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Abstract. We introduce differential characters of Drinfeld modules. These
are function-field analogues of Buium’s p-adic differential characters of elliptic

curves and of Manin’s differential characters of elliptic curves in differential

algebra, both of which have had notable Diophantine applications. We de-
termine the structure of the group of differential characters. This shows the

existence of a family of interesting differential modular functions on the moduli

of Drinfeld modules. It also leads to a canonical F -crystal equipped with a
map to the de Rham cohomology of the Drinfeld module. This F -crystal is of

a differential-algebraic nature, and the relation to the classical cohomological
realizations is presently not clear.

1. Introduction

The theory of arithmetic jet spaces developed by Buium draws inspiration from
the theory of differential algebra over a function field. In differential algebra, given
a scheme E defined over a function field K with a derivation ∂ on it, one can define
the jet spaces JnE for all n ∈ N with respect to (K, ∂) and they form an inverse
system of schemes satisfying a universal property with respect to derivations lifting
∂. The ring of global functions O(JnE) can be thought of as the ring of n-th order
differential functions on E. In the case when E is an elliptic curve and its structure
sheaf OE does not have a derivation lifting ∂ (if it does, then it is the isotrivial case
and E will descend to the subfield K∂=0 of constants), there exists a differential
function Θ ∈ O(J2E) which is a homomorphism of group schemes from J2E to the
additive group Ga. Such a Θ is an example of a differential character of order 2
for E and is known as a Manin character. Explicitly, if E is given by the Legendre
equation y2 = x(x− 1)(x− t) over K = C(t) with derivation ∂ = d

dt , then

Θ(x, y, x′, y′, x′′, y′′) =
y

2(x− t)2
− d

dt

[
2t(t− 1)

x′

y

]
+ 2t(t− 1)x′

y′

y2
.

The existence of such a Θ is a consequence of the Picard–Fuchs equation. Using
the derivation ∂ on K, we can lift any K-rational point P ∈ E(K) canonically to
J2E(K), and this defines a homomorphism ∇ : E(K) → J2E(K). We emphasize
that ∇ is merely a map on K-rational points and does not come from a map of
schemes. The composition Θ ◦∇ : E(K)→ Ga(K) is then a group homomorphism
of K-points. Note that the torsion points of E(K) are contained in the kernel of
Θ since Ga(K) is torsion free. Such a Θ was used by Manin to give a proof of the
Lang–Mordell conjecture for abelian varieties over function fields [M]. Later Buium
gave a different proof, using other methods, but still using the Manin map [Bui1].
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The theory of arithmetic jet spaces, as developed by Buium, proceeds similarly.
Derivations ∂ are replaced by what are known as π-derivations δ. They naturally
arise from the theory of π-typical Witt vectors. For instance, when our base ring R
is an unramified extension of the ring of p-adic integers Zp, for a fixed prime π = p,

the Fermat quotient operator δx = φ(x)−xp
p is the unique p-derivation, where the

endomorphism φ : R → R is the lift of the p-th power Frobenius endomorphism of
R/pR. In analogy with differential algebra, one can define the n-th order jet space
JnE of an elliptic curve E over R to be the (π-adic) formal scheme over R with
functor of points

(JnE)(C) = HomR(SpecWn(C), E),

where Wn(C) is the ring of π-typical Witt vectors of length n + 1, which we view
as the arithmetic analogue of C[t]/(tn+1). The jet space JnE is also known as the
Greenberg transform. As with the differential jet space, it has relative dimension
n+ 1 over the base, in this case Spf R.

Then one can define Xn(E) to be the R-module of all group-scheme homomor-

phisms from JnE to the π-adic formal scheme Ĝa. Let X∞(E) be the direct limit of
the Xn(E). Now the usual Frobenius operator on Witt vectors induces a canonical
Frobenius morphism φ : Jn+1E → JnE lying over the endomorphism φ of Spf R.
Hence pulling back morphisms via φ as Θ 7→ φ∗Θ, endows X∞(E) with an action
of φ∗ and hence makes X∞(E) into a left module over the twisted polynomial ring
R{φ∗} with commutation law φ∗ · r = φ(r) · φ∗. In [Bui2], Buium studied the
structure of X∞(E). Putting K = R[ 1

p ], he showed that X∞(E) ⊗R K is freely

generated by a single element as a K{φ∗}-module. This element is of order 2 unless
E is a canonical lift, in which case it is of order 1. It is the arithmetic analogue of
the Manin character.

In this paper, we study the function-field analogue of Buium’s theory. We empha-
size that we take the function-field analogue in every possible sense. So instead of
looking at characters JnE → Ĝa of Z-module schemes over Zp, where the Z-module
scheme E is an elliptic curve over Zp and JnE is its p-typical arithmetic jet space

defined above, we will look at, for example, characters JnE → Ĝa of Fq[t]-module
schemes over Fq[[t]], where E is a Drinfeld Fq[t]-module over Fq[[t]] and JnE is its
function-field arithmetic jet space—in other words, the Greenberg transform but
with “t-typical” Witt vectors. The most important result in this paper is the con-
struction of a canonical F -crystal H(E) which comes with a Hodge-type filtration
and a morphism H(E) → HdR(E) to the usual de Rham cohomology preserving
the filtration. As a consequence of the methods that go into the construction of
H(E), we also establish a stronger integral version of Buium’s result that X∞(E)
itself is freely generated by a single element as an R{φ∗}-module. Here, we would
like to emphasize that all the fundamental principles that go into our approach also
work for p-adic elliptic curves.

Before we describe our main results in detail, we wish to fix a few notations. Let
Fq be the finite field with q elements and A is the coordinate ring of X\{∞}, where
X is a projective, geometrically connected, smooth curve over Fq and∞ a Fq-point
on it. Let p be a fixed maximal ideal of A, and let π be an element of p \ p2. Let
R be an A-algebra which is a complete discrete valuation ring with maximal ideal
πR and which has a lift φ : R → R of the q̂-power Frobenius from R/πR, where
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q̂ = |A/p|. Then one can consider the operator on R given by δx = φ(x)−xq̂
π . It is

called the π-derivation associated to φ.

Then as in the mixed-characteristic case above, one can define the t-typical Witt
vectors and hence the t-typical arithmetic jet space functor. For any (formal) A-
module scheme E over R, the jet space also JnE has a natural (formal) A-module-
scheme structure. However, we would like to remark here that for all n ≥ 1, the
JnE are not Anderson modules. Then we let Xn(E) denote the set of A-linear

differential characters of order n, that is, the set of homomorphisms JnE → Ĝa

of (formal) A-module schemes over R. Finally, we form their direct limit X∞(E),
which is naturally an R{φ∗}-module, as above.

We say E splits at m if Xm(E) 6= {0} but Xi(E) = {0} for all 0 ≤ i ≤ m − 1.
Then we show that m satisfies 1 ≤ m ≤ r, where r is the rank of E, and that Xm(E)
is a free R-module with a canonical basis element Θm ∈ Xm(E), depending only
on our chosen coordinate on E. In the case when the rank r is 2, we have m = 2
unless E admits a lift of Frobenius compatible with the A-module structure on E,
in which case m = 1. Then our first main theorem is a strengthened version of
Buium’s result in [Bui2].

Theorem 1.1. Let E be a Drinfeld module that splits at m. Then the R-module
Xm(E) is free of rank 1, and it freely generates X∞(E) as an R{φ∗}-module in the
sense that the canonical map R{φ∗} ⊗R Xm(E)→ X∞(E) is an isomorphism.

Let us now proceed to our second result. Let u : JnE → E be the usual
projection map and put Nn = keru. Since u is A-linear, Nn is a formal A-module
scheme of relative dimension n over Spf R. For each n ≥ 1, we show in proposition
7.2 that there is a lift of Frobenius f : Nn+1 → Nn making the system {Nn} into
a prolongation sequence with respect the obvious projection map u : Nn+1 → Nn.
We call f the lateral Frobenius. However, f is not compatible with i and φ : Jn+1E →
JnE in the obvious way, that is, it is not true that φ ◦ i = i ◦ f holds. In fact, we
can not expect it to be true because that would induce an A-linear lift of Frobenius
on E which is not the case to start with. Instead we have

φ2 ◦ i = φ ◦ i ◦ f.

In section 9, we construct a canonical F -crystal attached to E. The F -crystal,
denoted H(E), is an R-module which has a semi-linear operator f∗ (induced from
f) on it and is of rank m, which we emphasize can be strictly smaller than r. The
module H(E) also has a Hodge-type filtration and canonically maps to the de Rham
cohomology of E, with its Hodge filtration.

Theorem 1.2. There is a canonical map between exact sequences

0 // Xm(E) //

Υ

��

H(E) //

Φ

��

I(E) //
� _

��

0

0 // Lie(E)∗ // HdR(E) // Ext(E, Ĝa) // 0

Moreover, the operator f∗ on H(E) descends to its image under Φ.

There is a close connection between these two theorems—in fact, our proof of
theorem 1.1 goes by way of theorem 1.2.
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Finally, we conclude the paper with some explicit computations of the structure
constants of the F -crystal H(E), which are new differential modular forms.

To a Drinfeld module E, the crystalline theory also attaches an F -crystal Hcrys(E).
It appears that our H(E) has subtle connections with Hcrys(E), but it also appears
that any such connection would be indirect. This is because H(E), unlike Hcrys(E),
has a fundamentally differential-algebraic nature in that it lies not over a point of
the moduli space of Drinfeld modules but over a point of the jet space of the moduli
space. For instance, the computations in section 10 show the structure constants of
H(E) do involve the higher π-derivatives of the structure constants of the Drinfeld
module. It would be interesting to understand the exact nature of the relationship
between H(E) and the crystalline cohomology groups, as well as the étale coho-
mology groups and the other constructions in π-adic Hodge theory. This is all the
more true because, as we remarked before, the techniques developed in this paper
have analogues for p-adic elliptic curves, and as a result, we do obtain an analogous
construction of the F -crystral H(E) for elliptic curves.

2. Notation

Let us fix some notation which will hold throughout the paper. Let q = ph where
p is a prime and h ≥ 1. Let X be a projective, geometrically connected, smooth
curve over Fq. Fix an Fq-rational point ∞ on X. Let A denote the Dedekind

domain O(X \ {∞}). Let p be a maximal ideal of A, and let Â denote the p-adic

completion of A. Let t be an element of p \ p2, and let π denote its image in Â.

Then π generates the maximal ideal p̂ of Â. Let k denote the residue field A/p,

and let q̂ denote its cardinality. Note that the quotient map Â → k has a unique
section. Thus Â is not just an Fq-algebra but also canonically a k-algebra.

Now let R be an Â-algebra which is p-adically complete and flat, or equivalently
π-torsion free. Thus the composition θ : A → Â → R is injective (assuming
R 6= {0}) and hence one says that θ is of generic characteristic. Let us also fix an

Â-algebra endomorphism φ : R→ R which lifts the q̂-power Frobenius modulo pR:

φ(x) ≡ xq̂ mod pR.

Do note that the identity map on Â does indeed lift the q̂-power Frobenius on Â/p̂.

Also note that not all rings R admit such a Frobenius lift; so the existence
of φ does place a restriction on R. For our main results, R will in the end be a
discrete valuation ring, most importantly the completion of the maximal unramified
extension of Â. So the reader may assume this from the start. But some form of
our results should hold in general, and with essentially the same proofs. This is of
some interest, for instance when R is the coordinate ring of the moduli space of
Drinfeld modules of a given rank. With an eye to the future, we have not assumed
that R is a discrete valuation ring where it is easily avoided, in sections 3–7.

