⊗ ω
q

k .
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I will typically write κn(χ) for the image under κn of the graded class of χ . It is
called the refined Swan conductor of χ .

4.8. Let us now consider the non-logarithmic analogue of the Kato-Swan conduc-
tor. Let χ be a class in H 1(K,Q/Z) and put n = swK(χ). Define

arK(χ) =






0 if χ is unramified
1 if χ is tame and ramified
n if χ is ramified and κn(χ) ∈ p−n

A ⊗�1
k

n+ 1 if χ is ramified and κn(χ) �∈ p−n
A ⊗�1

k

We call arK(χ) the Kato-Artin conductor ofχ . It is the natural non-logarithmic ana-
logue of Kato’s Swan conductor. As mentioned in the introduction, when swK(χ)

is not zero, arK(χ) can be viewed as the order of the pole of κn(χ) in the usual
sense and swK(χ) can be viewed as the order in the logarithmic sense.

Matsuda [20, 3.2.5] has used what is essentially the same conductor. His is
one less than arK(χ) except when χ is unramified, in which case both are zero.

Some facts

The rest of this section contains some propositions we will need in the proof
of theorem B in mixed characteristic. All the proofs are straightforward.

4.9. Proposition. Let χ be a class inH 1(K). If arK(χ) and swK(χ) have the same
value, then it is a multiple of p.

Proof. [17, 5.4]

Let A′ be an extension of A of ramification index e, let K ′ denote its fraction
field, and let k′ denote its residue field. Let n, q, and s be positive integers.

4.10. Proposition. The following diagram commutes:

grenH
q(K ′)

κen �� pen
A′ ⊗A′ ω

q

k′

grnH
q(K)

κn ��

��

pnA ⊗A ω
q

k

��

Proof. Use the uniqueness statement in 4.7.

4.11. Corollary. If the extension A′/A is tame, then for any class χ ∈ Hq(K),
we have swK(χ |A′) = e swK(χ)

Proof. The map �•
k → �

•
k′ is injective.
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4.12. Proposition. If the extension K ′/K is finite and Galois with group G and
its degree is not a multiple of p, the natural maps

H
q
ps (K)−→H

q
ps (K

′)G

filn−1H
q
ps (K)−→ filen−1H

q
ps (K

′)G

are isomorphisms.

Proof. Because the order ofG is relatively prime top, the groupsHi(G,H
j
ps (K

′))
are zero for i > 0. The existence of a spectral sequence

Hi(G,H
j
ps (K

′)) ⇒ H
i+j
ps (K),

implies the first map is an isomorphism. The second then is by 4.11.

4.13. Proposition. The exact sequences of 4.4 form a commutative diagram

0 �� H
q
ps (k

′) �� fil0H
q
ps (K

′) �� H
q−1
ps (k′) �� 0

0 �� H
q
ps (k)

��

��

fil0H
q
ps (K)

��

��

H
q−1
ps (k) ��

e

��

0,

(4.13.1)

where the left two vertical maps are the canonical maps and the rightmost vertical
map is the canonical map multiplied by e.

Proof. Apply 4.4.

4.14. Proposition. Suppose the extension A′/A is tame and generically Galois
with group G. Then its inertia group G0 acts trivially on fil0H

q
ps (K

′).

Proof. Assume, as we may, that A′/A is residually trivial, and consider (4.13.1).
BecauseA′/A is tame and k′ = k, the outer vertical morphisms are isomorphisms.
Therefore the inner vertical map is, too. Because G acts trivially on fil0H

q
ps (K),

it acts trivially on fil0H
q
ps (K

′).

5. The proof in equal characteristic

In this section, we use Matsuda’s refinement [20] of Kato’s refined Swan con-
ductor to prove theorem B in equal characteristic. Again, let us first recall the
basics.

Assume A is of equal characteristic.
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5.1. For any positive integer s, let Ws(K) denote the group of Witt vectors of K
of length s. The Verschiebung maps form an inductive system of abelian groups

W1(K)
V−→W2(K)

V−→W3(K)
V−→ · · ·

As in Fontaine [9], let CW(K) be its colimit. For example, if Fp denotes the
finite field of p elements, then CW(Fp) = Qp/Zp. The mapsWs(K) → ∏

−NK

defined by

(a−s+1, . . . , a0) �→ (. . . , 0, a−s+1, . . . , a0)

induce a bijection between CW(K) and the set of elements (. . . , a−1, a0) such
that a−i = 0 for sufficiently large i. I will typically use this identification without
comment.

