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ABSTRACT. We consider generalized A-structures on algebras and schemes over
the ring of integers Ok of a number field K. When K = Q, these agree with
the A-ring structures of algebraic K-theory. We then study reduced finite flat
A-rings over Ok and show that the maximal ones are classified in a Galois
theoretic manner by the ray class monoid of Deligne and Ribet. Second, we
show that the periodic loci on any A-scheme of finite type over Ok generate
a canonical family of abelian extensions of K. This raises the possibility that
A-schemes could provide a framework for explicit class field theory, and we
show that the classical explicit class field theories for the rational numbers
and imaginary quadratic fields can be set naturally in this framework. This
approach has the further merit of allowing for some precise questions in the
spirit of Hilbert’s 12th Problem.

In an interlude which might be of independent interest, we define rings of
periodic big Witt vectors and relate them to the global class field theoretical
mathematics of the rest of the paper.
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1. INTRODUCTION

Let A be a Dedekind domain with fraction field K. Let P be a set of maximal
ideals of A such that for each p € P, the residue field k(p) = A/p has finite car-
dinality N(p). We will be most interested in the case where K is a number field
or local field, A is the full ring of integers Ok of K, and P is the set Mg of all
maximal ideals of O.

Let B be a (commutative) A-algebra. Then for each p € P the algebra B/pB =
B®4k(p) over k(p) has a natural k(p)-algebra endomorphism F, : x + 2V ®) which
is called the Frobenius endomorphism. By a Frobenius lift on B at p we mean an
A-algebra endomorphism ), : B — B such that ¢, ® k(p) = F}.

We define a Ay p-structure on B to be a set map P — Enda-,e(E), denoted
p — 1y, such that

(1) 1y is a Frobenius lift at p for each p € P.
(2) ¢pothg = g0, for all p,qe P.

By a A4, p-ring we mean an A-algebra with A 4 _p-structure. (In fact, this definition
of Ay p-structure is well-behaved only when B is torsion free as an A-module, but
since all the A4 p-rings in this paper have that property, we will use the simple
definition given above. For the general one, see [3].)

For example, if A is the ring of integers of a number field K and B is the ring of
integers of a subfield L of the strict Hilbert class field of K, then B has a unique
A 4 p-structure: v, is the Artin symbol of p in the field extension K < L.

Observe that if p satisfies B®4 k(p) = 0, then the lifting condition (1) is vacuous.
In particular, if B is an algebra over K, then any commuting collection of K-
automorphisms of B indexed by the maximal ideals of P is a A4 p-structure on B.
At a different extreme, if P consists of one maximal ideal, for example if A is a
local ring, then the commutation condition (2) is vacuous.

When A = Z and P = Mg, Wilkerson and Joyal have shown that a A p-
structure on a ring without Z-torsion is the same as a A-ring structure in the sense
of algebraic K-theory [23][I5]. For instance, for any abelian group M we have a
natural Az p-structure on the group ring Z[M] given by 9, (m) = m? for me M
and prime p. In an earlier paper [7], we showed that a Az p-ring that is reduced
and finite flat over Z is a sub-Ag _p-ring of Z[C]™ for some finite cyclic group C and
integer n = 0. The proof uses the explicit description of ray class fields over Q as
cyclotomic fields.

Over a general number field, class field theory is less explicit, and the general-
izations we present in the present paper are consequently less explicit. However,
we can still give a very similar criterion for a finite étale K-algebra E with A p-
structure to admit an integral A4 p-model, by which we mean a sub-A4 p-ring
B < F which is finite flat as an A-module such that the induced map K ®4 B — F
is a bijection. See theorem below.

Let Idp denote the set of non-zero ideals of A divisible only by the primes in P.
It as a monoid under ideal multiplication, the free commutative monoid on the set
P. Let K®°P be a separable closure of K, and let Gx denote the Galois group of
K*°P over K. It is a profinite group. By a Gg-set X we mean a finite discrete set
with a continuous G g-action. By Grothendieck’s formulation of Galois theory, a
finite étale K-algebra E is determined by the G k-set S consisting of all K-algebra
homomorphisms E — K*P. Giving a A4 p-structure on E then translates to giving
a monoid map Idp — Mapg, (S,S). By giving Idp the discrete topology, we see
that the category of A4 p-rings whose underlying A-algebra is a finite étale K-
algebra is anti-equivalent to the category of finite discrete sets with a continuous
action of the monoid Gk x Idp.
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Let us first consider the case where A is a complete discrete valuation ring and
P consists of the single maximal ideal p. Then Idp is isomorphic as a monoid to
the monoid of non-negative integers under addition. Let Ix © Gk be the inertia
subgroup. Then Ik is normal in Gk and Gk /Ik is the absolute Galois group of
k(p), which contains the Frobenius element F € G /I given by x — 2V (®). Thus,
F acts on any G g-set on which I acts trivially.

Theorem 1.1. Suppose that A is a complete discrete valuation ring and that P
consists of the single mazximal ideal p. Let E be a finite étale K-algebra with a
A p-structure, and let S be the set of K-algebra maps from E to K°P. Then K
has an integral A 4 p-model if and only if the action of Gk x Idp on S satisfies the
following two conditions:

(1) the group Ik acts trivially on Syny = ﬂn>0 pns;

(2) the elements p € Idp and F € G /I act in the same way on Sun,.

See section [3] for the proof.

Next, consider the global case, where A is the ring of integers in a number field.

In order to express our result, let us first recall the definition of the ray class
monoid. A cycle of K is a formal product f = Hp p™r, where the product ranges
over all primes of K, both finite and infinite, all n, are non-negative integers, only
finitely many of which are non-zero, and we have n, € {0, 1} for real primes p, and
ny = 0 for complex primes p. The finite part of f is fgn = Hp@o p™r which can be
viewed as an ideal of A. We write ord,(f) = ny.

For a cycle f, we say that two integral ideals a,b are f-equivalent, and write
a ~; b, if the following two conditions are satisfied:

(1) a and b have the same greatest common divisor d with fgy
(2) ad~! and bd~! represent the same class in the ray class group Cl1(fo~1) of
conductor fo 1.

This is an equivalence relation, and we write DRp(f) for the quotient Idp/~j.
Because ~j is preserved by multiplication of ideals, DR p(f) inherits a unique monoid
structure from Idp. We call it the ray class monoid (or Deligne—Ribet monoid) of
conductor f supported at P. It was introduced in Deligne-Ribet [I1] in the case
where P = Mg and every real place divides f. For alternative definitions of f-
equivalence and DRp(f), see section

Let us say that P is Chebotarev dense if any element of any ray class group CI1(f)
can be represented by an ideal supported at P, or equivalently by infinitely many
such ideals. For example, by Chebotarev’s theorem, any set P consisting of all
but finitely many maximal ideals is Chebotarev dense. Whenever P is Chebotarev
dense, any element of CI(f) can be written as the class of an ideal supported at
P, and hence gives a well-defined element of DRp(f). This defines a map CI(f) —
DRp(f), which is in fact injective. Composing with the Artin symbol defines a map

(1.1.1) Gx — CI(f) — DRp(f),
and hence a surjective map
(1.1.2) Gk x Idp — DRp(f)

whose restriction to the first factor is the map (1.1.1)) and whose restriction to the
second factor is the canonical quotient map Idp — DRp(F).

Theorem 1.2. Suppose that K is a number field and that P is Chebotarev dense.
Let E be a finite étale K-algebra with a Aa p-structure, and let S be the set of
K-algebra maps from E to K°P. Then E has an integral A o p-model if and only if
there is a cycle f of K such that the action of Gk x Idp on S factors (necessarily
uniquely) through the map Gk x Idp — DRp(f) above.
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It follows that the category of such A4 p-rings is anti-equivalent to the category
of finite discrete sets with a continuous action by the profinite monoid lims DR p(f),
where the inverse limit is taken over all cycles §f with respect to the canonical
surjective maps DR(f) — DR(f') when § | f. When K = Q, A = Z, and P = My,
this limit is the monoid Z° of all profinite integers under multiplication. In this
case, the theorem above reduces to the first theorem of our earlier paper [7]. It was
Lenstra who suggested that the ray class monoid could play this role over general
number fields.

When E admits an integral A p-model, there must be a maximal one. (See
section [2]) In the example above, Z[z]/(z™ — 1) is the maximal integral model
of Q[z]/(z™ — 1). This is the second theorem in [7]. In general, let us write
R4, p(f) for the maximal integral A4 p-model associated to the free DR p(f)-set on
one generator, namely DRp(f). We call R4 p(f) the ray class algebra of conductor
f—just as K (f), the ray class field of conductor f, is the extension of K corresponding
to the free CI(f)-set on one generator. The ray class algebra is an order in a product
of ray class fields:

K®aRapr(f)= [[ K@F).

?|f,0eldp

It is typically smaller than the maximal order in the non-A sense. For example,

Ry g (n0) = Z[z)/(@" = 1) < [ [ Z[¢a)-

d|n

The theorems in [7] for K = Q, however, give us something more than the
abstract existence theorem above. They give explicit presentations of the ray class
algebras Ry ar,(noo), namely Z[x]/(z™ — 1). More importantly, the presentations
are all as quotients of a single finitely generated A-ring—in this case Z[z*!], or
Z[x], where each 1, is defined by #,(x) = zP. One can view this as a A-refinement
of the Kronecker-Weber theorem, telling us that the function algebra O(u.,) of
the n-torsion subscheme u, < G, = SpecZ[z*!] is isomorphic as a Az, n,-ring
to the ray class algebra Rz ar,(noo); this is instead of the statement that its set
of Q-points, p,(Q), generates the ray class field Q(noo). This refinement gives us
Frobenius lifts at all primes, even those dividing the conductor, by treating integral
structures with more care. But the ray class algebras will have zero divisors and
be non-normal over the primes dividing the conductor, which some might consider
a drawback. Then again, they are normal in a A-ring theoretic sense, by definition.

It is natural to ask whether something like this holds for number fields K larger
than Q. Do the ray class algebras R4 p(f) have a common origin in the algebraic
geometry of A4 p-rings? If so, this would give a systematic way of generating ray
class algebras and hence ray class fields. Or more modestly, is it at least true that
the known explicit class field theories admit a A-refinement as above? There is also
a converse question: when does a A4 p-structure on an A-scheme X give rise to a
family of abelian extensions, as the Az, My-structure on Gy, does?

The converse is the easier direction, and we will consider it first. Let X be a (flat
and separated) A-scheme with a A4 p-structure, by which we mean a commuting
family of Frobenius lifts ¢, : X — X, for p € P. If we are going to follow the model
of u, € G, and produce abelian extensions of our number field K by finding
finite flat sub-A4 p-schemes Z < X and applying the theorem above, then by this
theorem, there must exist a cycle § such that the Frobenius operators ¢, on Z are
f-periodic in a, meaning that they depend only on the class of a in DRp(f). So it
is natural to consider the largest such subscheme, the locus X (f) € X where the
operations 1, depend only the class of a in DRp(f). We call X (f) the f-periodic
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locus. It is defined by a large equalizer diagram; so it does indeed exist and is a
closed subscheme of X.

For example, in the cyclotomic setting with the Ag, Mg-scheme X = Gy, as above
and f = noo, with n > 1, the j-periodicity condition is ¥, 1n) = V() for all m > 1.
In other words, it is that the operators 1)(,,) are periodic in m with period dividing
n. It follows that the f-periodic locus is just the n-torsion locus p,. In general,
while the f-periodic locus is similar in spirit to the f-torsion locus when X is a group,
they can be different: for example if X is still G, but f is trivial at oo, so f = (n),
then the periodic locus must also be invariant under the involution = — z*' and
is hence just ps if n is even, or p; if n is odd.

But the definition of X (f) does not even require X to be a group. Thus the
group scheme structure in the traditional frameworks for explicit class field theory
is replaced by a A-structure in ours. This will allow us some flexibility that is not
available when working with group schemes. For example, we can divide out a CM
elliptic curve, say, by its automorphism group. Although the group structure is lost,
the A-structure is retained and hence we can still speak of the periodic locus on the
quotient. Note that whereas in the group-scheme setting, the abelian nature of the
Galois theory comes from the torsion locus being of rank 1 over some commutative
ring of complex multiplications and then from the commutativity of the general
linear group GLj, in our setting, it comes from the assumption that the Frobenius
lifts 1), commute with each other and then from Chebotarev’s theorem.

We can now state the answer to the converse question:

Theorem 1.3. Let X be a Aa p-scheme of finite type over A, as above, and assume
P is Chebotarev dense. Then possibly after inverting some primes, X (f) is an affine
A4 p-scheme which is reduced and finite flat over A.

