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. ABSTRACT

This thesis investigates some aspects of the continuation method for

the solution of a system of nonlinear equations, f(x) =0 ,

f:Dc A"+ F* . This approach is useful for generating methods which do
not rely on a good initial estimate of a solution and the problem is

converted to one of following the solution trajectory x(¢t) of a problem

of the form H(m(t),t) =0, H:DcC Eﬂ x R+ F', from the starting guess

x, = 2(0) , hopefully to the solution x* .

In Chapter 1 we give a brief introduction and note that «(t) also

satisfies

x(t) = -axmx,t)'_latﬂ(x,t) , x(0) ==z,
and so we can follow «(¢t) by appl&ing,mefhods traditiénally used for the
solution of ordinary differential eduations. In Chapter. 2 we consider general
single-step methods and, in particular, Runge-Kutta methods, for following
x(t) . We also give conditions on the methods‘to attain rapid convergence

to x£* and, as a result, for a particular choice of H(x,t) we are able to
derivé methods which have improved rates of convergence to x* . We apply
similar arguments in Chapter 3 to the class of linear multistep methods and
again generate methods which follow x(%) accurately and theﬁ give rapid

final convergence to x*

In Chapter 4 we consider Newton-like methods for finding x(ti) for a
sequence of values {ti} , and discuss the accuracy and computational

efficiency of the methods. We use the results of Chapter 2 to derive a
method which changes in a continuous way from one which follows (%)
accurately to one which converges rapidly to x*

Chapter 5 is concerned with problems where the need to follow the
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solution of H[x(t),t) = 0 arises naturally. We consider, in particular,
the difficulties associated with certain critical points, i.e. points on

the solution branch (m(t),t) at which SxH(x,t) is singular. We describe

an efficient method for following a branch through a simple turning point

and present an efficient method for determining such.turning points accurately.

This method is also useful for finding certain simple bifurcation points.
Finally, in Chapter 6, we consider the problem of finding several

solutions of the equation f(x) = 0 . We consider two recent approaches

and show that the two methods are essentially the same. A reformulation of

one of the methods indicates a technique which is, in some sense, more

efficient than the other methods.
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. CHAPTER 1

INTRODUCTION

In this thesis we consider some aspects of numerical methods for the
solution of nonlinear equations in several yariables. We are interested in
methods which do not rely on the availability of a good estimate of a
solution. Such methods can be derived by embedding the given problem in a

class of problems formulated so that the method of solution becomes one of

following a trajectory in R s n>1. Some of the theory developed for
these methods is also relevant in two related applications. The first is in
problems where the need to follqw a trajectory arises naturally, often called
bifurcation problems, and the second is ih the problem of finding éevefal
solutions of a system of nonlinear equations. We consider each of these
problem areas in this work.

Recently various different, but related,bmethodS»haVé 5een proposed for
the solution of a system of nonlinear equations when only a poor initial
estimate of a iero is known. These methods all use the continuation approach
which, in principle, goes back to the lasf cehtury but appears to have been
used as a numerical tool for the first time by Lahaye [43], [us]. Historical

surveys can be found in Ficken [25] and Avila [4]. Suppose we wish tc find

a zero x* of the function f:DcC R* > R* . We embed this problem in a
family of problems of the form
(1.1) H{x(t),t) = 0

where ¢ € [0,T) , for some T > 0 . (T may be infinite but, for brevity,
we do not specifically distinguish this case.) The embedding is chosen so

that, for ¢t = 0 , the solution x(¢t) of (1.1) is known to be Ly os i.e.

x(0) = Ty s and x(t) is the required solution x* . For the general

problem (1.1), Rheinboldt [60] gives sufficient conditions on H(x,t) for



x(t) to exist for each * € [0,T) . .Also, in section 2.1, we give a
theorem which, for a particular choice of H(xz,t) , gives sufficient
conditions for x(T1) +to equal x* . Similar results for particular choices
of H(z,t) can be found in e.g. [23], [281, [50] and [72]. Then the
problem of solving

(1.2) flx) =0

becomes one of following the solution trajectory from «x(0) = x4 to

x(t) = x* .
The most common choice for H(x,t) is

(1.3) _ Hz,t) = flx) - (l—t)f(xo)

for which x(0) = x, and x(1) = x* . Another example is to transform the

embedding parameter of (1.3) to the infinite interval to give
. -t
(1.4) H(x,t) = f(x) - e f[xo) ,

where e is the base of the natural logarithm, and then «x* = lim z(%) .
. >

It appears to have been Davidenko [19] who first considered converting (1.1)
to an ordinary differential equation. By application of the chain-rule, it

follows that the solution of (1.1) satisfies the initial value problem
. -1

where BxH(m,t) represents the Frechet partial derivative of H(x,£) with

respect to x . For (1.3) and (1l.4) this gives

(1.6) 2(t) = 7@ flzy) , w0 =z,
and
(1.7) | 2(t) = -J(z) ) z(0) =z

respectively, where J(x) is the Jacobian.of f at « . Note that the
~solution trajectories of (1.3) and (1.4), and therefore of (1.6) and (1.7),

are essentially the same, the difference is only in the choice of parameter-



isation. Subsequent to Davidenko's original work, various authors have
suggested integrating (1.3) or (1;6) (e.g. [10], [157, [w0], [50], [53],
[721) and (1.4) or (1.7) (e.g. [9], [11], [16], [28]) whilst others have
suggested less general choices of vH(x,t) , usually dependent upon the form
of f (e.g. [20], [221, [2u], [27]1, [u41], [501, [72]).

The differential equation (1.7) was also derived, using an alternative
approach, by Gavurin [28]. He considered a general.iteratiye process of the

form

(1.8) Looq =X F hg(xi) >

where & represents a steplength, and, by taking the limit as 4 -+ 0 ,
generated the continuous analogue of (1.8),
(1.9) t) = gla) .
Then (1.7) represents the continuous analogue of Newton's method. In a
recent application of continuation, Kellogg, Li and Yorke [39] used the

continuous analogue of a combination of the Newton and direct iteration

methods, in a constructive proof of the Brower fixed point theorem. Their

differential equation ié
(1.10) 2(t) = - (T D) )

where I 1is the unit matrix and u : R" + R is such that u(x) +-% as =z
approaches a solution of (1.2). Equation (1.10) gives an approach some&haf
in the style of the Levenberg/Marquardt method for optimisation [47], [us];
Gavurin notes that each zero of f(x) 1is a stable node of the

autonomous differential equation (1.7), i.e. stable in the sense of Liapunov
[45], and so difference formulae used to integréte (1.7) should enjoy a
.similar stability. This is not necessarily the case, since equations of the
fbrm (1.9) can be Liapunov stable but also be stiff [18] in ﬁhich case
standard difference formulae may not be stable. This is actually not the
case for (1.7), at least close to a solution, although it was the concern of

Boggs [8], [9]. . In Chapter 2 we discuss a suggestion of Boggs that the most



suitable methods for the solution of (1.7) are the A-stable techniques of
Dahlquist [18]. Also Boggs noted that integrating (1.6) requires a greater

concern for accuracy than is required when integrating (1.7). This is

because, under reasonable conditions, all solutions of é(t) = —J(x)—lf(x)
converge locally to x* , which is a consequence of the Liapunov stability,
and this is not the case for (1.6). Thus we concern ourselves primarily
with the use of (1.4) and (1.7).

When the solution x(t) of (1.7).converges to x*,any method which,
because of small steps or high accuracy, follows the trajectory sufficiently -
closely will surely converge tb x* alsb.‘ However this convergence will be
slow since. x(t) converges to a* only linearly. This follows because,

from (1.4), f(x(t)) = e_tf(xo) . Therefore, for an algorithm to be

efficient, there must be a éhénge of emphasis at some stage from accurate
) représentation of x(t) to rapid convergence to x* . In Chapters 2-4 we
consider methods for the solution of the differential equation (1.7) which
can, by suitable step length contfol, be induced to give rapid final
convergence to x* . In Chapter 2 we present somé_general results on the
convergence of one step methods with variéble'step size and use these
results to derive Runge-Kutta methods suitable for integrating (1.7) and
which can give rapid final convergence to x* . In Chapter 3 we present
general results on the convergence of multistep methods and use the results
to generate methods which can give high order accuracy in following the
solution of (1.7) and then give rapid final convergence to .x* . We also
discuss the stability problems involved with such methods if the step size
is varied. Then in Chapter 4 we'direct attention to methodé'of solving
(1.1) for a sequence of values of ¢ , using Newton-like methods. We
consider their orders of accuracy in following the solution of (1.1) and
also their computational efficiency: We apply these results to the cases

when H(x,t) 1is given by (1.3) and (1.4). We also derive a method, which



has certain desirable order and convergence properties, for integrating
(1.7).

Problems of the form given in (1.1) then arise naturally in a form
where it is necessary to find the value of x(¢) for sufficient values of
t to define the solution (x(t),t) . The formulation describes how the
state vector «x(t) depends upon the control parameter ¢ . There is a
large literature on the theoretical and numerical analysis of such problems,
much of it being in the theory of elasticity where x(%f) represents the
position of a structure and ¢ represents.a physical load. See for example
[31, 6], [17], [33], [36],>[38], t66],~[69]land the references therein.
Much of the analysis is involved with critical points on the solution

,Gr(t),t) of (1.1), i.e.'points at which BxH(x(t),t) is singular, and the

behaviour of the solution in the region of such‘éritical points. As
mentioned above, some methods are described in Chapter 4 which are suitable
forbfollowing solutions of (l.l); In Chapter 5 we develop these methods for
the specific problem of following a solution through a certain kind of
critical point, known as a turning point. We suggest an improved technique,
similarbto the methods suggested by Riks [66] aﬁd Menzel and Schwetlick [49].
Turning points represent the boundary between stability and instability of a
system and, as such, are of special interest. For example, Simpson [69]
gives a numerical method for finding such points. 1In Chapter 5 we also
consider this problem and present some methods which are more efficient than
Simpson's ﬁethod. It héppens that the derived methods are also useful for
finding certain simple bifurcation points, which are another example of
critical points. One of the methods provides information useful for finding
pbints on a secondary solution which emanates from a simple bifurcation
point [37], [64].

Methods for following a solution of (1.1) are also of interest in the

problem of finding several solutions of (1.2) and this is the concern of



Chapter 6. The usual approach is to solve (1.2) using a standard iterative
procedure with several starting guesses. However, this method often has the
failing that it continually converges to a solution‘which is already‘known.
In Chaptef 6 we consider two suggestions, the first by Branin [11] and the
second, a deflation method’by Brown and Gearhardt [14], for overcoming this
problem. Branin uses the continuation principle by in%egrating (1.7) both
forwards and backwards and tries to find all the solutions on a particular
trajectory. Whilst Brapin's method can only be guaranteed to find all the
zeros of f under special circumstances (see e.g. [16]) the general approach
appears to be the best currently available. We consider a reformulation of
the Brown and Geérhardt method which indicates that it is essentially the
same aé Branin's method. This reformulation also indicates a possible
improvément to the deflation technique gi&ing a method which préves to be,

in some sense, more efficient than the other two methods.



. CHAPTER 2

CONTINUATION WITH SINGLE-STEP METHODS

2.1. Introduction

As a preliminary to the main results of this chapter we present, in

section 2.2, a convergence result for the continuation methods introduced in

Chapter 1 for solving f(x) = 0 , where f:Dc R* > F* . This resulf is
not new in principle, but it specifies the type of conditions required on f
before convergence to x* can be.guaranfeed. It also indicates that the
continuation method is not a panacea for:problems with a poor starting
guess, but that it can often widen the region of convergence. The theorem

gives conditions on f and x, for the solution of

0

(2.1.1) 2(t) = -J(x) ) 2(0) =z

to converge to x*

Following section 2.2, we consider the application of single-step
methods to the problem of integrating (2.1.1) and, in particular, we are
interested in the use of explicit Runge—Kutta.schemes. Our purpose is to
find methods which can follow the solution of (2.1.1) accurately, inrsome
sense, and can also give rapid local convergence to «* . 1In section 2.3 we
generalise the loéal convergence theory»of Ostrowski [58] to single-step
methods involving a variable steplength and, in séctionb2.4, we apply these
results to Runge-Kutta schemes for integrating (2.1.1). The resulting theory
shows that, with odd-order Runge-Kutta methods, it is possible to gain rapid
convergence to x* by suitable choice of the step size. Also, in section
2.4, we challenge a suggestion of Boggs [9] that the most suitable methods
for the solution of (2.1.1) are the A—stable methods of Dahlquist [18].

Finally, in section 2.5, we give the results of some numerical experiments



and compare the methods suggested by the theory with some existing methods.

-

2.2. A Convergence Result |

In thié‘section we consider the differential equation (2.1.1), where
f(x) is assumed to be continuously differentiable for all x € D . There
are a great many theorems on the existence and uniqueness of solutions of
(2.l.i) (see e.g. [4], [8], [50], [531, [60], [72] and the references
therein) but most are local in nature. Since tﬁe differential equation
approach is concerned with widervconvergence we present a theorem which is
not local. The theorem is not new, having been proved with marginally
greater assumptions oh f by Gavurin [28], Deuflhard [23] and Ortega and
Rheinboldt [53], but is given fpf clarity and as mptivation for the overall
approacﬁ. Its purpose is to characterise a region in which solutions.of
(2.1.1) are guaranteed to convérge to a zero of‘ f ; ‘First we give some

definitions.

- DEFINITION 2.2.1. . P <D is a region of stability of (2.1.1) if, for -

any

€ P , the solution z(t) of (2.1.1) is defined and unique for all

t>0, x(¢t) € P for all ¢t >0 and lim x(t) = x* € P , where z* is a
: . ) tro0 .

zero of f .

For any nonsingular. n x n matrix A define : DcR' >R b
_ 4 y

8,(x) = fa) 4 af(a)
and, for any q > 0 , define Pa(A) by
P (4) = {z | x €D, ¢,(x) =0} .
PQ(A) is a level set of ¢A(x) , (see [23], [531). Let

L = {x | x €D, Det(J(x)) = O} . Then, for some o > 0 and P&(A) , a path

connected component of Pa(A) , condition A will be



A P;(A) n L and ~P§(A) n 0D are empty, P&(A) is bounded.
. Under these conditions P&(A) is compact and contains one and only one

zero of f .

THEOREM 2.2.1. Assume f : D C '+ ' is continuously differentiable

on D and o > 0 is such that condition A holds. If, in addition,
J(x)“lf(x) is Lipschitz continuous on Int[P;(A)) then Int(P&(A)] 18 a

region of stability of (2.1.1).
Proof. Standard theorems on ordinary differential equations (e.g. [32,

Chapter 1]) show that, for any x. € Int(P&(A)) , there exists a T.> 0

0
such that (2.1.1) has a solution which is unique in Int(P;(A)) for each
t € [0,T) . Also, if the maximal such T is not ®« and
{z(¢) | 0 =t <1} has limit point x_ , then =z_ € BP;(A)

“When the solution x(%t) of (2.1.1) exists it satisfies

.21 Fla®) = ety = e

say, because (2.1.1) is equivalent ‘to the initial wvalue problem

df/dt = -f,f(0) = fb . Thus

2t¢A(x0) , t € [0,T) ,

¢, (@(t)) = &

and so Q4Gr(t)) is a decreasing function of ¢ . Thus

o, ) = ;irm_ §A(x(t)) <a .

Now suppose, if possible, that.x’T € BPa(A) . Since Pa(A)- is closed
and P&(A) n oD is empﬁy there exists an € > 0 such that SCrT,E) c D and
SCxT,g) n {Pu(A)\P;(A)} is empty, where S(x,e) is the open ball with
centre .m and radius € . Let e, = e/7 , then because xT € BP;(A) , for

each 7 > 0 there exists a Y; € SﬂxT,ei) such that ¢A(yi) >a . Now
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lim y; = & and, by continuity of ¢A(x) .
L0 7

im ¢A(yi) = ¢A@rT) > o , which

is a contradiction. Thus x. € Int(Pé(A)] and it follows that T = ® , so

b

2(t) is defined and «(#) € Int(Pi(4)) for all ¢ 20 . Also, from

(2.2.1), if z_ is a limit point of {x(¢)} , then f(x ) = 0 . Since a

zero of f is unique in P&(A) it follows that «_ = x* = lim 2(¢) . This
v o

completes the proof. 0

We note that a sufficient condition for J(x)-lf(x) to be Lipschitz

continuous on Int(Pé(A)] -is that, in addition to condition A , J(x) be

Lipschitz continuous on Int(P&(A)] . This follows from the fact that

HJ(x)-lH and ||f(x)|| are bounded on - P&(A) and f(x) is continuously

differentiable (and hence Lipschitz continuous) on Pé(A) .

"Whilst Theorem 2.2.1 is not practically useful,it shows that around
each zero at which J(x) is nonsingular there is a region of stability of
(2.1.1). Also this region will generally be larger than that predicted by

.the local existence theorems. We emphasise that if «. is not in such a

0
region then convergence to a root is unpredictable.' We discuss this case
further in Chapter 6.

In'Chapters 1, 2 and 3 we assume that &« is contained in a region of

0
stability and that the solution trajectorybof (2.1.1) converges to a zero
x* . If this is the case then, by following the trajectory closely enough,
we can guarantee convergence to x* . For this purpose several of the
standard méthods for solving initial value problems may be employed and, for
sufficiently small steps, convergence to x* is certain. In practice
however, we would like to take larée steps. Far from the zero this entails
using a sophisticated step size estimatof which will adapt the step

according to the function behaviour and choose it to be as large as possible
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consistent with sufficient accuracy. Obviously the lower the accuracy the-
less work will/be involved but the higher the probability of leaving the
correct trajectory and diverging or finding the wrong solution.

Close to the soiution, ﬁowever, we can make use of the speciél
characteristics of the problem to give rapid final convergence, using
methods which are also suitable for following the trajectory far from the
solution. In this and the following chapter we consider single and multistep
methods, traditionally used for the standard initial value problem, which are

adapted to give rapid convergence close to the zero x* .

2.3. General Theory

In this section we give some general results on iterative processes of

- the form

(2.3.1) : @1 f'Gﬂpi?hi)t; i =0,1,...,

where G : D X Dh cR'xRrR-+ R » and in the following sections we apply

these results to particular iterations. We use the results of Ostrowski

[58] and Ortega and Rockoff [54] on processes of the form- Toq = chi)-,

¢:DpDcR"> R , and generé;iseathe‘existing theory to include the extra
variable. - We quote the following definitions which can be found in [53],

except that here suitable modification has been made to allow for the slight

generalisation.

Let C(I,x*) denote the set of all sequences generated by an iterative
process I with limit point x* . Let {xk} c B be any sequence that

converges to x* . Then the R-convergence factors of the sequence are the

numbers
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|

limsup |lx
e

X ,», if p=1,

l/pk
limsup ”xk—x*" , if p>1.

The R-convergence factor of 1 at «x* is defined by

Rp(T,x*) = sup{Rp{xk} | {z,} € c(T,e0}
and the quantity

(0 if ,Rp(I,x*) =0 forall p € [1,0),

OR(T,x*) = 4

inf{pAE [1,2) | Rp(I,x*) = 1} otherwise

is called the R-order of 1 at xz* . We say that the convergence of 1

at z* is superlinear if R (I,x*) = 0 and linear if 0 < R (T,z*) <1 .

Let G : D x Dh cR'xR~+R", then z* is a»pbint of attraction of

the iterative process (2.3.1) if there exists an open neighbourhood § of

x* and a set I , called the h-domain of 1 , such that ScD , IC Dh

and for any x, € S and any '{hi} cTI the'sequence v{xi} remains in D

and converges to x* . Also we say that «* is a fimwed point of the
iteration (2.3.1) if a* = G(x*,h) for all h € Dh .
Finally, we say that G(x,h) is uniformly differentiable with respect

to x at z €D on IC Dh if, for each h € I , & x,h) 1is Frechet

differentiable with respect to x at 2z and if, for any € > 0 , there
exists a & > 0 , independent of % , such that S(z,8) c D and
HG(x,h)—G(z,h)—BxG(z,h)(x—z)H < gllx-z||
for all =z € S(z,8) and for all h € I .
We can now give conditions on G(x,k) which are sufficient for z* to

be a point of attraction of (2.3.1). 1In this chapter and the next, if 4

is ‘a square matrix, n(4) will denote the spectral radius of 4 .

THEOREM 2.3.1. Suppose that G : D x D, © R' xR+ R' has a fized
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point z* € Int(D) . Let- I < Dy be such that n(BxG(x*,h)) <o <1 for
all h € Ia and suppose that G(x,h) is uniformly differentiable with
respect to x at x* on I, - Then, if Iu is non empty, x* is a point
of attraction of iteration (2.3.1) with h-domain I& .