5.2. The Frobenius endomorphisms of the groups Ws(K) extend to an endomor-
phism of CW(K). Call it F . For any separable closure Ksep of K , we have an
Artin-Schreier sequence of Gal(Ksep/K)-modules

0 −→CW(Fp)−→CW(Ksep)
F−1−→CW(Ksep)−→ 0.

It is easy to show that this sequence induces a surjection

ξ : CW(K)−→H 1(K,CW(Fp)) = H 1(K,Qp/Zp)

with kernel (F − 1) · CW(K).
5.3. Let ϕ : CW(K) → �1

K denote the homomorphism defined by

(. . . , a−1, a0) �−→ −
∑

i∈N

a
pi−1
−i da−i .

It appears that this map was first considered by Serre [25]; it has a nice interpre-
tation in terms of the deRham-Witt complex [13, I 3.12].

5.4. Define the following filtrations indexed by non-negative integers n:

filnCW(K) = {(. . . , a−1, a0) | ∀i ∈ N pivA(a−i ) � −n},
filn�1

K = p−n
A · dlog(K∗), and

filnH 1(K,Qp/Zp) = ξ(filnCW(K)).

The filtration on fixed length Witt vectors was apparently first considered by Sch-
mid [24] in the residually perfect case and (independently) Brylinski [6] in the
residually imperfect case. It is immediate that ξ and ϕ preserve these filtrations.
It is easy to check that ϕ does not factor through ξ but that gr ϕ does factor
through gr ξ . Matsuda remarked [20, 3.2.2] that we have even more:
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5.5. Proposition. Let n be a non-negative integer. Then filnϕ/fil[n/p]ϕ factors
through filnξ/fil[n/p]ξ .

(Here, [x] is the greatest integer that is at most x.)

5.6. Denote by φn the resulting homomorphism

filnH
1(K,Qp/Zp)/fil[n/p]H

1(K,Qp/Zp) → filn�
1
K/fil[n/p]�

1
K

and by gr φ the induced map grH 1(K,Qp/Zp) → gr�1
K of associated graded

modules. The following theorem of Kato’s [17, 2.5, 3.2, 3.7] shows how to use gr φ
to compute the refined Swan conductor of a Galois character given a representation
of it as a Witt vector.

5.7. Theorem. For every positive integer n, we have

filnH
1(K,Q/Z) ∩H 1(K,Qp/Zp) = filnH

1(K,Qp/Zp),

where H 1(K,Qp/Zp) is viewed as the p∞-torsion subgroup of H 1(K,Q/Z).
Furthermore, under the natural identification grn�

1
K = p−n

A ⊗A ω
1
k , the restriction

of κn to grnH
1(K,Qp/Zp) ⊆ grnH

1(K,Q/Z) coincides with grnφ.

5.8. Proposition. For non-negative integers m � n, the diagram

filnH 1(K,Qp/Zp)
φn �� filn�1

K/fil[n/p]�
1
K

filmH 1(K,Qp/Zp)

��

φm �� film�1
K/fil[m/p]�

1
K

��

commutes.

Proof. Clear.

5.9. Proposition. Let A′ be an extension of A of ramification index e, and letK ′

denote its fraction field. If χ ∈ H 1(K,Qp/Zp), then

φswK(χ)(χ)|A′ = φswK(χ |A′ )(χ |A′)mod fil[e swK(χ)/p]�
1
K ′ .

Proof. By 5.8.

5.10. Finally, for any non-negative integer n, put fil′n�
1
K = p−n

A · �1
A ⊂ �1

K .
This filtration measures the order of the pole in the usual sense, whereas fil•�1

K

measures it in the logarithmic sense. The two filtrations are intertwined:

· · · ⊆ filn�
1
K ⊆ fil′n+1�

1
K ⊆ filn+1�

1
K ⊆ · · · .

Matsuda [20, 3.1] has given non-logarithmic variants of the other filtrations
in 5.4, but we will not need them here. (Note, however, that our indexing of fil′•�1

K

differs from Matsuda’s by one.)
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5.11. Proposition. Letχ be a class inH 1(K,Qp/Zp). Then arK(χ) is the smallest
integer n satisfying χ ∈ fil′nH

1(K,Qp/Zp).