Let K denote R[1/π], and for any R-module M write MK = K ⊗RM . Finally,
let S denote Spf R.
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3. Function-field Witt Vectors

Witt vectors over Dedekind domains with finite residue fields were introduced
in [Bo1]. We will only work over Â, which is the ring of integers of a local field of
characteristic p, and here they were introduced earlier in [D76]. The basic results
can be developed exactly as in any of the usual developments of the p-typical Witt
vectors. The only difference is that in all formulas any p in a coefficient is replaced
with a π and any p in an exponent is replaced with a q̂.

3.1. Frobenius lifts and π-derivations. Let B be an R-algebra, and let C be
a B-algebra with structure map u : B → C. In this paper, a ring homomorphism
ψ : B → C will be called a lift of Frobenius (relative to u) if it satisfies the following:

(1) The reduction mod π of ψ is the q̂-power Frobenius relative to u, that is,
ψ(x) ≡ u(x)q̂ mod πC.

(2) The restriction of ψ to R coincides with the fixed φ on R, that is, the
following diagram commutes

B
ψ // C

R
φ
//

OO

R

OO

A π-derivation δ from B to C means a set-theoretic map δ : B → C satisfying the
following for all x, y ∈ B

δ(x+ y) = δ(x) + δ(y)

δ(xy) = u(x)q̂δ(y) + δ(x)u(y)q̂ + πδ(x)δ(y)

such that for all r ∈ R, we have

δ(r) =
φ(r)− rq̂

π
.

When C = B and u is the identity map, we will call this simply a π-derivation on
B.

It follows that the map φ : B → C defined as

φ(x) := u(x)q̂ + πδ(x)

is a lift of Frobenius in the sense above. On the other hand, for any flat R-algebra

B with a lift of Frobenius φ, one can define the π-derivation δ(x) = φ(x)−xq̂
π for all

x ∈ B.

Note that this definition depends on the choice of uniformizer π, but in a trans-
parent way: if π′ is another uniformizer, then δ(x)π/π′ is a π′-derivation. This cor-
respondence induces a bijection between π-derivations B → C and π′-derivations
B → C.

3.2. Witt vectors. We will present three different points of view on function-field
Witt vectors, all parallel to the mixed characteristic case. But there is perhaps
one unfamiliar element below, which is that we will work relative to our general
base R, and it already has a lift of Frobenius. The consequence is that we need to
pay attention to certain twists of the scalars by Frobenius, which are invisible over
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the absolute base R = Â. However this unfamiliar element has nothing to do with
the difference between mixed and equal characteristic and only with the difference
between the relative and the absolute setting.

Let B be an R-algebra with structure map u : R→ B.

(1) The ring W (B) of π-typical Witt vectors can be defined as the unique (up
to unique isomorphism) R-algebra W (B) with a π-derivtion δ on W (B) and an
R-algebra homomorphism W (B)→ B such that, given any R-algebra C with a π-
derivation δ on it and an R-algebra map f : C → B, there exists a unique R-algebra
homomorphism g : C →W (B) such that the diagram

W (B)

��
B C

foo

g
bb

commutes and g ◦ δ = δ ◦ g. Thus W is the right adjoint of the forgetful functor
from R-algebras with π-derivation to R-algebras. For details, see section 1 of [Bo1].
This approach follows that of [Jo] to the usual p-typical Witt vectors.

(2) If we restrict to flat R-algebras B, then we can ignore the concept of π-
derivation and define W (B) simply by expressing the universal property above in
terms of Frobenius lifts, as follows. Given a flat R-algebra B, the ring W (B) is the
unique (up to unique isomorphism) flat R-algebra W (B) with a lift of Frobenius (in
the sense above) F : W (B)→ W (B) and an R-algbebra homomorphism W (B)→
B such that for any flat R-algebra C with a lift of Frobenius φ on it and an R-algebra
map f : C → B, there exists a unique R-algebra homomorphism g : C → W (B)
such that the diagram

W (B)

��
B C

foo

g
bb

commutes and g ◦ φ = F ◦ g.

(3) Finally, one can also define Witt vectors in terms of the Witt polynomials. For

each n ≥ 0 let us define Bφ
n

to be the R-algebra with structure map R
φn→ R

u→ B
and define the ghost rings to be the product R-algebras Πn

φB = B×Bφ×· · ·×Bφn

and Π∞φ B = B × Bφ × · · · . Then for all n ≥ 1 there exists a restriction, or

truncation, map Tw : Πn
φB → Πn−1

φ B given by Tw(w0, · · · , wn) = (w0, · · · , wn−1).

We also have the left shift Frobenius operators Fw : Πn
φB → Πn−1

φ B given by

Fw(w0, . . . , wn) = (w1, . . . , wn). Note that Tw is an R-algebra morphism, but Fw
lies over the Frobenius endomorphism φ of R.

Now as sets define

(3.1) Wn(B) = Bn+1,

and define the set map w : Wn(B)→ Πn
φB by w(x0, . . . , xn) = (w0, . . . , wn) where

wi = xq̂
i

0 + πxq̂
i−1

1 + · · ·+ πixi(3.2)

are the Witt polynomials. The map w is known as the ghost map. (Do note
that under the traditional indexing our Wn would be denoted Wn+1.) We can
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then define the ring Wn(B), the ring of truncated π-typical Witt vectors, by the
following theorem as in the p-typical case [H05]:

Theorem 3.1. For each n ≥ 0, there exists a unique functorial R-algebra structure
on Wn(B) such that w becomes a natural transformation of functors of R-algebras.

Note that, unlike with the usual Witt vectors in mixed characteristic, addition for
function-field Witt vectors is performed componentwise. This is because the Witt
polynomials (3.2) are additive. This might appear to defeat the whole point of
Witt vectors and arithmetic jet spaces. But this is not so. The reason is that while
the additive structure is the componentwise one, the A-module structure is not.
So the difference is only that, unlike in mixed characteristic where A = Z, a group
structure is weaker than A-module structure. In fact, because the Witt polynomials
are k-linear, the k-vector space structure on Wn(B) is the componentwise one. This
is just like with the p-typical Witt vectors, where multiplication by roots of xp − x
can be performed componentwise.

3.3. Operations on Witt vectors. Now we recall some important operators on
the Witt vectors. There are the restriction, or truncation, maps T : Wn(B) →
Wn−1(B) given by T (x0, . . . , xn) = (x0, . . . , xn−1). Note thatW (B) = lim←Wn(B).
There is also the Frobenius ring homomorphism F : Wn(B)→Wn−1(B), which can
be described in terms of the ghost map. It is the unique map which is functorial in
B and makes the following diagram commutative

Wn(B)
w //

F

��

Πn
φB

Fw

��
Wn−1(B)

w
// Πn−1
φ Bn

(3.3)

As with the ghost components, T is an R-algebra map but F lies over the Frobenius
endomorphism φ of R.

Next we have the Verschiebung V : Wn−1(B)→Wn(B) given by

V (x0, . . . , xn−1) = (0, x0, . . . , xn−1).

Let Vw : Πn−1
φ B → Πn

φB be the additive map given by

Vw(w0, .., wn−1) = (0, πw0, . . . , πwn−1).

Then the Verschiebung V makes the following diagram commute:

Wn−1(B)
w //

V

��

Πn−1
φ B

Vw

��
Wn(B)

w
// Πn
φB

(3.4)

For all n ≥ 0 the Frobenius and the Verschiebung satisfy the identity

FV (x) = πx.(3.5)

The Verschiebung is not a ring homomorphism, but it is k-linear.

Finally, we have the multiplicative Teichmüller map [ ] : B → Wn(B) given by
x 7→ [x] = (x, 0, 0, . . . ). Here in the function-field setting, [ ] is additive and even a
homomorphism of k-algebras.
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3.4. Computing the universal map to Witt vectors. Given an R-algebra C
with a π-derivation δ and an R-algebra map f : C → B, we will now describe the
universal lift g : C → W (B). The explicit description of g leads us to proposition
3.2 which is used in section 10 in computations for Drinfeld modules of rank 2. The
reader may skip this subsection without breaking continuity till then.

It is enough to work in the case where both B and C are flat over R. Then the
ghost map w : W (B)→ Π∞φ B is injective. Consider the map [φ] : C → Π∞φ C given

by x 7→ (x, φ(x), φ2(x), . . . ). Then we have the following commutative diagram:

C
f◦[φ]

{{
[φ]

��

g

||
W (B)

w //

F

��

Π∞φ B

Fw

��

Π∞φ C
foo

Fw

��
W (B)

w // Π∞φ B Π∞φ C
foo

Thus the map f ◦ [φ] : C → Π∞φ B factors through W (B) as our universal map

g : C →W (B).

Let us now give an inductive description of the map g. Write

g(x) = (x0, x1, · · · ) ∈W (B).

Then from the above diagram w ◦ g = f ◦ [φ]. Therefore the vector (x0, x1, . . . ) is
the unique solution to the system of equations

(3.6) xq̂
n

0 + πxq̂
n−1

1 + · · ·+ πnxn = f(φn(x)),

for n ≥ 0. For example, we have x0 = f(x) and x1 = f(δ(x)).

Now consider the case where B itself has a π-derivation, C = B, and f = 1. For
any x ∈ B, let us write x(n) := δn(x), or simply x′ = δ(x), x′′ = δ2(x) and so on.

Proposition 3.2. We have x0 = x, x1 = x′ and x2 = x′′ + πq̂−2(x′)q̂.

Proof. As stated above, equalities x0 = x and x1 = x′ follow immediately from (3.6).
For n = 2, we have

xq̂
2

0 + πxq̂1 + π2x2 = φ2(x)

= φ(xq̂ + πx′)

= φ(x)q̂ + πφ(x′)

= xq̂
2

+ πq̂(x′)q̂ + π((x′)q̂ + πx′′)

And therefore we have x2 = x′′ + πq̂−2(x′)q̂. �

4. A-module schemes, Jet Spaces and prelimineries

An A-module scheme over S = Spf R is by definition a pair (E,ϕE), where E is
a commutative group object in the category of S-schemes and ϕE : A→ End(E/S)
is a ring map. (Here and below, by a scheme over the formal scheme S, we mean
a formal scheme formed from a compatible family of schemes over the schemes
SpecR/pnR.) Then the tangent space T0E at the identity has two A-modules
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structures: one coming by restriction of the usual R-module structure to A, and
the other coming from differentiating ϕE . We will say that (E,ϕE) is strict if these
two A-module structures coincide, and admissible if it is both strict and isomorphic
to the additive group Ĝa = Ĝa/S as a group scheme. We will denote this induced
map to tangent space as θ : A → R. (Note that it is best practice to require only

the isomorphism with Ĝa to exist locally on S. So below, our Drinfeld modules
would more properly be called coordinatized Drinfeld modules.)

A Drinfeld module (E,ϕE) of rank r is an admissible A-module scheme over S
such that for each non-zero a ∈ A, the group scheme ker(ϕE(a)) is finite of degree
|a|r = q−rord∞(a) over S.

Proposition 4.1. If f is an endomorphism of the Fq-module scheme Ĝa/S over S,
then it is of the form

f(x) =

∞∑
i=0

aix
qi ,

where f is a restricted power series, meaning ai → 0 π-adically as i→∞.