The idea of the proof is that for primes p { §, the endomorphism v, is an au-
tomorphism of finite order because the class [p] € DRp(f) is invertible and hence
has finite order; therefore the Frobenius endomorphism of the fiber of X over p
is an automorphism of finite order, and so the fiber is finite and geometrically re-
duced. Then apply the semicontinuity theorems of scheme theory. For details, see
theorem

It then follows from theorem that O(X (f)k), the function algebra of the
generic fiber of X(f), is a finite product of abelian extensions of K of conductor
dividing §. Thus any A4 p-scheme X of finite type (still flat and separated) gives
rise to a uniform geometric way of constructing abelian extensions indexed by cycles
f. It will not always produce arbitrarily large abelian extensions—for example, the
Chebyshev line below will only produce the ray class fields over Q with trivial
conductor at infinity, namely Q(¢, + ¢, ).

We can now state some precise versions of our original question of whether the
ray class algebras have a common origin in A-algebraic geometry. It is cleaner to
restrict to cycles f of a fixed type away from P, and in particular of a fixed type at
infinity. So fix a cycle t supported away from P, and let Z(P,t) denote the set of
cycles f which agree with v away from the primes in P. We will refer to the triple
(A, P,t) as the context.

(Q1) Does there exist a A4 p-scheme X of finite type such that for all f € Z(P, ¢),
the direct factors of the étale K-algebra O(X (f)i) generate the ray class
field K (§)?

The Kronecker-Weber theorem states that the answer is positive in the cyclo-
tomic context (Z, Mg, ), with X being G, with the usual Az a7, -structure de-
fined above. We will show it is true in two other classical contexts of explicit
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class field theory, namely the real-cyclotomic context (Z, Mg, (1)) and the context
(Ok, Mg, (1)) where K is an imaginary quadratic field.

In fact, we will show a stronger A-refinement holds. The strongest question one
might ask is the following;:

(Q2) Does there exist a A4 p-scheme X of finite type such that for all f € Z(P, v),
the function algebra O(X (f)) of the periodic locus is isomorphic to the ray
class algebra R4 p(f)?

As mentioned above, the answer is positive in the cyclotomic context with X =
Gp,. But it appears to be slightly too much to ask for in general. For instance,
consider the real-cyclotomic context (Z, Mg, (1)), and let X = Gy /(z — 27 1) =
A%. Then the Az rr,-structure on G, descends to one on X. The operations 9,
are given by Chebyshev polynomials ¢, (y) € Z[y] determined by ¢, (z +2~") =
aP + 27P. Then for any n > 1, the periodic locus X (n) does indeed generate the
real ray class fields,

QX(M)(@) = Qe + ),

but O(X(n)) does not generally agree with the full ray class algebra Ry p(n). It
is however only of index 2 in it, once n is even, and this error even disappears
in the limit as n grows. So in the real-cyclotomic context, the answer to (Q2) is
as about as close to being positive without being so (at least for the given X!).
This discrepancy is no doubt due to the nontrivial isotropy groups of the points
+1 € Gy, under the involution  — x~!, and it may very well disappear in a proper
stack-theoretic treatment.

But if we stay in the world of schemes, we need to control it. So given a finite
reduced A4 p-ring B, let B denote the maximal integral A4 p-model in K ®4 B.
It is the A-analogue of the integral closure of B.

(Q3) Does there exist a A4 p-scheme X of finite type such that for all f € Z(P, v),

(i) the function algebra O(X(f)) is of finite index in O(X (f))™,
(ii) the morphism of pro-rings

(O ).,y — (OX(E)7)

is an isomorphism, and
(iif) O(X(f))~ is isomorphic to R4(f) as a A4 p-ring?

feZ(P,x)

Theorem 1.4. The answer to (Q3) is positive in the following contexts (A, P, t)
with the Aa p-schemes X :
(1) (Z, Mg, ) and X = G,z with the Az v, -structure above
(2) (Z, Mg, (1)) and X = A} with the Chebyshev Az, ay,-structure
(3) (Ok, Mk, (1)), where K is imaginary quadratic with Hilbert class field H,
and X 1is PbH, viewed as a scheme over O, with the Lattés Aoy -

structure defined in .

The A-scheme ]P’loH in the imaginary quadratic context plays the role of the tar-
get of the Weber functions £ — E/Aut(F) =~ P} in the traditional treatments of
explicit class field theory of imaginary quadratic fields. There are, however, a num-
ber of subtleties in constructing this A-structure. For instance, CM elliptic curves
are only defined over H and not K, there can be more than one of them, but it
might be that none of them has good reduction everywhere. These problems were
completely clarified in Gurney’s thesis [14]. He also gave an account of class field
theory for imaginary quadratic fields from the point of view of the A-structure on
P! .» but he stopped at considering the field extensions generated by the preimages
w;l(oo). In either approach, the package of elliptic curves with complex multipli-
cation and their Weber functions is replaced by the single Ao, ar,-scheme IPloH.
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We emphasize that IP’10H is not so interesting from a cohomological or motivic point
of view—there are no interesting Galois representations in the cohomology. All the
richness is in the A-structure.

It would be interesting to know if something similar holds for other number
fields, starting with CM fields. One virtue of the questions above is that they allow
for negative answers, which would also be interesting. In the final section, we will
raise some further questions in this direction.

It is a pleasure to thank Lance Gurney and Hendrik Lenstra for several helpful
discussions.

Part 1. Finite A-rings and class field theory
2. MAXIMAL A-ORDERS

2.1. Mazimal A-orders. Let A’ be a sub-A-algebra of K, and let E be a finite
K-algebra with A4 p-structure. A sub-A’-algebra B € E with a A4 p-structure is
said to be a Ay p-order (over A') if it is finite over A’. We say it is mazimal (in
E) if it contains all others. Maximal A4 p-orders always exist, by an elementary
argument ([7], prop. 1.1), since maximal orders in the ordinary sense exist and since
A’ is noetherian.

We will say a finite flat A’-algebra B with a A4 p-structure is normal (or Aa p-
normal over A') if it is maximal in K ® 4+ B, in the sense above.

We will need the following basic facts:

Proposition 2.2. Let B be a finite flat A’-algebra with A4 p-structure.
(1) B is Ay, p-normal over A" if Og, @ar B is AoKp,p—normal over Ok, for all
mazimal ideals p of A’.
(2) If B is Aa p-normal over A', and G is a group acting on B by Aa p-
automorphisms, then the invariant subring B is A4 p-normal over A’.
(3) If B is a product By x By of A p-rings, then B is Aa p-normal over A’ if
and only if By and Bs are.

Proof. (1): Let C € K ®as B be a Ay p-order over A’ containing B. Then for any
maximal ideal p = A’, the base change O, ®4/ C is a AOKwp—order over Of, .
Therefore it agrees with Ox, ® 4/ B. Since this holds for all maximal ideals p = A’,
the ring C agrees with B. Therefore B is maximal.

(2): Let C € K ®a B be a A4 p-order over A’ containing BS. Then C is
contained in K ®4- B and hence, by the maximality of B, is contained in B. But
since C' is contained in K® 4 B, it is also G-invariant. Therefore we have C < BC.

(3): Let C € K ®4/ (B1 X Ba) be a Ay p-order over A’ containing By X By. Put
C; = C®p,xB, Bi, for i =1,2. Then each C; is a A4 p-order over A’ in K ®4' B;.
By the maximality of B;, we have C; = B;. Therefore we have

C:01XC2:Bl><BQ.

Thus B; x Bg is maximal. O

3. THE LOCAL CASE

In this section, A will be a complete discrete valuation ring with maximal ideal
p, and P will be the singleton set {p}. So Idp is the multiplicative monoid of all
nonzero ideals of A. Write k = k(p) and Aap, = Aa p.

Proposition 3.1. Let B be a finite étale A-algebra. Then B has a unique Ag p-
structure, and the induced action of G xIdp on S = Homg a1s(B®a K, K°P) has
the property that the inertia group Ix acts trivially and that the element p € Idp
and the Frobenius element F € G /Ix act on S in the same way.
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Proof. Because B is étale, k ®4 B is a product of finite fields. Since B is complete
in its p-adic topology, idempotents of B/pB lift to B, so that B is a finite product
of rings of integers in finite unramified extensions of K. Therefore the inertia group
Ix < Gg acts trivially on S = Homg_as(B, K°°P). Every finite unramified field
extension L of K is Galois with an abelian Galois group, and its rings of integers
has a unique Frobenius lift. It follows that when B is unramified over A, it has a
unique A 4 p-structure. O

3.2.  Structure of finite étale K-algebras with A4 p-structure. Let E be a finite
étale K-algebra with a A4 p-structure, and write

S = HomK_alg(E,Ksep).
Put Sp =[50 p"S and for i = 1,2,.. ., let
S;={seS: s¢S;_1and pse S;_1}.

Then each S; is a sub-Gi-set of S. Since S is finite, there exists an n > 0 such
that S,,+1 = @. Then we have the decomposition

S =SouSju---uSy,.

Let E; = Mapg, (Si, K*°?) be the corresponding finite étale K-algebra for each i.
Then the maps S, — --- — 51 — Sy O given by multiplication by p give rise to a
diagram of K-algebras

o GEOLEIQ,...LEH

Since § = SouSiu---uS, is a decomposition of G as a Gg-set, we have a corre-
sponding product decomposition of the finite étale K-algebras F = Fy x E1 X -+ x
E,. In terms of this decomposition, 1, is given by

(323) wp(em €1y--+y en) = (fO(eO)a fl(eO)v LR fn(enfl))'

Since S is closed under multiplication by p, the quotient ring Fy of E is a quotient
A4 p-ring of E, with Frobenius lift fy.

We will now construct a splitting of this quotient map F — Ej in the category
of A4 p-rings. Note that we have pkS = Sy for sufficiently large k; so we have
pSp = Sp and hence p act as a bijection on Sy. Thus, fy is an automorphism of
Ey. For s € S; we have p’s € Sy. Again since p acts bijectively on Sy, we can
define a map S — Sy by sending s € S; to the unique element s’ of Sy such that
p’s’ = p’s. This map commutes with the G'x x Idp-action, and it is a retraction of
the inclusion Sy — S. This induces our desired splitting £y — E. In other words,
Ey is not only a quotient A 4 p-ring of £, but also a sub-A 4 ,-ring:

jl E0—>E
-1 2 —n+1
eo —(eo, f1fo eos fafifo “€0s s fne1- fifg " eo).

3.3.  Proof of theorem , Suppose that E has an integral A4 y-model B, that is,

(i) B is finitely generated as an A-module and has rank dimg (E),
(ii) ¢p(B) < B,
(iii) ¥y ®a k is the Frobenius map x — 2N®) on B®y k.

Let By denote the image of B under the quotient map E — Ej (in the notation of
. Then By is an integral A 4 ,-model of Ey. Since fy is an automorphism of Ey,
the ring By and its subring fo(Bp) have the same discriminant. Thus, fo(By) = Bg
and hence fy is an automorphism of By. This implies that the map z — 2N ®) on
By ®4 k is an automorphism, and so By is étale over A. Conditions (1) and (2) of
theorem now follow by proposition [3.1
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For the converse, suppose that conditions (1) and (2) hold. We will produce an
integral A4 p-model of E = Ey x --- x E,. Let R; be the integral closure of A in
E;. Since Ik acts trivially on Sy, = Sp, the A-algebra Ry is finite étale and hence
has a unique A4 p-structure by proposition Our integral model B € E will be
of the form

(3.3.4) B =j(Ro)® (0 xay x--xay),

where each a; is an ideal in R; and j is the map defined in [3:2] Observe that
any B of this form is a subring of E. For it to be a sub-A4 ,-ring, we need to
have ¥, (a) = a™¥®) mod pB for all a € B. Since both sides of this congruence are
additive in a, it is enough to consider elements a in each of the summands in (3.3.4).
It holds for the summand j(Ry) because j is a Ay p-morphism. So by a
sufficient condition for B to be a sub-A 4 p-ring is f;(a;—1) < pa; and afv(p) C pa;
for i = 1,...,n, where we take ag = 0. This holds if, for instance, a; = p"*T!R;.
So for this choice, B is an integral A 4 p-model of E. O

3.4. Remark. Note that the integral model produced in the proof above is not
always the maximal one. For instance, if C,, denotes a cyclic group of order n, then
on the group algebra Q3[C4] with its usual Az, o-structure, the proof produces a
strict subring of Z3[C4] and hence cannot be not maximal. (In fact, Zs[Cy] is the
maximal integral model, as is shown in [7]).

It can also happen that, for group algebras, the integral model supplied by the
proof is strictly larger than the integral group algebra. An example is Q2[C2 x Cs].

