ISOCRYSTALS ASSOCIATED TO ARITHMETIC JET SPACES
OF ABELIAN SCHEMES

JAMES BORGER AND ARNAB SAHA

Abstract. The main aim of this article is to construct a canonical F-isocrystal $H(A)_K$ for an abelian scheme A over a p-adic complete discrete valuation ring of perfect residue field. This F-isocrystal $H(A)_K$ comes with a filtration and admits a natural map to the usual Hodge sequence of A. Even though $H(A)_K$ admits a map to the crystalline cohomology of A, the F-structure on $H(A)_K$ is fundamentally distinct from the one on the crystalline cohomology. When A is an elliptic curve, we further show that $H(A)_K$ itself is an F-crystal and that implies a strengthened version of Buium’s result on differential characters in [5].

1. Introduction

The theory of arithmetic jet spaces developed by Buium draws inspiration from the theory of differential algebra over a function field. In differential algebra, given a scheme E defined over a function field K with a derivation ∂ on it, one can define the jet spaces J^nE for all $n \in \mathbb{N}$ with respect to (K, ∂) and they form an inverse system of schemes satisfying a universal property with respect to derivations lifting ∂. The ring of global functions $\mathcal{O}(J^nE)$ can be thought of as the ring of n-th order differential functions on E. In the case when E is an elliptic curve and its structure sheaf \mathcal{O}_E does not have a derivation lifting ∂ (if it does, then it is the isotrivial case and E will descend to the subfield $K^{\partial=0}$ of constants), there exists a differential function $\Theta \in \mathcal{O}(J^2E)$ which is a homomorphism of group schemes from J^2E to the additive group \mathbb{G}_a. Such a Θ is an example of a differential character of order 2 for E and is known as a Manin character. Explicitly, if E is given by the Legendre equation $y^2 = x(x-1)(x-t)$ over $K = \mathbb{C}(t)$ with derivation $\partial = \frac{d}{dt}$, then

$$
\Theta(x, y, x', y', x'', y'') = \frac{y}{2(x-t)^2} - \frac{d}{dt} \left[2(t-1) \frac{x'}{y} \right] + 2(t-1)x'y'dy'.
$$

where x, y, x', y', x'', y'' are the induced coordinates of the jet space J^2E. The existence of such a Θ is a consequence of the Picard–Fuchs equation. Using the derivation ∂ on K, we can lift any K-rational point $P \in E(K)$ canonically to $J^2E(K)$, and this defines a homomorphism $\nabla : E(K) \to J^2E(K)$. We emphasize that ∇ is merely a map on K-rational points and does not come from a map of schemes. The composition $\Theta \circ \nabla : E(K) \to \mathbb{G}_a(K)$ is then a group homomorphism of K-points. Note that the torsion points of $E(K)$ are contained in the kernel of Θ since $\mathbb{G}_a(K)$ is torsion free. Such a Θ was used by Manin to give a proof of the Lang–Mordell conjecture for abelian varieties over function fields [12]. Later Buium gave a different proof, using other methods, but still using the Manin map [4].
Theorem 1.1. For any abelian scheme A of dimension g, $X_{\infty}(A)_K$ is freely $K[\phi^*]$-generated by g differential characters of order at most $g + 1$.

Before we describe our main results in detail, we wish to fix a few notations. Fix a prime p. Let R be a p-adic complete discrete valuation ring with maximal ideal \mathfrak{m}. Let π be a generator of \mathfrak{m}. Let v be the valuation on R and k is the residue field with cardinality $|k| = q$ where q is a power of p. We assume v is normalized and let $e = v(p)$ be the absolute ramification index. Let $\phi : R \rightarrow R$ be a fixed lift of Frobenius which satisfies $\phi(x) \equiv x^q \mod \mathfrak{m}$, for all $x \in R$. We also further assume that ϕ is an automorphism on R. Let $K = R[\frac{1}{\pi}]$ and set $S = \text{Spf } R$. Then one can consider the operator on R given by $\delta x = \frac{\phi(x) - x^q}{\pi}$. It is called the π-derivation associated to ϕ. For any R-module M, we define $M_K := M \otimes_R K$.

The most important result in this paper is the construction of a canonical filtered F-isocrystal $H(A)_K$ which comes with a Hodge-type filtration and a morphism $H(A)_K \rightarrow H_{dR}(A)_K$ to the usual de Rham cohomology preserving the filtration. When A is an elliptic curve, we in fact construct a filtered F-crystal $H(A)$. As a consequence, the methods that go into the construction of $H(A)$, also establish a stronger integral version of Buium’s result that $X_{\infty}(A)$ itself is freely generated by a single element as an $R[\phi^*]$-module when A is an elliptic curve. The analogous construction for Drinfeld modules in equal positive characteristic was done by the authors in [3].
We prove the above result in section 7. In the differential algebra case, Buium had shown that $X_\infty(A)$ is generated by differential characters of order at most $2g$. We would like to remark that our techniques can be generalised to work in the case of differential algebra as well.

We define the lower splitting number m_1 to be such that $X_{m_1}(A) \neq \{0\}$ but $X_i(A) = \{0\}$ for all $0 \leq i \leq m_1 - 1$. Then it will easily follow that m_1 satisfies $1 \leq m_1 \leq 2$. In the case when A is an elliptic curve, then $X_{m_1}(A)$ is a free R-module with a canonical basis element $\Theta \in X_{m_1}(A)$, depending only on our chosen etale coordinate on A. Also we have $m_1 = 2$ unless A admits a lift of Frobenius compatible with group structure on A, in which case $m_1 = 1$. Then our first main theorem is a strengthened version of Buium’s result in [5].

Theorem 1.2. Let A be an elliptic curve with lower splitting number m_1. Then the R-module $X_{m_1}(A)$ is free of rank 1, and it freely generates $X_\infty(A)$ as an $R\{\phi^*\}$-module in the sense that the canonical map $R\{\phi^*\} \otimes_R X_{m_1}(A) \to X_\infty(A)$ is an isomorphism.

Let us now proceed to our second result. Let $u : J^n A \to A$ be the usual projection map and put $N^n = \ker u$. Then N^n is a formal scheme of relative dimension n over Spf R. For each $n \geq 1$, we show in proposition 4.3 that there is a lift of Frobenius $\check{f} : N^{n+1} \to N^n$ making the system $\{N^n\}$ into a prolongation sequence with respect the obvious projection map $u : N^{n+1} \to N^n$. We call \check{f} the lateral Frobenius. However, \check{f} is not compatible with i and $\phi : J^{n+1} A \to J^n A$ in the obvious way, that is, it is not true that $\phi \circ i = i \circ \check{f}$ holds. In fact, we can not expect it to be true because that would induce lift of Frobenius on A which is not the case to start with. Instead we have $\phi^2 \circ i = \phi \circ i \circ \check{f}$.

In section 6, we construct a canonical F-isocrystal attached to A. The F-isocrystal, denoted $H(A)_K$, is a K-module which has a semi-linear operator \check{f}^* (induced from \check{f}) on it and is of rank less than equal to $2g$. The module $H(A)_K$ also has a Hodge-type filtration and canonically maps to the de Rham cohomology of A, with its Hodge filtration.

Theorem 1.3. There exists a map of short exact sequences of K-modules

$$
\begin{array}{cccccc}
0 & \longrightarrow & X_{\text{prim}}(A)_K & \longrightarrow & H(A)_K & \longrightarrow & I(A)_K & \longrightarrow & 0 \\
\gamma & & \downarrow \phi & & & & \downarrow & \\
0 & \longrightarrow & (\text{Lie } A)_K^+ & \longrightarrow & H_{dR}(A)_K & \longrightarrow & H^1(A, \mathcal{O}_A)_K & \longrightarrow & 0
\end{array}
$$

where $\dim_K H(A)_K \leq 2g$.

Moreover, the operator \check{f}^* on $H(A)$ descends to its image under Φ.

We will define $X_{\text{prim}}(A)$ in section 7 and a more detailed result is proved in section 6, as theorem 8.2.

In fact, in the case when A is an elliptic curve, we show in section 9.1 that $H(A)$ is an integral F-crystal over R of $\text{rk}_R H(A) \leq 2$. Our method of showing the existence of this integral F-crystal implies theorem 1.2. Moreover, given an etale coordinate...
on A, there exists a canonical basis of $H(A)$ and the characteristic polynomial of f^* with respect to this basis is

$$\text{char}(f) = \begin{cases} t - \gamma, & \text{if } A \text{ has a canonical lift} \\ t^2 - \phi(\lambda)t - \gamma, & \text{otherwise} \end{cases}$$

where $\lambda, \gamma \in R$ and $\pi \mid \gamma$. The coefficients λ and γ are modular parameters that depend on A and should be viewed as differential modular forms on the moduli of elliptic curves, evaluated at A. These modular forms will be studied in a subsequent paper.

Note that over the points of the moduli of elliptic curves over R on which $\gamma \not\equiv 0 \mod \pi$, $H(A)$ is a weakly admissible F-crystal. The Fontaine functor associates a π-adic Galois representation to a weakly admissible F-isocrystal [9, 13]. Hence the F-crystal $H(A)$ gives rise to new π-adic Galois representation.

To an abelian scheme A, the crystalline theory also attaches an F-isocrystal $H_{\text{crys}}(A)_K$. However, our F-isocrystal $H(A)_K$ is different than the crystalline one. That is because the semi-linear map on $H(A)_K$ depends on higher π-derivatives of the structure constants of the equation defining the abelian scheme whereas $H_{\text{crys}}(A)_K$ does not involve any such higher π-derivatives. A natural question is whether the two F-crystals determine each other in by an explicit linear-algebraic functor, as in p-adic Hodge theory. In the Drinfeld module setting of [3], the shtuka necessarily determines both, simply because it determines the Drinfeld module. But it would be interesting to go further and describe the functor in purely linear-algebraic terms, without going through Drinfeld modules. Similarly, it is natural to expect that one could do the same in the context of this paper using the p-adic shtukas of Scholze and collaborators [14].

2. Notation

Here, for the convenience of reference, we collect all the notations introduced so far. Fix a prime p. Let R be a p-adic complete discrete valuation ring with maximal ideal \mathfrak{m}. Let π be a generator of \mathfrak{m}. Let v be the valuation on R and k is the residue field with cardinality $|k| = q$. We assume v is normalised and let $e = v(p)$ be the absolute ramification index. Let $\phi : R \to R$ be a fixed lift of Frobenius which satisfies $\phi(x) \equiv x^q \mod \mathfrak{m}$, for all $x \in R$. We also further assume that ϕ is an automorphism on R. If $x_1, \cdots, x_n \in M$ forms an R-basis, then we will denote $M = R\langle x_1, \cdots, x_n \rangle$. For any R-module M, denote $M_K = M \otimes_R K$. Let $K = R[\frac{1}{p}]$ and call $S = \text{Spf } R$. We will consider the category of π-formal schemes over S. Let A be an abelian scheme of dimension g over S.

3. Witt Vectors

Witt vectors over Dedekind domains with finite residue fields were introduced in [1]. We will give a brief overview in this section.