Proof. The proof is almost identical to that given for the Generalised
Ostrowski Theorem in [53] and so is omitted. O
Theorem 2.3.1 is rather more general than we require and so we present

a corollary which is more suitable for our purposes.

COROLLARY 2.3.1. Suppose G : DX b,  F* x 5> &' has a fised point
x* € Int(D) . Supposg also that. axG(x5h)  and ahG(x,h) .are Lipschitz
continuous on S X Ia where .S is‘an opén convex neighbourhood of‘ x* and
Ia 18 an intervallsuch that ﬁ(SxG(x*,h)) <a { 1 fb? aZZ  h € Ia . If
Ia is nonempty then x* 1is a péint of attraction ofAiteration,(2.3.1)-with
h-domain I, -

Proof. It follows from thg Lipschitz cqntinuity of SxG(x,h)” and
3,6(x,h) and from [53, Theorémia.z.'s] that, for all »»(éc,h) €8x I, there
exists a constant K suchAthaf |

IIG(ac,h);G(x*,h)-3xG(x*,h)(x—x*)ll < Klle-z*(” .
This result is immediate if we assumé that
Y = a1

however the result follows anyway if we use the equivalence of norms. Now,

given € > 0 , if K§ <e then, for all % ¢ Ia s
. HG(x,h)—G(x*,h)—axG(x*,h)(x—x*)H < gllx-x?||

for all z € S(x*,8) . Thus G(x,h) is uniformly differentiable with
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respect to & at x* on. Ia . The result now follows from Theorem 2.3.1.0

Corollary-2.3.1 gives sufficient conditions for local convergence of
the iterative process (2.3.1) but gives no information on the rate of

convergence. For this we require conditions on {hi} . We begin by

deriving a result on the assumption that 1lim hi exists.
130

THEOREM 2.3.2. Suppose G : D X D © R' xR+ R" has a fized point
x*AE Int(Dp) , and that BxG(x;h) énd BhG(x,h). are Lipschitz eontinuous
in a neighbourhood‘of (x*,h*) , where %iz hi = h* € Int(Dh) . If

1
a = n(BxG(x*,h*)) <1 then x* is a poinf_of attraction of the iterative
proeeés 1 given by (2.3.1). Mbrgover |
. Rl(I,x*).= o

and 1f o > 0 then OR(I,x*) =1. .

Proof. Definé u(x,h) by
(2.3.2)  Ga,h) = Glat,h) + 3 Glath) (emet) + ulz,h) .
Then, as in the proof of Corollary 2.3.1,‘ther§ exist positive consfants
Kl, § and 62 such that | |
(2.3.3) el & et
for all x € S(x*,8) , h € (h*-GQ,h*+62) = I2 say. Furthefmore, from.the
Lipschitz continuity of BxG(x,h) , with D(h) defined by
(2.3.4) D(h) = axG(x*,h) - BxG(x*,h*) R
there is‘a constant K2 > 0 such that
(2.3.5) ID(W) || < K2lh-h*|

for all 4 € I2 .

Now
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G(x,h) - x* = G(x*,h) + BxG(x*,h)(x-x*) + u(x,h) - x*
and so .

(2.3.6) G(x,h) - x* = D(h)(x-x*) + axG(x*,h*)(x—x*) + ulax,h)
For arbitrary € > 0 there exists a norm on R such.that ”3xG(x*,h*)H <o+ e
[53, Theorem 2.2.8] and in this norm, if § satisfies K8 <€ it follows
from (2.3.6) that, for any & ¢ I2 )

lGCx ) -2*|| = (Kzlh—h*|+q+2€)ﬂx—x*ﬂ
for all a € S(x*,§) . Also since {hi} converges tb h* , there is an

io such that K2|hi-h*{ <e forall %z io . If e is chosen so that

e/Ky) < 8, 5 0

then hi € IQ for all i'z i 5, and if. xiyé S(x*,8) , it
follows that

Hxi+l—x%u < (@+3€)”xi-x*ﬂ .
Sincé o<1 aﬁd € may be chosen so that o + 3e <1, it foilows from

[53, Theorem 10.1.27 that Rl(I,x*) =o . If o =0 this completes the

proof.

From (2.3.6) we also have,ufor all (x,h) € S(x*,6) x 12 R

"

16Cz , 1)-GCa*  h#)=5_G(a* ¥ (w-a®) || = [DCh) (m-z*)+ulz 1) |

(K2|h—h*|+Kle—x*H)Hx—x*“ .

A

Now if K262 <'e/2 and KiS £.e/2 , we have
(2.3.7) HG(x,h)—G(m*,h*)—BxG(x*,h*)(x—x*)H < glle-x*||
for all x € S(x*,8) and for all h ¢ I, . The remainder of the proof is

almost identical to the proof of the Linear Convergence Theorem given in

[53] with (2.3.7) replacing equation (1071.7) in [53] and BxG(x*,h*)

replacing G'(x*) . O

To complete the theoretical background we consider the possibility of
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faster convergence in the case when n(BxG(x*,h*)) = 0 . For this case we

require further knowledge of the sequence {hi}

THEOREM 2.3.3. Suppose G : D X Dy < F*xRr-+R' satisfies the

conditions of Theorem 2.3.2 and that n(BxG(x*,h*)) =0 . Then (x*,h*) is

a point of attraction of the iterative process 1 given by (2.3.1) and
Rl(I,x*) =0 . If, in addition,v’{hi} converges to h* with R-order
2l/k

r =1 then OR(I,x*) > min ,r) where k is the unique integer such

that _0(z*, 0% = 0 and 3 G0t 2 0

Proof. Theorem 2.3.2 shows that x* is a point of attraction of 1

and that Rl(I,x*) = 0 .so we may assume that {xi} converges to. x* .
Let A = BxG(x*,h*) . Then n(4) = 0 and there is an integer k<n

k-

such that 451 #0 anda AX=0 . With the definition of wu(x,k) and

D(h). given in (2.3.2) and (2.3.4), let D, =_D(hi)b and - u, = u(xi,hi] .

Then, if we write e, = X, - x* . it follows from (2.3.6) that

e. "=Ae. +D.e. + u.
1+1 T 11 7

and, by induction, for 4 = 0 ,

(2.3.8) e, = e, .+ 297 .. +AD

. e, .t . + D
1-J =g 1=4J

i-2%4-2 7 o101

+ AJ-lu. . + ;.. + Au. + Uu. .
1-J 1-2 1-1

Since {xi} and {hi} converge to x* and h* respectively, it follows
from (2.3.8) and (2.3.5) that, for all sufficiently large < , HuiH < Kléi

and ||p.|| < K,e. , where ¢. = |h.-h*| . Since Ak = 0 , it now follows
7 27¢ 7 T

from (2.3.8), with j = k , that
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le.ll = & ¥ e, 0% + o+ vlle, 12+ e, 112
A -k 1-2 -1

. k-1 _
+ KQ[Y ”ei—knei-k + ...+ Y”ei-2”€i-2 t |le,
where vy = ||4] .

Since {xi} converges to a* , it follows that there exists an < > 0

and constants B., B

1 B such that, for each 2 =2 1_ ,

0
- 2 '
”ei” = Blllei-kll + leiei_kllfii_k .

Replacing 2 by ki and wr}tlng a, = Bl“eki” and Bi = BQeki we have

(2.3.9) | C a <ol .+ 8

2 = %1 Y %Py

for all sufficiently large < .

We now require the result that, if 1< p>< min(?,rk) , then there

exists a constant ¢ > 0 and a J > 0 such that
<P

(2.3.10) . a; :

for all < = j . To prove this, suppose that s satisfies

p <8< min(z,rk] . Then, because {Bi} converges to zero with R-order
k
r 2
. : ' _Si'
(2.3.11) Bi e’

for all < sufficiently large. Let ¢ be some constant, yet to be
determined, then because p < s , it follows that, for < sufficiently

large,

(2.3.12) e ¥ <P

Also, since {ai} converges to zero and p < 2 ,

(2.3.13) o

L < e"‘lﬂ?/(2—p)
1 .

for all sufficiently large < . Let J be such that (2.3.11), (2.3.12) and
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(2.3.13) are all satisfied for all < = j and suppose that o <e P for

”

i 7
some % = j . Then, from (2.3.9), g S 2P e™® P and, from
—QGpi ‘ _cpi+l
(2.3.12), A= 2e . We wish to deduce that Coi <e and
26 T o +1

this will be so if 2 °P < %P . Some simple algebra shows this to
be the case if
(2.3.14) e > _#12_

p (2-p)

and a suitable choice for ¢ 1is

1n2

e = ———

pJ(2—p)
for then (2.3.14) is satisfied for each < = j . Now, by choice of ¢ ,

—ep? ‘ - :
uﬁ < e P and we have shown that, assuming (2.3.10) for some ¢ = j , then

(2.3.10) follows with < replaced by % + 1 . So, by induction, (2.3.10)
is true for all 4 = J as we required.

It now follows from (2.3.10) that the R-order of the sequence {ai}

is at least p . Since a, = “eim” and p - is arbitrarily close to

min(2,rk) , it follows that OR(I,x*) > min(Ql/k,r) . 0

2.4. Runge-Kutta Methods

Consider the general class of explicit Runge-Kutta methods for solving

the differential equation

(2.4.1) x(t) = qlz) , (0) =z, ,
given by
r
(2.4.2a) g =% th 3 aiki(xm’hm) , m=0,1,... ,

_7::]_ .
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where &~ is an approximation to x(ho + hl + ..+ hm-l) .

-1

(2.4.2b) k.l(x,h) = qlxth
1
. J=l

B..k.(x,h)| , 7= lyeea,r ,
13 J

and hm is the step length. A discussion of stability for this method is

usually based upon consideration of the linear differential equation

(2.4.3) ‘ é(t) = Az -, x(0) = Ty s

where A4 1is a fixed matrix whose eigenvalues have negative real part. The
true solution of (2.4.3) is

| x(t+hm) = exp(hmA)x(t)

whereas the solution given by (2.4.2) is

(2.4.4) | - S p(hmA)xm s

where p(z) is a polynomial of degree r whose qoefficients depend upon
choice of the a's and ,B'é in (2.4.2). The usual practice is to choose
thesé parameters so that p(z) is a good approximation to exp(z) . We

note that, since the true solution of (2.4.3) is decreasing, a requirement

on the step length hm is that the condition
(2.4.5) n(p(hmA)) <1, m=0,1y.u. ,

. be satisfied so fhat the iterates in (2.4.4) alsobdecrease. However, in thé
nonlinear case, (2.4.5) is of little pfactical use inkcontrolling the
stepsize.

In this section we consider (2.4.2) not only as a means of approximating
the solution of (2.1.1) but also as a one-step method for finding a zero of

f . For the former the theory is well known [34] and for the latter we use
the results of section 2.3. In this case we have

. * G@gﬂ,hm) s m=0,1,... .

where
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N . r
(2.4.6) G(z,h) =+ h ) a.k.(x,h)
i=1 "

-

and ki(x,h) is given in (2.4.2b) for < = 1,...,r . We apply this process

to the case when g¢(x) is given by

(2.4.7) q(@) = -J(@) M) .
Then, if I repreéents the unit matrix,

r

axG(m?h) =I+h JZ: a8 k. (z,h) .

=1
If x* is a zero of f(x) then x* is a fixed point éf (2.4.2) and also,
from (2.4.7), we have | |

q;(x*)_= -1 ;

where the prime denotes differentiation with respect to x . It then
follows by some. simple algebra that.
(2.4.8) 3,0(z* ) = p(-M)I
where p(z) is the same polynomial as appeared in (2.4.4). Rather than
proving this result here, for the sake of continuity we present it in the
appendix»fo this chapter aé Theorem 2.4.1. It now follows from Corollary
2.3.1 that a sufficient conditidn‘for z* td be a point 6f attraction of

(2.4.2) is that, for some a <1,

(2.4.9) n(p(—hm)I)‘= |p(—hm]| <a, | m=1,2,00. ,

which, unlike (2.4.5), provides an explieit bound on each hm for ultimate

convergence to x* . We note that the region of the complex plaﬁe.defined :
by |

lp(2)] <1
is called the region of absolute stability of the method (see Gear [29]) and

so the condition for convergence to x* is that, for each m , —hm lies

in this region. It also follows from Theorem 2.3.2 that, if 1im hi = h*
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the iterative process can give superlinear convergence to x* only if #h*
satisfies

(2.4.10) : p(-h*) =

Therefore, when f(x) is three times continuously differentiéble it follows:

from Theorem 2.3.3 that if {hm} converges to h* with R-order = 2 , then

the iterative process (2.4.2) has R-order at least 2 .

In the application of (?.u.z) it is of benefit to choose the parameters
so thaf the resulting method Qill follow the solution of (2.1.1) well enough
to inhibit divergence but will also provide a fast rate of final convergence
to x* . This means choosing a method which allows h* to be chosen so
that (2.4.10) is satisfied. We note here that for the well-known U4th-order
Runge-Kutta process p(z) is defined by :

2 ‘zB gt
t a7 oT

p(z) ¥~l + 3 g

o.-

and p(-z) has no real root. Thus no choice of h*. can furnish superlinear

convergence. Also Heun's predictor—éorrector method [34] may be written

(2.4.11) Lo = xm +-—— [: +q@x +h q( )i] .
This is of the class (2.4.2) and has p(z) defined by

2

plz) =1+ z +z—2— .

This is simply a Runge-Kutta method of ordér 2 and again p(-z) has no

4

real root, so no choice of h* can give superlinear convergence to 'x* .
In attempting to solve (2.1.1), Boggs [9] used this method as an explicit
approximation to the trapezoidal rule.

We note that for these two methods we can use Theorem 2.3.2 to show
fhat
+ Note that "order" is a ferm related to the accuracy of single and multi-
step methods in following the trajectory «(t) (see [34] and the definition

of H-order in section 4.2), while the term "R-order'" is related to the
speed of convergence of a sequence to its limit (see section 3.2 and [53]).
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N OB(I,x*) =1

and -

R (I,z*) = |p(-rH)| .

So assuming (2.4.9) is satisfied, convergence is at best linear and the
fastest convergence is achieved by choosing #* to minimise Ip(—h*)| .

For Heun's method this is #4* = 1.0 when Rl(I,x*) = % and then
convergence to x* 1is rather slow. If the sequence {hm} does not satisfy

(2.4.9), then the method will not generally converge.

Boggs [9] in his paper-suggeéted there is a difficulty of stiffness 
involved in integrating (2.1.1). Stiffness is a problem which occurs when
solving the differential equation

2(£) = qla)
when g¢q'(x) has éigenValueé wifh widely separafed negativekreal parts.
Their numerical solution requires the generation of sbecial methods which
are A-stable [18] or at least stiffly stableb(see (29] for a fﬁll
.description of these conceptsj.' One characteristic of an unsuitaﬁle method
applied to a stiff system of differéntial’equations ié fér the iterates to
oscillate about the true solution and possibly diverge; In our problem,
however, q'(x*) = -I and so, close to x* at léast, (2.1;1) is most
certainly not a stiff system. The symptdms of instability which Boggs
ascribes to stiffness appear identical to the behaviour observed if the

sequence {hm} contravenes (2.4.9). If we aftempt to solve the differential
equation (2.1.1), the standard methods tend to allow {hm} to increase as the

zero is approached, since the rate of change in direction of the solution
trajectory is decreasing. If this happens then oscillation and divergence

of the sequence {xi} may occur if hm becomes too large, as would be the

case, for example, when using Newton's method with a steplength greater than

2 . When the step is suitably controlled no problems of instability occur
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and, indeed, as long as hm satisfies (2.4.9) for each m , close to the

zero the problem is extremely stable, simply because any zero of f is an
asymptotically stable node of the autonomous differential equation (2.1.1)
[u5].

The foregoing theory shows that any method giving a polynomial p(z)
such that p(-k) has a positive real root will be effective for producing

rapid final convergence if {hm} is suitably chosen. For example, we

consider briefly Runge-Kutta methods of orders one, three-and five.
The simplest first-order method is Euler's method. In this case
p(2) 1is given by |
p(z) =1+ 2z
and, from (2;4.9), we see that é* is a point of aftraction with h~-domain
[8,2-6] , for § arbitrarily small, i.e. local convergence is guaranteed if

0<§ = hm <'2-§ for each m . Also, from (2.4.10) and Theorem 2.3.3, the
R-order of convergence to x* can be =2 if {hm} converges to 1 with

R-order at least 2 . This is essentially Newton's method.
There is a class of third-order Runge-Kutta methods and, for éach,‘
p(z) is defined by

. . 'g2 33
p(:«‘:)=l,+z+—2-—+?.

Now. |p(-h)| < 1 if and only if 0 <k <h , where h = 2.5127 ... , and

so, from (2.4.9), each of these third-order methods converges locally to x*

with #A-domain [S,hu—dj » for arbitrarily small § . Also, the R-order of
convergence to x* can be two if {hm} converges sufficiently fast to
h,=1.596 ... , where h = is the only real root of p(-z)

Finally, there exists a class of six stage fifth-order methods described

by Lawson [46]. For one which he recommends, p(z) is defined by
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J 6
2+ 0.5625

p(z) = 71 %3_1

p dJ

Mo

0

In this case |p(-h)| < 1 if aﬁd only if 0< h < hu » where

hu = 5.6039 ... , and so «* is a point of attraction with #A-domain
[S,hu—SJ , for § arbitrarily small. Again, convergence to a* has
R-order 2 if {hm} converges sufficiently fast»to h* = 2.6299 oo

where h* 1is a real root off‘p(—z) .

The conclusion of this section is that there exist single-step methods
which can follow the Solutién trajectory of (2.1.1) sufficiently accurately
and which, by suitable control of thevsfep>length, can furnish rapid
convergence to x* . 1In section 2.5 numerical details are given for a;third—'

order method which adapts the stép leﬁgth untii it reaches a.maximum of

hr = 1.596 ... , after which it is not allowed to increase further.

For completeness, we note ﬁere that the‘principlesbdescribed in this
chapter can be extended to implicit Runge-Kutta methéds and to the
predictor-corrector methods based on them. As an exémple we describe Heuq's
approximation to the trapeziqm rule_withlan extra correction, sinée this
method was used by Boggs in [9]. Using standard notation (see [9], [29]);-
Heun's method, given in (2.4.11),'canbbé considered as a»pfedictor-

corrector method of the form

P Pp = % T hmqm ?
E q, = alp,) >
. ‘ hm .
C: TS E%n+qhg >
E =

a1 Q(xh+l)

With an extra correction, the process becomes

P : P, = %, + hmqm .

it

E: - - q.=4qlp,) >
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~

C: ym+l’ - xm * —QE [qm+am_']
E : qm+l = Q(ym.l.l) 2
C : =

m
- |lg_+
Toe1 xm * 2 [qm qm+lj ?
which can be written in the iterative form

n
(2.4.222) g 0=+ 2 [aly,) (e, maly,))]

h
) 5y = 5+ [aly) + afs, + 2 laly)valra)]] -

Define By s M= 0,1,2,... , and z* by

) Hm o %
Zm = x : . 2 = x* .

Let I denote the iterative process (2.4.12), then I can be written as

zm+l = G[zm°hm) ?

which is of the form (2.3.1). In the case that gq(x) = 4J(x)_lf(x) and

f(x*) = 0 , some simple algebra Shows that ,BzG(z*,h) has two eigenvalues

Xl,Xz which satisfy

2

A+ A =%h “h+1=6(h)

17 M
say. Since 0(h) has no real roots and the minimum value 6(h) is 2/3 ,

it follows that

n(s,6(z*,m) = 1/3

for all % . Theorem 2.3.2 shows that, like Heun's method, bonvergence of

this process to x* is at best linear and R, (I,x*) =1/3 .