3.5.  Remark. It is possible to express theorem in a more Galois-theoretic way,
similar to the statement of theorem We can define an inverse system of finite
quotients Gy, of the monoid Gk x Idp with the property that F has an integral
A4 p-model if and only if the action of Gx x Idp on S factors through some Gy .
The quotients G, are defined as follows. Let N be an open normal subgroup of

Gk, and let n be an integer > 0. Define a relation on G x Idp by (g,p?) ~ (h,p?)
if either or both of the following conditions hold:

(1) a=band g=hmod N

(2) a,b=n and gF® = hF® mod NIg.
This is easily seen to be an equivalence relation which is stable under the monoid
operation. We then define G, to be the quotient monoid. Observe that we have
a decomposition of G -sets:
(3.5.5) GNn=Gg/Nu--- uGg/N uGg/NIg.

"
n times

For N’ € N and n’ > n, we have evident transition maps Gy s — Gy, If we
consider the inverse limit
G =1im Gy,
,n
then the re-expression of theorem is that I has an integral A 4 p-model if and
only if the action of Gk x Idp on S factors (necessarily uniquely) through a con-
tinuous action of G. One might call G the A A,p-algebraic fundamental monoid of

Spec O with ramification allowed along Spec k.

3.6. Remark. In the global case considered in the rest of this paper, we will see
that only abelian field extensions arise from integral A-models. But in the local
case, we can get nonabelian extensions. In fact, we can get arbitrary extensions.
Indeed, any given extension L of K is a direct factor of the K-algebra L, x L,
which has a A 4 p-structure admitting an integral model. For instance, one can take

Yp(eo, e1) = (F(eo), €o).
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4. THE RAY CLASS MONOID
Fix the following notation:

K = a finite extension of Q
Ok = the ring of integers in K
Mg = the set of maximal ideals of Ox
A = a Dedekind domain whose fraction field is K
P = a set of maximal ideals of A
Idp = the monoid of nonzero ideals of A supported at P
f = a cycle (or modulus) on K
fp = the part of f supported at P
fP = the part of § supported away from P
fan = the part of § supported at the finite primes
foo = the part of f supported at the real places
Idp(f) = the submonoid of Idp of ideals prime to fa,
CI(f) = the ray class group of K of conductor f
Clp(f) = the image of the canonical map Idp(f) — CI(f)
R° = R viewed as a monoid under multiplication, for any ring R
Observe that, up to canonical isomorphism, the constructions above depend only
on the places of K corresponding to P, and so they depend on A only in that

these places must come from maximal ideals of A. Therefore we can take A = Og
without changing anything above.

4.1.  Structure of the ray class monoid. There is a bijection

(4.1.6) [ Clp(fo™")=>DRp(f),

veldp,0|f

sending an ideal class [a] € Clp(fo~!) in the summand of index ? to the class
[0a] € DRp(f). Thus we have

(4.1.7) [1 [RICIe(o") = DRe().
veldp,0lf

The multiplication law on DRp(f) is given in terms of the left-hand side by the
formula

(4.1.8) [0][a] - ['][a] = [0"][a"],
where 0" = gcd (00, f) and a” satisfies 9”a” = dad’a’. It follows, for example, that

the submonoid DRp(f)* < DRp(f) of invertible elements agrees with the part of
the ray class group supported at P:

DRp(f)* = Clp(j).

When P is Chebotarev dense, we have Clp(f) = CI(f), and so the invertible part
of DRp(f) is independent of P. Observe however that this is not the case for the
noninvertible part. For example, if K = Q and f = (n)oo, then we have

(4.1.9) DRp(f) = (Z/npZ)° x (Z/n"7)*,

where np is the factor of n supported at P and n” is that supported away from P.
The invertible part is (Z/npZ)* x (Z/n*Z)* = (Z/nZ)*, which does not depend
on P, but the non-invertible part does.
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4.2.  Change of conductor. Suppose f | f'. Then we have the implication
b~yc=b~5c

which induces a monoid map

(4.2.10) DRp(f) — DRp(f),

which we call the canonical map.
There is also a map in the other direction. Write f = fa. Then by the equivalence

b ~jc<ab ~q5 ac,
there is a well-defined injective map
(4.2.11) DRp(f) — DRp(f), [b] — [ab].

It is not a monoid map, but it is an equivariant map of DRp(f)-sets. The com-
position with the canonical projection DRp(f') — DRp(f) on either the left or the
right, is given by multiplication by the class of a.

We conclude this section with two more descriptions of f-equivalence and the ray
class monoid, although they only have small parts in this paper. The first is the
one that appears in Deligne-Ribet [11], and a form of the second was pointed out
to us by Bora Yalkinoglu.

Proposition 4.3. Two ideals a,b of Ok are f-equivalent if and only if a = xb for
some element x € 1 + fgnb~ 1 which is positive at all real places dividing §.

Proof. Let d = ged(f, b). By definition, we have a ~; b if and only if there exists
an element x € K* satisfying the following:

(1) ad~! = xbo~?

(2) =1 mod p", where n, = ord,(fo~'), whenever n, > 1

(3) x is positive at all real places dividing fo~1.
Observe that (1) is equivalent to a = b and that (3) is equivalent to the positivity
condition in the statement of the proposition. It is therefore enough to show that,
under (1), condition (2) is equivalent to x € 1 + fg,b~1, or equivalently to the
condition that that for all p, we have z = 1 mod p™», where m,, = ord,(fb~!). So
fix a prime p. In the case ord,(f) = ord,(b), we have n, = m, and so this condition
is indeed equivalent to (2).

Now consider the remaining case ord,(f) < ord,(b). Then we have n, = 0 and
my < 0. Because n, = 0, condition (2) is vacuous. Therefore it is enough to
show that x = 1 mod p™» necessarily holds. Since ged(f,b) = ged(f, a), we have
ordy, (f) < ordy(a) and hence

ordy(z — 1) = min{ord,(z),0} = min{ord,(ab™"),0} = min{m,,0} = m,.
O
Proposition 4.4. Assume that P is Chebotarev dense. Then there is an isomor-
phism
(4.4.12) (Ox/iP)° @0k ip)* CU(f) — DRp(F),

which is given by the canonical inclusion C1(f) — DRp(f) on the second factor
and which on the first factor sends the residue class of any element x € Ok with
(x) € Idp to the class [(x)] € DRp(f).

The notation A@g B above refers to the push out in the category of commutative
monoids, which when G is a group is the quotient of A@ B = A x B by the action
of G given by g (a,b) = (ga,g~'b).
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Proof. First observe that this morphism is well defined. Indeed, any element x €
(Ok/fp)* is the image of an element Z € Ok relatively prime to fp, and its class
[(Z)] in DRp(f) is indeed the image of its class in the ray class group CI(f).

The fact that this morphism is an isomorphism is a consequence of the following
equalities, which will be justified below, and where ? runs over Idp with ? | f:

(4.4.13) DRp(f) = [ [[p]Clp(07") = [ [lICL(1)
) )
Let us simplify the right-hand side further and show

(4.4.14) [P]CL(fo™") = CL(f)/(1 + fnd ™" /fiin)-
We use the adelic description of ray class groups: Cl(m) = A% /K*U,. Then we
have the exact sequence

Ujp—1 /U; —> C1(f) — Cl(fo ™) — 1.
Since the archimedean parts of f0~! and f agree, we have
Ufbfl/Uf = Uffinbfl/Ufﬁn =1+ fﬁnoil/fﬁn'
Equation (4.4.14) follows.
Combining this with (4.4.13]), we have

DR (f) = [ [RICI)/(1 + fand " /fin)

0

= | [[R1(Ox /00 1)* @ (04 i)+ CA(F)

0

(TTR1(OK /350 ™)* ) @(0sc 5y CLH)

0

( OK/fP OK/f ) ) (Ox /fgin)* Cl(f)
( Ok /fr)° x (Ok /") ) (Ox /§p)% x (0x /5Py CL(F)
= (O /fP)° ®(0x /i) CL(F)-

O

4.5.  Ezamples. If K has class number 1 and P is still Chebotarev dense, then we
have

(4.5.15) DRp(f) = (Ok/ip)° ®ox (O /if)*,

where O K. 18 the subgroup of O consisting of units which are positive at all
places dividing fo,. At a different extreme, if K is arbitrary but P = Mg, then in
the limit we have

(4.5.16) li%nDRp(f) = Ok ®px G-
If K has class number 1 and P = My, then we have
DRp(f) = (Ok/fin)°/ Ok 5., -
5. GLOBAL ARGUMENTS

The purpose of this section is to prove theorem [[.2] from the introduction. It
will follow immediately from proposition [5.2 and theorem [5.5] below.

We continue with the notation of the previous section. Also fix the following
notation:

E = a finite étale K-algebra with a A4 p-structure

S = Hompg (F, K°P), with its continuous action of Gx x Idp.
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Define t € Idp by setting
(5.0.17) ord,(t) = inf{i > 0: p'*' S =p'S}

for each prime p € P. This is well defined because pS = S whenever p is unramified
in B, by proposition [3.1

Lemma 5.1. Assume that E has an integral Aa p-model B. Let 0 be an ideal in
Idp, and put b = ged(0,t). Then 0S equals bS, and this Gk -set is unramified at
all primes dividing 0b™1.

Proof. Observe that for any prime p | 0b~!, we have pbS = bS. Indeed, we have
ord, (b) = ordy(r) and hence p!*ordr(0)g = porde(®)§ by the definition of r. Then
pbS = bS follows.

This implies by induction that 295 = bS. It also implies that for each prime
p | 06~ 1, the action of p on bS = 05 is bijective. Therefore by theorem 1), this
G k-set is unramified at all primes p | 9b~1. (]

Proposition 5.2. If E has an integral Ay p-model and P is Chebotarev dense,
then the action of Gk on S factors through the abelianization of Gk .

Proof. Let B be an integral A4 p-model of E. For each prime p € P we consider
the completion Ay, and its fraction field K,. Then we obtain an A4, ,-structure
on the finite étale Ky-algebra E, = E ®k K,, and then B ®4 A, is an integral
A4, p-model of Ey. Fixing an embedding K5 — K" for each p we can view
Gy as a subgroup of Gk. The finite étale Ky-algebra F), then corresponds to the
Gp-set that one gets by restricting the action of Gx on S to Gj.

Now let G' be the image of the action map Gx — Map(S,S). Because P is
Chebotarev dense, for each g € G there is a prime p = p, in P such that

(1) B is unramified at p,

(2) the image of F, € Gy/I, under the induced map G,/I, — G is g.
By proposition the action of g on S is the same as the action of p, on S. But
by the definition of A4 p-structure, the p, commute with each other. Therefore G
is abelian. 0O

5.3.  Conductors. By class field theory, any continuous action of the abelianization
of Gk on a finite discrete set T factors, by the Artin map, through the ray class
group Cl(¢(T)) for a minimal cycle ¢(T') on K, which we call the conductor of T

Lemma 5.4. Assume that E has an integral Aa p-model B and that the action of
G on S factors through its abelianization. Let § be a cycle on K, and let ¢ be as

mn . Then following are equivalent:
(1) the action of Gx x Idp on S factors through an action of DRp(f),
(2) v divides f, and for each ideal ® | f we have c(dS) | fo~ 1,
(3) v divides §, and for each ideal ® | v we have c(dS) | fo~ 1,
(4) the least common multiple lemy| (0 ¢(0S)) divides f.

Proof. (1)=(2): To show v | f, we will show that for all p € P, we have p"S <
p"+1S, where n = ord, (). Using the decomposition (4.1.7), we see [p]"*!DRp(f) =
[p]"DRp(f) and hence [p]™ = [p]" "'z for some x € DRp(f). Then because the
action of Idp is assumed to factor through DRp(f), we have pnS = p"*lzS <
pn+1 S.

Second, the condition ¢(2S) | o=t of (2) is equivalent to the condition that the
action of G on 0S5 factors through the Artin map Gx — CI(fo~!). But this holds
by the assumption (1) and the decomposition .

(2)=(1): Consider an element (c,a) € Gg x Idp. We will show its action
on S depends only on its class in DRp(f). First observe that by the assumption
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c(0S) | fo~t, taken when 0 = (1), we have ¢(S) | f. This implies that the action of
Gk factors through the Artin map Gg — CI(f), and so it is enough to show that
the action of a depends only on its class [a] € DRp(f). Now put 0 = ged(a, f) and
@’ = ad~!. Then we have a’ € Idp(f). Therefore, because of , it is enough to
show that the action of a’ € Idp(f) on 25 depends only on its class [a'] € Clp(fo1).
In particular, it is enough to show

(5.4.18) a'0s = Fy0s,

for all s € S, where Fy € Gk is an element mapping to [a'] under the Artin map
Gk — CI(f). To do this, it is enough to consider the case where a’ is a prime
p € Idp(f). Now by our assumption t | f, we have p { v and hence p acts bijectively
on S. Therefore by theorem [1.1} we have

ps = Fys,

for all s € S. This implies (5.4.18]) and hence (1).
(2) < (3): The implication (2) = (3) is clear. So consider the other direction.
Given an ideal ? | f, let b denote ged (9, v). Then by lemma we have equivalences

c(08) | fo7t < c(bS) | o7t = ¢(bS) | fo~tob ™! = ¢(bS) | fo .