3.1. Frobenius lifts and π-derivations. Let B be an R-algebra, and let C be a B-algebra with structure map $u : B \to C$. In this paper, a ring homomorphism $\psi : B \to C$ will be called a lift of Frobenius (relative to u) if it satisfies the following:

1. The reduction mod π of ψ is the q-power Frobenius relative to u, that is, $\psi(x) \equiv u(x)^q \mod \pi C$.

(2) The restriction of \(\psi \) to \(R \) coincides with the fixed \(\phi \) on \(R \), that is, the following diagram commutes

\[
\begin{array}{ccc}
B & \xrightarrow{\psi} & C \\
\uparrow & & \uparrow \\
R & \xrightarrow{\phi} & R
\end{array}
\]

A \(\pi \)-derivation \(\delta \) from \(B \) to \(C \) means a set-theoretic map \(\delta : B \to C \) satisfying the following for all \(x, y \in B \)

\[
\begin{align*}
\delta(x + y) &= \delta(x) + \delta(y) \\
\delta(xy) &= u(x)^q\delta(y) + \delta(x)u(y)^q + \pi \delta(x)\delta(y)
\end{align*}
\]

such that for all \(r \in R \), we have

\[
\delta(r) = \frac{\phi(r) - r^q}{\pi}.
\]

When \(C = B \) and \(u \) is the identity map, we will call this simply a \(\pi \)-derivation on \(B \).

It follows that the map \(\phi : B \to C \) defined as

\[
\phi(x) := u(x)^q + \pi \delta(x)
\]

is a lift of Frobenius in the sense above. On the other hand, for any flat \(R \)-algebra \(B \) with a lift of Frobenius \(\phi \), one can define the \(\pi \)-derivation \(\delta(x) = \frac{\delta(x) - x^q}{\pi} \) for all \(x \in B \).

Note that this definition depends on the choice of uniformizer \(\pi \), but in a transparent way: if \(\pi' \) is another uniformizer, then \(\delta(x)\pi/\pi' \) is a \(\pi' \)-derivation. This correspondence induces a bijection between \(\pi \)-derivations \(B \to C \) and \(\pi' \)-derivations \(B \to C \).

3.2. Witt vectors. We will present three different points of view on \(\pi \)-typical Witt vectors. Let \(B \) be an \(R \)-algebra with structure map \(u : R \to B \).

(1) The ring \(W(B) \) of \(\pi \)-typical Witt vectors can be defined as the unique (up to unique isomorphism) \(R \)-algebra \(W(B) \) with a \(\pi \)-derivation \(\delta \) on \(W(B) \) and an \(R \)-algebra homomorphism \(W(B) \to B \) such that, given any \(R \)-algebra \(C \) with a \(\pi \)-derivation \(\delta \) on it and an \(R \)-algebra map \(f : C \to B \), there exists a unique \(R \)-algebra homomorphism \(g : C \to W(B) \) such that the diagram

\[
\begin{array}{ccc}
W(B) & \xrightarrow{g} & C \\
\downarrow & & \downarrow f \\
B & \xleftarrow{\delta} & C
\end{array}
\]

commutes and \(g \circ \delta = \delta \circ g \). Thus \(W \) is the right adjoint of the forgetful functor from \(R \)-algebras with \(\pi \)-derivation to \(R \)-algebras. For details, see section 1 of [1] and [11].

(2) If we restrict to flat \(R \)-algebras \(B \), then we can ignore the concept of \(\pi \)-derivation and define \(W(B) \) simply by expressing the universal property above in terms of Frobenius lifts, as follows. Given a flat \(R \)-algebra \(B \), the ring \(W(B) \) is the unique (up to unique isomorphism) flat \(R \)-algebra \(W(B) \) with a lift of Frobenius (in
the sense above) \(F : W(B) \to W(B) \) and an \(R \)-algebra homomorphism \(W(B) \to B \) such that for any flat \(R \)-algebra \(C \) with a lift of Frobenius \(\phi \) on it and an \(R \)-algebra map \(f : C \to B \), there exists a unique \(R \)-algebra homomorphism \(g : C \to W(B) \) such that the diagram

\[
\begin{array}{ccc}
W(B) & \xrightarrow{g} & B \\
\downarrow & & \downarrow f \\
B & \xrightarrow{\phi} & C
\end{array}
\]

commutes and \(g \circ \phi = F \circ g \).

(3) Finally, one can also define Witt vectors in terms of the Witt polynomials. For each \(n \geq 0 \) let us define \(B^{\phi^n} \) to be the \(R \)-algebra with structure map \(R \xrightarrow{\phi} R \xrightarrow{\phi} B \) and define the ghost rings to be the product \(R \)-algebras \(\Pi^\infty \phi B = B \times B^\phi \times \cdots \) and \(\Pi^\infty \phi B = B \times B^\phi \times \cdots \). Then for all \(n \geq 1 \) there exists a restriction, or truncation, map \(T_w : \Pi^\infty \phi B \to \Pi^{n-1} \phi B \) given by \(T_w(w_0, \ldots, w_n) = (w_0, \ldots, w_{n-1}) \). We also have the left shift Frobenius operators \(F_w : \Pi^\infty \phi B \to \Pi^{n-1} \phi B \) given by \(F_w(w_0, \ldots, w_n) = (w_1, \ldots, w_n) \). Note that \(T_w \) is an \(R \)-algebra morphism, but \(F_w \) lies over the Frobenius endomorphism \(\phi \) of \(R \).

Now as sets define

\[
W_n(B) = B^{n+1},
\]

and define the set map \(w : W_n(B) \to \Pi^\infty \phi B \) by \(w(x_0, \ldots, x_n) = (w_0, \ldots, w_n) \) where

\[
w_i = x_0^{q^i} + \pi x_1^{q^i-1} + \cdots + \pi^i x_i
\]

are the Witt polynomials. The map \(w \) is known as the ghost map. (Do note that under the traditional indexing our \(W_n \) would be denoted \(W_{n+1} \).) We can then define the ring \(W_n(B) \), the ring of truncated \(\pi \)-typical Witt vectors, by the following theorem as in [10]:

Theorem 3.1. For each \(n \geq 0 \), there exists a unique functorial \(R \)-algebra structure on \(W_n(B) \) such that \(w \) becomes a natural transformation of functors of \(R \)-algebras.

3.3. Operations on Witt vectors.

Now we recall some important operators on the Witt vectors. There are the restriction, or truncation, maps \(T : W_n(B) \to W_{n-1}(B) \) given by \(T(x_0, \ldots, x_n) = (x_0, \ldots, x_{n-1}) \). Note that \(W(B) = \lim_n W_n(B) \). There is also the Frobenius ring homomorphism \(F : W_n(B) \to W_{n-1}(B) \), which can be described in terms of the ghost map. It is the unique map which is functorial in \(B \) and makes the following diagram commutative

\[
\begin{array}{ccc}
W_n(B) & \xrightarrow{w} & \Pi^\infty \phi B \\
\downarrow F & & \downarrow F_w \\
W_{n-1}(B) & \xrightarrow{w} & \Pi^{n-1} \phi B
\end{array}
\]

As with the ghost components, \(T \) is an \(R \)-algebra map but \(F \) lies over the Frobenius endomorphism \(\phi \) of \(R \).

Next we have the Verschiebung \(V : W_{n-1}(B) \to W_n(B) \) given by \(V(x_0, \ldots, x_{n-1}) = (0, x_0, \ldots, x_{n-1}) \).
Let \(V_u : \Pi^\alpha B \to \Pi^\beta B \) be the additive map given by
\[
V_u(w_0, w_n) = (0, \pi w_0, \ldots, \pi w_n).
\]
Then the Verschiebung \(V \) makes the following diagram commute:
\[
\begin{array}{ccc}
W^1 B & \overset{w}{\longrightarrow} & \Pi^\alpha B \\
\downarrow V & & \downarrow V_w \\
W^1 B & \overset{w}{\longrightarrow} & \Pi^\beta B
\end{array}
\]
For all \(n \geq 0 \) the Frobenius and the Verschiebung satisfy the identity
\[
FV(x) = \pi x.
\]
The Verschiebung is not a ring homomorphism, but it is \(k \)-linear.

Finally, we have the multiplicative Teichmüller map \([] : B \to W_n(B)\) given by \(x \mapsto [x] = (x, 0, 0, \ldots)\).

3.4. Prolongation sequences and jet spaces.

Let \(X \) and \(Y \) be schemes over \(S = \text{Spf } R \). We say a pair \((u, \delta) \) is a prolongation, and write \(Y \overset{(u, \delta)}\rightarrow X \), if \(u : Y \to X \) is a map of schemes over \(S \) and \(\delta : \mathcal{O}_X \to u_\ast \mathcal{O}_Y \) is a \(\pi \)-derivation making the following diagram commute:

\[
\begin{array}{ccc}
R & \overset{u_\ast \mathcal{O}_Y}{\longrightarrow} & \mathcal{O}_X \\
\downarrow \delta & & \downarrow \delta \\
R & \overset{\mathcal{O}_X}{\longrightarrow} & \mathcal{O}_X
\end{array}
\]

Following [6], a prolongation sequence is a sequence of prolongations
\[
\text{Spf } R \overset{(u, \delta)}\longrightarrow T^0 \overset{(u, \delta)}\longrightarrow T^1 \overset{(u, \delta)}\longrightarrow \cdots,
\]
where each \(T^n \) is a scheme over \(S \). We will often use the notation \(T^n \) or \(\{ T_n \}_{n \geq 0} \). Note that if the \(T^n \) are flat over \(\text{Spf } R \) then having a \(\pi \)-derivation \(\delta \) is equivalent to having lifts of Frobenius \(\phi : T^{n+1} \to T^n \).

Prolongation sequences form a category \(\mathcal{C}_S \), where a morphism \(f : T^* \to U^* \) is a family of morphisms \(f^n : T^n \to U^n \) commuting with both the \(u \) and \(\delta \), in the evident sense. This category has a final object \(S^0 = \text{Spf } R \) for all \(n \), where each \(u \) is the identity and each \(\delta \) is the given \(\pi \)-derivation on \(R \).

For any scheme \(Y \) over \(S \), for all \(n \geq 0 \) we define the \(n \)-th jet space \(J^n X \) (relative to \(S \)) as
\[
J^n X(Y) := \mathrm{Hom}_S(W^*_n(Y), X)
\]
where \(W^*_n(Y) \) is defined as in [2]. We will not define \(W^*_n(Y) \) in full generality here. Instead, for simplicity of the exposition, we will define \(\mathrm{Hom}_S(W^*_n(Y), X) \) in the affine case. Write \(X = \text{Spf } A \) and \(Y = \text{Spf } B \). Then \(W^*_n(Y) = \text{Spf } W^*_n(B) \) and \(\mathrm{Hom}_S(W^*_n(Y), X) = \mathrm{Hom}_R(A, W^*_n(B)) \), the set of \(R \)-algebra homomorphisms \(A \to W_n(B) \).

Then \(J^* X := \{ J^n X \}_{n \geq 0} \) forms a prolongation sequence and is called the canonical prolongation sequence [6]. By [1, 6], \(J^* X \) satisfies the following universal property—for any \(T^* \in \mathcal{C}_S \) and \(X \) a scheme over \(S^0 \), we have
\[
\mathrm{Hom}(T^0, X) = \mathrm{Hom}_{\mathcal{C}_S}(T^*, J^* X)
\]
Let X be a scheme over $S = \text{Spf} R$. Define X^{φ^n} by $X^{\varphi^n}(B) := X(B^{\varphi^n})$ for any R-algebra B. In other words, X^{φ^n} is $X \times_{S, \varphi^n} S$, the pull-back of X under the map $\varphi^n : S \to S$. Next define

$$
\Pi^n X = X \times_S X^{\varphi} \times_S \cdots \times_S X^{\varphi^n}.
$$

Then for any R-algebra B we have $X(\Pi^n B) = X(B) \times_S \cdots \times_S X^{\varphi^n}(B)$. Thus the ghost map w in theorem 3.1 defines a map of S-schemes

$$
w : J^n X \to \Pi^n X.
$$

Note that w is injective when evaluated on points with coordinates in any flat R-algebra.