Proof. By 5.7.

5.12. Lemma. For n � 1, the natural map gr′
n�

1
K −→ gr′

n�
1
Kg is injective.

Proof. Because we have gr′
n�

1
K = �A ⊗A p−n

A /p
−n+1
A , it is enough to show the

map

k ⊗A �
1
A −→ k ⊗A �

1
Ag

is injective.
Let T be a lift toA of a p-basis for k, and let π be a uniformizer ofA. Then the

set dT ∪{dπ} is a basis for the k-module k⊗A�
1
A. To show injectivity, it is enough

to check that the image of dT ∪{dπ} is k-linearly independent. But�1
Ag = Agdπ ,

and so it is enough to show, in the notation of 1.5, that {1} ∪ {ut,1 | t ∈ T } is
k-linearly independent in kg = Fr(RT ). This follows from the definition of RT .

We can now prove theorem B in equal characteristic.

Proof. First supposeχ is inH 1(K,Qp/Zp). Putn = swK(χ) andm = swK(χ |Ag).
Then arK(χ) is either n or n + 1. We will treat these two sub-cases separately.
If arK(χ) = n+ 1, then κn(χ) /∈ p−n

A ⊗�1
k. The naturality (4.10) of the maps κ•

therefore implies κn(χ |Ag) /∈ p−n
Ag ⊗�1

kg and, so, arK(χ |Ag) = n+ 1.
Now consider the second sub-case, when arK(χ) is n. By 4.9, we have n � 2;

so, for n = 2, it is enough to show χ |Ag is not tame. This follows from 2.4.
If n � 3, we have [n/p] � n− 2 and, hence,

fil[n/p]�
1
Kg ⊆ filn−2�

1
Kg ⊆ fil′n−1�

1
Kg .

Then, by 5.9 and 5.12, we have

φm(χ |Ag) ≡ φn(χ)|Ag �≡ 0 mod fil′n−1�
1
Kg .

Therefore, χ �∈ fil′n−1�
1
Kg , and so 5.11 implies arK(χ) = n.

Now let χ be an arbitrary class in H 1(K). If χ is tame, the result follows
from 2.4. If χ is wild, then write χ = χ ′ + χ ′′, where χ ′ is in H 1(K,Qp/Zp)
and χ ′′ is tame. Because χ ′′ is tame, χ and χ ′ have the the same refined Swan
conductor and, hence, the same Kato-Artin conductor. Similarly, χ ′|Ag is wild
(again by 2.4), and so χ |Ag and χ ′|Ag have the same Kato-Artin conductor. The
work above then implies arK(χ

′) = arK(χ
′|Ag), and this completes the proof.
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6. Some lemmas

The purpose of this section is to prove some lemmas needed in the proof of the-
orem B in mixed characteristic. All the results in this section are, however, still
valid in equal characteristic. Let π be a uniformizer of A.

6.1. LetUiKM
2 (K) (for i � 1) denote the subgroup ofKM

2 (K) (see 4.1) generated
by the set {Ui

A,K
∗}. This filtration satisfies [3, 4.1]

{Ui
A,U

j

A} ⊆ Ui+jKM
2 (K). (6.1.1)

6.2. Lemma. Let x and y be non-zero elements of pA. Then

{1 + x, 1 + y} ≡ {1 + xy,−y} mod UvA(xy)+1KM
2 (K).

Proof. We have

{1 + x, 1 + y} = {−y(1 + x), 1 + y}
= −{−y(1 + x), 1 + xy(1 + y)−1}
≡ −{−y(1 + x), 1 + xy} mod UvA(xy)+1KM

2 (K)

≡ {1 + xy,−y} mod UvA(xy)+1KM
2 (K).