Therefore since b is a divisor of t, the condition ¢(2S) | fo~! holds for all | f if it
holds for all @ | «.
(3) « (4): Clear. O

Theorem 5.5. Let f be a cycle on K. Then the action of Gk x Idp on S factors
(necessarily uniquely) through the map Gg x Idp —> DRp(f) of if and only
if the following hold:

(1) the action of Gk on S factors through its abelianization,
(2) lemge (0¢(dS)) divides f,
(3) E has an integral A4 p-model.

If P is Chebotarev dense, then condition (1) can be removed.

Proof. If (1)-(3) hold, then by lemma the action of G x Idp on S factors
through DRp(f); and if P is Chebotarev dense, then (1) can be removed because,
by proposition it follows from (3).

Let us now consider the converse direction. Suppose that the G x Idp-action
on S factors through DRp(f). Then (1) holds because DRp(f) is commutative.
Further, (3) implies (2) by lemma Therefore it is enough to show (3).

For each p € P, let By denote the maximal sub-A 4, p-ring of £ ®x K, which is
finite over A,. As mentioned in it always exists. We will show that B, ®4, K,
agrees with Ej,. To do this, it is enough to show that F ®x K, has an integral
A4, p-model. So write § = p"f with n = ord,(f). Then [p*] € [p"]C1(f) < DR(f)
for all k > n. This implies, by say , that the action of p on (), p'S = p"9 is
given by the Artin symbol of [p] € CI(f'), which by our local result, theorem [1.1]
guarantees existence of an integral A4, ,-model.

Now let R denote the integral closure of A in F, and let B denote the set of
elements ¢ € R such that the image of a in F ®x K, lies in B, for all p e P. We
will show that B is what we seek, an integral A4 p-model for E.

For all p { f, we are in the unramified case, and so By, is R®4 Oy, by proposition
[B1] It follows that B is of finite index in R. Therefore, since R is finite and flat
over A and we have E = R ®4 K, the same hold for B. Further, B is closed
under all 1; with q € P. Indeed it is enough to show ¢4(B,) < B, for all p,q €
P; and this holds because is a t¢q(By) sub-A4, p-ring of E, which is finite over
Ap, and so it is contained in the maximal one By. Finally, for each p € P, the
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induced endomorphism 1, of B is a Frobenius lift, because B ®4 Oy is a Aa, ,-
ring. Therefore B is an integral A4 p-model for E. This establishes (3) and, hence,
(1) and (2) as explained above. O

Corollary 5.6. If P is Chebotarev dense, there is a contravariant equivalence be-
tween the category of finite étale Aa p-rings over K which admit an integral model
and the category of finite discrete sets with a continuous action of the profinite
monoid lims DRp(f).

Part 2. Periodic loci and explicit class field theory
6. A-SCHEMES

Below X will denote a flat A-scheme.

6.1. A-schemes. Let p be a maximal ideal of A. As in the affine case, the fiber
X Xgpec 4 Spec k(p) has a natural k(p)-scheme endomorphism F}, which is the iden-
tity map on the underlying topological space and such that for each affine open
subscher(n)e Spec B, the induced the endomorphism of B is the affine Frobenius map
x— V),

Let End 4(X) denote the monoid of A-scheme endomorphisms of X. An endo-
morphism v € End4(X) is said to be a Frobenius lift at p if the induced endomor-
phism on the fiber X xgpec 4 Speck(p) agrees with Fy,. A Ay p-structure on a flat
A-scheme X is defined to be a set map P — End4(X), denoted p — 1), such that
1y is a Frobenius lift at p for each p € P and such that ¢, o yq = g 0 ¥, for all
p,q e P. We will call an A-scheme with A4 p-structure a Aa p-scheme. (When X
is not flat over A, this definition still makes sense; but as in the affine case, it is not
well behaved. In general, one should define it to be an action of the Witt vector
monad W} p as in the introduction to [4]. We will only consider A-structures on
flat schemes in this paper; so the simplified definition above is good enough here.)

For any ideal a € Idp with prime factorization a = p; - --p,, let 1, denote the
composition 1, o --- 01y . It is independent of the order of the factors because
the operators 1, commute with each other.

A morphism X — Y of A4 p-schemes is a morphism f: X — Y of A-schemes
such that fo, =1, o f, for all p € P. In this way, A4 p-schemes form a category.

6.2. Ezamples. The multiplicative group X = G, over A has a A4 p-structure
given by ¥, (z) = 2N ®) . This extends uniquely to A4 p-structures on A' and P!.
More generally, projective n-space P™ has a A4 p-structure where v, raises the
homogeneous coordinates to the N(p) power.

Any product of A4 p-schemes is again a A 4 p-scheme, where the ¢-operators act
componentwise. In a similar way, coproducts of A4 p-schemes are A4 p-schemes.

7. PERIODIC A-SCHEMES

Let § be a cycle on K.

7.1. Periodic A-schemes. We will say that a Ay p-scheme X is f-periodic if for
all f-equivalent ideals a, b € Idp, the two maps ¥4, ¥p: X — X are equal—in other
words, the monoid map Idp — End 4(X) factors through DRp(f).
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7.2.  Ezamples. Suppose that A = Z, P = Mg, and f = (n)co with n positive.
Then f-periodicity means that ¢4y = ¥ (44n) for all integers a > 1. In other words,
the sequence of Frobenius lifts 1(,) is periodic in a > 1 with period dividing n,
which is the reason for the name. Representation rings of finite groups, with their
usual A-ring structure in algebraic K-theory, are periodic. In fact, periodicity was
first introduced in this context by Davydov [10].

On the other hand, when A is general but f is (1), then f-periodicity means that
14 depends only on the class of a in the class group CI(1). If f is instead the product
of all real places, then it means that ¢, depends only on the class of a in the narrow
class group CI(f). In particular, if either of these class groups is trivial, then every
14 is the identity map, and so any (flat) A-scheme has at most one A 4 p-structure
with that type of periodicity.

If we are in the intersection of the two cases above, a (1)-periodic Az p-ring is
just a A-ring in which all the Adams operations are the identity. Elliott [12] has
proved that this is equivalent to being a binomial ring, a notion which dates back
to Berthelot’s exposé in SGAG6 [1], p. 323.

Proposition 7.3. Let X be a separated flat f-periodic A4 p-scheme of finite type.
(1) If P is infinite, then X is affine, reduced, and quasi-finite over A, with étale
generic fiber Xy .
(2) If P is Chebotarev dense, then the generic fiber’s function algebra O(Xg)
is a product of subextensions of the ray class field K ().

Proof. (1): Let us first show that X is reduced and quasi-finite over A. By period-
icity, for every p € P satisfying p 1 f, the Frobenius lift ¢, on X is an automorphism
of finite order. Therefore the Frobenius map F}, on the fiber k(p) ® X is an auto-
morphism of finite order, and so the fiber is both geometrically reduced and finite
over k(p). Since P is infinite and since the set of prime ideals of A with geomet-
rically reduced fibers forms a constructible subset of Spec A, by EGA IV (9.7.7)
[13], the generic fiber X Xgpec 4 Spec K must be geometrically reduced. Similarly,
since infinitely many fibers are finite, the generic fiber is also finite, by EGA IV
(9.2.6.2) [13]. We now use the flatness of X over A to pass from the generic fiber to
all of X. It is clear that flatness implies X is reduced. For quasi-finiteness, apply
EGA TV (14.2.4) [13)].

Therefore X is reduced and is quasi-finite over A. Affineness then follows from
Zariski’s Main Theorem, as we now explain. Let D denote the integral closure of A
in O(X). Let X’ denote Spec D, called the normalization of A in X in the Stacks
Project [2, Tag 035H]. Then O(X) is reduced and is flat over A, and hence so is D.
It is also finite over A, by [2, Tag 03GR]. Since X is quasi-finite, the canonical map
X — X' is an open immersion by Zariski’s Main Theorem [2], Tag 03GW]. Finally,
since X’ is finite flat over A, which is a Dedekind domain, its Krull dimension is 1
and hence its open subscheme X must be affine [2], Tag 09N9].

Thus we can write X = Spec B, where B is an f-periodic A4 p-ring which is
reduced and is flat, quasi-finite, and of finite type over A. It follows that K ® 4 B
is étale over K.

(2): It follows from statement (1) that there is a nonzero element ¢t € A such that
B[1/t] is a finite product [ [, D;, where each Dj is the integral closure of A[1/t] in a
finite extension L; of K: Indeed, since B is of finite type over A and since B®4 K
is finite over K, there is an element ¢ € A such that B[1/t] is finite flat over A[1/t].
Since B is reduced, so is B[1/t], and hence the discriminant ideal of B[1/t] over
A[1/t] is nonzero. Then by scaling ¢ so that it lies in the discriminant ideal, and
is nonzero, we may assume that B[1/t] is finite étale over A[1/t]. It then follows
that B[1/t] is the integral closure of A[1/t] in K ® 4 B and is hence of the required
form.


http://stacks.math.columbia.edu/tag/035H
http://stacks.math.columbia.edu/tag/03GR
http://stacks.math.columbia.edu/tag/03GW
http://stacks.math.columbia.edu/tag/09N9
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Now let P; denote the set of primes p in P that do not divide ¢. Then we can
consider P; as a set of primes of A[1/¢]; and since P is Chebotarev dense, so is P;.
Applying proposition to the A1/, p,-ring B[1/t], we see each field K ®4 D;
is an abelian extension of K. Since the Frobenius elements act on each D; with
period f, the conductor of K ® 4 D; divides f. (]

7.4. Ray class algebras. These are A-ring analogues of the ray class fields of K.
We can view DRp(f) as a pointed DRp(f)-set: the distinguished point is the
identity element, and the action is translation. By theorem the corresponding
A4 p-ring over K has an integral model. Define R4 p(f), the ray class algebra of
conductor f, to be the maximal A4 p-order in this K-algebra. Thus we have

K®aRap(H) =[] K@),
oeldp
9ftin
where K (fo1) is the ray class field of K with conductor fo~!. Under this identifi-
cation, the map 8: Ra p(f) — K®P coming from the distinguished point of DR p(f)
is the projection to the component with ? = (1).

In our previous paper [7], we considered the case where A = Z and P is all
maximal ideals. There we showed that the ray class algebra of conductor (n)oo is
Z[x]/(z™ — 1), or more naturally, the group ring on the cyclic group p, (K5P) of
n-th roots of unity in K5°P.

Observe that the ray class algebra is not usually a domain, and in particular the
map (: Ra p(f) — K(J) to the ray class field is not usually injective. Also, unlike
the ray class field, it depends not only on § but also on A and P. On the other
hand, K ®4 R4 p(f) is independent of A.

If P is Chebotarev dense, the ray class algebra R4 p(f) satisfies the following
maximality property: if D is a reduced finite flat f-periodic A4 p-ring equipped with
amap a: D — K5P of A-algebras, then there is a unique map ¢: D — R4 p(f) of
A 4 p-rings making the following diagram commute:

Csep
DL Rt

This is simply because, under the anti-equivalence with DR p(f)-sets, R4, p(f) cor-
responds to DR p(f), which is the free DRp(f)-set on one generator.

7.5. Change of f. Suppose f = fa. Then the maps DRp(f') — DRp(f) and
DRp(f) — DRp(f') of 1.2 induce an inclusion

(7.5.19) u: Ra p(f)— Rap(f')
and a surjection
(7.5.20) v: Rap(f') — Ra,p(f)

of A4 p-rings, and the compositions uov and uwov agree with the two 1, endomor-
phisms.

In the case where K = Q, P is all maximal ideals, f = (n)oo, and § = (n')c0,
these maps can be identified with the maps on group rings corresponding to the
inclusion i, (K®P) S p, (K5P), in the case of u, and the n//n-th power map
o (K5P) — 1, (KC5°P), in the case of v.

8. PERIODIC LOCI AND ABELIAN EXTENSIONS

Let f be a cycle on K. Let X be a separated (flat) A4 p-scheme.
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8.1.  Periodic locus X (f). Define the f-periodic locus X (f) of X to be the scheme-
theoretic intersection

X(f) = () X(@a=1ts),

a,beldp
a~jy b

where X (104 = 1p) denotes the equalizer of the two maps 14, ¢p: X — X. Since
X is separated, X (f) is a closed subscheme. The functor X (f) represents is
X(F(C) ={x e X(C) : Ya(x) = ¢p(z) for all a,b e Idp with a ~; b}.