2.5. Numerical Results

We begin by making some general comments on the effectiveness of

solving (2.1.1) as a means of finding a zero of f . Although it has been
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necessary to assume that ~ Ty is in a stability region of a zero «* , for

if this is not-so then convergence is not guaranteed, there are applications
where the approach will be effectiVe. For example, where the usual methods
diverge or continuélly converge to a zero which is known but where the user
requires to find a different zero, which he knows to exist, and has a
suitable starting point. However, one should realize that, whilst the number
of evaluations required to follow the trajectory sufficiently accurafely may
seem reasonable to one used to solving ordinary differential equations, it
may seem surprisingly large to one used to solviﬁg nonlinear equations.
Following the trajectdry x(t) 1is usually a simple matter if A can
be chosen sufficiently small, but in pracfice an important part of solving
(2.1.1) is in the step length cohtrol. Far from a zero of f all of the
usual pfoblems of step control occur and great care is required to maiﬁtain
accuracy.- Close to a zero of - f this is not the case so long as % is

controlled in a way which will guarantee convergence, i.e. so long as hm

satisfies (2.4.9) for each m . As x* is approached we are less interested

in accuracy in following the trajectory than in convergence to - x* and

indeed, if we are to achieve fast ultimate convergence to x* , we must
relaxkour preoccupation with accurate fepresentafion of - x(%) thch
converges to x* only linearly (see (2.2.1)). In the examples thaf follow
we are interested only in demonstrating ways‘of aéhieving faster final

convergence and so we look only at cases when ., is fairly close to x* .

0
In this case the criterion for varying # can be simpler than would be

necessary in the general case.

The basic technique is based upon the fact that the solution of (2.1.1)

satisfies

Fe®) = e rley)

Let f; = fﬁxi) and Zi be given by
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Z, =1 - .
7
‘ £ifs
Then any point x , on «(t) , satisfies
zof(x).= 0.

Suppose X, is our current approximation to x* , then the solution of

2(t) = I @), w(0) =z, ,
converges to x* (under the conditions of Theorem 2.2.1) and ”Zifé+l”

gives a measure of the deviation of x.

41 from this trajectory. On this

basis a suitable step change criterion was found to be hi+l = min(h*,ahi)

where a is given by

1
(2.5.1) o= {t I g <d=g,,

o 0.5 if €, <8 =¢g,,
§ =»”Ziff+l” and. h* ‘is'the step size necessary for the fastest convergence

for the method. 1In addition, the point . was rejected and the step

1+l

repeated with half the step length if either § >-63 or

Det(J(xi+l]]'¢ DetLJLrO]] , in whigh case the iterates had crossed a‘region

of singularity of the Jacobian.

Various methods were tested on a vafiety of problems and the results
of some .of these tests are tabulated below. As an example of a method with
rapid final convergence we chose a third-order Runge-Kutta methoa (RK3) for

which hA* = hr = 1.596... . For comparison we tried Heun's method (HEUN)

which was used by Boggs and is given in (2.4.11), for which A* = 1.0 .
Since we are advocating the use of (1.7) as opposed to (1.6), we also
looked at a third-order Runge-Kutta method (X3) for solving equation (1.6)

to find an estimate of the solution at ¢ = 1 . In this method a major
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iteration consists of integrating

(2.5.2) SEE) = I@ ) s w(0) = x

giving a sequence {yi j} s J = l;...,Ni » such that Y; ; is an
b b

approximation to x(t.

.] , Where ¢©.
1,J 1

J-1
.= Y h.,and t., =1. Then
X=1 1,k z,Ni

Leq = yi,Ni = Y411 It is proved by Kleinmichel [41] and Bittner [7]
that, under general conditions, if the method uses step size h* = 1 then

the sequence {xi} converges to x* with R-order U . Despite this high

rate of convergence, the greater demand on accuracy required in following

the solution trajectory of (2.5.2) when xi'.is not close to x* causes the

algorithm to be less effective than those described in this chapter.
For a fair comparison of methods we used a similar step control to that

described above. Since the solution of

2(t) = -J(x) 1y i

2

I ORS
does not generally converge to x* and may, in practice, cross a region of

singularity of ~J(x) , it is necessary that each Yz be close to the

solution trajectory of (2.5.2). In this case, therefore, the most suifable

criterion is that h. . ., = min(ah. .,1-t

i.5+1 1,570 i,j+l) where o .is given by

(2.5.1) and 6§ = Hzif(

Y; j+l)” . Also we took
b .

h. = min(l,? max(h.' . )] . The conditions for rejecting a step
+1,1 L,Ni @,Ni_l

were the same as before.

In each algorithm €5 = 0.5 , €, = 0.25 and € = 0.05 were found to
be suitable and the initial step, in each case, was taken as h*/8 . Each
algorithm was applied to a variety of functions and the following eight

problems gave results which were typical. In each case the solution given

is the limit of the trajectory defined by (2.1.1) with the given value of
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1. A funetion found in Boggs [91;

-2
fi = xl,— x, + 1,

_ i
f2 =z 008[2 x2] .
with initial guess zy = (1,0) . The correct solution is x* = (0,1) .

2. Problem 1 with initial guess (-1,-1) . The correct solution is
(0,1) and the solution trajectory passes close to a region where J(x) is
singular.

3. A function found in Broyden [15];

= % g1 - .
f =% Sln(xle) a,/(uT) - x /2,
2xl
f2 = (l-l/(uﬂ))[e -e] + exz/ﬂ - Qexl .
with initial guess. (.6,3.) . The correct solution is (%,w) .

4. The gradient of Rosenbrock's function;

(2
f = 100 xl[xl—xQ} + 2(x-1)

f2 —QOC{xiéxQ] ’
with initial guess (-1.2,1.0) .  The correct solution is (1,1) and this
problem can be conéidered fairly diffiéult since the solution tfajectory is
always close to the region where J(x) 1is singular (see [11]).

5. A function found in Branin [11];

fl =2 sin(2ﬂxl/5) sin(2ﬂx3/5) - Z,

o
i

= 2.5 -z, + 0.1 x sin(2ﬂx3] -

3 2 1°

hh
w
it

1+ 0.1 Z, sin(Qle) - %3

with initial guess (0,0,0) . The correct solution is (1.5,1.809 ...,1.0) .

6. A function found in Deist and Sefor [22];
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[§)
f.= Z: cot B.x. , 7 =1,...,6 ,
7 i1 °d
J#L

where 100 B, = 2.249, 2.166, 2.083, 2.0, 1.918, 1.835 , for £ = l,e..,6"
, 1 =1,...,6 the correct

respectively. With initial guess T, = 75.0

solution is approximately (121.9, 114.2, 93.6, 62.3, 41.3, 30.5) .

7. A discretisation of

By +y° = 0

with boundary conditions y(0) = 0 , y(1) = 20 , gives rise to the equations

L 2
£y = 3w (my2m) + ap/u

2 .

fi = 3xi[xi+l—2xifxi_l) + (xi+l—?i—l) /4, 7 = 2500.,n-1 ,
. 2.

£, = 3xn(20—2xn+xn_l) + (zo—xn_l) /.

/4

The trué solution of the boundary value problem is y = 20t3 . As initial.

guess we chose x, = 10, ©2=1,...,n and set n = 10 .

8. Same as problem 7 with =»n = 20 .
Both of these problems have solution:trajectories which pass close to a
region of singularity.

Table 2.1 gives results on the effort required by the methods to reduce

each component of f to less than '1076 . For each method the first line
gives the number of Jacobian evalﬁations, the second gives the number of
function evaluations and the third the number of equivalent function
evaluations counting a Jacobian evaluation as 7 - function evaluations,
except for problems 7 and 8 where the Jacobian is tridiagonal and its
evaluation is counted as being equivalent to 3 function evaluations. Note
that, because of the way steps were either accepted or rejectéd, the number

of Jacobian and function evaluations are not necessarily the same.
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. TABLE 2.1
ALGORITHM ‘ PROBLEM
1 2 3 i 5 6 7 8
21 29 18 110 28 2 69 69
RK3 22 31 19 114 29 25 73 73
6l 89 55 334 113 169 280 280
18 39 15 26 29
K3 7 13 6 * 10 11 % %k
43 91 36 88 185
i 52 . 38 - 109 u6 i 86 88
HEUN 45 53 39 119 u7 45 89 91
133 157 115 337 185 309 347 355

. . . : . -1 v
% - h reduced to minimum allowed, viz. 2 3, .

o o,

%% .~ terminated after 200 .function evaluations.

We éan draw a number of conélusipns_fromvthe numeriqal results. - The
first is that the HEUN algorithm, which has only lineér cohvergence to x* ,
requires significantly more evaluations than the other methods. This is as
we would expect. Because of the high rate of_ultimaté cbnvergence; the K3
algorithm is generally superior wheﬁ the problem is simple, i.e. when the
solution trajectory is smooth and does not approach close to regions where
the Jacobian is singular. However, where this is not the case RK3 appeéré
more efficient and in particulér we note that it is more reliable in that it
always succeeded in finding the desired solution in a reasonable time. The
need for the K3 method to always follow the same trajectory led to the
greater number of function evaluations in these cases.

We note here that any comparison of routines is nécessarily a comparison
also of the step change criteria and that the critefia chosen were not
necessarily the best for each routine. However we have deliberately adopted

simple criteria for changing stepsize in the hope of demonstrating that the

methods whieh use (1.7) are more robust than those which use (1.6).
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. APPENDIX TO CHAPTER 2

-

We now prove the result quoted in section 2.4. We assume the notation
of that section and that f(x) is sufficiently differentiable.

THEOREM 2.4.1. The iterate Lol 0 given by (2.4.2) applied to the

function . q(x) = Ax , where A 1is a fixed matriz, satisfies
Tmer = P (hmA)xm ?
where p(z) s a polynomial of degree r .

In addition, if G(x,h) is given by (2.4.6) and (2.4.2b), with the
choitce q(x) = -J(x)_lf(x) » SxG(x*,h) i8 given by
BiG(x*,h) = p(fh)I .

Proof. Define the polynomials pi(z) s T = 1,...,r by

(AQ-J-) pl(z) =1,
-1 ‘ .
(A2.2) p,(2) =1+z j‘él Sijpj(z)‘, 1= 2,3,...,0 ,

where the Bij' are as in (2.4.2b). Also define p(z) by

. } r '
(A2.3) p(zg) =1+ 2z Y o.p.(z), .
: i=1 v ¥

where the ai are as in (2.4.2a). We now show that, with g¢(x) = Ax , the
ki(x,h) given in (2.4.2b) satisfy

(A2.4) : k.(x,h) = Ap .(hA)x

‘ . J J |
J =1,2,...,r . Certainly kl(x,h) = Apl(hA)x , Since kl(x,h)‘= q(z) and
pl(z) =1 . Now suppose that (A2.4) is true for 4 = 1,...,72-1 . Then,

from (2.4.2b) and the definition of ¢(x) , we have
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-1
A{x +h Z BijApj(hA)x]

k.(x,hi
7 )

1

_ -1
AlT + WA ..p.(hA .
[ + jzi Btapg( )]x

and from (A2.2), this gives

ki(x,h) = Api(hA)x .

By induction, (A2.4) is true for ='l,...,r . Now, from (2.4.2a),

i
8
4
3!

o.Ap. (h A)x

X .
m+1 m m 71" m m

o
'[I + A izi aipi(hmA]]xm

p(n Az,
from (A2.3). Also it is trivial to show that p(z) is a polynomial of

degree r . This completes the first part of the proof.

Now we consider BxG(x,h) with gq(x) = —J(x)-ljxx)'. From (2.4.2a) we

have
(A2.5) axG(x’h) =TI+ h,.z: diamki(x,h) .
. =1
Also, from (2.4.2b),
| ’ i-1 i-1
(x,h) = q' B..k.
8,k (2,h) = q [m + h jZi Bzﬂkg(x,h)][% + h jz& Bijaxkj(x’h{] .

Now kl(x*,h) = g(x*) = 0 and suppose that kz(x*,h) =0, 1=1,...,5-1.
Then from (2.4.2b), kj(x*,h) = q(x*) = 0 and so, by induction,
kj(x*,h) =0, 4j=1,2,...,» . Thus

: -1
(A2.6) Bxki(m*,h) = q'(x*)_{ + h'jZ&-BijBxkj(x,h)

We now show that

(A2.7) o kai(x*,h? = —pi(—h)I s 1= 1,000,p .



First, Bxkl(x*,h) = gq'(x*) . Also ‘q’(x*) = -I and from (A2.1),

* - - * = - -
Bxkl(x ) p,(-R)I . Suppose that Bxkj(x N pj( mI o,

j=1,...,2-1 . Then, from (A2.6),

7-1
3 k.(x*,h) = -[l -h )
x 7 £

and, from (A2.2),
Bxki(m*,h) = -pi(—h)I .

So, by induction, (A2.7) follows. Finally, from (A2.5),
* = - ' -
0 Xa*,h) [l h ; o.p(-h) | T
. =1
and from (A2.3) we have 4
axG(x*,h) = p-nI

as required. O

34
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- CHAPTER 3

*

CONTINUATION WITH MULTISTEP METHODS

3.1. Introduction

In Chapter 2 we considered the applicatién of standard single-step
methods to solving (2.1.1) and in this chapter we develop the corresponding
theory for multistep methods. The local convergence theory for multistep
methods, which is essentially a generalisation of the single-step theory of
Ostrowski [58], has been coﬁsidered in detail by Voigt [71]. In section 3.2
we quote Voigt's main result and appiy it to multistép methods which are
also suitable for solving (2.1.1). 1In this way we develop multistep.
methods which can follow the solution of'(2.l.lj accurately and also converge
rapidly to x* . In section 3.3 we restrict atfention to explicit multistep
methods and prove a result on the order bf accuracy attainable by these
rapidly convergent methods. Also we aerive a lower bbund on the R-order
of convergence.of the methods:when,considered as iterative schemes for
finding x* . An important feature of any method for solving (2.1.1) is that
the step size be adaptive. In sectiénf3.4 we.éonsider the possibility of
variable step methods,_based‘upon the fixed step methods derived, énd
indicate that they are unstable. However we suggest variable formula and
variable sfep methods based upon a combination of the Adams-Bashforth and
the derived methods. That the resulting methods are stable follows from the
theory developed by Gear and Tu [30] and Gear and Watanabe [31]. Finally,
in section 3.5, we give numerical results on the efficiency of some of the

resulting methods and compare them with the methods of Chapter 1.
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3.2. General Theory .

In this séction we consider the solution of the differential equation
(2.4.1) by means of a linear multiétep method of the form

(3.2.1) p(E)xm - hc(E)q@gﬂ) =0, m=0, 1, «oo ,
where E 1is the displacement operator defined by

Ek(v(x)) = v(xtkh)
and p(A) and o(X) are polynomials given by

r

- J
(3.2.2) p(A) = ;g, ajx , a, # 0,
J:O .
and
- r .
(3.2.3) o(A) = Y B_J.x? .

o
The process (3.2.1) can be considered’as a»(poséibly implicit) multistep
method of the form

(3.2.4) G(xm+r,...,xm) =0, m = 0,1,...

and we can use the following théorem, due to Voigt [71], to give conditions
on the method which will guarantee local convergence to a zero of f when

q(x) 1is given by (2.4.7). In the following, BiG(xl,..{,xm) denotes the

Frechet partial derivative of (G with respect to xi'.

THEOREM 3.2.1. Suppose that G : e (Rn)r+l > R is continuously
differentiable on an open neighbourhood D§+l c prtt . Assume that there is
an x* € DO such that G(x*,...,x*) =0, alG(x*,...,x*) 18 nonsingular

and n = n(W) <1, where W 1<is given by

WQ W3 e r+l
I o0 . 0
o I ... 0

(3.2.5) W=
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and .

(3.2.6) W, = 78iG(x*,...,x*)_lBiG(x*,...,x*) s T T 2,...,041 .,

Then there is an open neighbourhood § of x* such that the sequence {xk}
defined by the iterative process 1 given by (3.274) 18 well defined for

any (xo,x yeoeol ] € ¥ and converges to x* with

1 r-1
) =
R (T,x*) =n .
Proof. See Voigt [71]. O

In our application, from (3.2.1) - (3.2.3), we have

r o ‘ r
(3.2.7) G(Yseuesty ) = Y 0y .. -k Y B
1° r+l 4=0 Jr-g+1 i=0

jqr—j+l ?
where q; = Q(yk)
The first condition that Theorem 3.2.1 imposes is that

(3.2.8) G(a*,...,x*) = 0

which, since q(xf) =0 , gives
(3.2.9) Y a.=0

and this, in the usual notation, can be ekpreSsed as
(3.2.10)  p(1) =0,
Also

aiG(yl""’yr+l) =0, 0T - hBr—i+lq'(y£) T = 1,...,rt1

[

and since q'(x*) = -I , it follows that

th—i+l]I , 7= 1,...,r+1 .

* %) =
BiG(x sees sl ),_ (ar-i+1+

For application of Theorem 3.2.1 we require that alG(x*,...,x*) - be non-

singular, i.e. that

(3.2.11) | o, + hBr #0

and subsequently we assume this to be the case. In section 3.3 we assume

(3.2.1) to be an explicit method, in which case dr £ 0 and Bp =0, so
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(3.2.11) is automatically-satisfied.

Define )
o . .thB ..
r-1+1 r-14+1 .
(3.2.12) Ei = o 7B . 1 = 2,000,041 ,
r " Fr
SO
(3.2.13) We= =8, 1, 1= 2,040

To guarantee that the sequence {xk} generated by (3.2.4) converges to

x* , we look at n(W) with W given by (3.2.5) and (3.2.6). Now an

eigenvalue A of W satisfies

Wy Wy w- re1f| P2 )
I 0 ... 0 v3 Vg
o I ... 0 . .
= A
o L0 | Pral
: T T r ! ‘ : '
where [02’03""’vr+l] is an .eigenvector. From this, it follows that
r+l _
Wov, = :
Zé id T "2
and
(3.2.14) ‘ vj = Avj+l s J = 2, 0., .
From (3.2.14) we have v, = Ny . G = 2,00 and so
r+l
r+l-g L _ L\ P
[JEé hbk _}vr+l = AV
Using (3.2.13), we now have
r+l il
N+ Y AT =0
j=2 7

Replacing each gj _using (3.2.12) gives immediately that A is an eigen-

value of W if and only if A satisfies
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(3.2.15) p(A) + ho(X) é 0 .

Thus, from Theprem 3;2.1, a sufficient condition for local convergence to
x* is that each root of (8.2.15) is less than 1 in magnitude. As in
(2.4.9), this gives an explicit bound on % to ensure ultimate convergence.
So this condition corresponds to (2'4f9) in the single-step case. The |
corresponding region of absolute stability of a multistep method is that
part of the Complex plane for which the roots of
p(A) - z0(A) = 0

are less than one in magnitude. Therefore, once again, the condition for
local convergence to x* is that -k 1lies in the region of absolute
stability.

We now consider the possibility of superlineaf_convergence of the

sequence {xk} to x* . Theorem 3.2.1 shows that this is possible only if

nwy =0 ,
i.e. if all the roots of (3.2.15) are Zero. This is equivalent to the
condition

p(A) + ho(d) = y\¥

for some Yy # 0 . From (3.2.2) and (3.2.3) this is equivalent to
aP+hBP=Y"
and

aj + th =0 , ‘j = 0y.0.,0-1 .

We have therefore proved the following theorem.
THEOREM 3.2.2. For superlinear convergence of a linear multistep

method applied to (2.1.1), the general iterative process

r r
-1 _
jzg 0T, h jzg BjJ(xm+j) f(xm+j) =0

must be of the form
r r-1

-1 o1 )
JZ:O R I o () T ) + 18I () ) = 00
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where N

and
o, + hB #0 .
In the explicit case, when -Br = 0 , this can‘be considered as a
weighted Newtbn method where, at each step, X is taken fo be a weighted

sum of Newton steps, i.e.

- ~ : -1
Lpsm = 20 OLj['%an’J('78,7'+m) f(xj+m)] ’
N oorzl o
where o. = -0./0_ and a., =1 .
J JF j=o 7

3.3.. Explicit Methods

Since an implicit method requires, at each iterafion, tﬁe solution of a
system of nonlinear equations and since finding such a solution is our ‘
original problém, we regard implicit methods as inappropriate and do not
consider them further. 1In this section we consider explicit multistep
methods for solving (2.1.1) which ha&e satisfactory stability and order

properties. The results of the previous section show that, given ho , any
method for which p()) satisfies (3.2.10) and
(3.3.1) p(V) = A" - B oV

(where o(XA) is a polynomial of degree r - 1 J, is explicit and gives

local superlinear convergence to x* when h = h_ . Consider now the

0
order, in the sense of Henrici [34], attainable by this method.

THEOREM 3.3.1. Given any ho in (3.8.1), there exists a unique

polynomial o(\) of degree ¥ - 1 such that the resulting method has order
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» -1, Forany r there exists at most r values of ho such that the

method has order »r .

Proof. The proof is an application of Lemma 5.3 of Henrici [34] which

states that a method has exact order p if and only if the function

0(2) = %2 - o(0)

has a zero of exact order p at ¢ =1 . In this case, from (3.3.1), ¢(Z)

is given by .