6.3. Lemma. Suppose A is residually perfect. Let x �= 0 be an element of pA,
and let z ∈ A∗ be such that the element z′ = z− sA(z̄) is non-zero. Then

{1 + x, z} ≡ vA(z
′){1 + xz′sA(z̄−1), π} mod UvA(xz

′)+1KM
2 (K)+DKM

2 (K),

where DKM
2 (K) is the infinitely p-divisible subgroup of KM

2 (K).

Proof. The defining property of the lift sA(z̄) of z̄ is that it is infinitely p-divisible
in K∗. Therefore, it suffices to assume z̄ = 1. By 6.2, we have

{1 + x, 1 + z′} ≡ vA(z
′){1 + xz′, π}

+{1 + xz′,−z′/πvA(z′)} mod UvA(xz
′)+1KM

2 (K).

Because −z′/πvA(z′) is in A∗ = sA(k
∗)U 1

A, we also have

{1 + xz′,−z′/πvA(z′)} ∈ UvA(xz
′)+1KM

2 (K)+DKM
2 (K).

6.4. Proposition. If F is a field of characteristic p, the p∞-torsion subgroup
of Hq(F ) is p-divisible.

Proof. By the surjectivity of the higher Artin-Schreier maps ξs and the natural
maps �•

Ws(F )
→ Ws�

•
F and Ws+1(F ) → Ws(F ).

6.5. Lemma. Let χ ∈ H 1(K) be a class such that arK(χ) = swK(χ) �= 0. Then,
in the notation of 4.3, the element {χ |Ã, 1+π swK(χ)−1T } is in fil1H

2
p(K̃)+H 2

p2(k̃)

but is not in fil0H
2(K̃).
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Proof. Write n = swK(χ). Then by 4.9, we have n > 1. Let ψ = {χ |Ã, 1 +
πn−1T }. Since n > 1, we have

(1 + πn−1T )p
2 ∈ Un+1

Ã
and (1 + πn−1T )p ∈ Un

Ã
.

Applying (6.1.1), we get ψ ∈ fil1H
2
p2(K̃) and pψ ∈ fil0H

2
p(K̃).

Let A′ be a henselian extension of A whose residue field k′ is perfect and
has the property that k is separably closed in it. (Take A′ = Ag, for example.)
Because arK(χ) = swK(χ) and because k′ is perfect, 4.10 implies swK(χ |A′) �
n−1. Therefore,pψ |Ã′ is zero. Since k is separably closed in k′, the field k̃ = k(T )

is separably closed in k̃′ = k′(T ). The natural map H 1
p(k̃) → H 1

p(k̃
′) is therefore

an injection. So, by chasing diagram (4.13.1) applied to the extension Ã′/Ã, we
concludepψ ∈ H 2

p(k̃). By 6.4, there is a classψ ′′ ∈ H 2
p2(k̃) such thatpψ ′′ = pψ .

Then, ψ − ψ ′′ is in fil1H
2
p(K̃).

On the other hand, putting η = κn(χ), we have

{ψ, 1 − π} = {χ |Ã, 1 + πn−1T , 1 − π}
= {χ |Ã, 1 − πnT , π}
= {λÃ(−ηπnT ), π}

by 6.2

by 4.7.

But, by assumption, η is in p−n
A ⊗ �1

k, and so λÃ(−ηπnT ) equals ξ1(−ηπnT ),
which is non-zero [17, 3.8]. Because of this, {ψ, 1 − π} is non-zero (4.4) and,
hence, ψ is not in fil0H

2(K̃).

7. A diagram

Assume A is of mixed characteristic. Let k2(K) denote KM
2 (K)/pK

M
2 (K), and

let U •k2(K) denote the image of the filtration U •KM
2 (K).

The primary purpose of this section is to prove a certain diagram (7.6) com-
mutes. This will allow us to understand in terms of symbols how some classes
in H 2

p(K) change when pulled back to Ag. The relation between symbols and
cohomology classes is provided by a theorem from Bloch-Kato [3, 5.12] and
Kato [17, 4.1(6)]:

7.1. Theorem. If A contains the group µp of all p-th roots of unity, then hK
(of 4.1) induces isomorphisms

k2(K)⊗ µ̌p
∼−→H 2

p(K) and Uê−nk2(K)⊗ µ̌p
∼−→ filnH

2
p(K),

where ê = eA/Zpp(p − 1)−1, 0 � n < ê, and µ̌p = Hom(µp,Z/p).
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7.2. Fix an extension Aµ of A that is generically generated by a primitive p-th
root of unity. We will assume throughout this section that the extension Aµ/A
is residually trivial. Let A′ be a henselian residually perfect extension of A of
ramification index one. Because we will use this only when A′ = Ag, the reader
is free to assume it (even though it does not simplify anything).