Proof. Let f ∈ Hom(Ĝa, Ĝa) be an additive endomorphism of Ĝa. Then f is given
a restricted power series

∑
i bix

i such that bi → 0 as i → ∞. Since f is additive,
we have bi = 0 unless i is a power of p. Second, because f is Fq-linear, we have∑
i bpi(cx)p

i

= c
∑
i bpix

pi for all c ∈ Fq. Considering the case where c is a generator

of F∗q , we see this implies bpi = 0 unless pi is a power of q. �

Let R{τ }̂ be the subring of R{{τ}} consisting of (twisted) restricted power
series. Then by proposition 4.1, the Fq-linear morphisms between two admissible
A-module schemes E1 and E2 over Spf R are given in coordinates by elements in
R{τ }̂ where τ acts as τ(x) = xq:

(4.1) HomFq (E1, E2) = R{τ }̂ .

4.1. Prolongation sequences and jet spaces. Let X and Y be schemes over

S = Spf R. We say a pair (u, δ) is a prolongation, and write Y
(u,δ)→ X, if u : Y → X

is a map of schemes over S and δ : OX → u∗OY is a π-derivation making the
following diagram commute:

R // u∗OY

R

δ

OO

// OX

δ

OO

Following [Bui3], a prolongation sequence is a sequence of prolongations

Spf R T 0
(u,δ)oo T 1

(u,δ)oo · · ·
(u,δ)oo ,

where each Tn is a scheme over S. We will often use the notation T ∗ or {Tn}n≥0.
Note that if the Tn are flat over Spf R then having a π-derivation δ is equivalent
to having lifts of Frobenius φ : Tn+1 → Tn.

Prolongation sequences form a category CS∗ , where a morphism f : T ∗ → U∗

is a family of morphisms fn : Tn → Un commuting with both the u and δ, in the
evident sense. This category has a final object S∗ given by Sn = Spf R for all n,
where each u is the identity and each δ is the given π-derivation on R.
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For any scheme Y over S, for all n ≥ 0 we define the n-th jet space JnX (relative
to S) as

JnX(Y ) := HomS(W ∗n(Y ), X)

where W ∗n(Y ) is defined as in [Bo2]. We will not define W ∗n(Y ) in full generality
here. Instead, we will define HomS(W ∗n(Y ), X) in the affine case, and that will
be sufficient for the purposes of this paper. Write X = Spf A and Y = Spf B.
Then W ∗n(Y ) = Spf Wn(B) and HomS(W ∗nY,X) is HomR(A,Wn(B)), the set of
R-algebra homomorphisms A→Wn(B).

Then J∗X := {JnX}n≥0 forms a prolongation sequence and is called the canon-
ical prolongation sequence [Bui3]. By [Bui3], [Bo2], J∗X satisfies the following
universal property—for any T ∗ ∈ CS∗ and X a scheme over S0, we have

Hom(T 0, X) = HomCS∗ (T ∗, J∗X)

Let X be a scheme over S = Spf R. Define Xφn by Xφn(B) := X(Bφ
n

) for any
R-algebra B. In other words, Xφn is X ×S,φn S, the pull-back of X under the map
φn : S → S. Next define

Πn
φX = X ×S Xφ ×S · · · ×S Xφn .

Then for any R-algebra B we have X(Πn
φB) = X(B)×S · · · ×S Xφn(B). Thus the

ghost map w in theorem 3.1 defines a map of S-schemes

w : JnX → Πn
φX.

Note that w is injective when evaluated on points with coordinates in any flat
R-algebra.

The operators F and Fw in (3.3) induce maps φ and φw as follows

JnX
w //

φ

��

Πn
φX

φw

��
Jn−1X

w
// Πn−1
φ X

(4.2)

where φw is the left-shift operator given by

φw(w0, . . . , wn) = (φS(w1), . . . , φS(wn)),

and where φS : Xφi → Xφi−1

is the composition given in the following diagram:

Xφi ∼ // Xφi−1 ×S,φ S

��

// Xφi−1

��
S

φ
// S.

(4.3)

Now let E be an A-module scheme over S with action map A
ϕE→ EndS(E). Then

the functor it represents takes values in A-modules, and hence so does the functor
B 7→ E(Wn(B)). In this way, for each n ≥ 0, the S-scheme JnE comes with an
A-module structure. We denote it by ϕJnE : A → EndS(JnE). Similarly, ϕE
induces an A-linear structure ϕEφn on each Eφ

n

. In this case, it is easy to describe
explicitly. It is the componentwise one:

ϕΠnφE
(w0, . . . , wn) = (ϕE(w0), . . . , ϕEφn (wn)).
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The ghost map w : JnE → Πn
φE and the truncation map u : JnE → Jn−1E

homomorphisms of A-module schemes over S. This is because they are given by
applying the A-module scheme E to the R-algebra maps w : Wn(B) → Πn

φB and

T : Wn(B)→Wn−1(B). On the other hand, the Frobenius map φ : JnE → Jn−1E
is a homomorphisms of A-module schemes lying over the Frobenius endomorphism
φ of S. In other words, the induced map JnE → (Jn−1E)φ is a homomorphism of
A-module schemes over S.

4.2. Coordinates on jet spaces. Given an isomorphism of S-schemes E → Ĝa,
we can identify (JnE)(B) with Wn(B) and hence, using (3.1), with Bn+1. In
particular, given a coordinate x on an admissible A-module scheme E, this identi-
fication provides a canonical system of coordinates (x0, . . . , xn) on JnE. We will
use these Witt coordinates without further comment. We emphasize once again
that there are other canonical systems of coordinates on JnE, for instance the
Buium–Joyal coordinates denoted x, x′, x′′, . . . . They are related by the formulas
of proposition 3.2. Each has their own advantages.

4.3. Character groups. Given a prolongation sequence T ∗ we can define its shift
T ∗+n by (T ∗+n)j := Tn+j for all j [Bui3].

Spf R
(u,δ)← Tn

(u,δ)← Tn+1 . . .

We define a δ-morphism of order n from X to Y to be a morphism J∗+nX → J∗Y of
prolongation sequences. We define a character of order n, Θ : (E,ϕE)→ (Ĝa, ϕĜa

)

to be a δ-morphism of order n from E to Ĝa which is also a homomorphism of
A-module objects. By the universal property of jet schemes [Bui3], an order n

character is equivalent to a homomorphism Θ : JnE → Ĝa of A-module schemes
over S. We denote the group of characters of order n by Xn(E). So we have

Xn(E) = HomA(JnE, Ĝa),

which one could take as an alternative definition. Note that Xn(E) comes with

an R-module structure since Ĝa is an R-module scheme over S. Also the inverse
system Jn+1E

u→ JnE defines a directed system

Xn(E)
u∗→ Xn+1(E)

u∗→ · · ·

via pull back. Each morphism u∗ is injective because each u has a section (typically
not A-linear). We then define X∞(E) to be the direct limit limn Xn(E).

Similarly, pre-composing with the Frobenius map φ : Jn+1E → JnE induces a
Frobenius operator φ : Xn(E) → Xn+1(E). However since φ : Jn+1E → JnE is
not a morphism over Spf R but instead lies over the Frobenius endomorphism φ of
Spf R, some care is required. Consider the relative Frobenius morphism φR, defined
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to be the unique morphism making the following diagram commute:

Jn+1E

φR

((

φ

))

%%

JnE ×(Spf R),φ Spf R

��

// JnE

��
Spf R

φ
// Spf R

Then φR is a morphism of A-module formal schemes over Spf R. Now given a
δ-character Θ : JnE → Ĝa, define φ∗Θ to be the composition

(4.4) Jn+1E
φR−→ JnE ×(Spf R),φ Spf R

Θ×1−→ Ĝa ×(Spf R),φ Spf R
ι−→ Ĝa

where ι is the isomorphism of A-module schemes over S coming from the fact that
Ĝa descends to Â as an A-module scheme. For any R-algebra B, the induced
morphism on B-points is

E(Wn+1(B))
E(F )−→ E(Wn(B)φ)

ΘφB−→Bφ
b 7→b−→B.

Note that this composition E(Wn+1(B))→ B is indeed a morphism of A-modules

because identity map Bφ → B is A-linear, which is true because φ restricted to Â
is the identity.

Thus we have an additive map Xn(E) → Xn+1(E) given by Θ 7→ φ∗Θ. Note
that this map is not R-linear. However, the map

φ∗ : Xn(E)−→Xn+1(E)φ, Θ 7→ φ∗Θ

is R-linear, where Xn+1(E)φ denotes the abelian group Xn+1(E) with R-module
structure defined by the law r · Θ := φ(r)Θ. Taking direct limits in n, we obtain
an R-linear map

X∞(E)−→X∞(E)φ, Θ 7→ φ∗Θ.

In this way, X∞(E) is a left module over the twisted polynomial ring R{φ∗} with
commutation law φ∗r = φ(r)φ∗.

5. Kernel of u : J1E → E

Let (E,ϕE) be an admissible A-module scheme over S = Spf R. By equa-
tion (4.1), we can write

(5.1) ϕE(t) =
∑

aiτ
i

with ai ∈ R, ai → 0, and a0 = π. Let Nn denote the kernel of the projection
u : JnE → E. Thus we have a short exact sequence of A-module schemes over S:

0→ Nn → JnE
u→ E → 0

We will show in this section that, when q ≥ 3, there is an isomorphism (N1, ϕN1)→
(Ĝa, ϕĜa

) of A-module schemes, where Ĝa denotes the tautological A-module with

the A-action is given by the usual multiplication of scalars: ϕĜa
(a) = aτ0.
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Proposition 5.1. Any A-linear morphism f : E → G between admissible A-
modules is determined by the induced morphism on tangent spaces. More precisely,
if we write ϕE(t) = πτ0 +

∑
j≥1 ajτ

j, ϕG(t) = πτ0 +
∑
j≥1 cjτ

j, and f =
∑
i biτ

i,
then we have

br = (π − πq
r

)−1
r−1∑
i=0

(bia
qi

r−i − cr−ib
qr−i

i ).

Proof. Because f is B-linear, we have(∑
i≥0

biτ
i
)(
πτ0 +

∑
j≥1

ajτ
j
)

=
(
πτ0 +

∑
j≥1

cjτ
j
)(∑

i≥0

biτ
i
)
.

Comparing the coefficients of τ r, we have

b0a
q0

r + · · ·+ br−1a
qr−1

1 + brπ
qr = πbr + c1b

q
r−1 + · · ·+ crb

qr

0 .

Therefore we have

br(π − πq
r

) =

r−1∑
i=0

(bia
qi

r−i − cr−ib
qr−i

i ).

Since R is π-torsion free and 1− πqr−1 is invertible for r ≥ 1, this determines each
br uniquely in terms of b0, . . . , br−1. Therefore b0 determines each br. �

Corollary 5.2. The R-module map R→ HomA(Ĝa, Ĝa) defined by b 7→ bτ0 is an
isomorphism.

Now consider the subset S† ⊂ R{τ }̂ defined by

S† :=
{∑
i≥0

biτ
i ∈ R{τ }̂ | v(bi) ≥ i, for all i and b0 ∈ R∗

}
.(5.2)

Here, and below, we write v(b) ≥ i to mean simply b ∈ piR.

Proposition 5.3. S† is a group under composition.

Proof. The fact that S† is a submonoid of R{τ }̂ under composition follows im-

mediately from the law bτ i ◦ cτ j = bcq
i

τ i+j and linearity. Indeed if v(b) ≥ i and

v(c) ≥ j, then v(bcq
i

) ≥ i+ j.

Now let us show that any element f =
∑
biτ

i ∈ S† has an inverse under
composition. Let g =

∑∞
n=0 cnτ

n, where c0 = b−1
0 and we define inductively

cn = −b−q
n

0 (c0bn+c1b
q
n−1 + · · ·+cn−1b

qn−1

1 ). Then it is easy to check that g◦f = 1.
Take n ≥ 1 and assume v(ci) ≥ i for all i = 0, . . . , n− 1. Then it is enough to show

v(cn) ≥ n. We have v(cn) ≥ min{v(cib
qi

n−i) | i = 0, . . . , n− 1}. Now

v(cib
qi

n−i) = v(ci) + qiv(bn−i)

= i+ qi(n− i)
≥ i+ (n− i) = n.