The operators F and F_w in (3.3) induce maps φ and φ_w as follows

$$
\begin{array}{ccc}
J^n X & \xrightarrow{w} & \Pi^n X \\
\downarrow \varphi & & \downarrow \varphi_w \\
J^{n-1} X & \xrightarrow{w} & \Pi^{n-1} X
\end{array}
$$

where φ_w is the left-shift operator given by

$$
\varphi_w(w_0, \ldots, w_n) = (\varphi_S(w_1), \ldots, \varphi_S(w_n)),
$$

and where $\varphi_S : X^{\varphi^i} \to X^{\varphi^{i-1}}$ is the composition given in the following diagram:

$$
\begin{array}{ccc}
X^{\varphi^i} & \xrightarrow{\sim} & X^{\varphi^{i-1}} \times_S S \\
\downarrow \varphi & & \downarrow \varphi \\
S & \xrightarrow{\varphi} & S
\end{array}
$$

Let A be a group scheme over S. Then the ghost map $w : J^n A \to \Pi^n A$ and the truncation map $u : J^n A \to J^{n-1} A$ are group scheme homomorphisms over S. The Frobenius map $\phi : J^n A \to J^{n-1} A$ is a group scheme homomorphism lying over the Frobenius endomorphism φ of S. In other words, the induced map $J^n A \to (J^{n-1} A)^{\varphi}$ is a homomorphism group schemes over S.

3.5. Character groups. Given a prolongation sequence T^* we can define its shift T^{*+n} by $(T^{*+n})^j := T^{n+j}$ for all j [6].

$$
\text{Spf } R \xleftarrow{(u, \delta)} T^n \xrightarrow{(u, \delta)} T^{n+1} \cdots
$$

We define a δ-morphism of order n from X to Y to be a morphism $J^{*+n} X \to J^* Y$ of prolongation sequences. We define a character of order n, $\Theta : A \to \hat{G}_a$ to be a δ-morphism of order n from A to \hat{G}_a which is also a group homomorphism of group schemes. By the universal property of jet schemes [6], an order n character is equivalent to a homomorphism $\Theta : J^n A \to \hat{G}_a$ of group schemes over S. We denote the group of characters of order n by $X_n(A)$. So we have

$$
X_n(A) = \text{Hom}(J^n A, \hat{G}_a),
$$
which one could take as an alternative definition. Note that $X_n(A)$ comes with an R-module structure since \hat{G}_a is an R-module scheme over S. Also the inverse system $J^{n+1}A \to J^nA$ defines a directed system

$$X_n(A) \leftarrow X_{n+1}(A) \leftarrow \cdots$$

via pull back. Each morphism u^* is injective and we then define $X_\infty(A)$ to be the direct limit $\lim_{n} X_n(A)$.

Similarly, pre-composing with the Frobenius map $\phi: J^{n+1}A \to J^nA$ induces a Frobenius operator $\phi: X^n(A) \to X^{n+1}(A)$. However since $\phi: J^{n+1}A \to J^nA$ is not a morphism over Spf R but instead lies over the Frobenius endomorphism ϕ of Spf R, some care is required. Consider the relative Frobenius morphism ϕ_R, defined to be the unique morphism making the following diagram commute:

Then ϕ_R is a morphism of formal group schemes over Spf R. Now given a δ-character $\Theta: J^nE \to \hat{G}_a$, define $\phi^*\Theta$ to be the composition

$$(3.8) \quad J^{n+1}A \xrightarrow{\phi_R} J^nA \times_{(\text{Spf } R), \phi} \text{Spf } R \xrightarrow{\Theta \times_1 \hat{G}_a \times_{(\text{Spf } R), \phi} \text{Spf } R \xrightarrow{\iota} \hat{G}_a}$$

where ι is the isomorphism of group schemes over S coming from the fact that \hat{G}_a descends to \mathbb{Z}_p as group scheme. For any R-algebra B, the induced morphism on B-points is

$$A(W_{n+1}(B)) \xrightarrow{A(F)} A(W_n(B)) \xrightarrow{\Theta \times_1 \hat{G}_a \times_{(\text{Spf } R), \phi} \text{Spf } R \xrightarrow{\iota} \hat{G}_a} B^\phi \xrightarrow{b \mapsto b} B.$$

Note that this composition $A(W_{n+1}(B)) \to B$ is indeed a morphism of group schemes.

Thus we have an additive map $X_n(A) \to X_{n+1}(A)$ given by $\Theta \mapsto \phi^*\Theta$. Note that this map is not R-linear. However, the map

$$\phi^*: X_n(A) \to X_{n+1}(A)^\phi, \quad \Theta \mapsto \phi^*\Theta$$

is R-linear, where $X_{n+1}(A)^\phi$ denotes the abelian group $X_{n+1}(A)$ with R-module structure defined by the law $r \cdot \Theta := \phi(r)\Theta$. Taking direct limits in n, we obtain an R-linear map

$$X_\infty(A) \to X_\infty(A)^\phi, \quad \Theta \mapsto \phi^*\Theta.$$

In this way, $X_\infty(A)$ is a left module over the twisted polynomial ring $R\{\phi^*\}$ with commutation law $\phi^*r = \phi(r)\phi^*$.

4. LATERAL FROBENIUS

Let B be an R-algebra and $f: R \to B$ be the structure map. Since R is a discrete valuation ring, it is easy to see that ϕ induces a unique lift of Frobenius on
the image \(f(R) \subseteq B \). Define
\[
(4.1) \quad W_n^+(B) := \{ (x_0, \ldots, x_n) \mid x_0 \in f(R) \}
\]
Also define \(\Pi^+_n(B) \) to be the subring of \(\Pi_n(B) \) such that the first coordinate is an element of the image \(f(R) \). Define the ring homomorphisms \(R^+_1, F^+_1 : \Pi^+_n(B) \to \Pi^+_n(B) \) given by
\[
R^+_n(z_0, \ldots, z_n) = (z_0, \ldots, z_{n-1}) \quad (4.2)
\]
\[
F^+_n(z_0, \ldots, z_n) = (\phi(z_0), z_2, \ldots, z_n)
\]

Proposition 4.1. For all \(n \geq 1 \), there exists ring homomorphisms \(F^+_1 : W_n(B) \to W_{n-1}(B) \) satisfying
\[
\begin{align*}
W_n(B) & \xrightarrow{w} \Pi_n^+(B) \\
W^+_{n-1}(B) & \xrightarrow{w} \Pi^+_{n-1}(B)
\end{align*}
\]
Moreover, if \(F^+_1(x_0, \ldots, x_n) = (F^+_1, \ldots, F^+_1) \), then for all \(0 \leq i \leq n - 1 \),
\[
F^+_i \equiv x_i^q \pmod{\pi}
\]

Proof. We will show using the ghost map \(w \). And also, it is sufficient to assume that \(B \) is \(\pi \)-torsion free. Clearly we have \(F^+_0 = \phi(x_0) \). We will prove by induction. Assume \(F^+_{h-1} = x^q_{h-1} + \pi y \) for some \(y \in B \). Then comparing the ghost coordinates, we get
\[
(F^+_0)^q + \pi(F^+_1)^{q-1} + \cdots + \pi^h F^+_h = x^q_{0} + \pi x^q_{1} + \cdots + \pi^h x_{h+1}
\]
Grouping terms we obtain
\[
F^+_h = \sum_{i=0}^{h-1} \pi^{h-i} \left(x^q_{i} - (F^+_i)^{q-1} \right) + x^q_{h} + \pi x_{h+1}
\]
and we would do this if we can show the integrality of the expression on the right hand side. Let \(L_i = \pi^{i-h} \left(x^q_{i} - (F^+_i)^{q-1} \right) \). By induction hypothesis, \(F^+_i = x^q_{i} + \pi y_i \) for some \(y_i \in R \) for all \(i \). Then
\[
L_i = \pi^{i-h} \sum_{j=1}^{q-1-h} \binom{q-1-i}{j} \pi^j (x^q_{i})^{q-1-j} y_i^j
\]
Then note that the valuation
\[
v(L_i) \geq i - h + q^{q-1-i} + (j - v(j)) \geq (h - i) v(q) + 1 - (h - i) \geq 1
\]
and we are done. \(\square \)

There is another, more structural way of understanding \(W_n^+(B) \) and \(F^+ \). Consider the usual exact sequence
\[
\begin{array}{cccc}
0 & \rightarrow & W_{n-1}(B) & \xrightarrow{V} & W_n(B) & \rightarrow & B & \rightarrow & 0.
\end{array}
\]
Then $W_n^i(B)$ is the pull-back $R \times_B W_n(B)$ of this extension through the structure map $f : R \to B$. (For simplicity, we assume f is injective.) Let us now consider F^\dagger. Observe that the projection $W_n^\dagger(B) \to R$ has a canonical section. Indeed, the Frobenius lift ϕ induces a lift $\tilde{f} : R \to W_n(B)$ of f and hence a section of the map $W_n^\dagger(B) \to R$. Therefore, we may identify $R \oplus W_{n-1}(B)$ with $W_n^\dagger(B)$ via the map $(r, z) \mapsto \tilde{f}(r) + V(z)$. In terms of this identification, the map $F^\dagger : W_n^\dagger(B) \to W_{n-1}(B)$ is given by

$$(r, z) \mapsto (\phi(r), F(z)).$$

Proposition 4.2. Let $I : W_n^\dagger(B) \to W_n(B)$ be the natural inclusion. Then

$$F^2 \circ I = F \circ I \circ F^\dagger.$$

Proof. It is sufficient to assume B is π-torsion free. Then the ghost map w is injective and hence it is sufficient to check the identity on the ghost vectors where it is clearly true. □

For any S-scheme X, with an S-point $P : S \to X$, for each n we can define $N^n = J^n X \times_X S$ which is the following fiber product

$$\begin{array}{ccc}
J^n X & \leftarrow & N^n \\
\downarrow & & \downarrow \\
X & \leftarrow & P
\end{array}$$

If X is affine and $X = \text{Spf} C$, let $P^* : C \to R$ be the map of R-algebras corresponding to $P : X \to S$. We will say an R-algebra map $h : C \to B$ satisfies (\ast) if it satisfies the following commutative diagram

$$\begin{array}{ccc}
C & \xrightarrow{h} & B \\
\downarrow & \searrow & \downarrow f \\
R & \xrightarrow{P^*} & B
\end{array}$$

Then the S-scheme N^n can be described functorially as follows

(4.3) \quad \{N^n(B) = \{g : C \to W_n(B) \mid g = (g_0, \ldots, g_n), \text{ then } g_0 \text{ satisfies (}\ast)$\}\}

Note that if $g \in N^n(B)$ then $g(C) \subseteq W_n^\dagger(B)$. Also observe that the projection map $u : J^n X \to J^{n-1} X$ induces $u : N^n \to N^{n-1}$ for all $n \geq 1$.

Theorem 4.3. For each n, there exist a morphism $\bar{f} : N^n \to N^{n-1}$ which is lift of Frobenius and satisfies

$$\phi^{\circ 2} \circ \bar{f} = \phi \circ \bar{f} \circ \bar{f}.$$

In particular, if X is smooth over S, then $\{N^n\}_{n=1}^\infty$ forms a prolongation sequence.

Proof. For any R-algebra, define $\bar{f} : N^n(B) \to N^{n-1}(B)$ as

(4.4) \quad $\bar{f}(g) = F^\dagger \circ g$, for all $g \in N^n(B)$.