Also fix the following notation:A′
µ isA′ ⊗AAµ (a residually perfect henselian

discrete valuation ring); K ′,Kµ,K ′
µ are the fraction fields of A′, Aµ,A′

µ, and k′

is the residue field of A′; � is Gal(Kµ/K), and m is the degree of Kµ/K; µp is
the group of all p-th roots of unity in Kµ, and µ̌p is Hom(µp,Z/p); ζ is some
non-trivial element of µp, and ζ̌ is the element in µ̌p such that ζ̌ (ζ ) = 1. (None
of the constructions below will depend on the choice of ζ .)

7.3. Proposition. There is a map γA′/A that makes the following diagram com-
mute:

filmH 2
p(Kµ)

��

�� �� grmH
2
p(Kµ)

γA′/A

���
�
�
�
�
�
�
�
�
�
�
�

H 2
p(K

′
µ)

fil0H
2
p(K

′
µ)

��
H 1
p(k

′) �� �� coker
[
H 1
p(k) → H 1

p(k
′)
]
.

(Note that fil0H
2
p(K

′
µ) = H 2

p(K
′
µ) since A′

µ is residually perfect [17, 6.1].)

Proof. Let χ be a class in film−1H
2
p(Kµ), and put χ ′ = m−1 ∑

σ∈� σ (χ). It is
clear that χ ′ lies in film−1H

2
p(Kµ)

�, which by 4.12, agrees with fil0H
2
p(K). On

the other hand, 4.14 implies � acts trivially on fil0H
2
p(K

′
µ) = H 2

p(K
′
µ), and so χ

and χ ′ have the same image in H 2
p(K

′
µ). The image of χ in H 1

p(k
′) is therefore

contained in the image of H 1(k).

7.4. Proposition. The composite map

A → pA′/(p2
A′ + pA) = (k′/k)⊗A pA −→ (k′/kp

−1
)⊗A pA,

where the leftmost map sends x to the class of x − sA′(x̄), is a derivation that
vanishes on pA.
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Proof. It is immediate that it vanishes on pA and a short computation shows it sat-
isfies the Leibniz rule. To see it is additive, it suffices to show that for all x, y ∈ k,
we have

sA′(x + y) ≡ sA′(x)+ sA′(y) mod p2
A′ + sA′(kp

−1
)pA.

LetW be the ring of Witt vectors [13, 0.1] with entries in kp
−∞

. By the definition
of addition in W , there is an element z ∈ k such that

(x, 0, . . . )+ (y, 0, . . . ) = (x + y, z, . . . ), i.e.,

sW (x)+ sW (y) ≡ sW (x + y)+ psW(z
p−1
) mod p2.

Because there is a map W → A′ that is compatible with multiplicative sections,
the congruence above holds.

If p does not generate pA, even the map A → (k′/k)⊗A pA is a derivation (in
both equal and mixed characteristic).

7.5. Construction. Morphisms ∂A′/A, ν, and θ

Let ∂A′/A : p−1
A ⊗A�

1
k −→ k′/kp

−1
denote the k-linear homomorphism induced

by the derivation in 7.4.
Put

ê = eAµ/Zpp(p − 1)−1 = vAµ
(
p(ζ − 1)

)
,

and let

ν : grê−mk2(Kµ)⊗ µ̌p −→ p−1
A ⊗�1

k

denote the map determined by

{1 − p(ζ − 1)x, y} ⊗ ζ̌ �→ mx ⊗ dlog(ȳ),

where x ∈ p−1
A Aµ, y ∈ Aµ. Bloch and Kato show it is (well-defined and) an iso-

morphism [3, 4.3, 5.2]. BecauseUê+1
Aµ

⊆ (K∗
µ)
p, we haveUêk2(K

′
µ) = grêk2(K

′
µ).