Therefore the left inverse g of f lies in S†.

Now consider g′ =
∑∞
n=0 dnτ

n ∈ R{{τ}}, where d0 = b−1
0 and we inductively

define dn = −b−1
0 (b1d

q1

n−1 + b2d
q2

n−2 + · · · + bnd
qn

0 ). Then as above, one can easily
check that f ◦ g′ = 1 and hence it is a right inverse of f in R{{τ}}. But using the
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associativity property of R{{τ}} we get g′ = (g ◦f)◦ g′ = g ◦ (f ◦ g′) = g and hence
g is both a left and right inverse of f in S†. �

Proposition 5.4. Let B denote the subring Fq[t] ⊆ A. Let f : E → G be a B-linear
homomorphism of admissible A-module schemes over Spf R. Then f is A-linear.

Proof. Given any element a ∈ A, we will show ϕG(a) ◦ f = f ◦ ϕE(a). Both sides
are B-linear homomorphisms E → G; indeed, f is B-linear by assumption, and
both ϕG(a) and ϕE(a) are B-linear because A is commutative. Furthermore, on
tangent spaces, ϕG(a)◦f is multiplication by af ′(0), and f ◦ϕE(a) is multiplication
by f ′(0)a; this is because the A-module schemes are admissible. Thus the two
morphisms agree on tangent spaces and therefore they agree, by proposition 5.1. �

In other words, the forgetful functor from admissible A-modules schemes over R
to admissible B-module schemes over R is fully faithful. This remains true if we
allow B to be not just Fq[t] but any sub-Fq-algebra of A strictly containing Fq.

Lemma 5.5. If q ≥ 3, then qi − qi−j − j − 1 ≥ 0 for all j = 1, . . . , i.

Proof. Consider f(x) = qi − qi−x − x − 1, for 1 ≤ x ≤ i. Then f(1) ≥ 0 since
q ≥ 3. Now f ′(x) = qi−x ln q− 1. Since ln q > 1 for q ≥ 3, we have f ′(x) ≥ 0 for all
1 ≤ x ≤ i and hence f(x) ≥ 0 for all 1 ≤ x ≤ i and we are done. �

Theorem 5.6. Suppose q ≥ 3 and v(ai) ≥ qi − 1, for all i ≥ 1. Then there

exists a unique A-linear homomorphism f : E → Ĝa, written f =
∑∞
i=0 biτ

i in
coordinates, such that v(bi) ≥ i and b0 = 1. Moreover, f is an isomorphism of
A-module schemes over S.

Proof. Let f =
∑∞
i=0 biτ

i, bi ∈ R, where b0 = 1 and

(5.3) bi = π−1(1− πq
i−1)−1

i∑
j=1

bi−ja
qi−j

j .

Indeed, this is the only possible choice for f , by proposition 5.2. Conversely, it is
easy to see that f satisfies ϕ(t) ◦ f = f ◦ϕ(t), which implies ϕ(b) ◦ f = f ◦ϕ(b) for
all b ∈ B.

Let us now show v(bi) ≥ i. For i = 0, it is clear. For i ≥ 1, we may assume
by induction that v(bj) ≥ j for all j = 1, . . . , i − 1. By (5.3), we have v(bi) ≥
min{v(bi−ja

qi−j

j )− 1 | j = 1, . . . , i}. Now

v(bi−ja
qi−j

j )− 1 ≥ v(bi−j) + v(aq
i−j

j )− 1

≥ i− j + qi−j(qj − 1)− 1

= i− j + qi − qi−j − 1

≥ i, by lemma 5.5.

Therefore we have v(bi) ≥ i.
Therefore f is a restricted power series and hence defines a map between π-formal

schemes f : E → Ĝa which is A-linear.

Let us show that f is an isomorphism. By proposition 5.3, there exists a linear
map g : Ĝa → E such that f ◦ g = g ◦ f = 1. Then g is also A-linear for formal
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reasons. Indeed, for any a ∈ A, we have f(g(ϕ(a)x)) = ϕ(a)x = f(ϕ(a)g(x)). Since
f is injective, we must have g(ϕ(a)x) = ϕ(a)g(x) which shows the A-linearity g
and we are done. �

We conclude this section with a useful observation which will not however be used
here. Letting Gfor

a denote the formal completion of Ĝa along the identity section

Spf R → Ĝa. Thus we have Gfor
a = Spf R[[x]], where R[[x]] has the (π, x)-adic

topology. We want to extend the A-action on Gfor
a to an action of Â:

(5.4) Â→ EndFq (Gfor
a /S).

Recall that EndFq (Gfor
a ) agrees with the non-commutative power-series ring R{{τ}},

with commutation law τb = bqτ for b ∈ R. Therefore for any a ∈ A, we can write

ϕ(a) =
∑
j

αjτ
j

where αj ∈ R. Each αj can be thought of as a function of a ∈ A. To construct
(5.4) it is enough to prove that these functions are p-adically continuous, which

also implies that such an extension to a continuous Â-action is unique. This is a
consequence of the following result.

Proposition 5.7. If a ∈ pn, then αj ∈ pn−jR.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose
a ∈ pn+1 and write a = πb, where b ∈ pn. Let ϕ(b) =

∑
j βjτ

j and ϕ(π) =
∑
k γkτ

k.
Then we have∑

j

αjτ
j = ϕ(a) = ϕ(π)ϕ(b) =

∑
k

γkτ
k
∑
j

βjτ
j =

∑
k,j

γkβ
qk

j τ
j+k

and hence αj =
∑j
k=0 γkβ

qk

j−k. So to show αj ∈ pn+1−jR, it suffices to show

γkβ
qk

j−k ∈ pn+1−jR, for 0 ≤ k ≤ j ≤ n+ 1.

By induction we have βj−k ∈ pn−(j−k)R and hence γkβ
qk

j−k ∈ p(n−(j−k))qkR. Since

we have (n − (j − k))qk ≥ n − j + 1 for k ≥ 1, we then have γkβ
qk

j−k ∈ pn−j+1R.
For k = 0, because ϕ is a strict module structure, we have γ0 = π and hence
γ0βj ∈ πpn−jR = p1+n−jR. �

6. Characters of Nn—upper bounds

We continue to let E denote the admissible A-module scheme over S of (5.1).

Lemma 6.1. For all n ≥ 0, φn(x) = πnx(n) + O(n − 1), where O(n − 1) are
elements of order less than equal to n− 1.

Proof. For n = 0, it is clear. For n ≥ 1, we have by induction

φn(x) = φ(πn−1x(n−1) +O(n− 2))

= πn−1φ(x(n−1)) +O(n− 1)

= πn−1πδ(x(n)) + (x(n−1))q̂ +O(n− 1)

= πnx(n) +O(n− 1).
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�

Theorem 6.2. Assume q ≥ 3. For any n ≥ 0, let Hn denote the kernel of
the projection u : Jn+1E → JnE. Then there is a unique A-linear isomorphism

ϑn : Hn → Ĝa of the form ϑn(x) = x+ b1x
q + b2x

q2

+ · · · in coordinates such that

v(bi) ≥ i for all i ≥ 1. Further, the R-module HomA(Hn, Ĝa) is freely generated by
ϑn

Proof. First observe that we have

ϕE(t)φn(x) = φn(ϕE(t))

= φn(π)φn(x) + φn(a1)φn(x)q + · · ·+ φn(ar)φ
n(x)q

r

.

Second, the subscheme Hn is defined by setting the x, x′, . . . , x(n−1) coordinates to
0. Combining these two observations and lemma 6.1, we obtain

πnϕE(t)x(n) = ππnx(n) + φn(a1)(πnx(n))q + · · ·+ φn(ar)(π
nx(n))q

r

and hence

ϕE(t)x(n) = πx(n) + φn(a1)πn(q−1)(x(n))q + · · ·+ φn(ar)π
n(qr−1)(x(n))q

r

.

But then by theorem 5.6, there is a unique isomorphism (Hn, ϕHn)→ (Ĝa, ϕĜa
) of

the kind desired.

Finally it follows from corollary 5.2 that HomA(Hn, Ĝa) is freely generated as
an R-module by ϑn. �

We emphasize that for q = 2, it is not generally true that Hn is isomorphic to
Ĝa. We do however have an argument along similar lines that HomA(Hn, Ĝa) is
free of rank 1 over R, but to keep the exposition short, we have not included it
here.

Now consider the exact sequence

0→ Hn → Nn → Nn−1 → 0

and the corresponding long exact sequence

0→ HomA(Nn−1, Ĝa)→ HomA(Nn, Ĝa)→ HomA(Hn, Ĝa)→ · · · .

By the theorem above, the image of the map HomA(Nn, Ĝa)→ HomA(Hn, Ĝa) can
be regarded as a sub-R-module of R. Therefore we have a filtration of R-modules

HomA(Nn, Ĝa) ⊇ HomA(Nn−1, Ĝa) ⊇ · · · ⊇ HomA(N0, Ĝa) = 0,

and each associated graded module is canonically a submodule of R.

In particular, we have the following:

Proposition 6.3. If R is a discrete valuation ring, then HomA(Nn, Ĝa) is a free
R-module of rank at most n.
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7. The Lateral Frobenius and characters of Nn

Now we will construct a family of important operators which we call the lateral
Frobenius operators. That is, for all n, we will construct maps f : Nn+1 → Nn

which are lifts of Frobenius relative to the projections u : Nn+1 → Nn and hence
make the system {Nn}∞n=0 into a prolongation sequence. Do note that a priori the
A-modules Nn do not form a prolongation sequence to start with.

Let N∞ denote the inverse limit the projection maps u : Nn+1 → Nn. Then the
maps f induce a lift of Frobenius on N∞. Similarly on J∞E = limn J

nE, the maps
φ induce a lift of Frobenius. Now for all n ≥ 1, the inclusion Nn ↪→ JnE is a closed
immersion and hence induces a closed immersion of schemes N∞ ↪→ J∞E. But f is
not obtained by restricting φ to N∞. In fact, φ does not even preserve N∞. So f is
an interesting operator which is distinct from φ, although it does satisfy a certain
relation with φ which we will explain below.

Here we would also like to remark that the lateral Frobenius can also be con-
structed in the mixed-characteristic setting of p-jet spaces of arbitrary schemes. But
it is much more involved than for Drinfeld modules, and the authors will present
that theory in a subsequent note.

Let F : Wn → Wn−1 and V : Wn−1 → Wn denote the Frobenius and Ver-
schiebung maps of 3.3. Let us arrange them in the following diagram, although it
does not commute.

Wn
V //

F

��

Wn+1

F

��
Wn−1

V // Wn

F

��
Wn−1

Rather the following is true

(7.1) FFV = FV F.

Indeed, the operator FV is multiplication by π = θ(t), and F is a morphism of
A-algebras.

We can re-express this in terms of jet spaces using the natural identifications
JnE ' Wn and Nn ' Wn−1. For jet spaces, let us switch to the notation i := V ,
φ := F for the right column, and f := F for the left column. Then the diagram
above becomes the following:

Nn+1 i //

f

��

Jn+1E

φ

��
Nn i // JnE

φ
��

Jn−1E
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Note again that it is not commutative. However rewriting (7.1) in the above nota-
tion, we do have

(7.2) φ◦2 ◦ i = φ ◦ i ◦ f.