_on)  f-p()

Thus, a method defined by (3.3.1) has order p if and only if there exists
a function Y,(z) such that $,(1) # 0 and

o(z)  i-p(z

logt ho :

L= (-1Py, ()
Letting 1 + vy = ¢ this is equiVélent to the existence of a function wQ(Y)

such that w2(0) # 0 and

_ log(1+y) r . p R
p(1l+y) = WI}1+Y) +Y ID?(Y)]

(1+Y)10g(1+Y) . YPlog(1+y)

p(1+y) = Ah0+log(;+y) ho+log(l+y) wQ(Y)"i

Expanding both terms on the right hand side in powers of <Y , the condition

that the method has order p 1is that there exist constants -7, ,7,,... , such

1°°2

that ﬂl # 0 and

a(h] a(h) a[h)
(3.3.2) p(l+y) = lh O v+ 2 20 Yoor o+ 20
0 h e
0 0
N i R
1 2 3 e

where, for each g , aj(ho) is a polynomial of degree J - 1 in ho .
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For p = r - 1 the coefficients ﬂj s J = 1,2,... , can be chosen so

: r
that m + ap(ho]/h =1 ‘and

aj+r—l(h0) t =0 .
hj+r—l J ° J
0

v
N

in which case the right hand side of (3.3.2) represents a polynomial of

degree r with coefficient of YP ~equal to 1 as required. The derived
method is obviously unique and has order » - 1 .

If p=r, ho is such that
(3.3.3) | _ a,(hy)/n, = 1 ,

and ﬂj s, J =1 , are chosen to satisfy

aj+r(h0) - :
S = s m.=0,
I J
0 .
then the method has order » . (3.3.3) can only be the case when ho is a

root of the polynomial ap(ho] —'hg , which is of degree »r . Thus there
at most r values of ho for which a method satisfying (3.3.1) can be of

order r . This completes the proof. O
Next we use Theorem 2.3.3 to give a lower bound on the local

R-convergence rate of methods satisfying (3.2.10) and (3.3.1).

THEOREM = 3.3.2. Suppose that q(x) = —J(x)~lf(m) ig continuous and
there exists a § > 0 such that q"(x) exists-and 18 bounded in S(x*,8) .
Then any iterative process 1 defined by (3.2.1) - (3.2.3), for which p(A)
satisfies (3.2.10) and (3.3.1),when applied to (2.1.1) converges locally tol
x*. and |

OR(I,x*) > 21/r .

Proof. Rewrite (3.2.1) - (3.2.3) in the explicit form
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Tmp " G(xmﬂ'-l’ Tt ’xm)
and set 2 = (xk”"’xk—rﬂ) , for k = mtr-1,m+r,... , and

~

g* = (x*,...,2*) ., Define G : Dr-C (Rn)r > (Rn)r by
a(yl,...,ym] = (G[yl,..., m) ,yl,...,ym_l)
Then Byl © @(zk) . Since G is differentiable at x* , G is

differentiable at z* and G'(z2*) = W , where W is given by (3.2.5).

However, it follows from (3.3.1) that in (3.2.13), Wi =0, 7 = 2,...,rtl ,

0 and

and so n(a'(z*)) = 0 . Also, from the form of (3.2.5), G'(z*)r
ezt zo .
G(z) therefore satisfies the conditions of Theorem 2.3.3, 3z* is a

A

G(zk) , and

point of attraction of the iteration '12 : zk+i

S ol/r
OR(IQ,z*) > 2 .

IA

Now there exists a norm such that Hxi—x*H Hzi—z*H for each 7 (see

[71]) and so OR(I,x*) > OR(IQ,z*) > 2T This completes the proof. a

We can now look at methods suggested by Theorem 3.3.1 for various

values of r . The relevant polynomials are

2

2 2h -1 ] (1-n,)

A _
ho ho
! 2 I l 2 l ! 2 l
3 6h0—5h0+2 5 3h0—4h0+2 2h0—3h0+2
A - 5 AT+ Ch A - 5 . .
2h0 | ho . 2h0

for » =3 ,

(3.3.4a) p(\) , for r =2,

(3.3.4b) p(A)

and
X (12hg-13h§+9h0-3] , [12h8—19hg+16h0—6] ,
(3.3.4c) p(A) = X - 3' AT+ 3 A
3n 2h
0 0
3 2 3 2
[uho_7ho+7ho_ } [6h0—11h0+12h0—6]
- 3 A+ 3 ,» for r» =14,

h 6h

0 0



Ly

and similar formulae, of increasing complexity, can be derived for larger

values of r . The two-step method in (3.3.4a) is order 1 , but if ho =1

the method deflates to a one-step method, also of order 1 . This is, of
course, Newton's method, and is the one-step method of order 1 suggested
by Theorem 3.3.1.

Similarly if hd in (3.3.4b) is chosen so that the constant term is
zero then the fesulting mthod would be two-step and of order 2 . That
the polynomial 2h§ - Sho + 2 has no real root shows that there is no such
method. However there exists éne value of‘ ho for which a three-step

method of order 3 exists. This is the method obtained by setting the

constant coefficient of p(A) in (3.3.4c) equal to zero. The equation
(5.3.5) - 6h0 = 11K° + 12k - 6 = 0
T | 0 0 0 -

has only one real solution, which is approximately .0.8539 , and on setting

ho to this value (3.3.4c) deflates to a three-step method.

Theorem 3.3.2 gives information on the R-order of convergence of

: %
iterative processes specified by (3.3.4). For (3.3.4a) the R-order is = 2°

unless %, = 1 , in which case the method deflates to a one-step method and

0
p(A) can be written‘
p(A) =X - 1.
In this case Theorem 3.3.2 states that the resulting method has R-order
> 2 , which is as expected since this is simply Newton's method. The theorem

z
also shows that the method using (3.3.4c) has R-order = 27 , unless ho

is chosen as the real root of (3.3.5), in which case, since the method

becomes three-step, the R-order is = 21/3’

. This is therefore the
most efficient method of order 3 , a fact which is borne out in practice

(see section 3.5). We also conclude that, for multistep methods, increasing

the order increases the accuracy in following x(%) but decreases the
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efficiency of final convergence to x* .

Two furthgr requirements on any practical method, for small h at
least, are those of consistency and stability (see Henrici [3u]).
Consistency is equivalent to having order at least 1 , which is the case
for the methods under discussion, and stability demands that no root of
p(A) exceeds 1 in modulus and that the roots of modulus 1 be simple.

In this case the stability condition depends upon ho and for »r = 2,3,4'

the methods are stable if
ho > 1/2 for » = 2,
= ' =
(3.3.6) : ho > 2/3 for r =3,

2/3 = hO = 2.5147 ... for »r».= 4 .

So, for each »r considered, if hO is chosen to satisfy (3.3.6) the

methods will be stable for'small‘ % . That this condition need not be
strictly fulfilled is shown in the next section for the methods will not be

used with small % but only with % = ho

3.4. Practical Numerical Methods

The methods discussed in the previous section were derived with the
idea of inifially using a small step size which, as the zero x* is

approached, could be increased and finally fixed at ho to give superlinear

convergence to «* . However the foregoing theory assumes #A to be fixed

throughout and so is not directly applicable to variable step size. We hay
genefate methods based upon those described‘in section 3.3 with varying step
size, in the style of Gear [29]. These can be either of the Nordsieck type

[52], where instead of using approximations to x(Zh) and z(ih) ,

mom+l,...,mtr-1 , we use approximations to the derivatives x(k)(mh) s

7

k.

1}

0,1,...,2r-1 , or of the variable step type where we start with »r+l
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unequally spaced points ¢

1 ., »>=1712>0, and compute the coefficients
m+r-1

of the explicit multistep formula

Ymip = hm+r—18r—l,mym+r-l T ¥ hmBO,mym
+ hm+r—18r-l,mqm+r-l Toeee ¥ hmBO,mqm
so that the order is r - 1, where hj+l = tj+l - tj . This is the

formula for variable steps (based upon (3.3.1)) which, if th = hO for

J =Mye..,mtr , gives the formulaeblisted in (3.3.4).

Unfortunately these variable step methods are unstable with respect to
changes in step size. When programmed the methods work well for fixed stép
but display obvious instability when step sizes are increased. fhis‘
behaviour is explained in detail by the theory developed by Gear and Tu [30]
and precludes the use of the methods with varying step.- However, it is
shown in [30] that the variable étep methods based upon the Adams-Bashforth
formulae are stable and so the méthods of section 3.3 can be combined with
these to give the required characteristics. If an Adams-Bashforth variable-
step method with »r steps is applied to (2.1.1) then, as x* 1is approached,
the step size can be increased. Because the Adams method. cannot give super-

linear convergence to a?* we finally hold the step fixed at some value hO

and when enough steps of fixéd size have beenktaken we can switch to a
method which gives fast ultimate convergence. Should a-premafure change to
the fixed step be made then it will be necessary to redﬁce h and revert
again to the variable step Adams method. These composite methods are thus
variable formula and bossibly variable order and an application of the
comprehensive theory of Gear and Watanabe [31], on stability of variable
order multistep methods, shows that the derived methods are stable.

Since the Adams method is to be used with stepsizes up to ho , 1t
would be preferable if the region of absolute stability of the method

contained ho . In our numerical tests we chose methods of order 3 and



u7

unfortunately, close to «* , the Adams-Bashforth predictor of order 3 is
absolutely stable only if

(3.4.1) 0 < h<6/11 .

So the root of (3.3.5) is not contained in this interval. in practice this
did not prove to be a difficultylbecause steps which did not satisfy (3.4.1)
were so few that stability was hardly affected.

To see if improvement was possible we also considered the predictor-
corrector schemes based upon the Adams-Bashforth and Adams—Moulfon formulae.
For example, in standard notation [29] the Adams—Bashforth method is denoted
as a PE scheme. For order é the PEC Scheme is absolutely stable if

| 0<h< 2/7. |

and so, in this case, is less suitablé thén the simpler‘PB scheme. The
PECE scheme has the disadvantage of réquiring'two evaluations of g¢(x) per
iteration althoﬁgh, close to x% ) it»is absolufelyksfable,if

0<h<1.728 ... |
In practice this extra stability has iittle effect whils{ the_ektra
evaluation at each itefatién only reduces efficiency. We note that this is
not the case when solving differential equations since, on the whole, at
the cost of an extra evaluation‘the Possible.étep size is more than doubled
(see [42] for a discussion in this case). However, in.this application, we
are not so preoccupied with following x(t) accurately and the PE scheme
is adeéuate.

In the following section we describe some numerical experience.with
variable formula methods of this type. The third-order Adams-Bashforth

method is coupled with methods of order three as given by (3.3.uc).

3.5. Numerical Results

We tried several multistep methods for solving (2.1.1) and present some ’

results for an Adams-Bashforth'variable-step method of order 3 coupled
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with a rapidly convergent multistep method of order 3 (AB3) described in

section 3.3. This method was tested for various values of ho and some

-

results for ho = 0.8598 ... , which is a three-step method, and for

ho = 0.7 , which is a four-step method, are given in Table 3.1. 1In each

case, the final step length, h* , equalled ho . The same step-change

criteria were used as described for *the single-step methods in section 2.5,

except that here €, was chosen to be 0.01 since, with € = 0.05 , it

was found that the methods opcaéionaily‘made a premature‘change to.stepsize
h* . The initial stepsize was again chosen to be h*/8 .

The algorithms were applied to the functions lisfed in section 2.5 and
the effort required to reduce each component of f “to 1078 is given in

Table 3.1. The format of Table 3.1 is the same as for Table 2.1.

" TABLE 3.1
ALGORITHM 7 PROBLEM
1 2 3 Y 5 6 7 8
23 31 14 99 27 18 54 56
n, = .859 ... 25 33 15 101 28 19 59 61
71 - 95 43 299 109 127 221 229
AB3{
_ 26 35 16 95 33 21 55 58
o = -7 28 38 17 98 3l 22 59 63

80 108 49 288 133 148 224 237

The methods of this chapter frequently proved more efficient than the
single—stép methods of the previous chapter, particularly when many steps
were required, for then these methods gainéd by requiring only one evaluation
per step. This is bbrne out in the results shown in Table 3.1. Also the

improvement in the FR-order of these methods is now shown to be worthwhile.



49

/3

The three-step version, with FR-order 2l , was usually superior to the
1
four-step method which has R-order 2% . We note again that these methods

are significantly more efficient than the linearly convergenf Heun method.
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CHAPTER 4

‘ CONTINUATION WITH NEWTON-LIKE METHODS

4.1. Introduction

In the previous chapters we have derived methods for solving

(4.1.1) ) = -3 @), w(0) = a4,

which also have rapid convergencé to a* . As’describedvinAChapter 1,

(4.1.1) can be derived in different ways, one of which is as a reformulation

of

(4.1.2) H{xz(t),t) = 0, x(0) =z, ,
where H : D X Dt cR'xp~>Rg" ‘is given by

(4.1.3) Hz,t) = f(z) -~ e 'f(z,) -

This follows because the solution of (4.1.2) also satisfies

(4.1.4) 2(t) = -3 H(z,6) 3 H(z,8) ,  2(0) =z, .
We note that the methods of Chapters 2 and 3 integrate (4.1.1) and make ho
use of the fact that the soiutién also satisfies (4.1.2). 1In this chapter
we discuss methods which make special use of this relatiOn.: |

In section 4.2 we consider the more general problem of following the
solution trajectory of (4.1.2) for a general function H(x,t) . We adopt
this generality since it is relevant to the theory discuésed in Chapter 5.

We describe a well known adaptation of Newton's method for solving (4.1.2)

for a sequence of values ti s, 7 =1,2,... , and we give'results on the

order of accuracy attained by this method. Furthermore, we discuss its
computational efficiency and show how the parameters of the method can be
chosen to minimise the work required to gain a certain accuracy. In section

4.3 we apply the results to the case when H(x,t) is given by (4:1.3) or by
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(4.1.5) H(z,t) = flx) - (l—t)f'[xo) -

in which case, .(4.1.4) becomes

(4.1.8) a(t) = —J(x)-¥f(x0) R x(0) = =, .

In keeping with our suggestiohs of Chapter 1, we prefer to derive methods
which have the same stability properties, close to x* , as the methods
derived in Chapters 2 and 3, for solving (4.1.1). We do this by modifying
the method of section 4.2 for the case when H(x,t) is given by (4.1.3).
Then we give resdlts on the accuracy of this modified method for following
the solution of (u.l.l)‘and use Theorem-2.3.2 to deduce results on its
R-order of convergence to x* . A method essentially due to Branin [11] is
described in section 4.4, since it is éimilér to the methods of sections 4.2
and 4.3 in that it uses the relationship given by (4.1.2) and (4.1.3). ‘Then
finally, in section 4.5, we give-details of some numerical tests carried out
with the methods described. Thé_theofy.and numerical experience shows that
the methods which use (4ﬂ1.2) directly ave computationally more‘efficient

than the methods described in Chapters 2 and 3.

4.2. Some Order Properties

In the previous chapters we considered several methods and freely
discussed their orders of accuracy in foliowiﬁg the solution of certain
differential equations. This was possible because the definitions of order
are well known, but here we formally define thé term order so that we can
compare methods which satisfy different order propertiés. We introduce the
term H-order té emphasise that the definition is identical to that given in
Henrici [3u4].

Consider the solution of the initial value problem

(4.2.1) x(t) = glx,t) , x(0) = Ty oo

by the iterative process



52

(4.2.2) BETR ¢la; b n.) 1=0,1,2,... ,

for some G : D X Dt X Dh cR'xRxR~>R" , where X, is an approximation

to x(ti) and hi =t - ti . For such a method we give the standard

7+l
definition of order.

DEFINITION 4.2.1. Method (4.2.2) has H-order 1 for (4.2.1) if

6z, t,h) = a(eh) + 0(RFY)
where 2(u) is the solution of |
z(u) = g(zb,u) s z(t) = .

We frequently make use of the 0(e) notation which is used in the

sense that, if a and b satisfy ‘
a=>b+ 0(8) ,
then there ié a constant K , independent of § ,.such that |la-b|| < K|§|
for all sufficiently small & .7 |
FSome methods for solving (u;Q.l)_cannot be described in terms of

H-order and we give a different definition éfkorder wﬁich is relevant to
their case,

DEFINITION 4.2.2. Method (4.2.2) has C-order 1 for (4.2.1) if,

whenever x = x(t) + 0(h) , then

Gz, b, = o(e+h) + O(RETY)
Qhere x(t) is the solution of (4.2.1).
The term C(C-order iSAchOSen to suggest that a method wifh positive
C-order is corrective, in that it always tries to approximate —z(¢) . This
is in éontrast to methods with positive H-order which, at the (Z+1)st

step, try to follow the solution of

Sy = gly,.t) y(t.) = =

7

which is different from x(t) if x, # x(ti) and can be considered as an

adjacent trajectory to (%) . When solving a standard initial value
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problem of the form (4.2.1) it would be of benefit to use a method with
positive C-or@er_since we are specifically interested in following x(¢) .
Unfortunately we cannot generate methods with positive C(-order without
further information about the solution trajectory and so we must be
satisfiéd with methods possessing a positivé H-order. It is ironic that,
in the application Qf éontinuation methods to the solution of nonlinear
equations, where it is not ﬁecéssary to follow x(t) accurately, we can
generate methods of arbitrary C-order.

In this section we give a result on the C(-order of a well known method
for following the>sblution of (H.l.é). The method is straight forward and
has been suggested for the continuatioﬁ‘approach by several authors in the
case when H(x,t) is given’by (4.1.55 (efg. fu], [21], [50], [53]).
However, in its basic form, it has aléo been used extensively for more
general H(x,t) (see e.g. [3]1, [5], [6], [21],’[22], £27], [36]).

‘Consider (4.2.2) with G(x,tZ,h) given by

(4.2.3a) Hx,t,h) = pm(x,t,h) s
where
(4.2.3b) po(x,t,h) =z
and
_ -1 . .
(4.2.3¢c) Pipy = Pj - BxH(pj,t+h] H(pj,t+h) S 0,1,0..,m=1 .

(Note that, for brevity, we shall aften omit the arguments x,£ and &

from pj(x,t,h) as we have done in (4.2.3c).] This method is an obvious

choice for following the solution of (4.1.2) since (4.2.3b,c) is simply

Newton's method for solving H(z,t+h) = 0 , using x as initial guess. The

method, as a whole, consists of finding L. as the solution of
H z,ti+l) =0

by Newton's method, using x, , the computed value of x(ti) , as initial
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estimate. We can prove that, under suitable conditions on H(x,t) , the

method has C-erder 2" - 1 , but we derive this as a special case of a more
general result. We can consider (4.2.2) as a sequence of major iterations,
each consisting of m minor iterations given by (4.2.3c). Then it may be

more efficient in practice to evaluate axH(x,t) only once per major

iteration or, more generally, once every »r minor iterations. In this case

(4.2.3) generalises to

(4.2.4a) Glx,t,h) = ps(x,t,h) ,
(4.2.4b) polast,h) = a ,
(4.2.14 0 = p.(a, -
.2.4c) yj (z,t,h) = pj(x,t,h) , Jd = 0,1,...,8-1,
(i41) _ (2) (0) . y-1,( (i)
(4.2.u4d) Y =Y ‘— Bxﬂfyj ,tfh] H[yj Jtth)

for § =0,1,...,8-1 , <

0,1,...,r-1 , and

'erf

(4.2.49) Piy1 = Y5 o>

(1)

and m = rs . As before we have omitted the arguments of pj and yj

We can now prove a theorem on the C(-order of this method.

THEOREM 4.2.1. Suppose that H : D x D, C R' x R R is such that

t

x(1) € Int(D) and T € Int(Dt) satisfy H{x(t),T) = 0 . Suppose also that

BxH(x,t) and atH(x,t) are Lipschitz continuous in a neighbourhood S of

(z(t),T) . Assume also that axH(x,t)—l exists and is bounded on S .