We can therefore define a map

θ : k′ −→Uêk2(K
′
µ)⊗ µ̌p

by x �→ {1 − p(ζ − 1)x, πµ}, where πµ is a uniformizer of Aµ. (The map is
independent of the choice.)
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7.6. Proposition. The following diagram commutes:

k′/kp
−1 coker

[
H 1
p(k

p−1
) → H 1

p(k
′)
]

coker
[
H 1
p(k) → H 1

p(k
′)
]

p−1
A ⊗A �

1
k

k′ H 1
p(k

′)

grê−mk2(Kµ)⊗ µ̌p grmH
2
p(Kµ)

Uêk2(K
′
µ)⊗ µ̌p fil0H

2
p(K

′
µ)

U ê−mk2(Kµ)⊗ µ̌p filmH 2
p(Kµ).

ξ1 �� ��

�

��

∂A′/A

����������������������

����

ξ1 �� ��
θ
��

��

�������

����

ν �

��

�
hKµ

��

γA′/A

���������������������

�
hK′

µ

��

�
���������

���������

����

�
hKµ

��

����

���������

Proof. The commutativity of the rear lower face follows from the splittings of 4.4
and the usual compatibility between Artin-Schreier theory and Kummer theory. It
is clear the other three faces for which it makes sense to ask the question commute.
Therefore, it only remains to check that the perimeter commutes.

Because ν is an isomorphism, it is enough to consider elements

x = ν−1(π−1 ⊗ dz) = {1 − p(ζ − 1)π−1z, z} ⊗ ζ̌ ∈ Uê−mk2(Kµ)⊗ µ̌p.

whereπ is a uniformizer ofA and z ∈ A∗. Write z|A′ = sA′(z̄)+πy, where y ∈ A′.
Then, letting [x] denote the graded class of x, we have

∂A′/A ◦ ν([x]) = ȳ mod kp
−1
.

On the other hand, by 6.3, we have

x|K ′
µ

= {1 − p(ζ − 1)yzs(z̄)−1, πµ} ⊗ ζ̌ = θ(ȳ).

Since the front lower and rear faces commute, the proof is complete.

8. The proof in mixed characteristic

Assume in this section that A is of mixed characteristic, and let Aµ be an exten-
sion of A that is generically generated by a primitive p-th root of unity. (The
extension Aµ/A is no longer assumed to be residually trivial.)
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8.1. Proposition. The composite map

p−1
A ⊗A �

1
k

∂Ag/A �� kg/kp
−1 ξ1 �� coker

[
H 1
p(k

p−1
) → H 1

p(k
g)

]

is injective.

(Compare with 5.12.)

Proof. Let T be a p-basis for k. Then dT is a basis for �1
k. Let η be an element

of the kernel of ξ1 ◦ ∂Ag/A and write

η = π−1 ⊗
∑

t∈T
atdt, at ∈ k

where π is a uniformizer of A and at is zero for all but finitely many t ∈ T . By
the construction (1.7) of the map A → Ag, we have

∂Ag/A(η) =
∑

t∈T
atut,1 mod kp

−1
.

Because the image of this in

coker
[
H 1
p(k

p−1
) → H 1

p(k
g)

]

is assumed to be zero, there are elements x ∈ kg and y ∈ k such that

xp − x = y +
∑

t∈T
atut,1.

Suppose for a contradiction that there is an element s ∈ T such that as �= 0.
Put

F = k(ut,1 | t �= s)p
−∞
.

Now, F(us,1) is separably closed in Fr(R) = kg, and therefore we have x ∈
F(us,1) and xp−x = y ′ +asus,1, where y ′ = y+∑

t �=s atut,1 ∈ F . But valuation

considerations in the completion F((u−1
s,1)) show this is impossible.

8.2. Corollary. If Aµ/A is residually trivial, the map γAg/A is injective.

Proof. By 7.6 and 8.1.

8.3. Proposition. Let s � 1 be an integer. Then the following sequences are
exact:

0 −→H 2
ps (k)−→ fil0H

2
ps (K)−→H 2

ps (K
g), (8.3.1)

0 −→ H 2
p(k) −→ fil1H

2
p(K) −→H 2

p(K
g). (8.3.2)
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Proof. Because kg is perfect, we haveH 2
ps (k

g) = 0 (by, say, higher Artin-Schreier
theory [17, 1.3]). Now, 2.4 implies the map H 1

ps (k) → H 1
ps (k

g) is an injection.
The exactness of (8.3.1) then follows from 4.13.