We emphasize that when we use the notation Nn, the A-module structure will
always be understood to be the one that makes i an A-linear morphism. It should
not be confused with the A-module structure coming by transport of structure from
the isomorphism Nn 'Wn−1 = Jn−1E of group schemes.

We also emphasize that while i is a morphism of S-schemes, the vertical arrows
φ and f in the diagram above lie over the Frobenius endomorphism φ of S, rather
than the identity morphism.

Lemma 7.1. For any torsion-free R-algebra B, the map FV : Wn(B) → Wn(B)
is injective.

Proof. Since B is torsion free, the ghost map Wn(B)→ B×· · ·×B is injective, and
hence Wn(B) is torsion free. The result then follows because FV is multiplication
by π. �

Proposition 7.2. The morphism f : Nn → Nn−1 is A-linear.

Proof. Since both φ and i are A-linear morphisms, so are φi and φ2i. Therefore for
all a ∈ A, we have

φi(f(ax)) = φ2i(ax) = aφ2i(x) = aφi(f(x)) = φi(af(x))

Thus the two morphisms Nn+1 → Nn, given by x 7→ af(x) and by x 7→ f(ax),
become equal after application of φi. We can interpret the morphisms as two
elements of Nn(B), where B is the algebra representing the functor Nn+1, which
become equal after applying φi. But since B is torsion free, lemma 7.1 implies these
two elements must be equal. �

For 0 ≤ i ≤ k − 1, let us abusively write f◦i for the following composition

f◦i : Nn

i-times︷ ︸︸ ︷
f ◦ · · · ◦ f→ Nn−i u→ Nn−k.

Then for all 1 ≤ i ≤ n, we define Ψi ∈ HomA(Nn, Ĝa) as

Ψi = ϑ1 ◦ f◦i−1(7.3)

where ϑ1 is as in theorem 6.2. Clearly, the maps Ψi are A-linear since each one of
the maps above is. Finally, given a character Ψ ∈ HomA(Nn−1, Ĝa), we will write
f∗Ψ = Ψ ◦ f.

The points of JnE contained in Nn are those with Witt coordinates of the form
(0, x1, x2, . . . , xn). We will use the abbreviated coordinates (x1, . . . , xn) on Nn

instead.

Lemma 7.3. For q ≥ 3 and all i = 1, . . . , n, we have

Ψi(x1, . . . , xn) ≡ xq̂
i−1

1 mod π.
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Proof. Since f is identified with the Frobenius map F : Wn → Wn−1, it reduces
modulo π to the q̂-th power of the projection map. Therefore, we have

Ψi(x1, . . . , xn) = ϑ1 ◦ f◦(i−1)(x1, . . . , xn) ≡ ϑ1(xq̂
i−1

1 ) mod π,

and hence is equivalent to xq̂
i−1

1 modulo π, by the defining property of ϑ1 in theo-
rem 6.2. �

Proposition 7.4. If R is a discrete valuation ring, then the elements Ψ1, . . . ,Ψn

form an R-basis for HomA(Nn, Ĝa).

Proof. (For q ≥ 3.) By proposition 6.3, the R-module HomA(Nn, Ĝa) is free of
rank at most n. So to show the elements Ψ1, . . . ,Ψn form a basis, it is enough
by Nakayama’s lemma to show they are linearly independent modulo π. But for

q ≥ 3, by lemma 7.3, we have Ψi ≡ xq̂
i−1

1 mod π, and so the Ψi map to linearly
independent elements of R/πR ⊗R O(Nn). Thus they are linearly independent in

R/πR⊗R HomA(Nn, Ĝa). �

8. X∞(E)

We now assume further that R is a discrete valuation ring and E is a Drinfeld
module over Spf R. Let r denote the rank of E. We continue to write ϕE(t) =
a0τ

0 + a1τ
1 + · · ·+ arτ

r, where a0 = π, ai ∈ R for all i, and ar ∈ R∗.
Given such a Drinfeld module, one of the important δ-arithmetic objects that

one can attach to it is the group of all δ-characters of E to Ĝa, denoted X∞(E).
In the case of elliptic curves, Buium has shown that this group contains important
arithmetic data as analogues of Manin maps in differential algebra and has found
diophantine applications on Heegner points on modular curves [BP2].

In this section and the next, we will determine the structure of X∞(E). In the
case of elliptic curves, it falls in two distinct cases as to when the elliptic curve
admits a canonical lift and when not. A similar story happens in our case when
E is a Drinfeld module of rank 2, which one might consider the closest analogue
of an elliptic curve. However, when the rank exceeds 2, the behavior of X∞(E)
offers much more interesting cases which leads us to introduce the concept of the
splitting order m of a Drinfeld module E. This natural number is always less than
or equal to the rank of E and when the rank equals 2, the notion coincides with
the canonical lift property of Drinfeld modules.

We would like to point out here that our structure result for X∞(E) is is an
integral version of that of [Bui2]. Buium shows that X∞(E)⊗R K is generated by
a single element as a K{φ∗}-module where K = R[ 1

p ]. But here we show that the

module X∞(E) itself is generated by a single element as a R{φ∗}-module. Although
our result is for Drinfeld modules over function rings in positive characteristic, our
methods work in the elliptic curves over p-adic rings setting and hence this stronger
result can be achieved in that case too.

The following theorem should be viewed as an analogue of the fact that an elliptic
curve has no non-zero homomorphism of Z-module schemes to Ga. In our case,
we show that no Drinfeld module admits a non-zero homomorphism of A-module
schemes to Ĝa.
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Theorem 8.1. We have X0(E) = {0}.

Proof. Any character f =
∑
i≥0 biτ

i ∈ X0(E) satisfies the following chain of equal-
ities:

ϕĜa
(t) ◦ f = f ◦ ϕE(t)

θ(t)τ0 ◦
∑
i≥0

biτ
i =

∑
i≥0

biτ
i ◦
∑
j

ajτ
j

∑
i≥0

θ(t)biτ
i =

∑
i≥0

( r∑
j=0

bi−ja
qi−j

j

)
τ i

Comparing the coefficients of τ i for i > r, we have

(8.1) bi(1− θ(t)q
i−1)θ(t) = aq

i−r

r bi−r + aq
i−r+1

r−1 bi−r+1 + · · ·+ aq
i−1

1 bi−1

Suppose f is nonzero. There there exists an N such that bN−r 6= 0 and v(bN−r) <
v(bi) for all i ≥ N − r + 1. Then the valuation of the right-hand side of equation

(8.1) for i = N becomes v(aq
i−r

r bN−r) = v(bN−r), since v(ar) = 0. But then taking
the valuation of both sides of (8.1), we have

v(bN ) = v(bN−r)− 1 < v(bN−r)

and N ≥ N − r + 1, which is a contradiction to the hypothesis above. Therefore f
must be 0. �

As a consequence the short exact sequence of A-module schemes over S

(8.2) 0→ Nn i→ JnE → E → 0,

induces an exact sequence

(8.3) 0→ Xn(E)
i∗→ HomA(Nn, Ĝa)

∂→ ExtA(E, Ĝa),

which we will use repeatedly.

The following result is the analogue of Buium’s in the mixed-characteristic set-
ting.

Theorem 8.2. Let (E,ϕE) be a Drinfeld module of rank r.

(1) Xr(E) is nonzero.
(2) We have

X1(E) '
{

R, if E has a lift of Frobenius,
{0}, otherwise.

Proof. (1): Consider the exact sequence (8.3). By proposition 7.4, the R-module

HomA(Nn, Ĝa) is free of rank n. But also ExtA(E, Ĝa) is free of rank r − 1, by
[Ge1]. Therefore when n = r, the kernel Xn(E) is nonzero.

(2) Now consider X1(E). It is contained in HomA(N1, Ĝa), which is free of rank

1, and the quotient is contained in ExtA(E, Ĝa), which is torsion free. Therefore

X1(E) is either {0} or all of HomA(N1, Ĝa) ' R.
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Let 1 denote the identity map in HomA(Ĝa, Ĝa). Then its image ∂(1) in

ExtA(E, Ĝa) is the class of the extension (8.2). Therefore we have the equiva-
lences X1(E) ' R ⇐⇒ i∗ is an isomorphism ⇐⇒ ∂(1) = 0 ⇐⇒ (8.2) is split
⇐⇒ E has a lift of Frobenius. �

Define the splitting order of the Drinfeld module E to be the integer m such that
Xm(E) 6= {0} and Xm−1(E) = {0}. We also say that E splits at order m. By the
theorems above, we have 1 ≤ m ≤ r and additionally m = 1 if and only if E is a
canonical lift.

8.1. Splitting of Jn(E). The exact sequence (8.3) is split by the Teichmüller
section v : E → JnE, as defined in section 3. We emphasize that v is only a
morphism of Fq-modules schemes and is not a morphism of A-module schemes.
Nevertheless, it induces an isomorphism

Jn(E)
∼−→E ×Nn

of Fq-module schemes. Therefore for any character Θ ∈ Xn(E), we can write
Θ = g ⊕Ψ or

(8.4) Θ(x0, . . . , xn) = g(x0) + Ψ(x1, . . . , xn),

where Ψ = i∗Θ ∈ HomA(Nn, Ĝa) and g = v∗Θ. Note that because v is only Fq-
linear, g is also only Fq-linear. But it can still be expressed as an additive restricted
power series.

Lemma 8.3. For any R-algebra B, consider the exact sequence for all n ≥ 1

0→Wn−1(B)
V→Wn(B)

Tn→ B → 0

Then there exists a map g : B →Wn(B) such that

Wn(B)
Tn //

FV−V F
��

B

g
||

Wn(B)

commutes. It is of the form g(x) = (πx, c1x
q̂, c2x

q̂2

, . . . ), for some elements cj ∈ R.

Proof. For any y ∈Wn−1(B), we have

(FV − V F )(V y) = FV V y − V FV y = πV y − V (πy) = 0.

So such a function g exists.

To conclude that g(x) is of the given form, we use a homogeneity argument.
Let (z0, z1, . . . ) denote the ghost components of (x0, x1, . . . ). If interpret each xj
as an indeterminate of degree q̂j , then each zj is a homogenous polynomial in the

x0, . . . , xj of degree q̂j and with coefficients in A: z1 = xq̂0 +πx1, and so on. Solving
for xj in terms of z0, . . . , zj , we see that xj is a homogenous polynomial in the
z0, . . . , zj with coefficients in A[1/π].

Now let (y0, y1, . . . ) denote (FV − V F )(x0, x1, . . . ), where yj ∈ R[x0, . . . , xj ].
Then the ghost components of (y0, y1, . . . ) are (πz0, 0, 0, . . . ) = (πx0, 0, 0, . . . ). It
follows that y0 = πx0. Further, by the above, yj is an element of R[x0, . . . , xj ] but
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also a homogeneous polynomial in πx0 of degree q̂j and with coefficients in A[1/π].

Therefore it is of the form cjx
q̂j

0 for some cj ∈ R. �

Proposition 8.4. Let Θ be a character in Xn(E).

(1) We have

i∗φ∗Θ = f∗(i∗Θ) + γΨ1,

where γ = πg′(0) and g′(x0) denotes the usual derivative of the polynomial
g(x0) ∈ R[x0] of equation ( 8.4).

(2) For n ≥ 1, we have

i∗(φ◦n)∗Θ = (fn−1)∗i∗φ∗Θ.