The above composition makes sense as $g \in N^n(B)$ corresponds to an R-algebra morphism $g : C \to W_n^\dagger(B)$, where $N^n \simeq \text{Spf} C$ and hence the composition $F^\dagger \circ g \in N^{n-1}(B)$. Then it follows that \bar{f} is a lift of Frobenius with respect to u from prop. 4.1 and the compositional identity is an immediate consequence of prop. 4.2.
If X is smooth, then the N^ns are flat over S for all n. Hence the lift of Frobenius $\tilde{f} : N^n \to N^{n-1}$ corresponds to a π-derivation δ with respect to u on the corresponding structure sheaves hence making the system $\{N^n\}_{n=1}^{\infty}$ into a prolongation sequence. □

Let us define $\Pi^{n,\dagger}_{\phi}A = \Pi^n A \times_A S$ as the following fiber product

$$
\begin{array}{ccc}
\Pi^{n,\dagger}_{\phi}A & \overset{i_w}{\rightarrow} & \Pi^n A \\
\downarrow & & \downarrow u_w \\
S & \overset{e}{\rightarrow} & A
\end{array}
$$

where u_w is the usual projection along the first coordinate of $\Pi^n A$ and $i_w : \Pi^{n,\dagger}_{\phi}A \to \Pi^n A$ is the induced morphism. Then we have

$$
0 \longrightarrow N^n \overset{i}{\rightarrow} J^n A \overset{u}{\rightarrow} A \longrightarrow 0
$$

$$
0 \longrightarrow \Pi^{n,\dagger}_{\phi}A \overset{i_w}{\rightarrow} \Pi^n A \overset{u_w}{\rightarrow} A \longrightarrow 0
$$

Theorem 4.4. Let $X = A$ be a smooth group scheme over S. Then the morphism of group schemes $(i \circ \tilde{f} - \phi \circ i) : N^n \to J^{n-1}A$ uniquely factors through N^1 as

$$
\begin{array}{ccc}
N^n & \overset{i_0f-\phi i}{\rightarrow} & J^{n-1}A \\
\downarrow u & & \downarrow g \\
N^1 & \rightarrow &
\end{array}
$$

Proof. Let $e : S \to A$ denote the identity section. Consider the following diagram

$$
\begin{array}{ccc}
N^n & \overset{w}{\rightarrow} & \Pi^{n,\dagger}_{\phi}A \\
\downarrow x \mapsto (x,-x) & & \downarrow z \mapsto (z,-z) \\
N^n \times N^n & \overset{w}{\rightarrow} & \Pi^{n,\dagger}_{\phi}A \times \Pi^{n,\dagger}_{\phi}A \\
\downarrow i \times f & & \downarrow i_w \times i_w' \\
J^n A \times N^{n-1} & \overset{w}{\rightarrow} & \Pi^n A \times \Pi^{n-1,\dagger}_{\phi}A \\
\downarrow \phi \times i & & \downarrow \phi_w \times i_w \\
J^{n-1}A \times J^{n-1}A & \overset{w}{\rightarrow} & \Pi^{n-1} A \times \Pi^{n-1,\dagger}_{\phi}A \\
\downarrow (x_1,x_2) \mapsto x_1x_2 & & \downarrow (z_1,z_2) \mapsto z_1z_2 \\
J^{n-1}A & \overset{w}{\rightarrow} & \Pi^{n-1} A \\
\end{array}
$$

Then the composition of the left column of the above diagram is precisely $(i_0f-\phi i)$ whereas the right column sends $z = (z_1, \cdots, z_n) \mapsto (z_1, e, \cdots, e)$. Hence the map
ISOCRYSTALS ASSOCIATED TO ARITHMETIC JET SPACES OF ABELIAN SCHEMES

\[\Pi_{g}^{n+1} A \to \Pi_{g}^{n-1} A \text{ factors as } \Pi_{g}^{n} A \to \Pi_{g}^{n+1} A \xrightarrow{\rho_{n}} \Pi_{g}^{n-1} A \text{ given by} \]
\[(z_{1}, \cdots, z_{n}) \mapsto z_{1} \mapsto (z_{1}, e, \cdots, e) \]

Hence we have

\[\begin{array}{c}
\xymatrix{
N^{1} \ar[r]^{w} \ar[d]_{u} & \Pi_{g}^{n+1} A \ar[d]_{g} \\
N^{n} \ar[r]_{i \circ f - \phi \circ i} \ar[d]_{w} & \Pi_{g}^{n+1} A \\
J^{n-1} A \ar[r]_{u} & \Pi_{g}^{n-1} A
}\
\end{array} \]

Now we claim that there is a unique map \(g : N^{1} \to J^{n-1} A \), as shown above, making the diagram commute. Observe that the map \(u : N^{n} \to N^{1} \) admits a section \(\sigma \) which is a morphism of schemes since \(u \) is simply the projection map. And hence we can put \(g = (i \circ f - \phi \circ i) \circ \sigma \).

It remains to prove uniqueness of \(g \) and the commutativity relation \(i \circ f - \phi \circ i = u \circ g \). By the diagram above, both these statements will follow from the injectivity of the map
\[(J^{n-1} A)(B) \to (\Pi_{g}^{n-1} A)(B), \]
where \(N^{1} = \text{Spec } B \). So it remains to show this injectivity. By adjointness, this is equivalent to the injectivity of the map \(A(W_{n}(B)) \to A(\Pi_{g}^{n-1} B) \). To show this, it is enough to show that \(\text{Spec } \Pi_{g}^{n-1} B \to \text{Spec } W_{n}(B) \) is an epimorphism in the category of schemes. To show this, it is enough to show that the ghost map \(W_{n}(B) \to \Pi_{g}^{n-1} B \) is injective. (See [8] (9.5.6).) But this holds because \(N^{1} \) is smooth over \(S \) and hence \(B \) is flat.

5. THE KERNEL OF JET SPACES

Let \(A \) be a smooth commutative group scheme over \(S \) of relative dimension \(g \). Let \(x_{0} = (x_{01}, \cdots, x_{0g}) \) be an etale coordinate system of \(A \) around the identity section. Then by the local trivialisation of jet spaces of smooth schemes, let \(x = (x_{0}, \cdots, x_{n}) \) be the local Witt coordinates for \(J^{n} A \) around the identity section where \(x_{i} = (x_{i1}, \cdots, x_{ig}) \) and let \((x_{1}, \cdots, x_{n}) \) denote the local coordinates around the identity section of \(N^{n} \). For every \(n \) we have the following exact sequence of group schemes
\[0 \to N^{n} \xrightarrow{i} J^{n} A \xrightarrow{w} A \to 0 \]

(5.1)

Let \(pr_{j} : \hat{\mathbb{G}}_{a}^{g} \to \hat{\mathbb{G}}_{a} \) denote the \(j \)-th projection for \(1 \leq j \leq g \). Let for all \(n, H^{n} \) be defined by the short exact sequence \(0 \to H^{n} \to N^{n} \to N^{n-1} \to 0 \). For any group scheme \(G \) of relative dimension \(g \), let \(G^{\text{for}} \) denote the formal group law associated to \(G \).

In prop. 4.1 of [7], Buium constructs a group scheme homomorphism
\[\nu : H^{n} \to \hat{\mathbb{G}}_{a}^{g}, \]
Proposition 5.1. \(\nu \) induces an isomorphism \((H^n)_{\text{for}} \to (\mathbb{G}_a)^g\) of formal group laws over \(K\). The compositions \(\text{pr}_j \circ \nu\) form a \(K\)-basis for \(\text{Hom}(H^n, \mathbb{G}_a)_K\) for all \(j = 1, \cdots, g\). Moreover if the ramification index \(e\) satisfies \(e \leq p - 1\), then \(\nu\) is an isomorphism.

Lemma 5.2. For all \(n \geq 1\), we have \(\text{rk}_R \text{Hom}(N^n, \mathbb{G}_a) \leq ng\).

Proof. Applying \(\text{Hom}(\cdot, \mathbb{G}_a)\) to the short exact sequence in prop. 5.1 we get
\[
(2.2) \quad 0 \to \text{Hom}(N^{n-1}, \mathbb{G}_a) \to \text{Hom}(N^n, \mathbb{G}_a) \to \text{Hom}(H^n, \mathbb{G}_a) \to \text{Ext}(N^{n-1}, \mathbb{G}_a)
\]
Since \(\text{Hom}(H^n, \mathbb{G}_a) \simeq R^g\) we have \(\text{rk}_R \text{Hom}(N^n, \mathbb{G}_a) \leq \text{rk}_R \text{Hom}(N^{n-1}, \mathbb{G}_a) + g\) and hence it easily follows that \(\text{rk}_R \text{Hom}(N^n, \mathbb{G}_a) \leq ng\).

For all \(1 \leq j \leq g\), define \(\Psi_{1j} : N^1 \to \mathbb{G}_a\) as \(\Psi_{1j} := \text{pr}_j \circ \nu\). Now, for all \(1 \leq i \leq n\) and \(1 \leq j \leq g\) define \(\Psi_{ij} : N^n \to \mathbb{G}_a\) as
\[
(5.3) \quad \Psi_{ij} := \Psi_{1j} \circ f^{(i-1)}.
\]

Proposition 5.3. For all \(1 \leq i \leq n\) and \(1 \leq j \leq g\), the set \(\{\Psi_{ij}\}\) form an \(R\)-basis for \(\text{Hom}(N^n, \mathbb{G}_a)\). In particular \(\text{rk}_R \text{Hom}(N^n, \mathbb{G}_a) = ng\).

Proof. By lemma 5.2, we have \(\text{rk}_R \text{Hom}(N^n, \mathbb{G}_a) \leq ng\). Hence it is sufficient to show that \(\{\Psi_{ij}\}\)s are linearly independent for all \(1 \leq i \leq n\) and \(1 \leq j \leq g\). For the sake of simplicity, we give the proof in the case when \(p \geq 3\) and \(e \leq p - 1\), in which case, \(\nu : N^1 \to \mathbb{G}_a^g\) also satisfies \(\nu(x_1) \equiv x_1 \mod \pi\). This proof can also be adapted to the general case.

Note that
\[
(5.4) \quad \Psi_{ij}(x_1, \cdots, x_n) \equiv x_{ij}^{(i-1)} \mod \pi.
\]
Hence \(\{\Psi_{ij}\}\)s are linearly independent mod \(\pi\) and since \(R\) is \(\pi\)-torsion free, \(\{\Psi_{ij}\}\)s are \(R\)-linearly independent by Nakayama’s lemma.

We define \(\Psi_i := (\Psi_{i1}, \cdots, \Psi_{ig}) \in \text{Hom}(N^n, \mathbb{G}_a)^g\). Then by proposition 5.3, any morphism \(\Psi \in \text{Hom}(N^n, \mathbb{G}_a)\) can be represented as
\[
(5.5) \quad \Psi = \gamma_1 \cdot \Psi_1 + \cdots + \gamma_n \cdot \Psi_n
\]
where \(\gamma_i \in \text{Mat}_{1 \times g}(R)\) and “.” denotes the usual dot product of two vectors.