Then (4.2.2), wherel G(x,t,h) 1is given by (4.2.4), has C-order ‘(r+1)s -1
for (u.1.4). |

Proof. With the given assumptions, the Implicit Function Theorem
ensures the existence §f a uniéue continuous solution, x(T+h) , of (4.1.2),

and therefore of (4.1.4), in a neighbourhood S X S, € § , where

t

S = S(x(T),G) , for some & > 0 , and St = (1-Yy,T+Y) , for some Y >0.
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We assume subsequently that |k| < vy .
To prove the theorem we require a bound on ||x(T+h)-G(x,T,h)|| , where
xz = 2(1) + 0(h) , in terms of h . We note that, from (4.2.4a),

Hx(r+h)-G(x,T,h)H = Hx(T+h)-ps(x,T,h)H

and we derive the required result by induction. Define 0. and B;i) .
for 4 =0,1,...,8 and < = 0,1,...,r» , by

aj =‘Hx(T+h)fpj”.,

8" - nx(ﬁm-y;i) . idts,

where we have omitted the arguments (x,f,h) from pj and yéi) Now,
from the given conditions, therevexist‘constants KO”Kl’ K2 such that
(4.2.5) - | “axﬂ_(x,t)“lu <K,
(4.2.6) [[atH(x,t)H‘ = K,
and
(4.2.7) - 8 B, 8)-8 Hy, )| = Kzlleyll

for all x,y € S and for all ¢ € St . . Furthermore, it follows from the
Lipschitz continuity of BxH(x,t) and BtH(x,t) and from [53, Theorem

3.2.5] that, for any ¢ € St and for.any x,y € S , if wu(x,y,t) 1is given

by »

(4.2.8) H(x,t) = H(y,t) + 3,2y ) (x-y) +.u(x,y,t5 >

then

(4.2.9) | eyl < Kleeyl?

for some constant’ K3 . As in the proof of Corollary 2.3.1 we may assume
that

2] =t + lal
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and (4.2.7) and (4.2.9) follow immediately. That both equations are true
for any norm follows from the equivalence of norms.

Now, from [53, Theorem 3.2.3], (u4.1l.4), (4.2.5) and (4.2.6), it follows
that the solution x(T+h) of (4.1.4) satiéfies

Hx(T+h)—x(T)H

IA

KOKl|h|
for any % € (-y,Y) . So, assuming Py = x(1t) + 0(h) , we have
(4.2.10) o, = Hx(T+h)—p0” = 0(h)

Thus, for small enough % , Po is contained in an open sphere  S(h) c 8

centred at x(T+h) . We assume that pj- and ygﬁ) are also in S(h) ,
for some %,j , and prove by induction that"pj € S(h) and yéi) € S(h)

for all <,j . Also, we assume that, for some % and J ,

. . J
(4.2.11) - B{;-’L) - 0‘(7,1(1,-]-.]_»)(1«;*1) )
and
' J
(4.2.12) aj-z o(h(p+1) )

and we prove by induction that (%4.2.11) and (4.2.12) are true for all <,j .
The case when ¢ = j = 0 is given in (4.2.10).

We bégin by noting from‘(4.2.4d), that

B{ifl)

. : -1 .
y = “ac(T+h)-—y(‘L)+3xH (y;.q),ﬁh] H(y;.t)_,'ﬁh‘)n

J
and, because HLx(T+h),T+h) = 0 , we have

, . Sl
3§$+l) - Hx(T+h)—y;%)+axH(y;o),1+h) [%ly;t),T+h)—HCx(T+h),T+hi}“ .

Then, from (4.2.8), since y;i) € s(n) ,

(

plitl) .
)

(t+h)-
Y

b

) ) .yt (1)
v —BxH(yj 2 T+h) [%xﬂ[x(1+h),T+h](x(r+h)—yjt )—%1

()
where y = yly.
(v

()

»,x(T+h) , T+h) and, since Y3

€ S(h) and |n| <y,
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: .\ 2
(D - K B{i)

(4.2.13) lull < & “x(nh) -y 38

Now we have

-1 .
B(z+l) “8 H (0) T+ﬁ) [(Bxﬂ(yég),T+ﬁ]—BxH(x(T+h),T+h)](x(T+h)-y§%h +%}

Because yéo) € S(h) , it follows from (4.2.5), (4.2.7) and (4.2.13),

together with (4.2.4c) that

. . .\ 2
(2+1) (2) » (2)
(4.2.14) : Bj =< KOKzuij + KOKSBj
()
= = . . . <
Let 4 KOKQ and B KOK3 For smgll enough & , Aaﬂ + BBJ 1 and
B§l+l) < BQz) , hence y($+l) € S(h) . Now, by induction ygl) € S(h)
for 7 = 0,1, r , and since y(r) = p it follows that € S(hj .
N ,.-‘-, ° j J‘+l ] pj"l"l

Again by induction, pj €S(h) , g=0,1,...,8 .
It also follows from (4.2.11), (4.2.12) and (4.2.14) that

and so we have derived (4.2.11) with £ replaced by % + 1 . Using the

result that y}t) € S(h) for each %,j , we apply the induction to give
2 gtl '
B;r) = 0(k(r+l) ) Since aj+l = B;P) we have derived (4.2.12) with J

replaced by j + 1 . We have now completed the induction and, applying

(4.2.12), we have

o

S

s .

Since a, = |lc(t+h)-G(x,T,h)|| we have the desired result. W]
As an example, (4.2.3) results from (4.2.4) by taking »r = 1 and
8 =m and the C(-order is Qm - 1 . Also, evaluating BxH(x,t) only once

per major iteration corresponds to » =m and s = 1 , in which case the
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C-order is" m . -
We may now compare the work required by the method of (4.2.4) to attain

various possible C-orders. We assume that one evaluation of BxH(x,t) is
equivalent to k evaluations of H(x,t) (e.g. if BmH(x,t)_ is a full
matrix then k = »n may be appropriate or, if BxH(x,t) is tridiagonal,

then k = 3 may be more reasonable]. One measure of the work per iteration
is the number of equi&alent function evaluations and so, for the method
given by (4.2.4) to attain C-order 1 , N -equivalent function evaluations
are required, where

N = sk + sr

and (r+1)° - 1 =1 . Given a specific value of 7 we can now find the
optimal values of r and s to minimise ~N . It is trivial to show that,

for 7 < 6 , the optimal choice is always » = h =1 » 8 = 1 (assuming
k=1 ). For higher orders the choice depends upon %k . For example,
C-order 8 can be achieved by taking.

r=8, =1, giving N=8+k

or

u + 2k .

il

r=2, =2, giving N

The optimal choice for k=3 is r =2, g =2 and if k > 4 , the
optimal choice is r =8 , g8 = 1 . These results show that it will often

be more efficient, in this sense, to evaluate BxH(x,t) only once per major
iteration. In practice of course the step sizes, hi , required to maintain

the desired accuracy when & = 1 may be smaller than for the case when
s > 1 and so the number of major iterations may be greater. However, in
section 4.5, we give some numerical results which indicate that it is often

less efficient to evaluate axH(x,t) at each minor iteration.
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4.3. An Adaptive Newton Method

Methods with high C-order are suitable for solving the equation (4.1.2)
when, as in Chapter 5, values of z(t) ave required for each ¢ . However,
in this application, only a* is requirgd. Demanding high accuracy along
the trajectory gives greater reliability in finding x* but if we wish to
balance reliability and efficiency we can consider reducing our concern for
high accuracy in following «(¢) . With this in mind we consider some
choices of the function H(x,t) . In order to be able to apply Theorem
4.2.1 to each choice of H(x,t) we aSsume,_unleés stated otherwise, that

f:Dc F* + B has a continuous second derivative on D and that J(ac)-l

exists and is bounded on D .

Consider first H(x,t) given by (4.1.5), then (4.2.3) becomes

(4.3.1a) - G(z,8,h) = p (z,t,h) ,
(4.3.1b) po(x,t,h) = x
and

| . -1 |
(4.3.1c) Piyy = Pj - J(pj) [:f(pj)—(‘l—t—h)f(xo]] :

J = 0,1,...,m-1 , and the method has (C-order M _ 1 for (4.1.6). Note

that if tM =1, then z, - is only an approximation to x* and further

refinement may be necessary. This is the method used by several authors
(e.g. [u], [2171, [50D) and, in particular, by Ortega and Rheinboldt [53],

who make the obvious suggestion of setting ti =1, 22M, in (4.3.1),

which gives Newton's method for solving H(x,1) = 0 . Note that, for this

to converge, we are assuming that oy is in the region of convergence of

" Newton's method at «* . This is a corrective method for solving (4.1.5)
but, as mentioned previously, we consider it preferable to integrate (4.1.1),
or equivalently (4.1.3), because of its Liapunov stability. In this case

we do not require a positive (-order, since neighbouring trajectories all
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converge to &x* , and a positive H-order is adequate. We now generate a
method, similar to (4.2.4), with arbitrary H-order for (4.1.1).

With H(x,t) given by (4.1.3), (4.2.3c) becomes
-l teh
brr = Py - T [Pl )-e e ey

which, by Theorem 4.2.1, gives a method with C-order 2" -1 for (4.1.1).
However we can modify this, using (4.1.3) to note that (%) satisfies

-t-h ~h

Fle(t+h)) = e f&& = e f(x(¥))

This suggests the iterative process given by

(4.3.2) : T G(xi,hi)

where

(4.3.3a) G(z,h) = p (2,h) ,

(4.3.3b) A ' po(x,h) =

and

(4.3.3c) ‘p; =p. - J(p.)—l[%(p.]-e_hf(x;].
Jtl d : J J} my

Then, as in section 4.2, we can prove that the method has H—ordér_ M
for (4.1.1). However, we again generalise the result to consider evaluating .

J(xz) once every r minor iterations;k With m = rs , (4.3.3) generalises

to
(4.3.4a) G(x,h) = p (z,h) ,
(4.3.14b) polzsh) = x
(0) - ' -
(4.3.4c) yo (@sh) = pi(@h) 5§ = 0,0,esel
. . -1 .
(4.3.4d) ;7,+l) _ y;.i) _ J(yéo)) Ec.(yét))_e—hf(x)] ,

n

J=0,1,...,8-1 and < = 0,1,...,r-1 , and

(4.3.4e) Pipp = ygp)



61

The theorem in its generality is now given.

THEOREM 4.3.1. Suppose that f : D C F*+ R has a derivativé J(x)
which is Lipschitz continuous in a neighbourhood S of a point

x € Int(D) . Assume also that J(ac)"l exists and 18 bounded on S . Then

the method given by (4.3.2) and (4.3.4) has H-order (r+1)° - 1 for
(4.1.1).

This result is a special case of the following theorem, Theorem 4.3.2,
and we postpone the proof until then.

In its present form, this method converges only lineérl& to x* and so
it is necessary to amend it in‘such a way as to maintain the H-order
properties and to allow for rapid final:convergence to x* .

We consider now (4.3.2) asvs single step iterative process discussed in
section 2.3. Some algebraic manipulation shows.that,’with G(x,h) defined |

in (4.3.4), BxG(x*,h) is given by

3,0 ,h) = e s

In this case, Theorem 2.3.2 shows that there is no value of % for which the

convergence rate can be faster than linear. This is because

n(BxG(x*,h)) = e_h >0 for all A . This is unsatisfactory and so we

modify (4.3.4d) to be

(Z+1) _ (1)
Y. = ,

4,3.5 .
( ) p yJ

-1 . '
- J(yé-o_)) E“[y}t?) -d>(h)f(x):[ -

for j=0,1,...,8-1 , 72 =0,1,...,7-1 and ¢ : Dh C R+ R , where Dh is

the open interval (-Yy,Y) for some 7Yy > 0 , is a function which will be an

~h

approximation to e . We first prove a theorem on the H-order of this

method, noting that the case when ¢(h) = enh gives the result in Theorem

4.3.1.

THEOREM 4.3.2. Supposé ¢ : (-Y,Y) € R+ R 1is continuous, where
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Y >0 ,-and ¢(h) = e-h +‘0(hk+l) s k=0 . Then, under the conditions of

Theorem 4.3.1, .the method given by (4.3.2), (4.3.4a,b,c,e) and (4.3.5) has

H-order min((r+l)s—l,k) for (4.1.1).
Proof. - The proof is similar to the proof of Theorem 4.2.1 and so here
we give only an outline. As before, the Implicit Function Theorem ensures

- the existence of a unique continuous solution, z(h) , of

(4.3.6) ~ Flam) - e e =

and therefore of

2(h) = I Yz, a(0) =
for h € (-§,8) , for some & such that 0<8§<y.

We require a bound on ||z(h)-G(x,h)|| in terms of %A . We define aj

and B;i) , J=0,1,...,r and 7 = 0,1,...,8 » by
aé.,: Hz(h)—p.ll ,
85.7’). = =y y(““ its,

and, from (4.3.5), we have

_Bém) ” (h)_y )+ (o) ‘lEo(y(m ¢(h)f(x)]”

Let YP(h) = ¢(h) - e-h , then for each 7 and J ,

;”“ om0y (0) Ee(y(” ‘hf(aé)-w(h)f(x)]“

and it follows from (4.3.6) that

. . -1 L | -1
g(i*D) Hz(m-y(?MJ(y(.O)) Ee(y(.“)_f(zcm)][ v o5 s lwoml
d J J Jg - - J
Now, using the assumptions on f and the method used in the proof of

Theorem 4.3.1, we can show that, for %A sufficiently small, there exist

constants 01,02,03 , independent of % such that
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2

(4+1) - (2) ., (%) v C o |
. . X

< C.a.B. + C.B.,
BJ 1 JBJ . 283

“

By assumption, Y(h) = 0(ﬁk+l] and so, for small enough % ,

. . ‘ .\ 2
(i+1) _ (2) () k+1
B S ClaB. 4 OB+ ¢, |nl ,
for some constant (C, . We can now apply an analogous induction argument to

that used in the proof of Theorem 4.3.1 to show that, for small enough & ,

' (r+1)® K+l
o, = K |R| T 4 g [nlF

for suitable constants K,,K, . Since o_ = llz2(h)-G(x,h)|| we have the

required result. 0

We can now see that this modified method, given by.(4.3.2), (4.3.4a,b,c),
(4.3.5) and (4.3.4e), can give superlinear convergence to x* if ¢(h) is
suitably chosen; Some simple aigebra shows thaf | |

o _G(x*,h) = ¢(A)T .
x

If ¢'(h) is Lipschitz continuous on (-y,y) and f"(x) is Lipschitz
continuous on a neighbourhood of x* ; then the conditions of Theorems 2.3.2
and 2.3.3 are satisfied and it follows that the process converges locally if,

for some ¢ , l¢(hi)| =1-8 <1 for each ¢ . Also, the R-order is at
least 2 if the sequence {hi} converges sufficiently fast to
h* € (-y,y) , where h* satisfies ¢(h*) = 0 . If we wish to gain rapid

convergence to a root of f and maintain a certain H-order, 7 say, then

a suitable choice for ¢(k)  is

J

k
o) = ¥ LB
‘ J=0 J:
where k =1 or 1 + 1 1is chosen to be odd, for then ¢(%) satisfies the

conditions of Theorem 4.3.2 for any <Y > 0 and has a unique positive root.

A practical algorithm is therefore to allow the stepsizes, hi , to increase,
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subject to suitable step length tests, and finally, to hold hi fixed at
h* . If k is large enough, the H-order of the method will be (r+1)° - 1
and the sequence {mi} will converge rapidly to «* . The method therefore

changes in a continuous way from one which follows the solution trajectory
x(t) accurately to one which converges rapidly to x* .
We now look at some choices of » and s in (4.3.5) to show that,

when hi = h* , the method becomes one of the well known methods for solving

flm) =0 . With »=1, s=m, h, = h* . (4.3.4e) and (4.3.5) together

become

_ R _l' .... _ ~
Py = Py J(pj] ‘f{pj) , g=01,..m1,

and we have Newton's method. The seqﬁence {xi} converges to &* with

R-order 2" . For general r and s , when hi = h* for each 7 , the

method becomes that of Shamanskii, with exact Jacobian, and {xi}
convérges to x* with R-order f(r+l)s' (see.[12], [68], [70] for further
details on this method).

Méthods of the type discussed in thié section were tried onithe test
functions described in section ?.5 and some numerical résults are presented
in section 4.5. The short discussion in éection 4.2 onvthe work required to
attain a specific C—ordef applies equally well to the methods of this
section, with C-order replaced by H-order. For that reason, in our
numerical results we consider both the standard choice, with » =1 ,
s =m , and the choice »=m , =1, which the theory indicates may be

~more efficient.

4.4, Branin's Method

On the assumption that f"(x) is Lipschitz continuous in a neighbourhood
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"of x* we can apply Theorems 2.3.2 and 2.3.3 to a method essentially due to
Branin [11]. We discuss it here since it is similar to the methods of

section 4.3 in that it attempts to integrate (4.1.1) by making specific use

of the relation
(4.4.1) flx(®)) = e_tfﬂx ) = e—tf
0 0

for all ¢ = 0 . In this method x(ti+l) is estimated by the first order
prediction

Py = X - h.J(x.)—lf(m.) .

0 7 N 7

Then the component, v , of f(po) orthogonal to f, is

fofol ..

v = I'-——f-z-fzf‘(po) .

Since f@xi+l) should be paralle; to fO , @ new estlmate Py of Ty 18
calculated from
_ ‘ -1
Py =Py - Ipg) v s
which is the first order attempt to annihilate v . This process is repeated

a finite number of times until the derived estimate of xi is close

+1
enough to satisfying (4.4.1). Again omitting the arguments of pj(m,h) .

the process can be written as

‘(M.H.Q), xi%l =‘GCxi,hi)
where
(u.4.3a) Gx,h) = pm(m',h) >

(4.4.3b) p(@h) = & - (@) @)

and, for J = 0,1,...,m-1 ,

(4.4.3¢) Ps - J(pj_)'lzof(pj) ,
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where ZO = [I - fofg/fgfo] .
We can now apply Corollary .2.3.1 to give conditions for x* to be a point

of attraction of this method. Using the fact that f(x*) = 0 , for each

ho,

BxG(x*,h) Bxpm(x*,h)

]

[-dCat) " 2 J(*)]a p _ (a*,h)

| -1, m
~J(x* * *
[1-9(2) "2 J(@)]78 p(x*,h) .
The bracketed matrix is idempotent and, by differentiating (4.4.3b) and
evaluating at (x*,h) , we have:
% = . 2”1 | * |
3, Glz*,h) = [-9(z*) "2, J( Y] (1-h) .
Now
I - I g J(at) = —p— I T ()
| Fofo
which has one non zero eigenvalue equal to 1 . Thus

(4.4.1) | 03,6 m) = |1-n|

and it follows from Corollary 2.3.1 that the process converges locally to x*

if 0< ¢ = hi =2-¢6, 2.=0,1,... , for some & . Also, from Theorem

2.3.3 final convergence is superlinear if lim hi = 1 and has R-order = 2

Cif {h.} converges to 1 sufficiently fast. In fact, in general, the
7

R-order is exactly 2 , since, as {xi} converges to x* , the corrections
given by (4.4.3c) do not improve on x, as an estimate of * , and the

method tends to Newton's method.
Although we cannot discuss Branin's method in terms of H- or (-

orders for a particular differential equation, the sequence {pj} in

(4.4.3c) converges to a point on the solution trajectory of (4.1.1) and we
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can apply the ideas of section 4.2 to show that holding the Jacobian fixed
over a minor iteration may improve efficiency. In this case it is straight-
forward to show that, under the conditions of Theorem 4.3.1, if

m
HZOf(x)” = 0(h) , then “Zof(pm]ﬂ = O(h2 ) whereas if (4.4.3c) is replaced

by

N | _ .
(4.4.5) | Piyy = Py - J(x) Zof(pj) R j=0,1,...,m-1,

“then ,HZOf(pm]H = 0(hm+l) . Equation (L.4.4) is unaffected by this change

and so the R-order is unchanged.

Thus, a practical algorithm»is.to adaptb h to maintain accuracy but,
when A increases to 1 , hold the step figed,so that, as x* is
approached, the R-brder becomes equal‘to 2 . The performance of two such
algorithms, baséd upon both (4.4.3;) and.(u.M;S), is discussed in the next

section.

4.5,  Numerical Results

To make some comparisons, we tested implementations of the thfee
methods discussed in this chapter. First is the corrective method given by
(4.2.2) and (4.3.1), which ié‘described, for example, by Ortega and
Rheinboldt [53], and denoted by OR/1. Next isbthe H-order method, derived
in>the>previous section, with »r =1 |

, 8 =m and defined by (4.3.2) with

G(x,h) given by

(4.5.1a) G(x,h) = pm(x,h) R
(4.5.1b) po(x,h) =z
and 7
= - -1 _
(4.5.1c) Piy1 = Ps J(pj] [:f(pj) oM F(x)]

J =0,1,...,m-1 . So that the method would be third-order, we chose ¢(h)
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to be .

o(h) =1 -h +

, oon
2 "8 °

This method is denoted by NEW/1l. Finally, we implemented Branin's method,

given by (4.4.2) and (4.4.3) and denote it by BRANIN/1. In each of these

implemehtations'the Jacobian is evaluated at each minor iteration and, for

comparison, second versions were tested in which the Jacobian was evaluated

only once per major iteration. Firstly, in the method OR/1, (4.3.lc) was

replaced by

-1 s
Pip = Py - J@ ) -(-t-mf(=y)] o
‘j = 0,1,...,m-1 , to give the mefhod OR/2. . Secondly, in fhe NEW/1 method,

(4.5.1c) was replaced by

Pi = 2s - I ()0
J =0,1,...,m1 , to give the method NEW/Q; Finally, in the BRANIN/1 hethod,
(4.4.3c) was replaced by (4;4.5) to give BRANIN/2.