Proof. (1): By lemma 8.3, we have

(φ ◦ i− i ◦ f)(x1, . . . , xn+1) = (πx1, c1x
q̂
1, c2x

q̂2

1 , . . . ),

where cj ∈ R. Therefore we have

(8.5)
((i∗φ∗ − f∗i∗)Θ)(x1, . . . , xn+1) = Θ(πx1, c1x

q̂
1, . . . )

= g(πx1) + Ψ(c1x
q̂
1, . . . ),

where g and Ψ are as in equation (8.4). In particular, the character (i∗φ∗ − f∗i∗)Θ
depends only on x1. Therefore it is of the form γΨ1, for some γ ∈ R. Further since
by theorem 6.2 we have Ψ′1(0) = 1, the coefficient γ is simply the linear coefficient
of (i∗φ∗ − f∗i∗)Θ, which by (8.5) is πg′(0).

(2): This is another way of expressing φ◦n ◦ i = φ◦ i◦ f◦(n−1), which follows from
(7.2) by induction. �

8.2. Frobenius and the filtration by order. We would like to fix a notational
convention here. Let u : JnE → Jn

′
E denote the canonical projection map for any

n′ < n, given in Witt coordinates by u(x0, . . . , xn) = (x0, . . . , xn′).

Consider the following morphism of exact sequences of A-modules

0 // Nn

u
����

i // JnE

u
����

u // E // 0

0 // Nn−1 i // Jn−1E
u // E // 0

Since X0(E) = {0} by theorem 8.1, applying HomA(−, Ĝa) to the above, we obtain
the following morphism of exact sequences of R-modules

0 // Xn(E)
i∗ // HomA(Nn, Ĝa)

∂ // ExtA(E, Ĝa)

0 // Xn−1(E)
?�

u∗

OO

i∗ // HomA(Nn−1, Ĝa)
?�

u∗

OO

∂ // ExtA(E, Ĝa)
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Proposition 8.5. For any n ≥ 0, the diagram

Xn(E)/Xn−1(E)
� � φ∗ //

� _

i∗

��

Xn+1(E)/Xn(E)� _

i∗

��
HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa)

f∗

∼
// HomA(Nn+1, Ĝa)/HomA(Nn, Ĝa)

is commutative. The morphisms i∗ and φ∗ are injective, and f∗ is bijective.

In fact, we will show in corollary 9.9 that all the morphisms in the diagram of
proposition 8.5 are isomorphisms.

Proof. For n ≥ 1, commutativity of the diagram follows from proposition 8.4; for
n = 0, it follows from theorem 8.1.

The maps i∗ are injective because the projections JnE → Jn−1E and Nn →
Nn−1 have the same kernel, and f∗ is an isomorphism by proposition 7.4. It follows
that φ∗ is an injection. �

8.3. The character Θm. Recall the exact sequence (8.3)

0→ Xn(E)
i∗→ HomA(Nn, Ĝa)

∂→ ExtA(E, Ĝa)

Let m denote the splitting order of E. Then for all n < m, the map

∂ : HomA(Nn, Ĝa)→ ExtA(E, Ĝa)

is injective since Xn(E) = {0}. But at n = m, we have Xm(E) 6= {0}, and

so there is a nonzero character Ψ ∈ HomA(Nm, Ĝa) in the kernel of ∂. Write

Ψ = λ̃mΨm− λ̃m−1Ψm−1− · · ·− λ̃1Ψ1, where λ̃i ∈ R for all i = 0, . . . ,m− 1. Then

we necessarily have λ̃m 6= 0 since Xm−1 = {0}. Therefore we have

(8.6) ∂Ψm = λm−1∂Ψm−1 + · · ·+ λ1∂Ψ1 ∈ ExtA(E, Ĝa)K

where λi = λ̃i/λ̃m for all i = 1, . . . ,m− 1. This implies that the character

Ψm − λ1Ψm−1 − · · · − λm−1Ψ1

is in ker(∂) and hence by the main exact sequence (8.3), there exists a unique
Θm ∈ Xm(E)K such that

(8.7) i∗Θm = Ψm − λm−1Ψm−1 − · · · − λ1Ψ1

It then follows immediately that Θm is a K-linear basis for Xm(E)K , say by propo-
sitions 7.4 and 8.5. (We will show in corollary 9.9 that Θm actually lies in the group
Xm(E) of integral characters, and is in fact an integral basis for it.)

Proposition 8.6. Let m denote the splitting order of E. Then for any j ≥ 0,
the character i∗(φ∗)jΘm agrees with Ψm+j modulo rational characters of lower

order, and the elements Θm, φ
∗Θm, · · · , φn−m

∗
Θm are a basis of the K-vector space

Xn(E)K .

Proof. By 8.5, each element φi
∗
Θm lies in Xm+i(E) but not in Xm+i−1(E). There-

fore such elements are linearly independent. At the same time, by the diagram
above, each Xm+i(E)/Xm+i−1(E) has rank at most 1. Thus the rank of Xn(E) is
at most n−m+ 1, and so the elements in question form a spanning set. �



24 JAMES BORGER AND ARNAB SAHA

Do note that this result will be improved to an integral version in theorem 9.10.

9. Ext Groups and de Rham cohomology

We will prove theorem 1.1 in this section. We continue with the notation from
the previous section. In particular, R is a discrete valuation ring.

We will briefly describe our strategy in the next few lines. Recall from (8.7) the
equality

i∗Θm = Ψm − λm−1Ψm−1 − · · · − λ1Ψ1

where λj ∈ K. A priori, the elements λj need not belong to R, but we prove in

theorem 9.8 that they actually do. This will imply that i∗Θm lies in HomA(Nm, Ĝa)
and ker(∂), and hence by the exact sequence (8.3), we have Θm ∈ Xm(E)—that is,
the character Θm is integral. From there, it is an easy consequence that Xn(E) is

generated by Θm, . . . ,Θ
φn−m

m as an R-module.

So the key result to prove is theorem 9.8. But it will require some prepara-
tion before we can present the proof. For all n ≥ 1, we will define maps from
HomA(Nn, Ĝa) to Ext](E, Ĝa) which is also interpreted as the de Rham coho-
mology from associated to the Drinfeld module E. These maps are obtained by
push-outs of JnE by Ψ ∈ HomA(Nn, Ĝa). To give an idea, do note that, for every

n ≥ 1, there are canonical elements E∗Ψ ∈ ExtA(E, Ĝa) where the E∗Ψ is a push-out
of JnE by Ψ as follows

0 // Nn

Ψ

��

i // JnE

gΨ

��

u // // E // 0

0 // Ĝa
// E∗Ψ // E // 0

as E∗Ψ ∈ ExtA(E, Ĝa). It leads to a very interesting theory of δ-modular forms over
the moduli space of Drinfeld modules and will be studied in a subsequent paper.
And similar to previous cases, the main principles carry over to the case of elliptic
curves or abelian schemes as well.

Now we introduce the theory of extensions of A-module group schemes. Given
an extension ηC ∈ Ext(G,T ) and f : T → T ′ where G, T and T ′ are A-modules and
f is an A-linear map we have the following diagram of the push-forward extension
f∗C.

0 // T //

f

��

C //

��

G // 0

0 // T ′ // f∗C // G // 0

The class of f∗C is obtained as follows—the class of ηC is represented by a linear
(not necessarily A-linear) function ηC : G → T . Then ηf∗C is represented by the
class ηf∗C = [f ◦ ηC ] ∈ Ext(E, T ′). In terms of the action of t ∈ A, ϕC(t) is given

by

(
ϕG(t) 0
ηC ϕT (t)

)
where ηC : G→ T . Then ϕf∗C(t) is given by(

ϕG(t) 0
f(ηC) ϕT ′(t)

)
(9.1)
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Now consider the exact sequence

(9.2) 0→ Nn i→ JnE
u→ E → 0

Given a Ψ ∈ HomA(Nn, Ĝa) consider the push out

0 // Nn

Ψ

��

i // JnE

gΨ

��

u // // E // 0

0 // Ĝa
i // E∗Ψ // E // 0

where E∗Ψ = JnE×Ĝa

Γ(Nn) and Γ(Nn) = {(i(z),−Ψ(z))| z ∈ Nn} ⊂ JnE × Nn and

gΨ(x) = [x, 0] ∈ E∗Ψ.

The Teichmüller section v : E → Jn(E) is an Fq-linear splitting of the sequence
(9.2). The induced retraction

ρ = 1− v ◦ u : Jn(E)→ Nn

is given in coordinates simply by ρ : (x0, . . . , xn) 7→ (x1, . . . , xn). Let us denote by
sWitt the morphism on Lie algebras induced by ρ. Thus we have the following split
exact sequence of R-modules

0 // LieNn Di // Lie JnE
sWitt

ll
Du // Lie(E) // 0

Let sΨ denote the induced splitting of the push out extension

0 // Lie Ĝa
// Lie(E∗Ψ)

sΨ
ll // Lie(E) // 0

It is given explicitly by s̃Ψ : Lie JnE × Lie Ĝa → Lie Ĝa

s̃Ψ(x, y) := DΨ(sWitt(x)) + y

and

sΨ : Lie(E∗Ψ) =
Lie JnE × Lie Ĝa

Lie Γ(Nn)
→ Lie Ĝa

This induces the following morphism of exact sequences

(9.3) 0 // Xn(E) //

��

HomA(Nn, Ĝa) //

Ψ7→(E∗Ψ,sΨ)

��

Ext(E, Ĝa)

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

Proposition 9.1. Let Θ be a character in Xn(E), and put Ψ = i∗Θ ∈ HomA(Nn, Ĝa)

and g = v∗Θ : E → Ĝa, as in equation ( 8.4).

(1) The map Xn(E)→ Lie(E)∗ of ( 9.3) sends Θ to −Dg.

(2) Let Θ̃ = φ∗Θ, and put Ψ = i∗Θ̃ and g = v∗Θ̃. Then we have g̃(x) = g(xq̂)

and Ψ̃(y) = Ψ(ρ(φ(i(y)))) + g(πy1).

Proof. (1): Let us recall in explicit terms how the map is given. For the split

extension E × Ĝa, the retractions Lie(E) × Lie Ĝa = Lie(E × Ĝa) → Lie Ĝa are

in bijection with maps Lie(E) → Lie Ĝa, a retraction s corresponding to map
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x 7→ s(x, 0). Therefore to determine the image of Θ, we need to identify E∗Ψ with
a split extension and then apply this map to sΨ.

A trivialization of the extension E∗Ψ is given by the map

JnE × Ĝa

Γ(Nn)
= E∗Ψ

∼−→E × Ĝa

defined by [a, b] 7→ (u(a),Θ(a) + b). The inverse isomorphism H is then given by
the expression

H(x, y) = [v(x), y −Θ(v(x))],

and so the composition E → E × Ĝa → E∗Ψ → Ĝa is simply −Θ ◦ v = −g, which
induces the map −Dg on the Lie algebras.

(2): We have

Θ̃(x) = Θ(φ(x))

= Ψ(ρ(φ(t))) + g(xq̂0 + πx1)

=
(
Ψ(ρ(φ(t)) + g(πx1)

)
+ g(xq̂0).

In other words, we have Ψ̃(ρ(x)) = Ψ(ρ(φ(x)) + g(πx1) and g̃(x0) = g(xq̂0). Setting
x = i(y), we obtain the desired result. �

Proposition 9.2. If Ψ ∈ i∗φ∗(Xn(E)), then the class (E∗Ψ, sΨ) ∈ Ext](E, Ĝa) is
zero.