6. The \(F\)-isocrystal

Let \(x_0 = (x_{01}, \cdots, x_{0g})\) be an etale coordinate system of \(A\) around the identity section. Then by the local trivialisation of jet spaces of smooth schemes, let \(x = (x_0, \cdots, x_n)\) be the local Witt coordinates for \(J^nA\) around the identity section where \(x_1 = (x_{i1}, \cdots, x_{ig})\). Then in this coordinate system, if the lift of Frobenius map \(\phi : J^{n+1}A \to J^nA\) is given by
\[
(6.1) \quad \phi(x_0, \cdots, x_{n+1}) = (y_0, \cdots, y_n)
\]
then \(y_0 = (x_{01}^q + \pi x_{11}, \ldots, x_{0g}^q + \pi x_{1g}) \). Let \(A_g \) be a \(g \times g \) matrix given by

\[
A_g = \begin{pmatrix}
q x_{01}^{q-1} & 0 & \cdots & 0 \\
0 & q x_{02}^{q-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & q x_{0g}^{q-1}
\end{pmatrix}
\]

Let \(\pi_g \) denote the \(g \times g \) identity matrix. Then the \((n+1)g \times (n+2)g\) derivative matrix of \(\phi \) is given by

\[
\begin{pmatrix}
A_g & \pi \pi_g & * \\
0 & 0 & *
\end{pmatrix}
\]

where 0 is the \(ng \times g\)-zero matrix. Hence when the derivative matrix is evaluated at the identity section \(x = 0 \) we get

\[
D \phi = \begin{pmatrix}
0_g & \pi \pi_g & * \\
0 & 0 & *
\end{pmatrix}
\]

where \(0_g \) is the \(g \times g\)-zero matrix.

Recall that \(\text{Ext}^2(A, \hat{G}_n) \) parametrises isomorphism classes of extensions of \(A \) by \(\hat{G}_n \), along with a splitting of the corresponding short exact sequence of the Lie algebras. The \(R\)-module \(\text{Ext}^2(A, \hat{G}_n) \) is also interpreted as the de Rham cohomology associated to the abelian scheme \(A \). For all \(n \geq 1 \), we will define maps from \(\text{Hom}_A(N^n, \hat{G}_n) \) to \(\text{Ext}^2(A, \hat{G}_n) \). These maps are obtained by push-outs of \(J^n A \) by \(\Psi \in \text{Hom}(N^n, \hat{G}_n) \). Now consider the exact sequence

\[
0 \to N^n \xrightarrow{i} J^n A \xrightarrow{u} A \to 0
\]

Given a \(\Psi \in \text{Hom}_A(N^n, \hat{G}_n) \) consider the push out

\[
\begin{array}{c}
0 \to N^n \xrightarrow{i} J^n A \xrightarrow{u} A \xrightarrow{0} \\
\downarrow \Psi \downarrow \downarrow s \Psi \downarrow \downarrow \downarrow A^*_\Psi \\
0 \to \hat{G}_n \xrightarrow{i} A^*_\Psi \xrightarrow{0} A \xrightarrow{0}
\end{array}
\]

where \(A^*_\Psi = J^n A \xrightarrow{u \circ D u} A \) and \(\Gamma(N^n) = \{(i(z), -\Psi(z)) | z \in N^n\} \subset J^n A \times N^n \) and \(g_\Psi(x) = [x, 0] \in A^*_\Psi \).

Based on the choice of local etale coordinates \(x_0 \) for \(A \), we obtain local etale Witt coordinates for \(J^n A \). This gives us a basis for \(\text{Lie} J^n A \) which we will still denote as \(x = (x_0, \ldots, x_n) \). Let \(s_{\text{Witt}} : \text{Lie} J^n A \to \text{Lie} N^n \) be given by \(s_{\text{Witt}}(x_0, \ldots, x_n) = (x_1, \ldots, x_n) \). Thus we have the following split exact sequence of \(R\)-modules

\[
0 \to \text{Lie} N^n \xrightarrow{D_i} \text{Lie} J^n A \xrightarrow{D u} \text{Lie}(A) \to 0
\]

Let \(v \) be the corresponding splitting \(v : \text{Lie} A \to \text{Lie} J^n A \) satisfying \(s_{\text{Witt}} = 1 - v \circ D u \). Then \(v \) is given by \(v(x_0) = (x_0, 0, \ldots, 0) \).

Let \(s_\Psi \) denote the induced splitting of the push out extension

\[
0 \to \text{Lie} \hat{G}_n \xrightarrow{s_\Psi} \text{Lie}(A^*_\Psi) \xrightarrow{0} \text{Lie}(A) \to 0
\]
It is given explicitly by \(\hat{s}_\Psi : \text{Lie} J^n A \times \hat{\text{G}_a} \to \hat{\text{G}_a} \)
\[
\hat{s}_\Psi(x, y) := D\Psi(s_{\text{Whit}}(x)) + y
\]
and
\[
s_\Psi : \text{Lie}(A^*_\Psi) = \frac{\text{Lie} J^n A \times \hat{\text{G}_a}}{\text{Lie} \Gamma(N^n)} \to \hat{\text{G}_a}
\]
This induces the following morphism of exact sequences
\[
(6.5) \quad 0 \rightarrow X_n(A) \rightarrow \text{Hom}_A(N^n, \hat{\text{G}_a}) \rightarrow \text{Ext}(A, \hat{\text{G}_a})
\]
\[
\Psi \rightarrow (A^*_\Psi, s_\Psi)
\]
\[
0 \rightarrow \text{Lie}(A)^* \rightarrow \text{Ext}^2(A, \hat{\text{G}_a}) \rightarrow \text{Ext}(A, \hat{\text{G}_a}) \rightarrow 0
\]

Proposition 6.1. Let \(\Theta \) be a character in \(X_n(A) \), and put \(\Psi = i^*\Theta \in \text{Hom}(N^n, \hat{\text{G}_a}) \).

1. The map \(X_n(A) \rightarrow \text{Lie}(A)^* \) of (6.5) sends \(\Theta \) to \(-D\Theta \circ v\).
2. Let \(\hat{\Theta} = \phi^*\Theta \), then \(-D\hat{\Theta} \circ v = 0\).

Proof. (1): Let us recall in explicit terms how the map is given. For the split extension \(A \times \hat{\text{G}_a} \), the retractions \(\text{Lie}(A) \times \hat{\text{G}_a} = \text{Lie}(A \times \hat{\text{G}_a}) \to \hat{\text{G}_a} \) are in bijection with maps \(\text{Lie}(A) \to \hat{\text{G}_a} \), a retraction \(s \) corresponding to map \(x_0 \mapsto s(x_0, 0) \). Therefore to determine the image of \(D\Theta \), we need to identify \(\text{Lie} A^*_\Psi \) with the split extension and then apply this map to \(s_\Psi \).

A trivialization of the extension \(\text{Lie} A^*_\Psi \) is given by the map
\[
\frac{\text{Lie} J^n A \times \hat{\text{G}_a}}{\text{Lie} \Gamma(N^n)} = \text{Lie} A^*_\Psi \rightarrow \text{Lie}(A) \times \hat{\text{G}_a}
\]
defined by \([a, b] \mapsto (u(a), D\Theta(a) + b)\). The inverse isomorphism \(H \) is then given by the expression
\[
H(x, y) = [v(x), y - D\Theta(v(x))],
\]
and so the composition \(\text{Lie}(A) \to \text{Lie}(A) \times \hat{\text{G}_a} \to \text{Lie}(A^*_\Psi) \to \hat{\text{G}_a} \) is simply \(-D\Theta \circ v\).

(2): We have \(\hat{\Theta} = \Theta \circ \phi \) and hence \(D\hat{\Theta} \circ v = D\Theta \circ D\phi \circ v \). But note that by equation (6.3), \(D\phi \circ v = 0 \) and hence we are done. \(\square \)

Proposition 6.2. If \(\Psi \in i^*\phi^*(X_n(A)) \), then the class \((A^*_\Psi, s_\Psi) \in \text{Ext}^2(A, \hat{\text{G}_a}) \) is zero.

Proof. We know from diagram (6.5) that \(A^*_\Psi \) is a trivial extension since \(\Psi \) lies in \(i^*X_{n+1}(A) \). Now as in part (2) of proposition 6.1, we have, in the notation of that proposition, \(-D\hat{\Theta} \circ v = 0\) and therefore the class in \(\text{Ext}^2(E, \hat{\text{G}_a}) \) is zero by part (1). \(\square \)

Proposition 6.3. If \(\Theta \in X_n(A) \), then \((\phi \circ i - i \circ f)^*\Theta = \pi \Psi \) for some \(\Psi \in \text{Hom}(N^1, \hat{\text{G}_a}) \).
Then note that

\[\phi : \text{Proposition 6.4.} \]

\[\text{to the chosen coordinates be } D \]

\[\text{induces a map } u \]

\[\text{because we have } f \]

\[\text{u} \]

\[(6.6) \]

\[\text{Then } u \]

\[\text{implies that } \pi \]

\[\text{y} \]

\[\text{H}_{n+1}(A) \]

\[\text{Let } \delta \]

\[\text{is given by } g_\delta(z_1) = (z_1, 0, \cdots, 0) \]

\[\text{and } u(x_1) = \pi x_1. \]

Then if \(g(x_1) = (y_0, \cdots, y_n) \) then the \(y_i \)'s satisfy

\[y_0 = \pi x_1 \]

\[y_0^q + \pi y_1^{q^{-1}} + \cdots + \pi^i y_i = 0, \text{ for all } i = 1, \cdots, n \]

Hence it is easy to see that \(\pi | y_i \) for all \(i = 0, \cdots, n \).

Now given a \(\delta \)-character \(\Theta(x_0, \cdots, x_n) \in X_n(A) \), we have \(\Theta(0, \cdots, 0) = 0 \). Then the composition \(\Theta \circ g : N^1 \to \hat{G}_a \) is given by \(x_1 \mapsto \Theta(y_1, \cdots, y_n) \). This clearly implies that \(\pi | \Theta(y_0, \cdots, y_n) \) and hence we are done. \(\square \)

The \(\phi \)-linear map \(\phi^* : X_{n-1}(A) \to X_n(A) \) induces a linear map \(X_{n-1}(A)^\phi \to X_n(A) \), which we will abusively also denote \(\phi^* \). We then define

\[H_n(A) = \frac{\text{Hom}(N^n, \hat{G}_a)}{i^*\phi^*(X_{n-1}(A)^\phi)} \]

Then \(u : N^{n+1} \to N^n \) induces \(u^* : \text{Hom}(N^n, \hat{G}_a) \to \text{Hom}(N^{n+1}, \hat{G}_a) \). And since \(u^*i^*\phi^*(X_n(A)) = i^*u^*\phi^*(X_n(A)) = i^*\phi^*u^*(X_n(A)) \subset i^*\phi^*(X_{n+1}(A)) \), it also induces a map \(u^* : H_n(A) \to H_{n+1}(A) \). Define \(H(A) = \lim_{\to} H_n(A) \).

Similarly, \(f : N^{n+1} \to N^n \) induces \(f^* : \text{Hom}(N^n, \hat{G}_a) \to \text{Hom}(N^{n+1}, \hat{G}_a) \), which descends to a \(\phi \)-linear morphism of \(R \)-modules

\[f^* : H_n(A) \to H_{n+1}(A) \]

because we have \(f^*i^*\phi^*(X_{n-1}(A)) = i^*\phi^*f^*(X_{n-1}(A)) \subset i^*\phi^*X_n(A) \). This then induces a \(\phi \)-linear endomorphism \(f^* : H(A) \to H(A) \).

For any \(\delta \)-character \(\Theta \in X_n(A) \), let the derivative at the identity with respect to the chosen coordinates be \(D\Theta = (A_0, \cdots, A_n) \) where \(A_j \in \text{Mat}_{1 \times g}(R) \).

Proposition 6.4. Let \(\Theta \) be a character in \(X_n(A) \).

1. We have

\[i^*\phi^*\Theta = f^*(i^*\Theta) + \gamma.\Psi_1, \]

where \(\gamma = \pi A_0 \).