To facilitate comparison with thosé methods, of order 3 , tested in
Chapters.? and 3, each of the above methods was implemented with m fixed
so that their orders were 3 . As might Be eXpected, we found, in each
case, an improvement in efficienéy if we allowed m to vary over eéch
iteration so that the methods became variable order with maximum order 3 .
It is for these implementations that the results are given.

The success of the algorithms‘uhder discussion is, to some extent,
dependent on the way in which the step sizes are chosen. ‘Rheinboldt [61]
has looked in more detail at efficient step adjustments 6n the basis of
estimates of the local attraction domains but again, for the purpose of
comparing different methods, we chose fhe step test which was described in
section 2.5‘for the single-step methods. Again, we emphasise that this is

not necessarily the best way of choosing step sizes, however it proved

adequate for our purposes. For clarity, we briefly describe the step test
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again. Let f(xi) = fi and Zi be given by

, =T . .
A fgf'

In OR/1 and OR/2 the step size was varied according to
Pipy = mIn(1oty ) ohy)

where o is given by

2 if 0=§=¢

1°
(4.5.2) | a={t Mg <sse,,
0.5 if 52'< § = g4
and § = ”Zof£+1” . In NEW/1 ¢ 2Iand BRANIN/l &2, Ry .was given by
Piv miﬁ(h*’“hi)’

where h* = 1.0 for BRANIN, hf'

1.596... , which is the unique root of

¢(h) , for NEW and a is given by (4.5.2) with § = “Zofi+l“ for BRANIN
and 8 = ||z f, Il for NEW.
The estimate pj' was accepted as x..q oM two conditions. Firstly,

if § equalled 2 for OR/1, NEW/1 and BRANIN/1 or if j equalled 3 for
OR/2, NEW/2 and BRANIN/2 , i.e. the maximum order in each case was 3 .

Secondly, if 125r ) = €y for OR/1 & 2 and BRANIN/1 & 2 or if
”Zif(Pj]” s e, for NEW/1 & 2, i.e. the demand for order 3 was relaxed

whenever possible. Having found x, the conditions for rejecting the

+1 °
step and repeating it with half the step length were the same as for the
methods described in section 2.5, with the appropriate § . Finally, the

values of €; » 7 = 1,2,3 , were fixed at the values chosen in section 2.5

and the initial step was chosen as h*/8 for BRANIN and NEW, where A* is
the final stepsize in each case, and 0.125 for OR, which is essentially

one eighth of its final step size.
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The methods were tested on the eight problems described in .section 2.5

and we tabulate the results in Table Uu.1.

same as for Table 2.1 and the stopping criterion was again that each

The format of the table is the

component of f should be less than 107 .

ALGORITHM

OR/1

OR/2

NEW/1

NEW/2

BRANIN/1

BRANIN/2

1

10
11
31

8
12
28

10

11

31

8
11
27

11
12

3u

9
12
30

20

22

62

35
47

15
18
ug

29

20
36

TABLE 4.1

% - h reduced to minimum allowed, viz.

%% - failed to converge in 200 function evaluations.

The first conclusion from the results is that the three algorithms

20 -

7

PROBLEM

3 Yy 5
6 22 23
7 126 26
19 70 g5
6

7 Sk o
19

6 26 15
7 28 16
19 80 61
36 9

7 134 20
19 206 56
6 19
7 E33
19 77
6

7 e 12
19 33

2-l3h*

57

10
52

57

51

10
6L

11
59

26
31
109

10
62
92

.27

- 31

112

14
61

113

34
37
139

15
60
105

30
36 -
126

12
61
97

29
33
120

15
65

. 110

38
L1
155

17
66
117

described here represent a significant improvement upon those described in
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Chapters 1 and 2, and therefore upon those of e.g. [7], [9], [10], [u40],
411, which do not make use éf the special characteristics of the solution
of (4.1.1). The important featuré_of the methods described in this chapter
is that they are adaptive, in that they choose the order of accuracy required'
at each iteration, depending on the local errors. Thus, at times when a
low order is sufficient, these methods save function evaluations by
performing dnly as much work as is necessary to maintain the required
accuracy. We surmise that if we used yériable order Runge-Kutta or multi-.
step methods, in place of the fixed order methods described in Chapters 2
and 3, then we could make similar savings in work. However the resulting
algorithms would be rather more complicated_than the simple methods of this
chapter. |

We also conclude from the results-that holding the Jacobian fixed over
each major iteration was-almost‘élways more efficient.‘ This is as we were
~led to expect by the theory of séction'4;2. The only notable excéptions
were when the solutionrtrajectory ran close to a region where J(x) was
singular. Thus it seéms reasonab;e to monitor the value.of Det(J(x)) R
which can be done at little extra cost since J(m)‘ is factorised into
triangular factors at each evaluation, and evaluate J(x) more often

only when Det(J(x)) becomes small.

Finally, it appears that OR and NEW are more effective than BRANIN.:
Any further conclusions about comparative behaviour can only come from
préctical trials, but our experience indicates that NEW/1 and NEW/2 are the
more robust of the methods tested. In particular, for these methods the
step control is easier and they have a greater chance of success in more

difficult problems.
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. CHAPTER 5

TURNING POINTS IN BIFURCATION THEORY

5.1. Introduction

In many physical problems it is necessary to solve a system of non-
linear equations of the form given in (l.l).. In order to conform more
closely to the literature on such problems, in this chapter we prefer to
replace the variable ¢t by A . Then, we are interested in the solutiqn of
equations of the-form |

(5.1.1) H(z,\) = 0 ,
H:DcR'xR»FR , where the solution vector x(A) is a simple,

continuously differentiable arc in R’ dependént upon the scalar parameter
A . Problems frequently occur where it is of interest to follow the

trajectory and to find x(A) numerically for values of A sufficient to
define the curve (z()\),A) , which is called a solution branch of (5.1.1)

in R' x R . This solution branch will often exhibit complex behaViour, but

we recall from (1.5) that () satisfies the differential equation

(5.1.2) | A O e RV RV
where A(x,k) = BxH(x,X)- and d(x,\) = BAH(x,X) . We assume throughout

this chapter that H(x,\) 1is twice continuously differentiable with respect

to x and A on D . Thus, if A[x(k),l) is nonsingular, then x(X) is

- continuous at A . Points on &r(x),k] at which A(x,\) is singular are

called eritical points (often bifurcation points, or singular points) and
have received a large amount of attention in the literature (see for example,
tsJ, Cel, [17], (213, [33], [3el], [37], [38], [u9l, [63], [eul, [66], [69]).

The priméry purpose of this chapter is to describe some efficient methods for
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the accurate determination of certain critical points. Firstly we consider

the dmplest type, which is a point (x*,A*) , where x* = 2(A*) , such

i

that
(5.1.3a) rank[4A(x*,A*)] = n - 1 ,
- (5.1.3b) rank[4(z* \*) d(z*, )] = n .

and if (x(l),l) # (xf,k*) and A is sufficiently close to A* , then
A(x(k),k) is nonsingular. Such a point is called a limit point. If the
solution branch Lr(A),k] through (x*,A*) exists fof all A in an open
neighbourhood of A* , then (x*,A*) is called a point of inflexion
otherwise it is a turning point. In structural problems, a turning point
represents the boundary between stability and instability of the sysfem.

Prior to discussing methods - for finding a turning point, in section 5.2
we consider the problem of following a solution branch through a turning
point. We describe a method which is similar td that developed by Riks [66]
and Menzel and Schwetlick [49] but invol&es less work per step. It appeéré
that this new méthod has also been de&eloped independéntiy_by Rheinboldt,
(private communication) whose.descfipticn is currentiy available only inr
manuscript form [65]. |

In section 5.3 we describefmethods for the accurate determination of
(x*,A*) . Simpson [69] described an iterative method which requires, at
each iteration, the solution of (5.1.1) for some A and the estimation of -
the smallest eigenvalue of A(x(k),h) . His method converges linearly to
(x*,A*) and is suitable only for symmetric A(x,A) . Here we describe
methods which require less work per iteration, have second order convergence
to (x*,A*) and do not require A(x,\) to be symmetric.

A simple bifurcation point on a solution branch is a critical point

(xB,kB) , Where Tp = x(AB) , which satisfies the same conditions as a

turning point except that (5.1.3a) and (5.1.3b) are replaced by

(5.1.4a) rankE4ErB,XB)] =n -1
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and .

(5.1.U4b) ) rank[A (zp,25)  d(zp,Ag)] =7n - 1.

Given an additional condition on the second derivative of H(x,A) , Crandall

and Rabinowitz [17] have shown that, in a neighbourhood of (xB,XB] , the

totality of solutions of (5.1.1) form two continuous curves intersecting

only at (xB,XB) . In many applications it is necessary to follow one of

these, often called the ﬁrimary branch, and on detecting tﬁe presence of a
secondary branch, to folléw it (see Keller and Langford [37] and Rheinboldt
[63], [64] for methods). In the case when the primary branch satisfies some
symmetry relations it is often possible to generate methods which converge

to (xB,AB) with second order convergence and we discuss this in section

5.4, One of the methods also has the advantage of providing an approximation

to the null vector of A(xB,AB) ; which is required by the methods in [37]

and [64] for finding a point on the secondary branch.

Finally, in section 5.5, we describe some numerical experience with the

methods.

5.2. Following Trajectories Through Turning Points

5.2.1. The Method of Riks, Menzel and Schwetlick ‘

In this section we describe briefly the method due to Riks [66] and
Menzel and Schwetlick [49] and in section 5.2.3 we describe our modification.
In [49] the method was described as a means of extending the region of
convergence of methods for the solution of nonlinear equations. It appears
that such a method involves an unnecessary amount of work for that'problem
where the accurate determination of the solution trajectory is not required
(see section 5.5 for comments on this). However the approach is effective

when following a solution branch past a turning point. Earlier methods for
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this problem, e.g. [6], [69], solved (5.1.1) by Newton's method for a

sequénce of values of A,Ai s, 1 =1,2... , i.e. by the method described in
(4.2.3). However, failure occurs when {Cx()i),ki]} approaches a turning

point. Once failure has occurfed, the turning point can be passed by
extrapolating over (&*,A*) but the accuracy and efficiency of the method
is impaired since! A(x,)\) is nearly sihgular close to (x*,A*) . Anselone
and Moore [3] suggested changing‘thefscalar variable to overcome these
difficulties but considered only particular cases. Recently Riks [66] and
Menzel and Schwetlick [49] have employed an idea essentially due to Davis
[21] and make a change of variable whichAis applicable generally.

For the remainder of this chapter webwill frequently write
or, more conveniently, Yy = (x,A) . and‘considef FH as a mapping from
Dc 7t s g . Then (5.1.1) becomes the under—determined system
(5.2.1) - , H(y) = o'.
Define y* = (x*,A*) and B(y)‘bby

B(y) = [A(y) d(y)]

then, from (5.1.3), rank[B(y*)] = ﬁ . In fact, it follows from our
assumptions that, for any yr satisfying (5.2.1) in a neighbourhood of y* ,
(5.2.2) : rank[B(y)] =An .
Thg technique described‘by Riks, Menzel and Schwetlick is to add, at each

iteration, an auxiliary equation to (5.2.1). They chose a function R(y) ,

B :D c Rn+l -+ R , such that the solution of

’ _ [Hy)| _
(5.2.3) o - g9l = Eg(y)] =0

is well defined and is a required point on the solution branch.
Suppose Q is a known solution of (5.2.1) and we wish to find a new

point on the solution branch. We can define the branch in Rn+l by y(s) ,
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where & represents the arc length, and let % = y(8) . Also, it is

sufficient to restrict B(y) to be a linear function of the form

(5.2.1) B(y) = b (y-§) - o,

for some unit vector b and scalar © . Denoting the derivative of y(g)
with respect to s by é(s) » Riks, Menzel and Schwetlick make the choice
(5.2.5) | b = y(8) .

(Noté that this notation differs from the use of + in other chapters.) We
justify this choice of b in Theorem 5.2.1, but first we present some
notation which will be useful in the remainder of this chapter.

First we note that, because s represents the arc length, é(s) is a
unit vector tangent‘to the solution branch at y(s) and is the unique
solution of unit length (up to a choice of sign) of
(5.2.6) S B(y(8))y(s) = 0 .

We denote the Jacobian of g¢g(y) by G(y) and define the (n+l) X n

matrices ‘Pj s ‘j =1,2,...,ntl , by

I, | N
(5.2.7) P .= ml Pi=P ¥ (en+l—ej)ej ,
where Iﬁ is the #n X n unit matrix with columns el,...,en and
€s+++s€, , are the columns:of I, + Also we denote the columns of A(y)

by al(y),.;.san(y) and write an+l(y) =d(y) . It folléws that
(5.2.8) By) = [a,()..ea () dy)] = [AG) ] .
Finally, we note that we will frequentlykomit the argument Yy 1in each of
the functions in (5.2.8) and write B, aj, d and A in place of B(y),
aj(y), d(y) and A(y) respectively. It follows from (5.2.7) and (5.2.8)
that

BPj = Bﬁ_ LY d aj+l..4gg s

for j =1,2,...,m 5 and
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- BPn+l =4 .

These equationsg clarify our reasons for defining the matrices P, ,

J=1,...,m+*1l . These matrices will be used to select out certain columns
of B and these columns will be chosen to form a linearly independent set.

Using the identity

P5P7:+~~T

35 T 65% T T
J=1,2,...,mt1 , it follows from (5.2.6) that, for any J ,
~ ~T|
BP.PQj+e.e. (¢) =0 .
[ Jdd J J]y ‘)
Then, if we know an index »r such that B(y)Pr is nonsingular, we can
write
S A ,;,,VTO’
(BPr)ng(s) = -Berery(é)i

and ‘since Bér = a, , we have

(5.2.9a) ' Pﬁ&(s) = —(BPP)-laPa
aﬁd

o
(5.2.9b) ‘ ery(s) =0,

for sdﬁe d chosen to normalise 'é(s) . With this notation we can present
a theérem which indicates why the choice of b , given by (5.2.5), was made
in [49] and [66]. A similar result is given by Riks [66], but the following
theorem is more straightforward.

THEOREM 5.2.1. Let G(y) denote the Jacobian of g(y) , defined in

(5.2.3), with B(y) defined in (5.2.4). Then if  rank[B(y(s))] = n

3

pet (G(y(s))) = pbTy(s)
where o 18 nonzero and independent of b .

Proof. Since rank[B(y(s))] = n , there is.a k such that B(y(s))Pk

is nonsingular. Also G(y) 1is given by
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and so
i 5 | ) BPk ak
Py &l = | p|[B &l T 7.
b b’P, b e
k k
Hence
e, oll T (82,)la
. k % k
G(y)[Pk ek] = s
T T~ -
0 1 bP‘k .bek
and using the identity
1T u
(5.2.10) Det| =y -vu,
7 .
vyl
we have

(5.2.11)  Det(a(y))vet[P, &] = pet(aP

T, ,T -1
k] [b &,-b P, (8P,)

“x
Now, [Pk ék) is In+l with the kth and (ntl)st columns interchanged
and so DetEPk Ekj =% ,where & =1 if k=n+1 and § = -1

otherwise. Moreover, it follows from (5.2.9a) that

Piz}(s) = —(BPk]—lak éi}}(s)

and so
T T -1 LTl . 1
(5.2.12) b'é, - b Pk(BPk) a, = b I:ek+PkP£y(s) H .
. eky(sz_

Note that Eig(s) # 0 for otherwise it would follow from (5.2.9) that

é(s) = 0 which cannot be the case. From (5.2.12) we have
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T~ T_. -1 T~ ~T Tie 1
b'é, - b Pk(BPk) a, = b [ekek+PkPk]y(s) e
eky(s)
= E—by(s) .
eky(s)
This equation, with (5.2.11), gives
: Epet(BP,) ..
(5.2.13) pet (G(y(s))) = — K pTys)
éky(s)
as required. 0

It now follows immediately that, to maximise |Det[G(Q))| , we must

choose b to maximise IbTé(g)l'.' Sincé b is to be of unit length this
leads to the choice made in (5.2.5). Thus, in some sense, this choice of b
makes the equations in (5.2.3) és well}conditioned:as possible.
The first step in finding the next point on the trajectory is to find
an initial estimate by calculating z , given by
3= Q +=oé(§)
Then the new point is taken to be the solution of the sYstem

H(y)

(5.2.14) . o =.[—g:] -
. R .
: | (y-y) y(s)

which>is solved using Newton's method with 2z as starting guess. The
whole process can now be fepeated to follow the solution branch. Thaf
(5.2.14) has a well defined solution, for sufficiently small o , follows
from the nonsingularity of G(g)‘ and the Impligit Function Theorem. The

basic idea of the method is expressed in Figure 5.1 for the scalar case.

5.2.2. Calculation of z(g)
Neither of the papers [49] or [66] gave an indication of how they
calculated g(g) . One way is to note that, except at y* , g(s) is given

by
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> )\

FIGURE 5.1: One step with b = y(8)

| -
_ o) Jax M. |
y(s) = |, = A(s) ,
A(s) ,
: 1

and we can use (5.1.2) for this calculation. However, close to a critical

point, . A(y) is nearly singular and so it is better to use (5.2.9) for some

r . Obviously the best »r is that which gives the matrix BPr which is,

in some sense, the least singular and, to find this r , we use the
following corollary of Theorem 5.2.1.
COROLLARY 5.2.1. Suppose vank[B(y(s))] =n , then for

J =1,2,...,n+1 ,
et (B(y())P,) = pé§5(3> :

where p 1is non zero and, apart from a sign, is independent of J .

Proof. Define Gj s, Jd=11,...,mtl , by
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- B(y)
(5.2.15) Gj(y) =| 7 -

e .
d

Then, if BPj is nonsingular, substituting b = éj and k =7 in (5.2.13)
shows that

(5.2.16) Det(Gﬁ(y)) = % Det(BPj)
Also, trivially, (5.2.16) is true whenever BPj is singular (expand

Det(Gj(y)) about the nonzero element of its last row) and so (5.2.16) is

true for 4 = 1,...,n+l . It now follows from (5.2.13) that

Det(BP,) ...
Det (G.(y)) = * Det(BP.) = # ——4———£L-2Zy(s) >
J J I
k

where k 1is such that BPk is nonsingular. This gives the required

result. O

-

" Now we see that choosing »- to be that j which maximises ég&(s)

J = 1,2,...,n+l , will maximise lDet[BPr]] and, in this sense, will give

the least singular matrix for use in (5.2.9). Of course, to find this value
for »r we must already know é(s) , however this choice of r 1is the most
suitable for use in (5.2.9) at the next step and we assume that a prescribed

value of »r proves acceptable at the first step.

5.2.3. A New Method R

The idea of this section is similar to methods used in [38] and [56]
for problems in two dimensions. Equations (5.2.3) constitute Aﬁ + 1
equations in » + 1 unknowns and whilst work cén be saved by noting that

one equation is linear, we prefer to reduce the number of variables in a

direct way. If B(y) is chosen as

B(y) = éﬁ(y-@) -0,
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for some »r, G , then (5.2.3) becomes

(5.2.17a) ) H(y) = 0
and
(5.2.17b) YT Y, T O,

which, since Yy is specified, constitute #n equations in #»n unknowns.

The index r 1is chosen so that the determinant of G(y) is as large as
possible at Q . When » =n + 1 the method becomes the one of incrementing
A as described at the beginning of this section. However, close to a
turning point some other element of Yy will be more suitable as the
incremental variable. Since we have»redﬁced the number of equations by one,
the amount of work saved may be significant if #» is small or if many points
on the solution branch are,requifed.