LetA0 be the maximal unramified subextension ofAµ/A. Applying 8.2 to the
extension Aµ/A0, we conclude that the map γAg

0/A0
is injective, and therefore the

kernel of the map

filmH
2
p(Kµ)−→H 2

p(K
g
0 ⊗K0 Kµ)

is contained in film−1H
2
p(Kµ). By 4.11, we have

film−1H
2
p(Kµ) ∩H 2

p(K) = fil0H
2
p(K).

Because there is (2.1) a map Kg → K
g
0 , we then have

ker
[
fil1H

2
p(K) → H 2

p(K
g)

] ⊆ ker
[
filmH

2
p(Kµ) → H 2

p(K
g
0 ⊗K0 Kµ)

] ∩H 2
p(K)

⊆ ker
[
fil0H

2
p(K) → H 2

p(K
g)

]
,

= H 2
p(k),

which proves the exactness of (8.3.2).

We can finally prove theorem B in mixed characteristic.

Proof. Let π ∈ A be a uniformizer. Put n = swK(χ). If n = 0, then χ is tame,
and the result follows immediately from 2.4. Now assume n > 0.

By definition, arK(χ) is either n or n+1. If it is n+1, then κn(χ) /∈ p−n
A ⊗A�

1
k.

Therefore, 4.10 implies κn(χ |Ag) /∈ p−n
Ag ⊗A ω

1
kg , and so arK(χ |Ag) = n + 1, as

desired.
Now consider the case arK(χ) = n. Because Ag is residually perfect,

arK(χ |Ag) = n if and only if swK(χ |Ag) = n− 1. By 4.10, we know swK(χ |Ag) is
at most n− 1. Put ψ = {χ |Ã, 1 + πn−1T } ∈ H 2(K̃). Then swK(χ |Ag) � n− 1 if
and only if ψ |Ãg is not zero.

Now we will construct a map Ãg −→ Ãg. (See figure 1.) Because Ã/A is
residually separable, there is (2.1) an injectionAg → Ãg. Sending T �→ T yields
another injection Ag[T ] −→ Ãg. By the universal properties of localization and
henselization [23, VIII], this naturally induces a map Ãg −→ Ãg. It is therefore
enough to show ψ |Ãg �= 0.

By 6.5, we can write ψ = ψ ′ + ψ ′′, where ψ ′ is in fil1H
2
p(K̃) − fil0H

2
p(K̃)

and ψ ′′ is in H 2
p2(k̃). We then have ψ |Ãg = ψ ′|Ãg �= 0 by 8.3.
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Ãg

Ãg

��

Ã

�����������

�����������

Ag

����������

		������

A

��



���������

Fig. 1.

9. Comparison with Kato’s conductor

Let	 be a field whose characteristic is not p, and fix an injection from the torsion
subgroup of 	∗ to Q/Z. In each of the two results below, B is a finite extension
of A that is generically Galois with group G and χ is the class in H 1(K,Q/Z)
corresponding to a homomorphism ρ : G → 	∗.

9.1. Proposition. If B/A is residually separable, we have

arK(χ) = arn(ρ)

Proof. If ρ is tame, the result is clear. Now assume ρ is wild and let n = swK(χ).
Then Kato [17, 6.8][15, 3.6(1),3.16] shows κn(χ) is not in p−n

A ⊗ �1
k and that n

agrees with the naive Swan conductor [17, 6.7.1]. This in turn agrees [28, 2.1]
with

e−1
B/A

∑

i�1

|Gi | codim	Gi . (9.1.1)

Because arK(χ) is one more than swK(χ) and because the number arn(ρ) = arBn (ρ)
is one more than (9.1.1), the equality of conductors follows.

9.2. Corollary. ar(ρ) = arK(χ).

Proof. Since Ag is residually perfect, 3.2 implies ar(ρ) agrees with arBn (ρ|Ag)

and, by the previous proposition, with arK(χ |Ag). Applying theorem B completes
the proof.
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versidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 24–53
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