2. For \(n \geq 1 \), we have

\[i^*(\phi^o)^n*\Theta = (f^{n-1})^*i^*\phi^*\Theta. \]

Proof. (1): Let \(\gamma \in R^g \) be such that

\[(i^*\phi^* - f^*)\Theta = \gamma.\Psi_1 \]

Then note that

\[i^*\phi^*\Theta \equiv \gamma.\Psi_1 \mod (\Psi_2, \cdots, \Psi_{2g}, \cdots, \Psi_{(n+1)}, \cdots, \Psi_{(n+1)g}). \]
in \(\text{Hom}(N^{n+1}, \hat{G}_a) \). Then by equation (6.3) the derivative matrix \(D(\Theta \circ \phi \circ i) \) at the identity section is

\[
(\pi A_0, *, \cdots, *)
\]

Hence we have

\[
(6.8) \quad \gamma = \pi A_0.
\]

(2): This is another way of expressing \(\phi^{\rho n} \circ i = \phi \circ i \circ f^{(n-1)} \), which follows from theorem 4.3 by induction. \(\square \)

Proposition 6.5. For any \(n \geq 0 \), the diagram

\[
\begin{array}{ccc}
X_n(E)/X_{n-1}(E) & \overset{\phi^*}{\longrightarrow} & X_{n+1}(E)/X_n(E) \\
\downarrow i^* & & \downarrow i^* \\
\text{Hom}_A(N^n, \hat{G}_a)/\text{Hom}_A(N^{n-1}, \hat{G}_a) & \overset{f^*}{\longrightarrow} & \text{Hom}_A(N^{n+1}, \hat{G}_a)/\text{Hom}_A(N^n, \hat{G}_a)
\end{array}
\]

is commutative. The morphisms \(i^* \) and \(\phi^* \) are injective, and \(f^* \) is bijective.

Proof. For \(n \geq 1 \), commutativity of the diagram follows from proposition 6.4; for \(n = 0 \), since \(X_0(A) = 0 \) the result follows.

The maps \(i^* \) are injective because the projections \(J^n A \to J^{n-1} A \) and \(N^n \to N^{n-1} \) have the same kernel, and \(f^* \) is an isomorphism by proposition 5.3. It follows that \(\phi^* \) is an injection. \(\square \)

7. The exact sequences

For every \(n \) we have the following short exact sequence

\[
(7.1) \quad 0 \to N^n \to J^n A \to A \to 0
\]

Applying \(\text{Hom}(-, \hat{G}_a) \) to the above short exact sequence gives us

\[
(7.2) \quad 0 \to X_n(A) \to \text{Hom}(N^n, \hat{G}_a) \overset{\partial}{\longrightarrow} \text{Ext}(A, \hat{G}_a)
\]

Note that \(\text{Ext}(A, \hat{G}_a) \simeq R^n \). Let \(I_n := \text{image}(\partial) \). We define \(m_1 \) as the lower splitting number if \(X_{m_1}(A) \neq \{0\} \) and \(X_{m_1-1}(A) = \{0\} \).

Lemma 7.1. We have \(m_1 = 1 \) or \(2 \).

Proof. We know that for all \(n \), \(X_n(A) = \text{ker}(\partial) \). We know that \(\text{rk}_R \text{Ext}(A, \hat{G}_a) = g \) and by cor. 5.3 we have \(\text{rk}_R \text{Hom}(N^n, \hat{G}_a) = ng \) and since \(X_n(A) = \text{ker}(\partial) \), the result follows. \(\square \)

We define the upper splitting as the smallest number \(m_u \) such that \(\text{rk}_R I_n \) is constant for all \(n \geq m_u - 1 \). Note that \(m_u \) exists since for all \(n \), \(\text{rk}_R I_n \leq \text{rk}_R \text{Ext}(A, \hat{G}_a) = g \).

We define a differential character \(\Theta \in X_n(A)_K \) to be primitive if

\[\Theta \notin u^*X_{n-1}(A)_K + \phi^*X_{n-1}(A)_K. \]

Define \(h_i = \text{rk} I_i - \text{rk} I_{i-1} \) for all \(i \geq 1 \). Then clearly \(h_1 \) is the rank of \(I_1 \). For each \(i \), let \(l_i = \text{rk} X_i(A)_K - \text{rk}(u^*X_{i-1}(A)_K + \phi^*X_{i-1}(A)_K) \). We will call the primitive rank of \(X_i(A)_K \) as \(l_i \).
For every i, let $\text{mult}(i)$ be a non-negative integer. We say $\mathcal{B}_i := \{\Theta_{ij}\}_{j=1}^{\text{mult}(i)}$ is a primitive basis for $X_i(A)_K$ if their images in $X_i(A)_K/(u^*X_{i-1}(A)_K + \phi^*X_{i-1}(A)_K)$ are distinct and forms a K-basis. Let \mathcal{B} be a set such that it generates $X_{\infty}(A)_K$ as a $K[\phi^*]$-module. For each i, denote $\mathcal{B}_i = \mathcal{B} \cap (X_i(A)_K \setminus X_{i-1}(A)_K)$. We define \mathcal{B} to primitively generate $X_{\infty}(A)_K$ if, for all i, \mathcal{B}_i is a primitive basis for $X_i(A)_K$.

Let one that can always construct such a \mathcal{B} by taking the union of \mathcal{B}_i for all i, where \mathcal{B}_i is a primitive basis for $X_i(A)_K$.

Let $S_n(\mathcal{B}_i) = \{\phi^h\Theta | \text{ for all } 0 \leq h \leq (n-i) \text{ and } \Theta \in \mathcal{B}_i\}$.

Define

$$X_{\text{prim}}(A) := \text{lim}_{\rightarrow} X_n(A)/\phi^*X_{n-1}(A).$$

Proposition 7.2. Let \mathcal{B} primitively generate $X_{\infty}(A)_K$. Then for all n, the set $S_n(\mathcal{B}_1) \cup \cdots \cup S_n(\mathcal{B}_n)$ is K-linearly independent.

Proof. We will prove by contradiction. Suppose the set $S_n(\mathcal{B}_1) \cup \cdots \cup S_n(\mathcal{B}_n)$ is not K-linearly independent, then there exists a K-linear relation among the elements. We may assume that the highest order of the terms appearing in the relation with non-zero coefficients is n. Then there exists a_{ijh} such that we have

$$\{a_{11}i^*(\phi^*(n-i))\Theta_{i1} + \cdots + a_{1\text{mult}(i)}i^*(\phi^*(n-i))\Theta_{i\text{mult}(i)}\} + \cdots + \{a_{n1}i^*(\phi^*(n-i))\Theta_{n1} + \cdots + a_{n\text{mult}(i)}i^*(\phi^*(n-i))\Theta_{n\text{mult}(i)}\} \equiv 0 \mod \text{Hom}(N^{n-1}, \hat{G}_a)$$

Let $l' \in \{1, \cdots, l\}$ be such that $a_{l'h_0} \neq 0$ for some h_0 and $a_{l'h} = 0$ for all $j > l'$ and all $h = 1, \cdots, \text{mult}(i_j)$. Then the above relation becomes

$$\{a_{11}i^*(\phi^*(n-i))\Theta_{i1} + \cdots + a_{1\text{mult}(i)}i^*(\phi^*(n-i))\Theta_{i\text{mult}(i)}\} + \cdots + \{a_{l'1}i^*(\phi^*(n-i))\Theta_{l'1} + \cdots + a_{l'\text{mult}(i)}i^*(\phi^*(n-i))\Theta_{l'\text{mult}(i)}\} \equiv 0 \mod \text{Hom}(N^{n-1}, \hat{G}_a)$$

(7.3)

Using the assumption that ϕ is an automorphism of R, we may define

$$\Theta := \{a_{11}^{-1}i^*(\phi^{-(i_{l'-i})})\Theta_{i1} + \cdots + a_{1\text{mult}(i)}^{-1}i^*(\phi^{-(i_{l'-i})})\Theta_{i\text{mult}(i)}\} + \cdots + \{a_{l'1}^{-1}i^*(\phi^{-(i_{l'-i})})\Theta_{l'1} + \cdots + a_{l'\text{mult}(i)}^{-1}i^*(\phi^{-(i_{l'-i})})\Theta_{l'\text{mult}(i)}\}$$

The image of Θ in the quotient $X_{i_{l'}}(A)_K/(u^*X_{i_{l'}-1}(A)_K + \phi^*X_{i_{l'}-1}(A)_K)$ is non-zero, since the image of $\mathcal{B}_{i_{l'}}$ generates the quotient and at least one of the $a_{l'h}$ are non-zero. Therefore, we must have $\Theta \in X_{i_{l'}}(A)_K \setminus X_{i_{l'}-1}(A)_K$ and hence we have $i^*\Theta \neq 0 \mod \text{Hom}(N^{n-1}, \hat{G}_a)$. Recall from proposition 6.5 that

$$i^*(\phi^{-(n-i)}i^*\Theta) \equiv i^*\phi^{-(n-i)}\Theta \mod \text{Hom}(N^{n-1}, \hat{G}_a)$$

(7.4)

But this contradicts equation (7.3) since $i^*\phi^{-(n-i)}\Theta$ is the expression on the left hand side of the equivalence relation. Therefore we must have that the set $S_n(\mathcal{B}_1) \cup \cdots \cup S_n(\mathcal{B}_n)$ is K-linearly independent.

\[\square\]
Proposition 7.3. We have
\[\text{rk}_K(u^*X_{n-1}(A)_K + \phi^*X_{n-1}(A)_K) = nl_1 + (n-1)l_2 + \cdots + 2l_{n-1}. \]

Proof. Let \(B_i \) be a primitive basis for \(X_i(A)_K \) for all \(i \). Then the cardinality of \(B_i \) is \(l_i \). Then the set \(S_n(B_1) \cup \cdots \cup S_n(B_{n-1}) \) spans \(u^*X_{n-1}(A)_K + \phi^*X_{n-1}(A)_K \). By proposition 7.4, they are \(K \)-linearly independent and hence forms a \(K \)-basis. The result follows from the fact that the cardinality of \(S_n(B_1) \cup \cdots \cup S_n(B_{n-1}) \) is \(nl_1 + (n-1)l_2 + \cdots + 2l_{n-1} \). \(\square \)

Lemma 7.4. For all \(n \geq 2 \), \(l_n = h_{n-1} - h_n \).

Proof. For \(n = 1 \), we have \(l_1 = g - h_1 \). For \(n = 2 \), we have
\[
l_2 = (2g - (h_1 + h_2)) - \text{rk}_K(u^*X_1(A)_K + \phi^*X_1(A)_K)
= (2g - (h_1 + h_2)) - 2l_1, \text{ by prop. 7.3}
= h_1 - h_2
\]
Now by induction let’s assume the result is true for \(2, \cdots, n-1 \). Then we get the sum
\[
l_n = ng - (h_1 + \cdots + h_n) - \text{rk}_K(u^*X_{n-1}(A)_K + \phi^*X_{n-1}(A)_K)
= ng - (h_1 + \cdots + h_n) - (nl_1 + (n-1)l_2 + \cdots + 2l_{n-1}), \text{ by prop. 7.3.}
= ng - (h_1 + \cdots + h_n) - (n(g - h_1) + (n-1)(h_1 - h_2) + (n-2)(h_2 - h_3) + \cdots + 3(h_{n-3} - h_{n-2}) + 2(h_{n-2} - h_{n-1}))
= h_{n-1} - h_n \quad \square
\]

Lemma 7.5. For all \(n \geq 1 \), \(h_n \) is a (weakly) decreasing function of \(n \).

Proof. We know \(l_n \geq 0 \) for all \(n \) and hence by lem. 7.4 we have \(h_{n-1} - h_n \geq 0 \) which implies \(h_u \leq h_{n-1} \) and we are done. \(\square \)

Corollary 7.6. If \(h_N = 0 \) for some \(N \) then \(h_n = 0 \) for all \(n \geq N \).