The Jacobian of the systém at Q is B(Q)P.r . In fact, the Jécobiaﬁ
~of the‘full system (5.2.17) is defined by GP(Q) in (5.2.15), however Y,
is known and in computations it is B(Q)PP‘ which is used. It is now

obvious how to chooseithe indeg . Again we wish to make |Det(B(Q)Pr]|

as large as possible and again, because of Corollary 5.2.1, we choose r to

be that J which maximises

égé(g) s J =1,...,n+1 . 'At this stage we

know é(g) and the resulting value of r is the choice we make in (5.2.9)

l‘,

to calculate é(s) at the next step. We note that the angle, GJ

between the solution branch at y and the jth coordinate direction

satisfies
» _VT.A
CosB. = e.y(s) .
] Jy
(We have omitted a constant in this equation by assuming, for the moment,
. A o A ¢ A LN ;,
that y(s) has been normalised so that Ily(s)H2 = (y(s)Ty(s)]z =1 .) Thus

our choice of r gives the variable, Yp » whose coordinate direction makes
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the smallest angle with the solution branch. This is expressed in Figure

5.2 for the scalar case.

“

x
A

'y(g) + ag(g)

y(s) A

S
>

FTIGURE 5.2: Two steps, with b = e,

then b = eé . (31,22 are initial

estimates of 'yl’yé J)

In practice the initial estimate of the solution of (5.2.17) -is taken
~as the linear estimate, given by
(5.2.18) z =7+ ay(s) ,
where o = G/Egé(g) . Then (5.2.17a) is solved by Newton's method. Apart:
from the initial estimate in (5.2.18), the resulting method is essentially
the same as that described in (4.2.3) except that we periodically change.the
variable which is being incremented. Because of this, the discussion in

section 4.2 regarding efficiency can equally be applied here.. Thus our

computational method would not evaluate B(y)Pr at every iteration but only
when necessary. If the value of Det(B(y)Pp] can be monitored easily then,

when this becomes small, the Jacobian should be evaluated more frequéntly.

For large sparse systems, where the determinant is not available, the number
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of iterations required to.solve (5.2.17a) serves as an indication of how
effective the §pproximate Jacobian is. . If the number of iterations
increases; this suggests evaluating the Jacobian more frequently.

As a final remark we note that in a recent paper, Keller [36] made
the choice b = W@(g) in place of (5.2.5), where W = diag(6,6,...,0,1-6) ,
for some 6 € (0,1) . Our reasons for modifying the choice‘in (5.2.5) apply

equally well to Keller's choice.

5.3. The Determination of Turning Pofnts

5.3.1. Introduction

Several methods, based upon interpolation, have been suggested for the
accurate determination of a turning point, (x*,k*)k, on a soluéionvbranch
of (5.1.1). Notably Simpson [69] descpibes an iterative mgthod which gives
linéar convergence to (x*,\%) and which is suitable for problems with
éymmetric ACz,A) . In this section we present some methods which, for less
workrper iteration, give second order convergence to (x*,A*) ‘apd do not
‘require A(x,\) to be symmetric.

We assume that a reasonable estimate, ’Gro,ko) , of (x*,A*) is known

as a consequence of following a solution branch using a method from section
5.2. In many problems the value of T(A) = Det(A(x(l),A)) determines
whether or not the system is stable and, as T()\) changes sign, the branch
passes through a turning point in or out of a region of stability. When
I'(A) can be easily evaluated it ‘can be monitored to specify .when two
iteratesvstraddle a turning point. But better than evaluating ‘F(X) is to
use the following theorem. We céntinue with the.notation‘of the previous
séction. |

THEOREM 5.3.1. With B(x,\) = [A(x,A) d(x,X)] , suppose for some

r < n that B(m,A)PT 18 nonéinguZar, where Pr 18 defined in (5.2.7). Then
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(5.3.1) Det(4(z,\)) = Det(B(x,x)Pr)Y(X) ,
where Y(A). 19 given by

YOO = ef,’[B(x,x)PI]‘lar(m,x)' .

Proof. From the definition of Pn+ in (5.2.7), we have

1
A(x,A) = B(ac,)\)Pn+l .

Now, omitting the variables (x,\) as arguments, we have from (5.2.7), .

~ o~ T
B[%rf(er—en+l)e;]

8P, + B(E,-¢, )

A

T
e .
r

Thus, since BPr is nonsingular,

“los s 7
A= BBP{}+(BPP] B(er-en+l)eé] .

Using the identity,

(5.3.2) Det (I+ab’) = 1 + bla

and noting from (5.2.8)‘that Ber =a, an@ Ben+l = d , we have

bet(4) = Det (5P) [1+e£[BPP)'l(ar-d)]

But (BP )_ld = ¢, since d- is the rth column of BP_ , and so
r r , , r’

Det(4) = pet (8P )e. (BP ) 'a,

as required. O
Evaluating (5.3.1) at (x(s),X(s)] gives

I(A(8)) = pet(B(z(s),A(s))P, ) ¥ (A(s))
and, assuming Det(BPr] # 0 in the neighbourhood of (x*,A%) ; F(A(s))

changes sign with Y[X(s)) . But it is already necessary to calculate
Y(A(s)) , in (5.2.9) as part of the evaluation of g(s) , and-so the sign of

I'(A) can be monitored without extra work. We note that, since
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eTPT = ET , it follows ¥from (5.2.9) that
rr n+l

Lo

Y(M(s)) = As)/z (o)

and, since ér(s) [= égé(s)} is nonzero by choice of » , Y(A(s)) changing

sign simply means that, with respect to the A axis, the trajectory has
changed direction, i.e. it has passed through a turning point.
To find the turning point we set up a system of equations which, in the

region of interest, have a unique solution (x*,A*) . These are of the form

(5.3.3a) o Hx,A) = 0
and
(5.3.3b) ¢(:c,k) =0,

where ¢ : D C R' x R > B* is chosen so that

(5.3.3c) d(x,A) = 0 iff A(x,A) 1is singular.

In section 5.3.3 we give some choices of ¢(x,\) which have proved
successful in practice but are expensive to evaluate. For this reason we

describe, in section 5.3.2, a method suitable for this case.

5.3.2. A Newton Like Method

In this section we describe a method which we will use for solving
(5.8.3). Since it may be of interest in other cases, Qe describe it in some
generality and apply it to (5.3.3) in the nextbsection. We éonsider‘the

general problem of solving the nonlinear equations

(5.3.4a) o gqlz,u) =0
and |
(5.3.4b) - W(z,p) =0,

g:DcR'xR+R', $:DcK xR~>R , where

Q(z,u)

(5.3.5) qu(z,u)

is nonsingular in the region of a solution (z*,u*) of (5.3.4). We assume



87

that derivatives of Y(z,u) are not available and that ¥(z,u) is expensive
to evaluate. The method we describe is similar to those of Brown [13] and
Brent [12] but is more suitable when @(z,u) is available analytically and
when @(z,u) is large and sparse or easy to evaluate. We note that, for
small problems, we have used Brent's method ﬁith success. (See [51] for an
impleﬁentation and also [12] for Brent's comments on the suitability of his
method for problems where the Jacobian is sparse.)

Suppose (zi,ui) is an approximation to (z*,u*) , then we linearise
(5.3.4a) about (Zi’ui) and define the subspace Li to be the space where
this linearisation is zero. That is, Li is the set of points (z,u) such

that

'Q(zi’”i) * [Q(zi,,ui) u(z

where wu(z,u) = auq(z,u) . Now, omitting the arguments (zi,ui] and

writing q(zi,ui) = q. etc., and assuming Qi is nonsingular, L. is

7 7
defined.by
L. = {(z u)ll z =z, —Qflu.(u-u.)
7 ? i+l 1 1 .
where
(5.3.6) - ' 5. = a. -
T 2+l 7 9

Now we define Wi : Di CR->R as VY , restricted to Li s by

- a2 -1
(5.3.7) L1’7;‘(11) = w[zi+l~Qi ui(u—ui),u} >

_ N -1 . .
where Di = {u I [zi+l Qi ui[u—ui),u] € D} . Then we gan attempt to find a

zero of Y(u) on Li by linearising Wi and applying a Newton step. Since

we cannot evaluate

av. .
1 . .
7ﬁr-(ui) s, We approximate it by



88

av. . Yo (ue+8.)-Y. ()
(5.3.8) iﬁf'[ui) 11 1 i

5 A; >
7

R

_ Wi(ui)
(5.3.9) Mo = Wy =
7
Then Z:,1 1S given by
(5.3.10) B, . = 8. . - Qtlu.(u. 1)
1+l Tetl T vy utl T

The following theorem, which is proved in the appendix to Chapter 5, gives

sufficient conditions for the sequence {(zi,ui)} generated by (5.3.6) -

(5.3.10) to converge to (z*,u*}v with R-order = 2 . TFor the sake of
continuity we prefer to postpone the proof since here we are primarily
interested in the application .of the method. The important feature of tﬁe
method is that we can attain rapid convergence to (z*,u*) with only two
evalﬁations of w(z,u)‘ per'iterétionf Since we afe assﬁming that the
evaluation of ¢ . is the most expensive part of the process, this represents

a considerable saving over standard methods for solving (5.3.4).

THEOREM 5.3.2. Suppose q : DC Rn;x R+E' and v : DcR'xR~+R
are Frechet differentiable on D and their derivatives satisfy a Lipschitz
condition on an open neighboﬂrhood S of the point (z*,u%). ﬁhich 18 a
solution of (5.3.4). Suppose also that Q(z,n) , defined in (5.3.5), has a
bounded inverse in S and that the inverse of

Q(z,u) u(z,u)
(5.8.11) R(z,u) =
JCRE 3 (2,0

exists and is bounded on S , where u(z,u) = auq(z,u) . Then there exists

an € > 0 such that, if
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the sequence {(Zi’”i)} defined by (5.3.6)-(5.3.10), where 6i is chosen

as
’ . -1 . p
(5.3.12a) 0(z,m) |/[l+nQ(zi,ui) u(a ) “] L if Wag) #o .
6. = | |
Z
(5.3.12b) sufficiently small otherwise,

comverges to (z*,u*) with R-order = 2 .

(Note that, in practice, to ensure that '6i # 0 we can choose 6i =T,

3, .-2.
1+l "1
where a stopping criterion for the iteration is ’ <7t , if (5.3.12a)

L )

gives a value less than T .)

5.3.3. FSolution of equation (5.3.3)

bThe equations we wish to solve are given in (5.3.3) and, to apply the
method of section 5.3.2, we must put them into a form which satisfies the
conditions of Theorem 5.3.2. To do this we note that, from (5.2.2);
rank[B(x,k)] = n in the region of a turning’péint, where
(5.3.13) B(z,\) = [A(z,\) dz,)] .
Thﬁs, B(x,k)‘ has #»n linearly independent columns and we can choose an

index r such that BPP is nonsingular. We see below that the best choice

of r 1is that which was chosen in section 5.2. Now we define (z,u) and

(z*,u*) by
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=7 -
T2
x
r-1 o= | ot
(5.3.14) z=| A | =P, ,u=xp,z*=p£ outsab,
A A#
r+l
x
.—n-—
and q(z,H) by

q(z,0) = Hz,)) .

Then @(z,u) = B(x,A)Pr , which is nonsingular in a neighbourhood of
(2*,u*) , as required in Theorem 5.3.2. Also u(z,u) = Suq(z,u) , which

equals Sx H(z,\) , so u(z,u) ='ar(x,k) . Sincé the method of section
r S .

S.3.2-requires the solution of twb linear systems of equations,with Q(z,u)
as coefficient matrix, we wish to choose r so that Q(z,u)b'is, in.some
sense, -the least singular choice. Thus, we use the value of » chosen in
section 5.2 when following the trajectory‘through'the turning‘point, and it .
follows from Corollary 5.2.1 that this‘choice makimises ’Det(Q) over all
the possible choices of »r .

Next we define

IP(Z,U) by ‘
P(z,u) = ¢lx,A) ,

where we will choose ¢(x,A) to satisfy (5.3.3c) and we will also require

¢(x,A) to have a Lipschitz continuous derivative in a neighbourhood of
(x*,A%) .

Finally, we require conditions that R(z,u) in (5.3.11) has a bounded
inverse in a-neighbourhood of (z*,u*) . Now R(z,u) satisfies

R(z,0) = M, [P, & ]

where
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) Az dlx))

T(x,A) = 7
. 3x¢(x,l) 3A¢(x,x)

It is then obvious that R(z*,u*) is nonsingular if and only if T(xz* \*)
is nonsingular. Also, by continuity of the derivatives of H(x,\) ‘and
¢(x,A) , this will imply R(z,u) has a bounded inverse in a neighbourhood of
(z*,u*) .

It follows from (5.2.6) that T(x*,A*) is singular if and only if
(5.3.15) [}x¢(x*,X*)T 8A¢(x*,l*€]é(s*) =0,

where é(s*) = (x*,A%) . If we define ©® to be ¢ restricted to the
solution branch and write &(s) = ¢Lx(s),l(s)) , then, by the chain rule
i) = (o907 306050
It follows that T(x*,\A*) is singular if and only if d(s*) = 0 .
Furthermore, by choice of ¢ , 'Q(s*)‘= 0 and so T(x*,A*) 1is singular if
and only if ®&(s) has a double root at ‘s* . Below we.will see that one
choice of ¢(x,A) 1is given by ¢(x,A) = Det[A(x,X)) and, in this case,
@(s)>= P(A(s)] . It follows from the discussion following Theorem,5.3;l
that | |
5(s) = als)A(s)
where o(s) is nonzero in a neighbourhood of s* . At the turning point
A(s*) = 0 and so
#(s*) = alsHA(s*)

which implies that d(g*) = 0 if and only if A(s*)

0 . This is the
condition that (x*,A\*) is a point of inflexion, or a turning point at
which i(s) has a multiple zero. We can show that all the choices of
¢(x,k) discussed in the next section are of the form

¢(x,) = Det(A(x,\))E(x,A)
for some function &(x,A) which is nonéero in a neighbourhood of (x*,A%)

and so the same argument applies to each choice. It follows that R(z*,u*)



92

will be singular if and only if i(s) has a multiple zero at s* and, in
this case, the R-order of convergence of the method will be only one.
Geometrically (5.3.15) implies that R(z*,u*) is singular if and only if

the solution branch at (x*,A*) is tangential to the surface S on which
A(x,\) 1is singular. This follows because [}é¢(x*,k*)T 3A¢(x*,l*{] is

normal to S at (x*,A%) .

5.3.4. Choices for ¢(x,)\)

Now we consider some specific choices for ¢(x,A) . From (5.3.3), the

obvious choice is

¢,(2,3) = Det(4(z,1)) .

This choice proved acceptable exéept‘in two cases. When A(x,A) 1is large

and sparse, the evaluation of ¢ (x,A). may be inconvenient since it
1 y .

requires the factorisation of A(z,\) into matrices which are not necessarily
sparse. Secondly, if Det(A(x,X)) is very small compared with [||[H(x,A)| ,

then loss of significance occurs in the evaluation of Wi(z,u) , and
therefore of Ai , in (5.3.8), which adversely affects the convergence rate

of the method. Aléo, in severe problems, underflow may occur. Despite
these difficulties, this choice éroved successful for several small
problems, but we discuss two further choices which do not suffer the same
disadvantages.

Define ¢2(x,X) by
o -1
bosA) = ep(B(x,A)Pr) a,(z,1)
where r is the index described earlier. Since B(x,l)Pr is nonsingular

in a neighbourhood of (x*,\*) , it follows from Theorem 5.3.1 that

¢2(x,k) = 0 if and only if A(x,\) is singular. Thus ¢2(x,K) is a

suitable choice. Its evaluation requires the solution of a system of linear
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equations and so is suitable in the case when B(x,A) is sparse. Finally,
it is straightforward to show that ¢g(z,u) and Y(z,u) , where

Y(z,u) = ¢,(x,A) , satisfy the continuity conditions required in Theorem
5 y cont 4

5.3.2 if H(x,A) is twice Frechet differentiable on D and its second
derivative satisfies a Lipschitz condition in a neighbourhood of (x*,A%*)

Our final choice for ¢(x,A\) is given by defining ¢_(x,A) by.the
g y g 9,

relation

(5.3.16a) TERVTER VR RS

and

(5.3.16b) ' o) =1,

for some fixed ¢ and w such that |le| = |lwll = 1 . This choice is an

extension of the method of Osborne and Michaelson [55], [57] for the
nonlinear eigenvalue problem in one variable. We describe the detaiis of
the method aé they affect our probiem and refer the reader to [55] and‘[57]
for furfher details. |

Firstly we show that ¢3(x,k)' is well defined for certain choices of

w and c .
THEOREM 5.3.3. Suppose A(m,A) is continuous in an open neighbourhood

of (x*,A\*) and ¢3(x,k) 18 defined by (5.3.16). Then ¢3(x,k) 18 well

defined and continuous in an open neighbourhood of (x*,A*) <if

Alx* A*)  -w
(5.3.17) Det o #0 .
c 0

Proof. v(x,A) and ¢3(x,k) are defined by

vA(x,k) —wl | v(x,A) | 0.

GT : ¢3(x,k)

(5.3.18)
1

From (5.3.17) and the continuity of A(x,A) , (5.3.18) has a unique

continuous solution in an open neighbourhood of (a*,A*) . 0O
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So we must choose w. and ¢ to guarantee that (5.3.17) is true.
Since rank[A(x*,A*)] = n - 1 there exists a nonsingular matrix ¥V and an

n X n matrix A of the form

0 9

where @ 1is (w-1) X (n-1) and nonsingular, such that

Alz* %) = VAV .

It is simple to show that

A(x* A*) -w
Det ' = eTV lw eTVe Det(R)
T 1 1
e 0
and that eiV—l and Vel are left‘and right null vectors of A(x*,A*) .

Let u, = Vél and ug = e{V—l , then a sufficient condition for (5.3.17)

to be true is that ugw £ 0 and» cTur # 0 . It follows that, in some
sense, the best choice of w and ¢ 'is,'with suitable.3caling,

w ;‘uz , e=u
for this choice maximises the determinant.in (5.3.17). However, to generate
an approximation'to uZ requifes extra work énd.so we choose w as an
approximation to U, - Such an approximqtion»is readily available in the
course of computation. We note that, if A(x%,l*) is symmetric, U, = Uy
and the choice of w is best in this case. In the general case, uiuZ =rl

and. the choice of w ensures that ugw # 0 , at least if w is a good

approximation to U, - It is convenient to choose ¢ = ey > for some k
chosen so that eiur # 0 . In practice, if w is a reasonable approximation

to U, the choice of %k which maximises s g =1ly...,n 1is

T
e.w
J
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suitable. Also, it is most efficient to change w , and therefore ¢ , at

each iterations always using the best estimate of U, for w .

A(xO,Ko]fld(mo,Ao)., which is the first n components of é at (xo,xo)

and so has alréady been calculated, is a good initial choice for w when
~suitably scaled. Finally, we note that the differentiability requiremehts
on q(z,u) and YP(z,u) in Theorem 5.3.2 follow if H(x,\) is twice
Frechet differentiable on D“ahd its second derivative satisfies a Lipschitz
condition in a neighbourhood of (a*,A%*) .

To complete our description of the method for this choice of ¢(x,\) ,

we define the subspace Li , as in section 5.3.2, and the matrix Mi(u) by

A !
M?:(U) = A[z’i+l Q?: ui(u U’L.) o H
where, for brevity, we are considering A to be a function of z and w

Then . if wi is our current estimate of uP and ek is our current choice
of ¢ , then 'Wi(ui) is given by

M (u)vs,q = ¥ v,

and

(5.3.19) ey =1
Vi1 is found by solving

(5.3.20) Mi[ui)v = v,

and scaling the solution to satisfy (5.3.19) and also
_ T
o (u) = e .

This represents one step of inverse iteration and so Vi will be richer

in ur thenl wi . Thus wv. , 1is a better choice for wi

i1 than wi . It

+1

is shown by Osborne [56] that another efficient choice of wi+l is vé+l .

given by



96

- dMi
' = —
Pl = Wdvg -
. dwi
We do not have the derivative of M;(u) , but, in the estimation of T ()

on Li , we also calculate Mi(ui+6i) and so we can improve v, , by

forming
.3.2 ! = AU =M uLt0, . .
(5 1) vz+l Dwt(ut) Mi(uz+6%]]vz+l
) ? ) . . X . .'
Then we set wi+l to be vi+l vor vi+l and scale it suitably. It is

important to note that, as the process converges, {Mi(”i)} approaches

A(x*,A*) , however, in the same way as inverse iteration, no difficulties

arise when solving (5.3.20) due to Mi(“i) being nearly singular. All that

is necessary is that care be taken in’solﬁing (5.5.20) so that the solution
remains within machine bounds;

We conclude this section with twb remérks.