Proof. We know from diagram (9.3) that E∗Ψ is a trivial extension since Ψ̃ lies in
i∗Xn+1(E). Now as in part (2) of proposition 9.1, we have, in the notation of

that proposition, g̃(x0) = g(xq̂0) and hence Dg̃ = 0. Therefore by part (1) of that

proposition, the class in Ext](E, Ĝa) is zero. �

9.1. The crystal H(E). The φ-linear map φ∗ : Xn−1(E) → Xn(E) induces a
linear map Xn−1(E)φ → Xn(E), which we will abusively also denote φ∗. We then
define

Hn(E) =
HomA(Nn, Ĝa)

i∗φ∗(Xn−1(E)φ)

Then u : Nn+1 → Nn induces u∗ : HomA(Nn, Ĝa) → HomA(Nn+1, Ĝa). And
since u∗i∗φ∗(Xn(E)) = i∗u∗φ∗(Xn(E)) = i∗φ∗u∗(Xn(E)) ⊂ i∗φ∗(Xn+1(E)), it
also induces a map u∗ : Hn(E)→ Hn+1(E). Define H(E) = lim→Hn(E).

Similarly, f : Nn+1 → Nn induces f∗ : HomA(Nn, Ĝa) → HomA(Nn+1, Ĝa),
which descends to a φ-linear morphism of R-modules

f∗ : Hn(E)→ Hn+1(E)

because we have f∗i∗φ∗(Xn−1(E)) = i∗φ∗φ∗(Xn−1(E) ⊂ i∗φ∗Xn(E). This then
induces a φ-linear endomorphism f∗ : H(E) → H(E). Finally, let In(E) denote

the image of ∂ : Hom(Nn, Ĝa)→ ExtA(E, Ĝa). So Hom(Nn, Ĝa)/Xn(E) ' In(E).
Then u induces maps u∗ : In(E)→ In+1(E), and we put I(E) = lim→ In(E).

Proposition 9.3. The morphism

u∗ : Hn(E)⊗K → Hn+1(E)⊗K
is injective. For n ≥ m, it is an isomorphism.
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Proof. Consider the following diagram of exact sequences:

0 0

K〈φ◦(n−m)∗Θ〉φ

OO

i∗φ∗ // K〈Ψn+1〉

OO

0 // Xn(E)φK

OO

i∗φ∗ // HomA(Nn+1, Ĝa)K

OO

// Hn+1(E)K // 0

0 // Xn−1(E)φK

u∗

OO

i∗φ∗ // HomA(Nn, Ĝa)K

u∗

OO

// Hn(E)K //

u∗

OO

0

0

OO

0

OO

The cokernels of the two maps u∗ are of the displayed form by propositions 7.4

and 8.6. If n < m, the expression K〈φ◦(n−m)∗Θ〉 is understood to be zero. The

map i∗φ∗ : K〈φ◦(n−m)∗Θ〉φ → K〈Ψn+1〉 is injective, by proposition 8.5. Therefore
the map u∗ : Hn(E)K → Hn+1(E)K is also injective. It is an isomorphism if

n ≥ m, because K〈φ◦(n−m)∗Θ〉 is 1-dimensional and hence the map

i∗φ∗ : K〈φ◦(n−m)∗Θ〉φ → K〈Ψn+1〉

is an isomorphism. �

Corollary 9.4. We have

Hn(E)⊗K '
{
K〈Ψ1, . . . ,Ψn〉, if n ≤ m
K〈Ψ1, . . . ,Ψm〉, if n ≥ m

Do note that we will promote this to an integral result in (9.7). But before we
get there, we will need some preparation.

Proposition 9.5. We have

In(E)⊗K '
{
K〈Ψ1, . . . ,Ψn〉, if n ≤ m− 1
K〈Ψ1, . . . ,Ψm−1〉, if n ≥ m− 1

Proof. The case n ≤ m− 1 is clear. So suppose n ≥ m− 1. Then HomA(N j , Ĝa)⊗
K has basis Ψ1, . . . ,Ψj , and Xn(E) ⊗ K has basis Θm, . . . , (φ

n−m)∗Θm. Since
each (φj)∗Θm equals Ψm+j plus lower order terms, K〈Ψ1, . . . ,Ψm−1〉 is a com-

plement to the subspace Xn(E) of HomA(Nn, Ĝa). Therefore the map ∂ from
K〈Ψ1, . . . ,Ψm−1〉 to the quotient In(E) is an isomorphism. �
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Finally the morphism HomA(Nn, Ĝa) → Ext](E, Ĝa) of diagram (9.3) vanishes
on φ∗(Xn−1(E)), by proposition 9.2, and hence induces a morphism of exact se-
quences

(9.4) 0 // Xn(E)
φ∗(Xn−1(E)φ)

//

Υ

��

Hn(E) //

Φ

��

In(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where as in the introduction, In(E) denotes the image of ∂ : Hom(Nn, Ĝa) →
ExtA(E, Ĝa).

Proposition 9.6. The map Φ : Hn(E)⊗K → Ext](E, Ĝa)⊗K is injective if and
only if γ 6= 0.

Proof. It is enough to show that Υ is injective if and only if γ 6= 0. By proposi-

tion 8.6, the class of Θm is a K-linear basis for Xn(E)
φ∗(Xn−1(E)φ)

⊗K, and so it is enough

to show Φ is injective if and only if Υ(Θm) 6= 0. As in (8.4), write Θm = Ψ + g.
Then by proposition 9.1, it is enough to show g′(0) 6= 0 if and only if γ 6= 0. But
this holds because by proposition 8.4, we have γ = πg′(0). �

Lemma 9.7. Consider the φ-linear endomorphism F of Km with matrix

0 0 . . . 0 µm
1 0 0 µm−1

0 1 0 µm−2

...
. . .

. . .
...

...

0 0 1 µ1


,

for some given µ1, . . . , µm ∈ K. If Km admits an R-lattice which is stable under
F , then we have µ1, . . . , µm ∈ R.

Proof. We use Dieudonné–Manin theory. Without loss of generality, we may
assume that R/πR is algebraically closed. Let P denote the polynomial Fm −
µ1F

m−1−· · ·−µm in the twisted polynomial ring K{F}. Then by (B.1.5) of [Lau]
(page 257), there exists an integer r ≥ 1 and elements β1, . . . , βm ∈ K(π1/r) such
that we have

P = (F − β1) · · · (F − βm)

in the ring K(π1/r){F} with commutation law Fπ1/r = π1/rF . (Note that the
results of [Lau] are stated under the assumption that the residue field of R is
an algebraic closure of Fp, but they hold if it is any algebraically closed field

of characteristic p.) Since R = K ∩ R[π1/r], it is enough to show µi ∈ R[π1/r].
Therefore, by replacing R[π1/r] with R, it is enough to assume that P factors as
above where in addition all βi lie in K.

Now fix i, and let us show βi ∈ R. Assume βi 6= 0, the case βi = 0 being
immediate. Because the (left) K{F}-module Km has an F -stable integral lattice
M , every quotient of Km also has a F -stable integral lattice, namely the image of
M . By (B.1.9) of [Lau] (page 260), for each i, the K{F}-module Km has a quotient
(in fact, a summand) isomorphic to N = K{F}/K{F}(F − πv(βi)). Therefore N
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also has a F -stable integral lattice. But this can happen only if v(βi) ≥ 0, because
F sends the basis element 1 ∈ N to πv(βi) ∈ N . �

Theorem 9.8. If E splits at m, then we have λ1 . . . , λm−1 ∈ R.

Proof. We will prove the cases when γ = 0 and γ 6= 0 separately.

Case γ = 0 When γ = 0 we have f∗i∗ = i∗φ∗, and hence for all n ≥ 1, this
induces a φ-linear map f∗ : In−1(E)→ In(E) as follows

0 // Xn(E)
i∗ // HomA(Nn, Ĝa)

∂ // In(E) // 0

0 // Xn−1(E)

φ

OO

i∗ // HomA(Nn−1, Ĝa)
∂ //

f∗

OO

In−1(E) //

f∗

OO

0

Let I(E) = lim→ In(E) ⊆ Ext(E, Ĝa). Then by proposition 9.5, the vector space
I(E)K has a K-basis ∂Ψ1, . . . , ∂Ψm−1, and with respect to this basis, the φ-linear
endomorphism f∗ has matrix

Γ0 =



0 0 . . . 0 λ1

1 0 0 λ2

0 1 0 λ3

...
. . .

. . .
...

...

0 0 1 λm−1


Since I(E) is contained in Ext(E, Ĝa), it is a finitely generated free R-module and
hence an integral lattice in I(E)K . But then lemma 9.7 implies λ1, . . . , λm−1 ∈ R.

Case γ 6= 0 Let H(E) = lim→Hn(E). Let us consider the matrix Γ of the φ-
linear endomorphism f of H(E)K with respect to the K-basis Ψ1, . . . ,Ψm given by
corollary 9.4. Let γ ∈ R be as in proposition 8.4. Then we have

i∗φ∗Θm = f∗i∗Θm + γΨ1

= f∗(Ψm − λm−1Ψm−1 − · · · − λ1Ψ1) + γΨ1

= f∗(Ψm)− φ(λm−1)Ψm − · · · − φ(λ1)Ψ2 + γΨ1.

Therefore we have

f∗(Ψm) ≡ φ(λm−1)Ψm + · · ·+ φ(λ1)Ψ2 − γΨ1 mod i∗φ∗(Xφ
m)

and hence

Γ =



0 0 . . . 0 −γ
1 0 0 φ(λ1)
0 1 0 φ(λ2)
...

. . .
. . .

...
...

0 0 0 φ(λm−2)
0 0 1 φ(λm−1)


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We will now apply lemma 9.7 to the operator f∗ on H(E)K , but to do this we need
to produce an integral lattice M . Consider the commutative square

H(E)
Φ //

��

Ext](E, Ĝa)

j

��
H(E)K

ΦK // Ext](E, Ĝa)K .

Let M denote the image of H(E) in H(E)K . It is clearly stable under f∗. But also

the maps ΦK and j are injective, by proposition 9.6 and because Ext](E, Ĝa) '
Rr; so M agrees with the image of H(E) in Ext](E, Ĝa) and is therefore finitely
generated.

We can then apply lemma 9.7 and deduce φ(λm−1), . . . , φ(λ1) ∈ R. This implies
λm−1, . . . , λ1 ∈ R, since R/πR is a field and hence the Frobenius map on it is
injective. �

Corollary 9.9. (1) The element Θm ∈ Xm(E)K lies in Xm(E).
(2) For n ≥ m, all the maps in the diagram

Xn(E)/Xn−1(E)
φ∗ //

i∗

��

Xn+1(E)/Xn(E)

i∗

��
HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa)

f∗ // HomA(Nn+1, Ĝa)/HomA(Nn, Ĝa)

are isomorphisms.

Proof. (1): By theorem 9.8, the element i∗Θm of HomA(Nm, Ĝa)K actually lies in

HomA(Nm, Ĝa), and therefore by the exact sequence (8.3) we have Θm ∈ Xm(E).

(2): By proposition 8.5, we know f∗ is an isomorphism.

By proposition 8.5, the maps i∗ are injective for all n ≥ m. So to show they are
isomorphisms, it is enough to show they are surjective. The R-linear generator Ψm

of HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa) is the image of Θm, which by part (1), lies in
Xm(E). Therefore i∗ is surjective for n = m. Then because f∗ is an isomorphism,
it follows by induction that i∗ is surjective for all n ≥ m.

Finally, φ∗ is an isomorphism because all the other morphisms in the diagram
are. �

We knew before that i∗(φj)∗Θm agrees with Ψm+j plus lower order rational
characters, but the corollary above implies that these lower order characters are in
fact integral.

Theorem 9.10. Let E be a Drinfeld module that splits at m.