We emphasize that X (f) depends on P as well as f, although the notation does not
reflect this.

Observe that X (f) is functorial in X. It also behaves well under change of f: if
f is another cycle and f | f, then we have

X(f) = X(F).

Finally, let X (f); denote the maximal A-flat subscheme of X (f). It is the closed
subscheme of X (f) defined by the ideal sheaf of A-torsion elements. Although the
actual periodic locus X (f) is more fundamental than X (f)g, for the purposes of
this paper it is enough to consider X (f)g, and doing so will allow us to avoid the
subtleties of A-rings with torsion.

Proposition 8.2. For any ideal a € Idp, we have the subscheme inclusion
(8.2.21) X(af) < g (X(F).

Proof. Let x be a point of X (af) with coordinates in some ring R. Let b and ¢ be
f-equivalent ideals in Idp. Then we have ab ~.s ac and hence

P (Zba(x)) = 'l/)ab(l') = wac(x) =, (wa(x))
It follows that 1, (x) € X(f), and this implies (8.2.21]). O

8.3.  Torsion locus X|[f]. Write f = ftnfoo. Then we define the f-torsion locus by
X[f] = ¢y, (X (F0))-

It follows from proposition that we have an inclusion of subschemes

(8.3.22) X(§) < X[f].

For example, if A = Z, P = Mg, and § = (n)0, then this inclusion is an equality be-
cause both sides are . If however §f = (n), then the f-torsion locus is again p,,, but
the f-periodic locus Gy, (f) i8 fm, where m = ged(2,n). So the containment
can be far from an equality.

Summing up the results above with the previous section, we have the following:

Theorem 8.4. If X is of finite type over A and P is Chebotarev dense, then we
have the following:
(1) The flat §-periodic locus X ()4 is a closed f-periodic sub-A 4 p-scheme of X,
and it is the mazimal flat closed subscheme with these properties.
(2) We have X (f)q = Spec B, where B is a finitely generated A-algebra, and
K ®a B is a finite product of abelian extensions of K of conductor dividing
f.
(3) If X is proper, then B is a finite A-algebra.

Proof. (1) By functoriality, the subscheme X (f) is stable under the operators ),
for all p € P. Again by functoriality, X (f)q is also stable under them. Since the
1, are Frobenius lifts on X, so are the endomorphisms they induce on the closed
subscheme X (f),. Since X (f), is flat, this defines a A4 p-structure on X (f)q. It is
obviously f-periodic. Maximality is also clear.
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(2) This follows from proposition
(3) When X is proper, so is X(f)g, since it is a closed subscheme of X. It
therefore must be finite over A because it is flat and generically finite. (|

8.5. Conjecture. Let v denote the product of all the real places. If X is proper
and nonempty, we conjecture that X (t) is nonempty.

When K = Q, this was proved in [5]. It is possible, however, to give an easier
argument that avoids the deep theorems in étale cohomology and p-adic Hodge
theory used there. One would expect this argument to go through for general K.

8.6. Computing the periodic locus. Is there an algorithm to find equations describ-
ing X (f), given equations for X and formulas for the Frobenius lifts 1,7 Without
such an algorithm, our approach to generating abelian extensions would not be so
explicit. But it also might be an indication that, for theoretical purposes, there
really is more freedom in this approach.

9. INTERLUDE ON PERIODIC WITT VECTORS

In this section, we define periodic Witt vectors and show how they recover the
ray class algebras of the previous section. It will not be used elsewhere in the paper.

9.1. P-typical Witt vector rings Wa p(R). Let us review the generalized Witt
vector rings as defined in the first section of [3]. Let R be a flat A-algebra. Then
the monoid Idp acts on the product A-algebra R'# (the so-called ghost ring) by
translation in the exponent. Explicitly, if z, denotes the a-th component of a vector
x € R'97 then ¢ : R'Y" — R'7 is defined by the formula

(¥6(2)), = Tab-

Now consider the set of sub-A-algebras D < R4 such that D is taken to itself by
the action of Idp and such that for each prime p € P, the induced endomorphism
Yp: D — D is a Frobenius lift at p. An elementary argument shows that this
collection of subrings has a maximal element W4 p(R). It is called the ring of P-
typical Witt vectors with entries in R. It recovers the usual p-typical Witt vector
functor (restricted to torsion-free rings) when A is Z and P consists of the single
maximal ideal pZ; it recovers the big Witt vector functor when instead P consists
of all maximal ideals of Z.

This construction is functorial in R, and one can show that the functor W4 p is
representable by a flat A-algebra A4 p. (Incidentally, this shows that W4 p extends
to a functor on all A-algebras, namely the one represented by A4 p. Thus we can
extend the theory of A-structures and Witt vectors to A-algebras with torsion, but
we will not need this generality here.) The endomorphisms 14 of the functor Wy p
induce endomorphisms of A4 p. They are in fact Frobenius lifts, and hence Aa p
is a A4 p-ring.

9.2.  Universal property of Witt vector rings. The Witt vector functor is the right
adjoint of the forgetful functor from A, p-rings to A-algebras. Let us spell out
the universal property for future reference. Let R be a flat A-algebra, let D be a
flat A4 p-ring, and let ¢: D — R be an A-algebra map. Then ¢ lifts to a unique
A4 p-ring map ¢ to the Witt vector ring:

R.
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Indeed, it lifts to a unique Id p-equivariant morphism D — R'7 given by a — =,
where 2, = ©(1q(a)). It remains to check that the image S of this map lies in
Wa p(R). But S is torsion free, as a subalgebra of R'7: it has an action of Idp,
as the image of an equivariant map of rings with an Idp-action; and it satisfies
the Frobenius lift condition because it is an Id p-equivariant quotient of D, which
satisfies the Frobenius lift condition. Therefore S is contained in W4 p(R) by the
maximality property of Wy p(R).

9.3. f-periodic Witt vector rings W(f)(R). Let f be a cycle on K. We define the
set of f-periodic Witt vectors with entries in an A-algebra R as follows

(9.3.23) Wb (R) := {2 € Wa p(R) : $a(x) = 6 (x) whenever a ~; b}.

In other words, if we view the functor Wa p as a scheme, then WX)P(R) is the set
of R-valued points on its f-periodic locus.

When R is flat, the periodic Witt vectors can be described simply in terms of
their ghost components:

(9.3.24) Wb (R) = {z € Wa p(R) : za = x5 whenever a ~j b}.

Indeed, this follows from the implication a ~; b = ac ~; be. In other words, we
have

(9.3.25) WY(R) = Wa,p(R) n RPRr (),

as subrings of the ghost ring R'7.

9.4. Ezample. Suppose A = Z, P = Mg, and f = (n)oo where n > 1. Then an
f-periodic Witt vector with entries in a torsion-free ring R is just a big Witt vector
whose ghost components are periodic with period dividing n. This is the reason for
the name. For example, if (,, is an n-th root of unity, then the Teichmiiller element

[Cn] = <Cna<72u Sa . >

is noo-periodic. (This is even true when R is not torsion free, by functoriality and
because the universal ring with an n-th root of unity is Z[z]/(z™ — 1), which is
torsion free.)

Proposition 9.5. WX)P(R) is an f-periodic sub-Aa p-ring of Wa p(R), for any
flat A-algebra R.

Proof. Tt is clearly a sub-A-algebra of Wa p(R). It is also preserved by all v,

operators (p € P) because of the implication a ~; b = pa ~; pb. The family of

operators 1, is also f-periodic on WX)P(R) by definition.

So all that remains is to check the Frobenius lift property. For p € P and any
TE WX?IJ(R)7 we have
Yp(@) — NP e pWa p(R) A Wp(R).
Thus it is enough to show that the containment
(9.5.26) pW P (R) € pWap(R) n W p(R)
is an equality. This follows from the diagram

5

0—— WO(R) W(R) Moo B

| I

0——p®s WI(R) ——p@a W(R) ——=p®allo R
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of exact sequences, where y(z) = (...,2q — ®p,...). The vertical arrows are the
evident multiplication maps a ® b — ab; they are injective because all modules on
the top row are flat. This plus the exactness of the bottom row implies that
is an equality. O
9.6. Remark: Plethysic algebra. The formal concepts above can be expressed in
the language of plethystic algebra [§]. Let A4 p be the A-algebra representing the
functor W4 p, and let A(j) p be the one representing the functor W(f) Then the
inclusion of functors W(f) C Wa,p induces a surjection Ay p — AA}P. It is not
hard to show that this has the structure of a morphism of A-plethories and an action
of AS)P is the same as an f-periodic A4 p-structure. It follows that the forgetful
functor from f-periodic A4 p-rings to all A4 p-rings has both a left and a right
adjoint. The right adjoint outputs the §- perlodlc elements of the given A4 p-ring.

This provides one approach to A-structures and Witt vectors that works smoothly
in the presence of torsion.

9.7.  Universal property of periodic Witt vector rings. Let R be a flat A-algebra,
let D be a flat f-periodic A4, p-ring, and let ¢: D — R be an A-algebra map. Then
 lifts to a unique A4 p-ring map to the f-periodic Witt vector ring:

777777 LW (R)

\ /'—’I(D

Indeed, by the universal property of Witt vectors (9.2, it lifts to a unique A 4, p-map
D — W4 p(R). But since D is f-periodic, the image is contained in ngf’)P(R).

Proposition 9.8. Let KP be a separable closure of K, and let A™ denote the in-
tegral closure of A in K®°P. Let Ra p(f) denote the ray class Aa p-ring of conductor
f, as defined in[74 Then we have an isomorphism

(9827) B; RA P(f) AN W(f) (Aint)

of A p-rings, where the map B is the lift, in the sense of. of the projection
B: RA,p(f) — A" defined m.

Proof. The Ay p-rings R4 p(f) and WX)P(AM) are characterized by the same uni-
versal property, except that the one for R4 p(f) is restricted to algebras D that are
reduced and finite flat over A. So it is enough to show that WX)P(AM) is itself
reduced and finite flat over A. Since it is a subalgebra of HDRP( ) At by definition,

it is reduced and flat. So it is enough to show that it is finite over A.
First, observe that we have

(9.8.28) colimp, W (L A Aty = Wéf’)P(Aint%

where L runs over the finite extensions of K contained in K®°P. Indeed, for any
x € WX)P(AW), let L denote the extension K(...,zq,...), where the x4 are the
(ghost) components of z. It follows that x € W4 p(L) " W4 p(A™). Because W p
is representable, we also have

Wa,p(L) n Wa p(A™) = Wa p(Ln A™),
and hence x € Wa p(L n A™). Because x is also f-periodic, we have

S WX)P(L n ARt
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as desired. It remains to show that L is a finite extension of K. This holds because
x is f-periodic and DRp(f) is finite, and so = has only finitely many distinct ghost
components. This proves .

Therefore it is enough to prove that WX)P(L N A" has bounded rank as L
runs over all finite extensions of K. By proposition WX)P(L N AP s a flat
reduced f-periodic A4 p-ring. Being a subring of HDRP(f) L~ A it is also finitely
generated as an A-module. Therefore by theorem [5.5] it is contained in the product

ring [, K(fo~!) n A™, where d runs over Idp with 0 | fa,. Therefore its rank as
L varies is bounded. g

9.9. Ezample. It A =7, P = Mg, and f = (n)oo with n > 1, then for any primitive
n-th root of unity (,, there is an isomorphism

Zlz)/(z" — 1) > Wi (0g)

given by « — [(,]. Given the above, this is the second theorem of our first paper [7].
On the other hand, if f = (1) but K is arbitrary and P = My, then we have

WS 5(0g) = Ox

where H is the Hilbert class field of K. More generally, if f is supported at infinity,

then ng p(Og) is the ring of integers in the corresponding narrow Hilbert class
field.

Corollary 9.10. The periodic Witt vector ring is generically a product of ray class
felds:

(9.10.29) K@i WisA™) = T K(™).
DEIIdp
0|ftin

The ray class field K(f) is the image of the projection
(9.10.30) K @4 WJH(A™) — K5 oy,

9.11. Remark: Periodic Witt vectors and explicit class field theory. It follows
from corollarythat any ray class field K (f) is generated by the first coordinate
(1) of the f-periodic A™_points x on the affine scheme W4 p = Spec(Aa,p). We
emphasize however that Wy p is not of finite type, and so this does not give an
explicit method of producing a polynomial whose roots generate K(f). In fact,

the periodic locus WX)P is itself not even of finite type. For instance, if K = Q,
P = Mg, and | = o0, then AS?P is isomorphic to the binomial ring, the subring of
Q[z] generated by the binomial coefficients (fL), and this is not finitely generated
as a ring. Therefore to find a point of WX)P, one has to solve infinitely many
simultaneous polynomial equations with coefficients in A.