Corollary 7.7. If \(h_N = 0 \), then \(l_n = 0 \) for all \(n \geq N + 1 \).

Proof. If follows from the fact that \(l_{n+1} = h_n - h_{n+1} \). \(\square \)

Proposition 7.8. (1) For all \(n \geq m_u + 1 \), we have \(l_n = 0 \). In other words, there are no primitive characters of order greater than \(m_u \).

(2) We have \(m_1 \leq m_u \).

Proof. (1): By definition of \(m_u \), we have \(h_{m_u} = h_{m_u+1} = \cdots = 0 \). This implies by lemma 7.4 that \(l_n = 0 \) for all \(n \geq m_u + 1 \).

(2): Since we know that \(m_1 \) is either 1 or 2, then clearly any \(K \)-basis of \(X_{m_1}(A)_K \) is also a primitive basis. Therefore \(m_1 \) is the least number for which a non-trivial primitive basis exists. But there are no further primitive characters in \(X_n(A)_K \) for all \(n \geq m_u + 1 \). Therefore we must have \(m_1 \leq m_u \). \(\square \)

Here we would like to note that as a consequence of corollary 7.8, if \(B \) primitively generates \(X_\infty(A)_K \), then \(B \) can be written as
\[B = B_{i_1} \cup \cdots \cup B_{i_j} \]
where \(m_1 = i_1 < \cdots < i_l = m_u \) and \(B_{i_j} \) is a primitive basis for \(X_{i_j}(A)_K \) for all \(j \).
Theorem 7.9. For any abelian scheme A of dimension g, $X_\infty(A)_K$ is freely $K[\phi^\ast]$-generated by g differential characters of order at most $g + 1$. In other words $m_u \leq g + 1$.

Proof. Note that $X_\infty(A)_K$ is freely generated by the primitive characters because of proposition 7.2. For $m_1 = 2$, we want to show that $X_\infty(A)_K$ is $K[\phi^\ast]$-generated by $X_2(A)_K$. Hence it is sufficient to show that $l_n = 0$ for all $n \geq 3$. Since $m_1 = 2$, we have $h_1 = g$. Since $\operatorname{rk}_K \operatorname{Ext}(E, \hat{G}_a)_K = g$, we have $h_2 = h_3 = \cdots = 0$. Then by lemma 7.4, we have $l_3 = l_4 = \cdots = 0$ and we are done.

If $m_1 = 1$, then $h_1 > 0$. Note that $\sum h_i \leq g$ and since h_1's are a weakly decreasing sequence of non-negative integers, we must have $h_i = 0$ for all $i \geq g + 1$ and hence $m_u \leq g + 1$. □

Corollary 7.10. We have

$$X_{\text{prim}}(A)_K \cong X_{m_u}(A)_K / \phi^\ast X_{m_u - 1}(A)_K$$

Moreover, $B_{i_1} \cup \cdots \cup B_{i_r}$ is a K-basis for $X_{\text{prim}}(A)_K$.

Proof. For all $n \geq m_u$, $S_n(B_{i_1}) \cup \cdots \cup S_n(B_{i_r})$ generates $X_n(A)_K$ as a K-module. Whereas, $(S_n(B_{i_1}) \setminus B_{i_1}) \cup \cdots \cup (S_n(B_{i_r}) \setminus B_{i_r})$ generates $\phi^\ast X_{n-1}(A)_K$ as a K-module. Therefore $X_n(A)_K / \phi^\ast X_{n-1}(A)_K$ is generated by $B_{i_1} \cup \cdots \cup B_{i_r}$ as a K-module for all $n \geq m_u$ and hence in particular $X_{\text{prim}}(A)_K \cong X_{m_u}(A)_K / \phi^\ast X_{m_u - 1}(A)_K$. □

Corollary 7.11. If $g = 1$, then $m_1 = m_u = m$ and $X_{\text{prim}}(A)_K \cong X_m(A)_K$.

Proof. If $m_1 = 1$, then note that $h_1 = 0$. Since h_n is a weakly decreasing function in n, we have $h_0 = h_1 = h_2 = \cdots = 0$. Therefore the rank of I_n is 0 for all $n \geq 0$ and hence $m_u = 1$.

If $m_1 = 2$, then note that $h_1 = 1$ since $\partial : \operatorname{Hom}(\mathbb{N}^1, \hat{G}_a)_K \to \operatorname{Ext}(A, \hat{G}_a)_K$ is injective. But since $\operatorname{rk}_K \operatorname{Ext}(A, \hat{G}_a)_K = 1$, we have $h_2 = h_3 = \cdots = 0$. Therefore $\operatorname{rk} I_i$ is constant for all $i \geq 1$ and hence $m_u = 1$.

\[\square\]

8. The F-isocrystal and Hodge sequence of A

In this section, based on our choice of etale coordinates we construct canonical K-basis of our filtered isocrystal $H(A)$. We also show the exact sequence corresponding to this filtration admits a canonical map to the Hodge sequence of A.

Proposition 8.1. The morphism

$$u^\ast : H_n(A)_K \to H_{n+1}(A)_K$$

is injective. For $n \geq m_u$, it is an isomorphism.
Proof. Consider the following diagram of exact sequences:

\[
\begin{array}{ccccccc}
0 & \rightarrow & X_n(A)_{K} & \rightarrow & X_{n-1}(A)_{K} & \rightarrow & 0 \\
& & \uparrow i^{*} \phi^{*} & & \downarrow \phi & & \\
& & \text{Hom}(N^{n+1}, \hat{G}_a)_{K} & \rightarrow & H_{n+1}(A)_{K} & \rightarrow & 0 \\
& & \downarrow u^{*} & & \downarrow u^{*} & & \\
& & \text{Hom}(N^n, \hat{G}_a)_{K} & \rightarrow & H_{n}(A)_{K} & \rightarrow & 0 \\
& & 0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
\]

Then \(i^{*} \phi^{*} : X_n(A)/X_{n-1}(A) \rightarrow \text{Hom}(N^{n+1}, \hat{G}_a)/\text{Hom}(N^n, \hat{G}_a)\) is injective by proposition 6.5 and hence \(H_n(A)_{K} \rightarrow H_{n-1}(A)_{K}\) is injective for all \(n\).

It is sufficient to show that \(u^{*} : H_n(A)_{K} \rightarrow H_{n+1}(A)_{K}\) is surjective for all \(n \geq m_n\). Let \(X_n(A)\) be primitively generated by the \(g\)-elements \(B_{i_1} \cup \cdots \cup B_{i_r}\) as in theorem 7.9. Then the image of \((S_n(B_{i_1}) \cup S_n(B_{i_2}) \cup \cdots \cup S_n(B_{i_r}))\) forms a \(K\)-basis for \(X_n(A)_{K}/u^{*}X_{n-1}(A)_{K}\) for all \(n \geq m_n\). Hence \(r_{K}X_n(A)_{K}/u^{*}X_{n-1}(A)_{K} = g = \text{Hom}(N^n, \hat{G}_a)_{K}/\text{Hom}(N^{n-1}, \hat{G}_a)_{K}\) which implies \(i^{*} \phi^{*}\) is surjective for all \(n \geq m_n\) and hence \(u^{*} : H_n(A) \rightarrow H_{n+1}(A)\) is surjective.

Finally the morphism \(\text{Hom}_A(N^n, \hat{G}_a) \rightarrow \text{Ext}^2(A, \hat{G}_a)\) of diagram (6.5) vanishes on \(\phi^{*}(X_{n-1}(A))\), by proposition 6.2, and hence induces a morphism of exact sequences

\[
\begin{array}{cccccc}
0 & \rightarrow & X_n(A) & \rightarrow & H_n(A) & \rightarrow & I_n(A) & \rightarrow & 0 \\
& & \tau & & \downarrow \phi & & \\
0 & \rightarrow & \text{Lie}(A)^{*} & \rightarrow & \text{Ext}^2(A, \hat{G}_a) & \rightarrow & \text{Ext}(A, \hat{G}_a) & \rightarrow & 0
\end{array}
\]

where \(I_n(A)\) denotes the image of \(\partial : \text{Hom}(N^n, \hat{G}_a) \rightarrow \text{Ext}_A(A, \hat{G}_a)\).

Theorem 8.2. There exists a map of short exact sequences of \(K\)-modules

\[
\begin{array}{cccccc}
0 & \rightarrow & X_{\text{prim}}(A)_{K} & \rightarrow & H(A)_{K} & \rightarrow & I(A)_{K} & \rightarrow & 0 \\
& & \tau & & \downarrow \phi & & \\
0 & \rightarrow & (\text{Lie} A)^{*}_{K} & \rightarrow & \text{Ext}^2(A, \hat{G}_a)_{K} & \rightarrow & \text{Ext}(A, \hat{G}_a)_{K} & \rightarrow & 0
\end{array}
\]

where \(r_{K}H(A)_{K} \leq 2g\).

Moreover \(\Phi\) is injective if and only if \(\gamma\) is invertible.
By corollary 7.10, we have \(\text{rk}_K X_{\text{prim}}(A)_K = g \) and \(\text{rk}_K I(A)_K \leq g \) and hence \(\text{rk}_K H(A) \leq 2g \).

Let \(\Theta_1, \ldots, \Theta_g \) be a basis for \(X_{\text{prim}}(A)_K \). For each \(\Theta_i : J^n A \to \hat{G}_n \), let the derivative matrix at the identity be \(D\Theta_i = (A_{0i}, \ldots, A_{ni}) \) where \(A_{jis} \) are \((1 \times g)\)-matrices. Let \(\gamma_i \in \mathbb{R}^g \) be such that

\[
(i^* \phi^* - j^* i^*)\Theta_i = \gamma_i \Psi_1
\]

By proposition 6.4 we have

\[
\gamma_i = \pi A_{0i}
\]

Therefore the \(g \times g \) matrix of \(\Upsilon \) with respect to our basis is given by \((A_{01}, \ldots, A_{0g})\) and satisfying

\[
\gamma = \pi(A_{01}, \ldots, A_{0g}).
\]

It is enough to show that \(\Upsilon \) is injective if and only if \(\gamma \neq 0 \). Now \(\Upsilon(\Theta_i) = -D\Theta_i \circ v = -A_{0i} \) and hence the matrix for \(\Upsilon \) is given by \(\frac{1}{\pi} \gamma \) and we are done. \(\square \)

9. The Elliptic Curve Case

When \(A \) is an elliptic curve over \(S \), then by corollary 7.11 we have \(m = m_1 = m_n \leq 2 \). The following are two possible choices of \(\Theta_m \in X_m(A)_K \):

If \(m = 1 \), by proposition 6.5, there exists \(\Theta_1 \in X_1(A)_K \) such that \(i^* \Theta_1 = \Psi_1 \).

If \(m = 2 \), again by proposition 6.5, there exists \(\Theta_2 \in X_2(A)_K \) such that \(i^* \Theta_2 = \Psi_2 - \lambda \Psi_1 \). We have \(i^* \phi^* \Theta_2 = \Psi_3 - \phi(\lambda) \Psi_2 - \gamma \Psi_1 \). Then \(\partial \Psi_2 = \lambda_1 \partial \Psi_1 \) and \(\partial \Psi_3 = \phi(\lambda) \Psi_2 + \gamma \Psi \).