(1) For any n ≥ m, the composition

(9.5) Xn(E)−→HomA(Nn, Ĝa)−→HomA(Nn, Ĝa)/HomA(Nm−1, Ĝa)

is an isomorphism of R-modules.
(2) Xn(E) is freely generated as an R-module by Θm, . . . , (φ

∗)n−mΘm.
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Proof. (i): By corollary 9.9, the induced morphism on each graded piece is an
isomorphism. It follows that the map in question is also an isomorphism.

(ii): This follows formally from (i) and the fact, which follows from 9.9, that the
map (9.5) sends any (φ∗)jΘm to Ψm+j plus lower order terms. �

9.2. H(E) and de Rham cohomology. Collecting the results above, we can now
prove theorem 1.2. We have isomorphisms

R〈Ψ1, . . . ,Ψm−1〉 = HomA(Nm−1, Ĝa)
∼−→ In(E)

R〈Ψ1, . . . ,Ψm〉 = HomA(Nm, Ĝa)
∼−→Hn(E)

for n ≥ m, and hence in the limit

R〈Ψ1, . . . ,Ψm−1〉
∼−→ I(E)(9.6)

R〈Ψ1, . . . ,Ψm〉
∼−→H(E)(9.7)

And so the K-linear bases of K⊗I(E) and K⊗H(E)—the ones respect to which the
action of f∗ is described by the matrices Γ0 and Γ in the proof of theorem 9.8—are
in fact R-linear bases of I(E) and H(E).

We also have isomorphisms for n ≥ m

R〈Θm〉 = Xm(E)
∼−→Xn(E)/φ∗(Xn−1(E)φ).

Combining these, we have the following map between exact sequences of R-modules,
as in (9.4):

0 // Xm(E) //

Υ

��

H(E) //

Φ

��

I(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where Υ sends Θm to γ/π (in coordinates). It follows that Φ is injective if and only
if γ 6= 0.

10. Computation of λ1 and γ in the rank 2 case

Theorem 10.1. Let A = Fq[v] with q ≥ 3, let t ∈ A be an irreducible polynomial
of degree f , and let E be a Drinfeld module over R of the form

ϕE(t)(x) = πx+ a1x
q + a2x

q2

.(10.1)

Then we have

λ1 ≡ (−1)fw
qf−1(qf−1)

q−1
(
1− a′1wq

f−1

+ a′2w
qf−1+qf

)qf−1
mod π,

where w = a1a
−1
2 , and

γ mod π2 ≡

 πλ1/a1, if q̂ 6= q
0, if f ≥ 3 or a1 6≡ 0 mod π
−πλ1/a2, if a1 ≡ 0 mod π and f = 2
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Observe that when ϕE(t)(x) is of the form πx+ axq + xq
2

, which is always true
after changing the coordinate x (perhaps passing to a cover of S), we have the
simplified forms

λ1 ≡ (−1)fa
qf−1(qf−1)

q−1
(
1− a′aq

f−1)qf−1
mod π,(10.2)

γ = πλ1/a mod π2.(10.3)

Proof. Let ϑ1 : N1 → Ĝa be the isomorphism defined in theorem 5.6. Then ϑ1 ≡
τ0 mod π. Also ϑ1 induces the isomorphism (ϑ1)∗ : Ext(E,N1) → Ext(E, Ĝa). In
order to determine the action of A on J1E and J2E we need to determine how t
acts on the coordinates x′ and x′′. Now we note that JnE ' Wn can be endowed
with the δ-coordinates (denoted [z, z′, z′′, . . . ]) or the Witt coordinates (denoted
(z0, z1, z2, . . . )) and they are related by the following in J2E by proposition 3.2

[z, z′, z′′] = (z, z′, z′′ + πq̂−2(z′)q̂)(10.4)

Taking π-derivatives of both sides of equation (10.1) using the formula

δ(axq
j

) = a′xq̂q
i

+ φ(a)πq
i−1(x′)q

i

,

we obtain

ϕ(t)(x′) = π′xq̂ + a′1x
qq̂ + a′2x

q2q̂

+ πx′ + φ(a1)πq−1(x′)q + φ(a2)πq
2−1(x′)q

2
(10.5)

and

ϕ(t)(x′′) = π′′xq̂
2

+ a′′1x
qq̂2

+ a′′2x
q2q̂2

+ {terms with x′ and x′′}
(10.6)

Then the A-action ϕJ1E : A→ End(J1E) is given in Witt coordinates by the 2× 2
matrix

ϕJ1E(t) =

(
ϕE(t) 0
ηJ1E ϕN1(t)

)
where ηJ1E = π′xq̂ + a′1x

qq̂ + a′2x
q2q̂. And by (10.6) and (10.4), the A-action

A→ End(J2E) is given by the (1 + 2)× (1 + 2) block matrix

ϕJ2E(t) =

(
ϕE(t) 0
ηJ2E ϕN2(t)

)
where (using 10.4) ηJ2E is the column vector

ηJ2E =

(
π′xq̂ + a′1x

qq̂ + a′2x
q2q̂

∆(π)xq̂
2

+ ∆(a1)xqq̂
2

+ ∆(a2)xq
2q̂2

)
and where ∆(y) = y′′ + πq̂−2(y′)q̂.

Now we will consider two cases—

(1): Consider ηΨ1∗(J
1E) ∈ Ext(E, Ĝa) which is the image of Ψ1 under the con-

necting morphism HomA(Ĝa, Ĝa)
∂→ Ext(E, Ĝa) and Ψ1 : N1 → Ĝa is the iso-

morphism defined in theorem 5.6 and satisfies Ψ1 = ϑ1 ◦ f◦0 = τ0 mod π where
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f◦0 = 1.

0 // N1 //

Ψ1

��

J1E //

��

E // 0

0 // Ĝa
// f∗(J1E) // E // 0

where ηJ1E = [π′xq̂ + a′1x
qq̂ + a′2x

q2q̂] ∈ Ext(E,N1) Hence

ηΨ1∗(J
1E) =[π′xq̂ + a′1x

qq̂ + a′2x
q2q̂] ∈ Ext(E, Ĝa)

∂(Ψ1) ≡[xq̂ + a′1x
qq̂ + a′2x

q2q̂] mod π.

(2): Now consider ηΨ2∗(J
2E) ∈ Ext(E, Ĝa) obtained as

0 // N2 //

Ψ2

��

J2E //

��

E // 0

0 // Ĝa
// f∗(J2E) // E // 0

Now we have

ηJ2E =

[(
π′xq̂ + a′1x

qq̂ + a′2x
q2q̂

∆(π)xq̂
2

+ ∆(a1)xqq̂
2

+ ∆(a2)xq
2q̂2

)]
∈ Ext(E,N2)

Let Ξ(y) = (y′)q̂ + π∆(y). Then applying Ψ2 = ϑ1 ◦ f and f(z1, z2) = zq̂1 + πz2, we
have

∂(Ψ2) = ηΨ2∗(J
2E) = [ϑ1(Ξ(π)xq̂

2

+ Ξ(a1)xqq̂
2

+ Ξ(a2)xq
2q̂2

)] ∈ Ext(E, Ĝa)

∂(Ψ2) ≡ [Ξ(π)xq̂
2

+ Ξ(a1)xqq̂
2

+ Ξ(a2)xq
2q̂2

] mod π

≡ [(π′)q̂xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

] mod π

≡ [xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

] mod π.

Recall that the map R{τ}ˆ→ Ext(E, Ĝa) given by η 7→ [η] is surjective and the
kernel consists of the inner derivations, which is to say all η of the form

πα− α ◦ ϕE(t),

for some α ∈ R{τ}ˆ. Let us now work out these relations explicitly for α = τ0, τ1, τ2.
If α = τ j , with j ≥ 0, we get the relation

πτ j = τ j(πτ0 + a1τ
1 + a2τ

2)

τ j+2 = a−q
j

2 [(π − πq
j

)τ j − aq
j

1 τ
j+1]

τ j+2 ≡ −(a1a
−1
2 )q

j

τ j+1 mod π

and hence we have by induction the relations

(10.7) τ i+1 ≡ (−1)iw
qi−1
q−1 τ1 mod π

where w = a1a
−1
2 , for all i ≥ 0.
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Therefore writing q̂ = qf , we have

∂(Ψ1) ≡ xq̂ + a′1x
qq̂ + a′2x

q2q̂

≡ xq
f

+ a′1x
qf+1

+ a′2x
qf+2

≡ τf + a′1τ
f+1 + a′2τ

f+2

≡ (−1)f+1w1+···+qf−2

(1− a′1wq
f−1

+ a′2w
qf−1+qf )τ1

and

∂(Ψ2) ≡ xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

≡ τ2f + (a′1)q
f

τ2f+1 + (a′2)q
f

τ2f+2

≡ (−1)2f+1w1+···+q2f−2(
1− (a′1)q

f

wq
2f−1

+ (a′2)q
f

wq
2f−1+q2f )

τ1

≡ (−1)2f+1w1+···+q2f−2(
1− a′1wq

f−1

+ a′2w
qf−1+qf

)qf
τ1.

and hence

λ1 =
∂(Ψ2)

∂(Ψ1)
≡ (−1)fwq

f−1+···+q2f−2(
1− a′1wq

f−1

+ a′2w
qf−1+qf

)qf−1
mod π

≡ (−1)fwq
f−1(1+···+qf−1)

(
1− a′1wq

f−1

+ a′2w
qf−1+qf

)qf−1
mod π

≡ (−1)fw
qf−1(qf−1)

q−1
(
1− a′1wq

f−1

+ a′2w
qf−1+qf

)qf−1
mod π

Now we determine γ. Write g =
∑
i αiτ

i. Then from proposition 8.4, we know
γ = πα0. Now we will compute α0. Let (z0, z1, z2) := ϕJ2E(t)(x, 0, 0). Then

Θ2(ϕJ2E(t)(x, 0, 0)) = Ψ2(z1, z2)− λ1Ψ1(z1) + g(z0)

= ϑ1(zq̂1 + πz2)− λ1ϑ1(z1) + g(z0)

≡ zq̂1 − λ1z1 + g(z0) mod π

where z0 = πx+ a1x
q + a2x

q2

and z1 = π′xq̂ + a′1x
qq̂ + a′2x

q2q̂. On the other hand
from the A-linearity of Θ2 we have

Θ2(ϕJ2E(t)(x, 0, 0)) = ϕĜa
(t)Θ2(x, 0, 0) = πΘ2(x, 0, 0) ≡ 0 mod π

and hence zq̂1 − λ1z1 + g(z0) ≡ 0 mod π. Substituting z0 and z1 in, we obtain

0 ≡ (π′xq̂ + a′1x
qq̂ + a′2x

q2q̂)q̂ − λ1(π′xq̂ + a′1x
qq̂ + a′2x

q2q̂) + g(πx+ a1x
q + a2x

q2

)

≡ (xq̂ + a′1x
qq̂ + a′2x

q2q̂)q̂ − λ1(xq̂ + a′1x
qq̂ + a′2x

q2q̂) + g(a1x
q + a2x

q2

)

Now substitute g(x) =
∑
j≥0 αjx

qj into this and consider the coefficient of xq. If
q̂ = q, we obtain λ1 ≡ α0a1 and hence

γ = πα0 ≡ πλ1/a1 mod π2.

If q̂ 6= q, we obtain α0a1 ≡ 0 and hence γ ≡ 0 mod π2 if a1 6≡ 0 mod π. If

a1 ≡ 0 mod π, we consider the coefficient of xq
2

which is α0a2 + λ1 if f = 2 and
α0a2 otherwise. In the case when f = 2 we have α0 ≡ λ1/a2 mod π since a2 is
invertible and hence γ ≡ −πλ1/a2 mod π2. When f ≥ 3 we have α0 ≡ 0 mod π
and hence the result follows. �
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