To be sure, K& AAE:? p is finitely generated as a K-algebra, because on K-algebras
it represents the periodic ghost functor R — RPEr (1) and DRp(f) is finite. There-
fore a periodic Witt vector is determined by finitely many components, namely its
ghost components. However to give a criterion for a periodic ghost vector to be a
Witt vector, we need infinitely many congruences between polynomials in the ghost
components. If we add variables to express these congruences as equations, we will
need infinitely many new variables.

10. K = Q: THE TORIC LINE AND THE CHEBYSHEV LINE

In this section, we consider the case where A is Z and P is the set of all maximal
ideals of Z. For any integer n > 1, let us write ¢, = ¥(,,) and A = Az p.
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10.1.  The toric line and cyclotomic extensions. Define the toric A-structure on
Gm = SpecZ[z*1] to be the one given by v,(z) = P, for all primes numbers p.
(We use this name because it is a particular case of the natural A-structure on any
toric variety.) Observe that it extends uniquely to the affine and projective lines.

For each cycle of the form (n)oo, with n > 1, the periodic locus Gy,(noo) is
simply g, = SpecZ[x]/(x™ — 1). In other words, the containment is an
equality. Thus we have

Q®z Gm(nw) = u Spec Q(¢y).

d|n

So in this case, the noo-periodic locus of the A-scheme G, does in fact generate
the ray class field of conductor noo.

10.2.  The Chebyshev line and real-cyclotomic extensions. The toric A-ring Z[x*1]
above has an automorphism o defined by o(z) = 2~!. The fixed subring is easily
seen to be a sub-A-ring and freely generated as a ring by y = z+2~!. The elements
¥p(y) € Z|y] are given by Chebyshev polynomials

n—1
Unv) =2+ [ [ = =G,
i=0
where (, is a primitive n-th root of unity. For example, we have

Vay) =9y> =2,  Us(y) =y -3y,  ¥s(y) =y° —5y° + 5y,

This gives the affine line Y = SpecZ[y] a A-scheme structure. We call it the
Chebyshev A-structure. It also extends uniquely to the projective line. (Inciden-
tally, Z[y] is isomorphic as a A-ring to the Grothendieck group of the Lie algebra
sly. By Clauwens’s theorem [9], this and the toric A-structure are the only two
A-structures on the affine line, up to isomorphism.)

Now consider a cycle f with trivial infinite part. Write f = (n), where n > 1, and
write Y (n) = Y (f) for the periodic locus. We have

Y[1] = Y(1) = SpecZ[y]/(y — 2),

and hence the n-torsion locus is

Y[n] = ¢, ' (SpecZly]/(y - 2))
or more simply, Y[n] = 1,7 1(2). Observe that Y [n] is not reduced when n > 3: for
instance if n is odd, we have

n—1
n—1 2

aly) —2=[Jw-G -G =w-2[[w—-¢ -

1=0 1=1

However the periodic locus is reduced. In fact, we have

Q@2 0(Y(n) = [ [Qe+ ¢,

d|n
by the following more precise integral result:

Proposition 10.3. (1) The periodic locus Y (n) is flat and reduced, and the
inclusion
i:Y(n) = Y[n]iea
s an isomorphism.
(2) The map O(Y (n)) — Z[z]/(z™ — 1) is injective. If n is odd, its image is
the subring of invariants under the involution o : © — x~'. If n is even,
its image is the span of {1,z + =1, ... g™~ 4 g1="/2 2472},
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Proof. (1): Consider the differences of Chebyshev polynomials
Pap(y) = Yaly) = ¥u(y) € Z[y].
Then the periodic locus Y (n) is Spec Z[y]/I, where
I= (Pa7b(y) | a=+bmodn, a,b= 1).

Let Q(y) denote the product of the monic irreducible factors of (¢, (y) — 2), each
taken only with multiplicity 1. If n is odd, we have

n—1

2

Qw =[[v-G -G

and if n is even, we have

Then we have

1< (Qy))

since each P, ;(y) vanishes at y = (¢ + (%, for each i. Therefore to prove (1), it is
enough to show this containment is an equality.

Since Z[z*!] is a faithfully flat extension of Z[y], it is enough to show this after
base change to Z[z*!]. In other words, it is enough to show

Qz+az e (Pup(z+a™") | a=+b modn).
We have
Popx+a )= +27% —ab — 270 = 279" — 1) (27" - 1).
Therefore we have
(Prstale +271) = (@@ - D2~ 1),
(P7,,+272(£E + xil)) = ((x" —1)(z"t — 1))
and hence
(Posri(@+ 27", Pogap(z+27)) = (2" = 1) ((z* = 1), (2" — 1)).
If n is odd, then we have
(2" = 1)((z* = 1),(@" - 1)) = ((z" = 1)(z = 1)) = (Q(z + =™ 1)).
Similarly, if n is even
(2" =1)((2* = 1), (2" = 1)) = ((z" = 1)(z* = 1)) = (Q(z + 2™ 1)).
Thus in either case, we have
Qz+ax e (Pn+1 Wz + 271, Prioo(z+x ) )
< (Pap(y) | a=+bmodn, a,b>1).

(2): Suppose a polynomial f(y) € Z[y] maps to zero in Z[a:] (™ —1). Then we
have f(¢! + ¢, %) = 0 for all i. Therefore we have (y — ¢ | f(y). Thus if n
is odd, we have

[To-G -GN
and if n is even,

ﬁ@ G- | ).
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In either case, we have Q(y) | f(y). Therefore the map Z[y]/(Q(y)) — Z[z]/(z™—1)
is injective.
Let us now consider surjectivity. When n is odd, the set

{1,35—1—37_1,...,3:"7_1 +ax7z }

is a Z-basis for the subring (Z[z]/(z" — 1))7 of o-invariants, and this is contained

in the image of Z[y]. When n is even, {1,z + z~,... 2™~ 4 g'="2 2"/?} is a
Z-basis. All these elements but 2™/2 lie in the image of Z[y]. However 22™/? does
lie in the image. O

Corollary 10.4. The map
O(Y(n)) — Rz p(n)

to the ray class algebra given by the point ¢, + (' € Y(n)(Og) is injective. If n is
odd, it is surjective; if n is even, its cokernel is a group of order 2 generated by the

class of [-1] = (..., (=1)%,... e Hd|n Q(Cnya + C;/ld),
Proof. By the map Z[z]/(z" — 1) — Og given by x — (, results in a diagram

Z[z]/(z™ — 1) ——— Ry p(nw)

I

(Z[x]/(w” — 1))0 — Rz p(n).

By the second theorem in our first paper [7], the top map is an isomorphism. Since
taking maximal A-orders commutes with taking group invariants, by part (2) of
proposition the bottom arrow is also an isomorphism. Observe that when n is
even, the image of 2"/? is [~1]. Now invoke proposition m O

11. K IMAGINARY QUADRATIC: CM ELLIPTIC CURVES AND THE LATTES SCHEME

Let K be an imaginary quadratic field. For convenience, let us fix an embedding
K < C. In this section, we show how explicit class field theory over K, due to
Kronecker and his followers, can be set naturally in the framework of this paper.
This builds on Gurney’s thesis [14]. The arguments are similar in spirit to those in
the real-cyclotomic context in the previous section.

Let us write

A= AOK,MK and Ap = AOKPJJ’

where p € P is any given prime.

11.1.  The moduli space of CM elliptic curves. Let R be an Og-algebra. Then
a CM elliptic curve over R is an elliptic curve E over R together with a ring
map Ox — Endg(E) such that the induced action of Ox on the tangent space
To(F) agrees with the Og-algebra structure map Ox — R = Endgr(Tp(E)). Let
Mem(R) denote the category whose objects are the CM elliptic curves over R and
whose morphisms are the Og-equivariant isomorphisms of elliptic curves. Since
all morphisms are isomorphisms, Mcwm(R) is a groupoid by definition. As the
Ok-algebra R varies, the usual base-change maps make Mgy a fibered category
over the category of affine Og-schemes. Further, this fibered category satisfies
effective descent for the fppf topology because all ingredients in its definition can be
expressed in terms which are fppf-local. In other words, My is a stack. (See [16]
the theory of stacks.) Let £ — Mcm denote the universal object. Then E(R) is the
groupoid of pairs (E,z), where E is a CM elliptic curve over R, and x is a point of
E(R).
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Both £ and M\ have certain endomorphisms ,, for any integral ideal a € O,
defined as follows. On My, the map 14 is defined by

Ve : E—>a ' ®F,

where the elliptic curve a "' ®E is the Serre tensor product [19], defined as a functor
by
(a7'®E)(C):==a'®o, (E(C)),

for any algebra C' over the base R of E. (This is again an elliptic curve: since
a~! is a direct summand of O%, the functor a=! ® E is a direct summand of the
abelian variety E2.) In particular, if R = C and the period lattice of E is L, so
that E(C) = C/L, then a~! ® E is the elliptic curve with period lattice a ' ®o, L,
up to canonical isomorphism.

Using the isogeny £ — a~! ® E defined by z — 1 ® z, we can then define the
endomorphism ¥, : £ — & by

Vo (B, z) — ('@ E,1Qx).

Observe that it lies over the endomorphism 1, of M.

The v, operators should be thought of as providing a A-structure on My and
E, but Mgy and € are stacks and we will not define what A-structures on stacks
are here. Let us just say that the v, operators, whether on My or £, commute up
to a coherent family of canonical isomorphisms coming from the usual associators
URV)W - U® (V®W) on the category of Ox-modules. Similarly, if a is a
prime p, then the reduction of ¥, modulo p agrees with the N(p)-power Frobenius
map F}, in the sense that for any elliptic curve E over an IF,-algebra, there is unique
isomorphism ¢, (E) — F,(E) compatible with the canonical maps from E.

11.2.  Latteés scheme. We follow Gurney’s thesis [14]. Let £ denote the coarse
space underlying £. It is the functor defined, for any Ox-algebra C, by

L(C) = {local-isomorphism classes of triples (C’, E,x)},

where C’ is an fppf cover of C, and E is a CM elliptic curve over C’, and x € E(C")
and where two pairs (C], F1,x1) and (C%, F5, x3) are in the same local-isomorphism
class if C7 and C} have a common fppf cover C” such that when pulled back to C”,
there is an isomorphism between Ey and Fs identifying 7 and x5. Observe that if
C = C (or any algebraically closed field), we have

L(C) = {isomorphism classes of pairs (E, z)},

where E is a CM elliptic curve over C and = € E(C). Thus £(C) is the union of
hx copies of P*(C), where hg is the class number of K.

The functor £ is an Og-scheme (see 4.3.10 of [14]), which we call the Lattés
scheme, and unless we say otherwise we will view it as an Ox-scheme. Note however
that the structure map £ — Spec Ok factors naturally through the coarse space
underlying My, which Gurney shows (2.6.10 of [14]) is Spec Op, where H is the
Hilbert class field of K in C:

So one can also view L as an Og-scheme, and sometimes we will.
For example, given any CM elliptic curve F over R, we have an identification

(11.2.31) L X§pec(0y) SPec(R) = E/ O
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(This can in fact serve as an alternative definition of £.) The universal map & — £
is then nothing more than the classical Weber function expressed in our language.
Gurney (4.3.16 of [14]) proves there exists an isomorphism £ — P¢, of Op-schemes.
(The fact that £ is a P'-bundle over Op is expected, but the fact that it is the trivial
bundle requires more work.) It follows that as an Og-scheme, £ has geometrically
disconnected fibers if hx > 1. We also emphasize that there appears to be no
canonical isomorphism £ — ]P’loH. There is a canonical Og-point o0 € L£(Og ), which
corresponds to pairs of the form (F,0). The isomorphism £ — IP’loH would then
typically be chosen to send oo to 00, but we cannot make any further restrictions, it
seems. So the isomorphism £ — IP’%)H is canonically defined only up to the action
of the stabilizer group of o, the semi-direct product O x O};.

The endomorphisms ¥, of £ induce endomorphisms v, : £ — £ (morphisms of
Og-schemes). Then 1, for p prime reduces to the N(p)-power Frobenius map F,
modulo p, and hence the v, define a A-structure on L. (See 4.3.11 of [14].) Further
the map £ — Spec Oy above is a morphism of A-schemes, where Oy is given its
unique A-ring structure.

When expressed in terms of PloH, the endomorphisms 1, are often call the Lattes
functions, as for example in Milnor’s book [I7] (page 72), which explains the name.

Proposition 11.3. (1) L[f](C) is the set of isomorphism classes of pairs (E, x),
where E is a complex CM elliptic curve and x € E[f](C).