Proposition 9.1. For \(n \geq m \),

\[
H_n(A)_K \simeq \begin{cases}
K\langle \Psi_1 \rangle, & \text{if } m = 1 \\
K\langle \Psi_1, \Psi_2 \rangle, & \text{if } m = 2
\end{cases}
\]

Proof. We know that \(H_m(A) = \text{Hom}(N^m, \hat{G}_n) \). Then the result follows from the above discussion and proposition 8.1. \(\square \)

Proposition 9.2. We have

\[
I_n(A) \otimes K \simeq \begin{cases}
K\langle \Psi_1, \ldots, \Psi_n \rangle, & \text{if } n \leq m - 1 \\
K\langle \Psi_1, \ldots, \Psi_{m-1} \rangle, & \text{if } n \geq m - 1
\end{cases}
\]

Proof. The case \(n \leq m - 1 \) is clear. So suppose \(n \geq m - 1 \). Then \(\text{Hom}_A(N^j, \hat{G}_n) \otimes K \) has basis \(\Psi_1, \ldots, \Psi_j \), and \(X_n(A) \otimes K \) has basis \(\Theta_m, \ldots, (\phi^{n-m})^* \Theta_m \). Since each \((\phi^{n-j})^* \Theta_m \) equals \(\Psi_{m+j} \) plus lower order terms, \(K\langle \Psi_1, \ldots, \Psi_{m-1} \rangle \) is a complement to the subspace \(X_n(E) \) of \(\text{Hom}_A(N^n, \hat{G}_n) \). Therefore the map \(\partial \) from \(K\langle \Psi_1, \ldots, \Psi_{m-1} \rangle \) to the quotient \(I_n(A) \) is an isomorphism. \(\square \)
Lemma 9.3. Consider the ϕ-linear endomorphism F of K^m with matrix

$$
\begin{pmatrix}
0 & 0 & \ldots & 0 & \mu_m \\
1 & 0 & \ldots & 0 & \mu_{m-1} \\
0 & 1 & \ldots & 0 & \mu_{m-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & \mu_1
\end{pmatrix},
$$

for some given $\mu_1, \ldots, \mu_m \in K$. If K^m admits an R-lattice which is stable under F, then we have $\mu_1, \ldots, \mu_m \in R$.

Proof. The proof uses Dieudonné–Manin theory and follows similar lines in the equal characteristic case that is shown in lem. 9.7 in [3]. \square

Theorem 9.4. If A splits at $m = 2$, then $\lambda \in R$.

Proof. Let γ be the element associated to Θ_2 as in proposition 6.4. We will prove the cases when $\gamma = 0$ and $\gamma \neq 0$ separately.

Case $\gamma = 0$ When $\gamma = 0$ we have $f^*i^* = i^*\phi^*$, and hence for all $n \geq 1$, this induces a ϕ-linear map $f^*: I_n(A) \to I_n(A)$ as follows

$$
\begin{array}{cccccc}
0 & \longrightarrow & X_n(A) & \stackrel{i^*}{\longrightarrow} & \text{Hom}(N^n, \hat{\mathbb{G}}_a) & \stackrel{\partial}{\longrightarrow} & I_n(A) & \longrightarrow & 0 \\
& & \uparrow \phi & & \uparrow \rho & & \uparrow \varphi & & \\
0 & \longrightarrow & X_{n-1}(A) & \stackrel{i^*}{\longrightarrow} & \text{Hom}(N^{n-1}, \hat{\mathbb{G}}_a) & \stackrel{\partial}{\longrightarrow} & I_{n-1}(A) & \longrightarrow & 0
\end{array}
$$

Let $I(A) = \lim_{\rightarrow} I_n(A) \subseteq \text{Ext}(A, \hat{\mathbb{G}}_a)$. Then by proposition 9.2, the vector space $I(A)_K$ has a K-basis $\partial \Psi_1$, and with respect to this basis, the ϕ-linear endomorphism f^* has matrix $\Gamma_0 = (\lambda)$.

Note that $I(A)$ is a finitely generated R-module since it is a submodule of $\text{Ext}(A, \hat{\mathbb{G}}_a)$ which is a finitely generated free R-module. Since Γ_0 is an endomorphism of $I(A)$ and hence an integral lattice of $I(A)_K$, we conclude that λ is integral.

Case $\gamma \neq 0$ Let $H(A) = \lim_{\rightarrow} H_n(A)$. Let us consider the matrix Γ of the ϕ-linear endomorphism f of $H(A)_K$ with respect to the K-basis Ψ_1, Ψ_2 given by proposition 9.1. Then we have

$$
i^*\phi^*\Theta_2 = f^*(\Psi_2) - \phi(\lambda)\Psi_2 + \gamma \Psi_1.
$$

Therefore we have

$$
f^*(\Psi_2) \equiv \phi(\lambda)\Psi_2 - \gamma \Psi_1 \mod i^*\phi^*(X_2^\phi)
$$

and hence

$$
\Gamma = \begin{pmatrix}
0 & -\gamma \\
1 & \phi(\lambda)
\end{pmatrix}
$$
We will now apply lemma 9.3 to the operator \(f^* \) on \(\mathbf{H}(A)_K \), but to do this we need to produce an integral lattice \(M \). Consider the commutative square

\[
\begin{array}{ccc}
\mathbf{H}(A) & \xrightarrow{\Phi} & \text{Ext}^2(A, \hat{\mathbb{G}}_a) \\
\downarrow & & \downarrow j \\
\mathbf{H}(A)_K & \xrightarrow{\Phi_K} & \text{Ext}^2(A, \hat{\mathbb{G}}_a)_K.
\end{array}
\]

Let \(M \) denote the image of \(\mathbf{H}(A) \) in \(\mathbf{H}(A)_K \). It is clearly stable under \(f^* \). But also the maps \(\Phi_K \) and \(j \) are injective, by theorem 8.2 and because \(\text{Ext}^2(A, \hat{\mathbb{G}}_a) \simeq R^* \); so \(M \) agrees with the image of \(\mathbf{H}(A) \) in \(\text{Ext}^2(A, \hat{\mathbb{G}}_a) \) and is therefore finitely generated.

We can then apply lemma 9.3 and deduce \(\phi(\lambda) \in R \). This implies \(\lambda \in R \), since \(R/\pi R \) is a field and hence the Frobenius map on it is injective.

Corollary 9.5.

(1) The element \(\Theta_m \in \mathbf{X}_m(A)_K \) lies in \(\mathbf{X}_m(A) \).

(2) For \(n \geq m \), all the maps in the diagram

\[
\begin{array}{ccc}
\mathbf{X}_n(A)/\mathbf{X}_{n-1}(A) & \xrightarrow{\phi^*} & \mathbf{X}_{n+1}(A)/\mathbf{X}_n(A) \\
\downarrow i^* & & \downarrow i^* \\
\text{Hom}(N^n, \hat{\mathbb{G}}_a)/\text{Hom}_A(N^{n-1}, \hat{\mathbb{G}}_a) & \xrightarrow{f^*} & \text{Hom}_A(N^{n+1}, \hat{\mathbb{G}}_a)/\text{Hom}_A(N^n, \hat{\mathbb{G}}_a)
\end{array}
\]

are isomorphisms.

Proof. (1): By theorem 9.4, the element \(i^* \Theta_m \) of \(\text{Hom}_A(N^m, \hat{\mathbb{G}}_a)_K \) actually lies in \(\text{Hom}_A(N^m, \hat{\mathbb{G}}_a) \), and therefore by the exact sequence (7.2) we have \(\Theta_m \in \mathbf{X}_m(A) \).

(2): By proposition 6.5, we know \(f^* \) is an isomorphism.

By proposition 6.5, the maps \(i^* \) are injective for all \(n \geq m \). So to show they are isomorphisms, it is enough to show they are surjective. The \(R \)-linear generator \(\Psi_m \) of \(\text{Hom}_A(N^n, \hat{\mathbb{G}}_a)/\text{Hom}_A(N^{n-1}, \hat{\mathbb{G}}_a) \) is the image of \(\Theta_m \), which by part (1), lies in \(\mathbf{X}_m(A) \). Therefore \(i^* \) is surjective for \(n = m \). Then because \(f^* \) is an isomorphism, it follows by induction that \(i^* \) is surjective for all \(n \geq m \).

Finally, \(\phi^* \) is an isomorphism because all the other morphisms in the diagram are.

We knew before that \(i^*(\phi^*)^* \Theta_m \) agrees with \(\Psi_{m+j} \) plus lower order rational characters, but the corollary above implies that these lower order characters are in fact integral.

Theorem 9.6. Let \(A \) be an elliptic curve that splits at \(m \).

(1) For any \(n \geq m \), the composition

\[
\begin{array}{ccc}
\mathbf{X}_n(A) & \longrightarrow & \text{Hom}_A(N^n, \hat{\mathbb{G}}_a) \\
\downarrow & & \downarrow \\
\text{Hom}_A(N^n, \hat{\mathbb{G}}_a)/\text{Hom}_A(N^{n-1}, \hat{\mathbb{G}}_a)
\end{array}
\]

is an isomorphism of \(R \)-modules.

(2) \(\mathbf{X}_n(A) \) is freely generated as an \(R \)-module by \(\Theta_m, \ldots, (\phi^*)^{n-m} \Theta_m \).

Proof. (i): By corollary 9.5, the induced morphism on each graded piece is an isomorphism. It follows that the map in question is also an isomorphism.
(ii): This follows formally from (i) and the fact, which follows from 9.5, that the map (9.1) sends any $(φ^*)^j Θ_m$ to Ψₘ₊ʲ plus lower order terms. □

Theorem 9.7. Let A be an elliptic curve that splits at m. Then the R-module $X_m(A)$ is free of rank 1, and it freely generates $X_∞(A)$ as an $R\{φ^*\}$-module in the sense that the canonical map $R\{φ^*\} ⊗ R X_m(A) → X_∞(A)$ is an isomorphism.

Proof. This follows from theorem 9.6. □

9.1. The integral F-crystal $H(A)$ for an elliptic curve A. The above results show that for an elliptic curve A, $H(A)$ is in fact an F-crystal such that $H(A)_K$ is the isocrystal constructed in theorem 8.2. Indeed by theorem 9.6, we have $H(A) ≃ \left\{ \begin{array}{ll} R⟨Ψ₁⟩, & \text{if } m = 1, \\
R⟨Ψ₁, Ψ₂⟩, & \text{if } m = 2 \end{array} \right.$

We also have isomorphisms for $n ≥ m$

$R⟨Θ_m⟩ = X_{prim}(A) → X_n(A)/φ^*(X_{n-1}(A)^φ)$.

The filtration on $H(A)$ is given by $H(A) ≥ X_{prim}(A)$. The action of the semi-linear operator f^* with respect to the above choice of basis of $H(A)$ is described by the matrices $Γ_0$ (in $m = 1$ case) and $Γ$ (in $m = 2$ case) as in the proof of theorem 9.4.

Therefore the characteristic polynomial of the semi-linear operator f^* on $H(A)$ with respect to the same choice of basis of $H(A)$ is given by

$\text{char}(f) = \left\{ \begin{array}{ll} t - γ, & \text{if } m = 1 \\
t^2 - φ(λ)t - γ, & \text{if } m = 2 \end{array} \right.$

where $π | γ$.

Combining these, we have the following map between exact sequences of R-modules, as in (8.1):

$\begin{array}{ccccccc}
0 & → & X_{prim}(A) & → & H(A) & → & I(A) & → & 0 \\
\downarrow Υ & & & & & & & & \downarrow Φ \\
0 & → & \text{Lie}(A)^* & → & H_{DR}(A) & → & \text{Ext}(A, \hat{G}_a) & → & 0
\end{array}$

where $Υ$ sends $Θ_m$ to $γ/π$ (in coordinates). It follows that $Φ$ is injective if and only if $γ ≠ 0$. However, we do note that the map $Φ$ is not compatible between the two F-crystal structure on $H(A)$ and the crystalline structure on $H_{DR}(A)$.

References

E-mail address: james.borger@anu.edu.au, arnab.saha@anu.edu.au

Australian National University