(2) The action of Idp on L[f](C), where a acts as 14, factors through an action
(necessarily unique) of DRp(f) on L[f](C). The resulting DRp(f)-set is a
torsor generated by any class of the form (Ey, xq), where Eqy is a CM elliptic
curve and o is a generator of Eo[f](C) as an Ox-module.

Proof. (1): Any point of y € £(C) is the isomorphism class of a pair (E, z), where
E is a complex CM elliptic curve and x € E(C). Under 1, the pair (E,z) maps to
(F'®FE,1®xz). So if y lies in the f-torsion locus L[f](C), the object (' ®F,1®x)
must be isomorphic to one of the form (E’,0). Therefore the point 1®z € (! ®
E)(C) is 0, and hence z is an f-torsion point of E.

(2): Let us first show that the orbit of (Ey, zo) under Idp is all of L[f](C). Let
(E, ) be an element of L[f](C). Then there is an integral ideal a & Ok such that
there exists an isomorphism of elliptic curves f: a™!' ® Ey — E. We can choose a
such that it is coprime to f. It follows that the image 1 ® 79 € a=' ® Eo(C) of zq is
a generator of (a1 ® Ey)[f](C), and hence that f(1®uzp) is a generator of E[f](C).
In other words, there exists an element b € O such that bf(1® xg) = x. Then we
have

VYpa(Eo,70) = (b ra ' ® Ep, 1 ®20) = (a! ® Ep, b® p)
= (B, f(b®xz0)) = (E,bf(1®x0)) = (E, ).

Therefore (Ey, zo) generates L[f](C) as a DRp(f)-set.
It remains to show

a ~j b <= Pa((Eo, 7o) = Yo ((Eo, 20)),

for any two ideals a,b € Idp.

First consider the direction =. The equality ¥q((Fo,x0)) = ¥s((Eo,x0)) is
equivalent to the existence of an isomorphism (a *® Ep, 1®1¢) = (b~ ®Fy, 1®x0).
Since a ~j b, by there exists an element ¢ € K such that a = bt and t—1 € fb~!.
So it is enough to show that the isomorphism

(11.3.32) @ E B0 ®E,
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given by multiplication by ¢ ® 1, sends 1 ® xg on the left to 1 ® x¢ on the right. In
other words, it is enough to show that the two elements 1®xg,t®@x¢ € b~ ® Eo(C)
agree.

We give an argument using period lattices. Write Eo(C) = C/c, where ¢ is a
fractional ideal of K, and let y € C be a coset representative of zg € C/¢c. Then the

morphism above is identified with
Clate—C/o!
So what we want to show is equivalent to the congruence
ty=vy mod b tc
But since zg is an f-torsion element of C/c, we have y € f~'¢, and hence we have
(t—1yefot-frle=0b""

as desired.
Now consider the direction <. So assume 1 (Fo, zo) = s (Eo, o). This means
there is an isomorphism
Clate—C/o e
given by multiplication by some element t € K* with (¢) = ab~!, such that txg = xo.
Therefore the diagram

Flefe —9 s f1e/c

L]

Clatc —5C/b!
commutes, since the two ways around the diagram agree on x, which is a generator

of §~1¢/c. Therefore the difference map t—1: §~1¢/c — C/b~Lc is zero. This implies
(t—1)f e < b~'c and hence t — 1 € fo~L. Tt follows fromthat a~jb. O

Proposition 11.4. Let f be an integral ideal in Ok . Then we have equalities

ﬁ(f)ﬂ = ﬁ(f)red = ﬁ[ﬂrcd

of closed subschemes of L.
Proof. We have the following diagram of containments of closed subschemes of L:

L(§)rear——> L{Hlar— L(f)

Js

Lflrea—— L[flar—— LI[f]

(As an aside, we note that L[f] is finite flat of degree N (f) over Oy, by 4.3.11 of [14],
and hence L[ﬂﬂ = L[f].) Observe that « is an isomorphism, by (7.3)), and so it
is enough to show that § is an isomorphism. It is enough to show this after base
change to C, since 8 is a closed immersion and L[f];cq is flat over Og. Further,

since the schemes in question are of finite type, it is enough to show that £ induces
a surjection on complex points, or in other words that the inclusion

L{F)I(C) — L[FI(C)
is surjective. But this follows from which says that L[f](C) is f-periodic. O

Corollary 11.5. The map E[f] — L factors through the closed subscheme L(f)a of
L.

Proof. By functoriality, it factors through L[f]. Because £[f] is reduced, it factors
further through L[f];eq. Therefore, by it factors through L(f)g. O
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Proposition 11.6. Let R be a flat Ok -algebra over which there is a CM elliptic
curve E. Fiz an ideal f € Ok, and write G = O}:. Let Lr(f)a denote the base
change of L(f)a from Oy to R. Then we have the following:

(1) The map O(Lr(f)a) — O(E[f])® induced by corollary is injective.

(2) Its cokernel is a finitely generated R/nR-module, where n is the order of
O}

(3) For any sufficiently divisible integer m, there exists a (unique) morphism
making the following diagram commute:

O(Lr(mf)a)r—— O(E[mf])“

~
~
~
~
~
s

O(Lr(f)a)—— O(E[f])°.

Proof. Write Lr = E/G =~ PL. Then Lz(f)a is a closed subscheme of Lg, and
by [I1.5] we have the following containment of closed subschemes of E:
Elf] = Lr(f)a xcx E.

Let Ij(R) denote the deal sheaf on Lz (f)a X 2, E corresponding to E[f]; so we have
the short exact sequence

(11.6.33) 0— I;(R) — O(La(f)a X, ) — O(E[f]) —0.

Its long exact sequence of group cohomology begins

(11.6.34)  0— I{(R) — O(Lr(P)a %2, E) — O(E[f])® — H'(G, I;(R)).
We would like to simplify this sequence using the fact that the map

(11.6.35) O(Lr(f)a) = OLr(fa xc, E)°

is an isomorphism, which we will now show. We have the following diagram of G-
equivariant quasi-coherent sheaves on Lg (dropping the usual direct-image notation
for simplicity):

0 Or,, Op M 0

I

0—— OﬁR(f)ﬂ E— OﬁR(f)ﬂXaRE — M — 0,

where the rows are exact, M and M being defined to be the cokernels as shown.
We know O, = O%, and so we have (Q ®z M)¢ = 0 and hence (Q ®z M) = 0.
Therefore the map becomes an isomorphism after tensoring with Q. To
show it is an isomorphism, it is therefore enough to show it is surjective. Also
observe that both sides are torsion free. So let b be a G-invariant element of
O(Lr(f)a Xz, E). Then we have b = a/n, for some a € O(Lg(f)a) and some
integer n > 1. Therefore a becomes a multiple of n in O(Lr(f)a Xz, E). But
because Lr(f)a X, E is faithfully flat over Lr(f)g, it must be a multiple of n
already in O(Lg(f)n). Therefore b is in O(Lg(f)a), and so the map is

surjective, and hence an isomorphism.

Thus we can rewrite the long exact sequence (|11.6.34) as
(11.6.36) 0— I;(R)Y — O(Lg(f)a) — O(E[f])* — H'(G, L;(R)).

Using this sequence, we will prove parts (1)—(3).
(1): We will show I;(R) = 0. First, observe that I;(R) is a flat-local construc-
tion in R: if R'/R is flat, we have I}(R') = R' ® I;(R) and hence

Ii(R)S = (R ®@r I}(R))Y = R ®r I;(R)®
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since taking invariants under the action of a finite group commutes with flat base
change.

Second, since I;(R) is a submodule of O(Lg(f)a), which by construction is flat
over Og, its invariant subgroup If(R)G is also flat over Ok and hence maps injec-
tively to

C®oy I(R)Y = (C®ox R) ®r I;(R)® = I;(C ®0, R)°.

Therefore to show I;(R)® = 0, it is enough to do it in the case where R is a
C-algebra; and because any C-algebra is flat over C, we can apply the flat-local
property again and conclude that it is enough to assume R = C, which we will now
do.

Summing up, we have the diagram

Elf—— Lc(f)a Xgo E¥—F

|

['C (f)ﬂ>—> E(C

where E — L¢ is a GG-Galois cover of complex curves, the horizontal maps are
closed immersions, and E[f] and Lc¢(f)a are reduced. Write I3(C) = @, Iz, where
Z runs over the G-orbits of E[f](C) and the ideal Iz of O(Lc(f)a X £ E) is the part
of I;(C) supported at Z. It is then enough to show Ig = 0 for each Z. So consider
the filtration of I, by its powers:

Iz 2132 215 = {0},

where e is the ramification index of E over £ at Z, or equivalently the order of
the stabilizer subgroup H < G of a point x € Z. Then it is enough to show
(I2/I3t G =0forn=1,...,e— 1.

This holds vacuously if e = 1. So assume e > 1. For n < e — 1, the G-
representation /I is the induced representation Ind% (U®") where and U =
I,/I2 is the cotangent space of E at z. Therefore we have

(13177 = (o).

Observe that as a representation of H, the cotangent space U is isomorphic to the
restriction to H of the representation of G = Oj; on C given by usual multiplication.
Therefore U®™ is the one-dimensional representation on which a generator ¢ € H
acts as multiplication by (™. But since n < e, and since e is the order of H, we
have (" # 1. Therefore ¢ acts nontrivially on U®" and hence we have

(I3/1;H)¢ = (U®M)T =,

as desired.

(2): By general properties of group cohomology, H'(G, I;(R)) is an R-module
of exponent dividing n, and hence an R/nR-module. The cokernel in question is a
sub-R-module of H*(G, I;(R)) and is therefore also an R/nR-module. It remains
to show it is finitely generated. Since it is a quotient of O(E[f]), it is enough to
show that O(E[f])¢ is finitely generated, and hence enough to show this locally on
R. But locally E descends to some finitely generated Og-algebra over which R is
flat. Since the formation of O(E[f])“ commutes with flat base change, it is enough
to show finite generation in the case where R is a finitely generated Og-algebra.
Here it holds because E[f] is finite flat and R is noetherian.
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(3): Write I; = I;(R). Then by part (1), for any m > 1,we have a morphism of
exact sequences

0 —— O(Lr(mf)a) —— O(E[mf])¢ —— HY(G, L)

| J |

0 —— O(Lr(f)a) —— O(E[f)? —— H'(G, Ij).

To prove (3), it is enough to show the map « above is zero for sufficiently divisible
m. Since I} is torsion free, it is enough by lemma below to show that the map
Iny — Iy is zero modulo n for sufficiently divisible m. Further, by part (2), it is
enough to show this instead modulo each prime dividing n—that is, it is enough
to show that for each prime p | n, there exists an integer m such that the map
I,n; — I; is zero modulo p.

So fix a prime p | n. Let E, denote the reduction of E modulo p, which is an
elliptic curve over R/pR. Then for any j > 0, we have a morphism of short exact
sequences

0 —— Lpsj/plyis —— O(Lr(P)a X2, Bp) —— O(Ep[p/f]) —— 0

| J |

0 I;/pl; O(Lr(Pa %2 Bp) —— O(Ep[f]) —— 0.

(Left-exactness is because E[f] and E[p’f] are flat.) Now whether the fibers of
E, are supersingular or ordinary, the closed subschemes E,[p’f] contain arbitrary
nilpotent thickenings of E,[f], for large enough j. Since Lz (f)a x 2 E, is a nilpotent
thickening of E,[f], we can take j such that E,[p’f| contains Lr(f)a %z Ep. Thus
the map

Lyis/Plyss — 1j/pl;
is zero, and hence so is the map I,,;; — I;/pl;, as desired. O
Lemma 11.7. Let G be a finite group, and let n denote its order. Let M — N

be a morphism of G-modules which vanishes modulo n, and assume N is n-torsion
free. Then the induced map H'(G, M) — H*(G,N) is zero, for all i > 1.

Proof. Since our given map M — N vanishes modulo n and N is n-torsion free, it
factors as
M

|
I \
\P n
N —— N.
Hence the induced map on cohomology factors similarly

H' (G, M)

I

N
H'(G,N)—"— H(G,N)

However H'(G, N) is a n-torsion group for i > 1, because G has exponent dividing
n. Therefore the bottom map is zero and hence so is the diagonal map. O

Corollary 11.8. With the notation of proposition[11.6, the map
. G
(0&r) — (017

of pro-rings is an isomorphism.

f
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Proposition 11.9. Let p be a prime of Ok, let R be a finite unramified extension
of Ok, , and let E be a CM elliptic curve over R. Then for any integer r = 0,
O(E[p"]) is Ap-normal over Ok, .

Proof. We follow (3.1) of [7], which is the analogous result for Gy,.

For r = 0, it is clear. So we may assume that » > 1 and, by induction, that
O(E[p™']) is Ap-normal over Ok, .

The p"-torsion E[p"] can be obtained by gluing the p”~!-torsion E[p"~!] and the
locus of exact order p”, as follows. Let D, denote O(E[p"]). Let m be a generator
of pOk,, and consider the Lubin-Tate polynomial h(z) € R[z] for E with respect
to the uniformizer m and some fixed local coordinate. So we have h(z) = zg(z),
where g(z) is a monic Eisenstein polynomial with g(0) = w. Then D, is identified
with R[z]/(h°"(2)). Because h°"(z) = h°"~1(2) - g(h°"~1(z)), we have the following
diagram of quotients of R[z]:

R[z]/(h*"(2)) ————— R[]/(h77}(2))

J J

R[2]/(g(h7~1(2))) — R[2]/(h°" 7 (2), (A7~} (2)))-

Observe that g(h°"~!(z)) is a monic Eisenstein polynomial. For degree reasons, it
does not divide h°"~!(z), and so the least common multiple of these two polynomials
is their product. Therefore we have

(A" (2)) = (A7 H(2))  (9(A7 71 (2))),
and hence the diagram above is a pull-back diagram. Further, if we put B, =
R[z]/(g(h°""1(2))), then B, is the ring of integers in a totally ramified extension
of K,. Let . € B, denote the corresponding uniformizer, namely the coset of z.
Thus we have a pull-back diagram

D, —»D,_1

| |

B, — B,,

where B, = B,/(h°"~!(r,)). Further observe that the element h°"~1(7,.) € B, is
a root of g(z), which is an Eisenstein polynomial of degree ¢ — 1, where we write
g = N(p). Therefore we have v, (h°"~*(m,)) = 1/(q — 1), where v, is the valuation
normalized such that v, (7) = 1.

Now suppose C' is a sub-A,-ring of K, ®0x, D, which is finite over Og,. The
maximality statement we wish to prove is that C is contained in D, = B, xpg_
D,_;. By induction, D, _; is Ay-normal over Ok, , and hence the image of C' in
K, ®OKP D,_; is contained in D, _;. Similarly, since B, is a maximal order in the
usual sense, the image of C in K, ®0Kp B, is contained in B,. Putting the two
together, we have the containment C' € B, x D,_1.

To show C' € B, xpg_D,_1, let us suppose that this does not hold. Then there

is an element (b, f(2)) € C' < B, x D,_; such that b and f(z) do not become equal
in B,. In other words, we have

vp(b = f(mr)) <1/(g —1).

Further we can choose (b, f(z)) € C such that v, (b — f(n,)) is as small as possible.
Write a = vp(b — f(m,)). Since C' is a sub-Ap-ring of Ky ®o,, Dy, we know

(0, f(2)7 = p((b, f(2))) € nC
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The left side can be simplified using the fact ¥, (z) = h(z) on D,:

(b, FENT = vp((b, F(2))) = (07 = f*(h(m,)), F(2)" = F*(h(2)))

where f*(z) the polynomial obtained by applying the Frobenius map to each coef-
ficient of f(z). Therefore by the minimality of a, we have

o< Up(bq — A (W) — f(2)7 = f*(h(2)) z:w) o, <bq—£M>

= oy (LT ) -t 10

s

where ¢(X,Y") denotes the polynomial
(X7 Y9) — (X ~y)s
(X =-Y)

But again by the minimality of a, we know a < v, (b — f(m,)). Therefore we have

€ OK)J [X, Y]

b— f(m))?
agvp(ﬂ) :qa—l
T
and hence a = 1/(¢ — 1). This contradicts the assumption a < 1/(g — 1). O

Lemma 11.10. Let A = Og[1/t], for some t € Ok, and let R be a A-ring, finite
étale over A, over which there exists a CM elliptic curve E. Then for any ideal
f <€ Ok, the A-ring O(E[f]) is A-normal over A.

Proof. Let S denote the maximal A-order over A in K ® o, O(E[f]). Then we have
an inclusion O(E[f]) € S of finite flat A-algebras. Therefore it is an equality if
Ok, ®a O(E[f]) = Ok, ®a S for all primes p { t. Thus it is enough to show that
Ox, ®4 O(E[f]) is Ap-normal over Of, for all p {¢.

Write § = p"g, where p { g. Then putting R, = Ox, ®4 R, we have

Or, ®a O(E[f]) = Ok, ®4 (O(E[p"]) ®r O(E[g]))
= (Ok, ®4 O(E[p"])) ®r, (Ok, ®4 O(E[g]))
= O(ER,[p"]) ®r, O(ER,[g])

- [[o@Er.
L

where R’ runs over all irreducible direct factors of the finite étale O, -algebra
O(ER,[g]). Therefore it is enough to show that each O(ER/[p"]) is Ap-normal over
Og,. But this follows from @ O

Proposition 11.11. Let A = Og[1/t], for some t € Ox. Put R = Og[l/t] and
assume there exists a CM elliptic curve E over R. Write G = Of. Then the
mazimal A-order in K @4 O(Lr(f)a) over A is O(E[f])¢.

Proof. By lemma and part (2) of proposition the G-invariant subring
O(E[f])¢ is A-normal over A. Since K ®4 O(Lr(f)a) = K ®4 O(E[f])¢, by part
(2) of proposition we can conclude that O(E[f])¢ is the maximal A-order over
Ain K@A O([:R(f)ﬂ) U

Theorem 11.12. Let O(L(f)a)™~ denote the maximal A-order over Ok in K Qo
O(L(f)a). Then

(1) O(L(f)a)~ is isomorphic as a A-ring to the ray class algebra Ro, p(f).
(2) The map

(O(L(n); — (O(L(F)a)™),

s an isomorphism of pro-rings.
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(3) If a prime number divides the index [O(L(f)a)~ : O(L(f)a)] then it divides
the order of the unit group O}:.

Proof. (1): Since O(L(f)a)™~ is the maximal A-order over Ok in K ®o,. O(L(f)a),
and since Ro, p(f) is that in K ®o, Rog.p(f), it is enough to show there is an
isomorphism
L()(Q) = DRp(f)
of Id p-sets, but this is follows immediately from part (2) of proposition m
(2): Since the rings
A= Okla™']
for any two primes q < Ok form a cover of Og, it is enough to prove the map
of pro-rings is an isomorphism after base change from Ok to any two such A. By
Shimura’s theorem ([I4], prop. 4.2.2), there are at least two primes q = Ok such
that there exists a CM elliptic curve over R = Oy ®o, A. (In fact, he proves there
are infinitely many.) So fixing A and a CM elliptic curve E over Oy Qo A4, it is
enough to show that

(11.12.37) (A ®0x O(ﬁ(f)ﬂ))f—’ (A ®ox 0(£(f)ﬂ)w)f

is an isomorphism of pro-rings.
But we also have

A®ox O(L(f)a) = R®o, O(L(f)a) = O(Lr(f)a)
and hence by part (1) of proposition
O(Lr(Pa)” = A®ox O(L(f)a)™-
Therefore can be rewritten as

(11.12.38) (O€ain) — (OLrn))

We know further that the map
O(Lr(f)a)~ — O(E[f])®
is an isomorphism by [11.11} So the map (11.12.38]) can in turn be rewritten as
— G
(11.12:39) (Oca(in) — (0E)) .

and this is an isomorphism of pro-rings by

(3): Tt is enough to show these properties locally on Og. So as above, it is
enough to show them after base change to A = Ox[q™1], where q is a prime of Ok
such that there is a CM elliptic curve E over R = Oy ®0, A.

Then the map A ®o,, O(Lr(f)a) > Ao, O(Lr(f)a)™ is identified with

O(Lr (D) — O(E[).
By part (2) of proposition the image of this map is of finite index divisible
only by the primes dividing the order of O}. O

12. FURTHER QUESTIONS

Is it possible to use A-schemes of finite type to generate other large abelian
extensions, beyond the Kroneckerian explicit class field theories? We will formulate
a range of such questions in this section, some of which it is reasonable to hope
have a positive answer and some which are more ambitious.
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12.1.  A-geometric field extensions. So far, we have mostly been interested in what
in the introduction we called A-refinements of explicit class field theories—that is,
in generating ray class algebras instead of abelian field extensions. But hungry for
positive answers, we will give weaker, field-theoretic formulations here.

Let K be a number field, and write

A=Ao oy, and  R(f) = Ro g (F)-

For any separated A-scheme X of finite type over Ok, consider the extension of K
obtained by adjoining the coordinates of the f-periodic points, for all cycles f:

K(X) = JKX{(K)).
i

For instance, we have the following:

(1) If K = Q and X is Gy, with the toric A-structure, then Then K(X) is the
maximal abelian extension | J,, Q(¢n).

(2) If K = Q and X = A! with the Chebyshev A-structure, then K (X) is the
maximal totally real abelian extension | J, Q(¢, + ¢, 1).

(3) K is imaginary quadratic, X is ]P’loH with the Latteés A-structure. Then
K(X) is the maximal abelian extension of K.

(4) If K is general and X = Spec R(f), then K(X) is the ray class field K (f).

(5) K(X1uXz) is the compositum K (X;)K(Xs)

Let us say that an abelian extension L/K is A-geometric if there exists an X as
above such that L € K (X). First observe that any finite extension of a A-geometric
extension is A-geometric, by (4) and (5) above. Therefore there is no maximal A-
geometric extension unless, as in the examples above, the maximal abelian extension
itself is A-geometric.

(Q4) Are there number fields other than Q and imaginary quadratic fields for
which the maximal abelian extension is A-geometric?

It is natural to consider Shimura’s generalization of Kronecker’s theory to CM
fields and abelian varieties. We expect that it can be realized in our framework, or
at least that some version of it. But note that, assuming [K : Q] > 2, the maximal
abelian extension generated by Shimura’s method is an infinite subextension of the
maximal abelian extension itself—the relative Galois group is an infinite group of
exponent 2. (See [20][18][22].)

(Q5) Let K be a CM field of degree greater than 2. Is Shimura’s extension A-
geometric? If so, is there an infinite extension of it which is A-geometric?

12.2.  Production of A-schemes from ray class algebras. It appears difficult to find
A-schemes of finite type which generate large infinite abelian extensions. Every
example we know ultimately comes from varieties with complex multiplication.
Here we will consider an alternative—the possibility of manufacturing A-schemes
of finite type by interpolating the ray class schemes Spec(R(f)), in the way that
Gp, can be viewed as interpolating the u,, as n varies. This raises some questions
which have the flavor of algebraic number theory more than the geometric questions
above, and hence have a special appeal.

Let t be a product of real places of K, and let X a reduced A-scheme of finite
type over Og. Assume further that the union

U x
feZ(P,t)

of the closed subschemes X (f) is Zariski dense in X. If it is not, replace X with the
closure. Then all the information needed to construct X is in principle available
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inside the function algebra of

colimje z(p,e) X (f)-
To be sure, this ind-scheme and X are quite far apart, much as an abelian variety
and its p-divisible groups are. But pressing on, if X satisfies the property in (Q2)
in the introduction, then this colimit would be isomorphic to

colimse z(p.o) ( Spec R(F)),
and so all the information need to construct X is in principle available in projective
limit
R = lim R(j),
feZ(P;r) ®
which can be viewed as a construction purely in the world of algebraic number
theory in that it depends only on K and v and not on any variety X.
For example in the cyclotomic context, where K = Q and v = o0, the injective
map

Z[;pil] . hrILnZ[x]/(xn 1) = Rl

realizes the function algebra of G, as a dense finitely generated sub-A-ring of RI%.
We can ask whether similar subrings exist for general K:

(Q6) Does RI*l have a dense sub-Og-algebra which is finitely generated as an
Ok-algebra? Does it have a dense sub-A-ring which is finitely generated as
an Og-algebra?

It might be possible to cook up such a subring purely algebraically, instead of going
through geometry.

12.3.  The cotangent space. One first step in finding such a subring might be to
guess its dimension by looking at the cotangent space of the ray class algebras at
a point modulo p. For example, the cotangent space of p,» modulo p at the origin
is 1-dimensional, at least if n > 1.

For any ideal a € Ids, (and v still a product of real places), let I, denote the
kernel of the morphism

(12.3.40) R(ra) 2% R(r) = Ok (o)-
So we have an exact sequence
0—> I, —> R(ta) e, Ok (x) — 0.
Therefore I,/I7 is naturally an O y-module. It is finitely generated since R(ra)

is noetherian, being finite over Z.
(Q7) Given a maximal ideal q = Ok () with residue field k, is the dimension

dlmk(k‘ ®OK(V:) Ia/lg)
constant for large a?

If so, can it be expressed in terms of the classical algebraic number theoretic in-
variants of K7 One might hope it is the number of places of K at infinity.
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