REMARK 5.3,1. For each choice of ¢ ., an iteration requires the
solution of four linear systems:and gives second order convergence to the
_turning point. This compares favourably with the methoa described by

Simpson [69]. Also we note that withjqb2 and ¢8 the work in solving

these systems can be reduced as follows. If a direct method is to be

employed for solving the linear equations then, when calculating Q;lui and

Q;lqi in (5.3.6) and (5.3.7), it is only necessary to decompose Qi into

its appropriate factors once. This saving cannot be made if an iterative
method is being used to solve the linear systems. In this case, however, the

calculation of Wi(ui+6i) and Wi(“i) each require the solution of a linear

system. Moreover, the solution of the first will provide an excellent
estimate of the solution of the second. The result is that few iterations

will be required for the second system.
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REMARK 5.3.2. The method of Osborne and- Michaelson is just one of a
class of methods for the nonlinear eigenvalue problem which could be applied

to this problem. Some of these are discussed in [67].

5.4. The Determination of Certain Simple Bifurcation Points

We point out, in this section, that the method of section 5.3 can
sometimes be applied to finding simple bifurcation points. To find a point

(xB,AB) defined in (5.1.4) we can solve

(5.4.1a) | Bz, \) =

= Q .
and
(5.4.1b) | ¢(z,A) = 0,

with ¢(x,A) given by ¢l or ¢3' from section 5.3:. In this case, however,

the resulting Jacobian is singular at the solutioﬁ and so the method
converges only linearly. However, it is often the case that, on a primary
branch, we have independent information about the solutién curve x(A)

For example, in the problems discussed in section 5.5, noting the symmetry
gives the required information. If oz, Qn»the solution branch, aiso

satisfies

glaz,A) =0,

g :Dc R x R+ R" », m<mn , then it may be possible to replace certain
components of H by components of g in such a way that the resulting

system has full rank at (xB,XB) . In the case when A(x,A) 1is factorised,
we can first apply the method to (5.4.1) and then convergence to (xB’AB)

is linear. In solving systems of the form

A(xi,Ai]v =b,
where A(m.,k.) replaces . in section 5.3.2, we factorise A(m.,k.) into
1’71 7 . 171

PA(x,A;) = LU
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where P 'is a permutation matrix and U is upper triangular and L is
unit lower triangular. We extend the decomposition to form

PAlx.,\.

(7,’1, L

= Lol ,
G (acz R )\i] W

where G(x,\) = Bxg(x,k) . If, at some stage, the best choice of pivot in

the decomposition of A4 , from the kth row say, becomes small compared
with the elements of A , we replace that row of A by a row of G(x,\) ,
the jth say, which maximises the pivot. We then continue with a new

syétem, in which Hk(x,k) in (5.4.1a) is replaced by gj(x,x) . This new

system satisfies the conditions of Theorem 5.3.2 and so we can attain rapid

convergence to LxB,AB) .
It is particularly convenient to use ¢(x,A) = ¢3(x,A) from section
- 5.3.4 since, on converging to (xB,AB) , the final value of wi gives a

good approximation to the zero eigenvector of A(xB,XB) ‘which is useful

when looking for a point on the secondary branch. (See [37], [64] for

further details of methods for this problem.j

5.5. Numerical Results

_ We have épplied the methods of sections 5.2, 5.3 and 5.4 to several
problems with success and we describe two which have appeared in the
literature. The trussed d§me problem [33], which was also considered in.
[63], is a physical example of stability loss. The dome of Figure 5.3, if
~ subjected to veftical forces at nodes 1,2,...,7 , deforms until it loses
stability at a turning point. The équationsbdefining the eqﬁilibrium
positions of the structure are of the form

W(x)x = \Ww ,
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FIGURE 5.3: Geometry of Trussed Dome (from [33]).

where W(x) is a matrix and' w is a constant vector, when the force at

node 1 is ABi for fixed .Bi s 1 = l,...,? . The vector & defines

the position of the seven nodes and so the dimension of the problem is - 21 .
The details and the derivation of these equations, together with a Fortran
subroutine for the relevant calculations were provided by Professor W.C.

Rheinboldt [62]. For the case where By = 107" and Bj =2 x 107" s

g = 2,...,7 , Figure 5.4 shows the displacement, £ , of the central node
for varying A and the turning point was found to be at

A% = 9.074147... ,
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(A*,8%)
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FIGURE 5.4: Vertical displacement

of central node (g) VS. A .

when for example, £* = 0.7865549... . With the choices of ¢ = ¢, and ¢3

the algorithm displayed second ofder convergence to (x*,kf) . The choice .
of ¢(x,A) = Dét(A(x,X)) suffered from the loss of significance described
in section 5.3.4. Typical values.of-the relevant functions in the region of
(x*,A*) were |

()1 = 1070, l¢l(x,x)| = 10737 | |¢2(x,x)| =107t |¢3(x,x)l = 107"

and so the choice of ¢l(x,X) was less effective than the oyher choices.

The second problem was described by Simpson [69] and is the solution

of the boundary value problem
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. (z,y) €D ,
. ox 3y
’ u(x,y) = 0, - (x,y) € 9D ,

where D is the unit square. The problem was discretised using the
9-point box form of the Laplacian (see Fox [26]) on a uniform mesh of size

h . The resulting system is of the form (5.1.1) where A appears non-

linearly. If m = 1/h , the problem is of dimension m2 and is sparse, so
we used the iterative method of Paige and Saunders [59] to solve the linear

systems. We used the choices ¢2(x,k) and ¢3(x,A) and both were

successful. Figure 5.5 shows how u(0.5,0.5) varies with A (calculated

with h = 1/12 ). We calculated the turning point on mesh sizes & = 1/16

FIGURE 5.5: u(%,%) vs. X .
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and h = 1/24 and derived the results, for h = 1/16
A% = 6.8080865... , #(0.5,0.5) = 1.3916567...
and for Ak = 1/24
A* = 6.80811698... , u(0.5,0.5) = 1.3916603... ,
with convergence, in each case, being attained to more than the figures
shown. These results for A* should be more accurate than those given by

Simpson.

Typically, the number of iterations were the same for ¢2(x,k) and
¢3(x,A) with the correction (5.3.21). Without this correction, on average,
using ¢3(x,k) cost about one extra iteration. But in all cases the second

order convergence to the turning point was apparent.
The method of section 5.4 was applied to finding the simple bifurcation
point which occurs in the trussed dome problem. The value of Det(A(x,A))

was monitored along (x(X),\] to bracket [xB,AB) and then the method of
section 5.4 was applied with ¢(x,A) given by ¢l(x,X) and ¢3(x,X) . The

extra information, which is satisfied only on the primary branch, was
provided by several of the obvious symmetry relations satisfied by the dome.
The methods were again successful and, on replacing a component of H(x,t)

by an appropriate symmetry relation, thevconvergence to (xB,RB) was second

order. The bifurcation point was found to be at

A = 4.341092788...

where, for example, EB = 0.1796179807... . Note that when using ¢3(x,A) ’

. -1 . . . .
the initial choice of wo = A(xO,AO) d(xo,ko) is not suitable since, as in

this example, w, may have a very small component in the direction of the

appropriate eigenvector. For the bifurcation point problem we have found

choosing wg = (1,1,...,1) is acceptable.
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- APPENDIX TO CHAPTER 5

We now prove Theorem 5.3.2. We use the same notation as described in
section 5.3 and so refrain from restating the theorem.

Proof of Theorem 5.3.2. Throughout this proof we define the norm on
n . ’ 1
R X R in terms of a norm on R  as

(35.1) ] = van + 10l

for any (a,a) € F* xR . For any § > 0 we define the set S(y) as

<1

Also we define the functions w(a,a) and z(a,x;b,B8) , for any (ag,a) € S

z-z*

S(y) = {(g,u) ‘, o

and (b,B) € S , by

(A5.2) 0 = g(z*,u*) = g(a,a) + Q(a,a)(=z*-a) + u(a,a)(uf—a)-+ w(a,a)
and

(A5.3) P(b,B) = Y(a,n) + azw(a,u)T(b;a) + Buw(a,a)(B-a)'+'C(a,a;b,B)

It follows from [53, Theorem 3.2.5] and the Lipschitz continuity of the

derivatives of g and { that, if S(e) © S , there are constants K. and

1
K2 such that
‘ a-z* 2
(85.14) | (a0 < Kl‘la_u* |
and |
a-b 2
(A5.5) S lz(a,a3b,8)| = &, oz—B”

for all (a,a),(b,B) € S(¢g)

Throughout the following we will frequently bmit the arguments (z,u)
on functions of 2z and u . For example we will write @ for @(z,u) and
u for wu(z,u) , etc. From the assumptions, there exist constants

B ..B such that

1" 4
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lQ_ lu
1 4 2

(A5.6) HQ‘lH =B ; I

<3, Ioul=8,; I&l <5

for all (z,u) € S . Finally, throughout the proof, for any (z,u) € S we

will define 2(z,u) by

(A5.7) 2(z,0) = z - Q_lq .

Much of the proof is in the derivation of intermediate results which we
present as three lemmas. »

LEMMA A5.1. Let € > 0 be such that S(e) € S . Then, if there
exists a constant C > 0 such that, for aZZ (z,u) € S, & satisfies

2-z%*

.8 < |6 ¢
(A5.8) 0 < 8] <

R

it follows that, for all (z,u) € S(g) , (2,0) and (E—Q-lué,u+6) are in
S(y) , where |

D ) 2
(A5.9) Y = 52(l+0)$.+ BK e .

Proof. " Let (z,u) € S(e) . Then substituting for g¢(z,u) , from

(A5.2) into (A5.7), we have

PN -1 »

z =2 - @ [Q(z-z2")+u(p-p*)-wl ,
from which we have

= * = ot %Y -1
(A5.10) z - z%=-@ "u(u-p*) + Q@ w .
Thus
(A5.11) a-a*| ”’Q-luﬂlu—u*l + 10 ol
' u-p|f = 1 )

Now lu—u*[ < € and, since (z,u) € S(e) , it follows from (A5.4) and
(A5.6) that

A
z-z%

A5.12
( ) u-p*

< 2_
= Bge f BlKls =0
and 0 <y . Thus (z,u) € S(y) .

Next, we note that
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‘Q—Q—;ué—z* z-z* . H—Q-lu B
u+6-u* u-p* 1
5‘0 + BQCE =y .
Thus  (3-@ Tus,u+8) € S¢y) . O

LEMMA A5.2. Define the function A(z,u,8) , for 8§ # 0, by

(A5.13) A(z,u,8) = (9(2-Q1us ur) -0(E,1) /6 .
If, for each (z,u) , 6 satisfies (A5.8) for some constant C , then there
exists an € > 0 and a p > 0 such that, for all (z,u) € S(e) ,
(A5.14) Catz,8) | = p .
Proof. First we suppose that € is sufficiently small so that

S(y) €S , where Y 1is given in (A5.9). Suppose also that (z,u) € S(e)‘,
then it follows from Lemma A5.1 that '(Q,u) and [Q—Q_luﬁ,u+6) are in
S(yY) . Now substituting for w(Q-Q_lué,u+6) iﬁ’(AS.lS), from (A5.3) with
(b,8) = (2-@ 1us,u+8) and (a,a) = (2,n), we have

_ A T -1 A ~ A -1 ‘
(A5.15)  A(z,1,8) = |- _W(Z,w)7Q u6+8uw(z,u)6+g[z,u;z—Q us ,u+8) | /8 .

It follows from (A5.5) that

— B
A A -1
|z (2,132-@ us,u+8) | < KQHQ_lu' 52
and so, from (A5.6) and (A5.8), we have
Aa -] 2 lla-z*
(A5.16) |2(z,132-Q "us,u+6) | /6 < K BC o

Thus, for some constant K , it follows from (A5.15) that

z-z*

. ~ T -1 ~
(A5.17) |aCz,1,8)] = -3 v(z,w)7Q u+8uw(z,u)| = K|

Next, define R(z,u) by,

Q ‘ u -
R = N
Bzw(z,u) Buw(z,u)

Then, from (5.3.11), R = R + én+lpT » where p(z,u) 1is given by
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- Bzw(z,u)—azw(z,u)

(A5.18) p(z,u) = .
. auw(z,u)—auw(z,u)

By assumption, R 1is nonsingular for all (z,u) € S , and so, from

(5.3.2),

1

Det(R) = Det(R)[l+pTR_ én+l]

Thus, for all (z,u) € S(e) ,

|pet(R)| = |D§t(R)|[l—|pTR_lEn+l

|

< HpHHR_lH . Moreover, it follows from (A5.18) and the

Now IpZR-lé

n+l
Lipschitz continuity of Bzw and Buw that there is a constant B5 .
independent of (z,u) , such that, for all (z,u) € S,

lpll = Bcllz-z|l = B (llz-2*|l+]lz-2*I)

Then, from (A5.12),

IA

lpll = B, (o+e)

Thus, if € 1is chosen small enough so that
'Bs(o+s)Bu ; K

for some Kk < 1 , where Bu is given in (A5.6), it follows that

(A5.19) |pet(®)| = |Det(R)|(l—K)r.
Since R(z,u) is nonsingular with bounded  inverse on § , |Det(R)| is
bounded>away from zero on S . Thus, from (A5.19), there exists a éonstant
V > 0, independent of (z,4) , such that

|Det(R)] = v
for all (z,u) € S(e) .

Now, from (5.2.10),
A o A T -1
Det(R) = Det(Q){auw(z,u)—Bzw(z,u) Q u}

and, since ¢ 1is bounded on S , there is a constant L > 0 such that
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|Det(Q)] < L for all (z,u) € S . Thus
auw(é,u)-azw(é,u)TQ‘lu > V/L

for all (z,u) € S(e) .
Finally, if € is chosen so that p = (v/L) - K& > 0 , it follows
from (A5.17) that A(z,u,8) = p for all (z,u) € S(e) . O

LEMMA A5.3. For any (z,1) € S, define (z,u,8) , for & # 0 , by

(A5.20) H(z,0.8) = u - Z%éﬁﬁﬁgy.

If, for each (z,u) € S, § satisfies (A5.8) for some constant C , then

there exists an € > 0 and an M > 0 such that

. . o
o
]ﬁ(z9U96)'“*|-SM -

p-p*

for all (z,u) € S(e) .
Proof. Suppose that ¢ is sufficiently small so that S(y) € § ,

where vy is given in (A5.9). Suppose also that (z,u) € S(e) , then it

follows from Lemma A5.1 that (g,u) and ’(g—Q_luG,u+6) are in S(y) .
From (A5.20) we have '
fi(z,1,6) = u* = (ACz,1,8) (u-u*)-P(z,1)) /A(z,u,6)

and, from (A5.15),

(A5.21) {i(z,1,8) - u* [}azw<§,u)TQ‘lu(u—u*)+auw(§,u)(u-uf)

~p(z,u) + %—(u—u*{]/A(z,u,G) R

where we have written E for g(g,u;§~Q_lu6,u+6} . We now replace W(E,u)
in (A5.21) using (A5.3) with (b,B) = (z*,u*) and (a,a) = (2,u) and
derive

fi(z,1,8) - u*= {-az¢<§,u)T[Q-z*+Q"1u(u-u*)]+;* + %—(u4u*)}/A(z,u,6) .

where we have written ¢* for t(g,u;z*,u*) . It follows immediately from

(A5.10) that
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(A5.22) j(z,u,8) - p* =‘{-82¢(2,u)TQ_lw+;* + %—(u—u*)}/A(z,u,G)

. . o,
From (A5.5) and (A5.8), with K3 =»K2B20 ’

§_ z-z*
(A5.23) l5 < K3 et
and by the definition (A5.1),
' ek
(A5.24) ‘ -t < IB7R
lw=wt] =
Also, from (A5.5),
~ 2
* 2-z*
lC = K u-p* ’

which from (A5.11), (A5.6), (A5.4) and (A5.24) gives

£ z-z*
(A5.25) lg*] = K"”u-u*
for some constant, K4 » independent of (z,u) . Finally, using

(A5.22)-(A5.25), (A5.6), (A5.4) and Lemma A5.2, it follows that

z-3*%

3G ,8)-w¢] = M\u_u*

where M = CBlB3K1+K3+K4)/p . O

Let € > 0 be such that the conditions df Lemmas A5.1-A5.3 be satisfied.

Also, let (zi,ui) € S(e) . It follows from [53, Theorem 3.2.3] that, for

any (z,u) € S , Y(z,u) satisfies

z-z*
2, =C
'w( u)l p-p*
for some constant ( , independent of (z,u) . Thus, for any (z,u) € S(e) ,

the choice of § given by

§ = Wiz, |/ (1+le )
satisfies

a-g*

§| =<
8] = ¢ u-p*

Also if, whenever Y(z,u) = 0 , § 1is chosen sufficiently small, the choice
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of 8§ satisfies (A5.8). -

Now, from (5.3.6) and (A5.7), Z, . = z(z;,u;) and so, from (A5.10),
A -1 -1
- g% = _ 11 %
241 7 2= @ u () ¢ Qe
where Qi = Q(zi,ui] etc. Substituting into (5.3.10) gives
-1 -1
- g% = %
SRR A PR PR IR RS
and hence
-1
—o Xk . -
Zi"‘l Z* < Q’z: u{, Iu‘ _u*l + HQ-.:L’ ”w.” .
WM 7+l 7 1

But it follows from (5.3.7), (5.3.9) and (A5.20) that “i+1:= ﬁ(zi,ui,d.)

1

and so from (A5.4), (A5.6) and Lemma A5.3,

2
2, .-g* 2.-3*%
1+1 1

., .-u?

<

(A5.26)

- %
i+l H;-H

where - 4 = BQM + BlKl . It follows that, if € is such that A4€ < 1 , then
(zifl’ui+l) € S(e) and, by induction, that the sequence {(zi,ui)}

converges to (z*,u*) . Finally, it follows trivially from (A5.26) that

the sequence converges with R-order z 2. . ]
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- CHAPTER 6

FINDING SEVERAL SOLUTIONS OF NONLINEAR EQUATIONS

6.1. Introduction

In this chapter we consider the problem of finding several solutions of

the nonlinear system of equations

(6.1.1) flx) =0,

f:DcC A and, unless stated otherwise, we shall assume that f is
twice differenfiable on D . This problem is often of interest although it
has received little attention in the literature. The approach frequently
adopted is to use an iterative séheme, often basgd on Newton's method, with
a vériety of stapting guesses. However? Brown and Geafhardt [14] have noted
that this approach can fail on quite simple problems, when the method
continually finds the same root or, of course, the method may continually
diverge and fail to find the desired roots. Recentlybtwo approaches have
been suggested for overcoming these‘difficulties.and in this chapter we
consider the two methods and draw some conclusions about their computational
efficiency.

In section 6.2 we consider the approach suggested by Branin [11]. The
basis of hié methoa was presented in section 4.4 as a method with wide
convergence for finding a single solution of (6.1.1). In his paper, Branin
proposed an extension of the method as a means of finding several solutions.

He suggested following the solution trajectory of

(6.1.2) | x(t) = —J(x)“lf(x) s 2(0) = Ty s

where, as in Chapters 1-4, J(x) 1is the Jacobian of f(x) and z, is an
estimate of a solution of (6.1.1). Under the conditions of Theorem 2.2.1

the solution trajectory of (6.1.2) converges to a solution of (6.1.1). To



111

find a second solution, Branin suggested reversing the sign in (6.1.2) and
following the solution of the new differential equation in a direction away

from the first root and away from x On crossing a region where J(x)

0"
is singular he reverted to following the solution of (6.1.2), hopefully
giving convergence to a new root. In this chapter we shall refer to
Branin's method not as the means of following the trajectory, as described
in section 4.4, but aé the principle of following the whole solution
trajectory of (6.1.1). In fact, in our numerical tests we used the method
NEW/2 of Chapter 4 to follow the trajectory.

In section 6.3 we describe the apprbacb due to Brown and Gearhardt [1u]
who exteﬁded the idea of deflatidﬁ, usually;assoéiéted with finding roots of
a polynomial, to dimensions greater than one. On finding a root, r , of

f(x) they suggested finding a zero of the deflated function

g(m)_= f(x)/||z-r| , where ||+] 'is some norm on ' . If r is a simple
root of f then r is not a root of g . It is shown in section 6.3 that,
if Newton's method is used to sqlve the deflated equation, then the
resulting methoﬁ is similar to Branin's method and can be considered as
differing only in the way in which it chobseé'the'sign in (6.1.2) and in the
accuracy with whichbit follows the resultiﬁg trajectory.

Branin's method is more successful than the deflation method for
finding several solutions of (6.1.1), however it is more costly in terms of
the amount of computation per zero found. In section 6.4 we present
numerical results which demonstrate this and, for completeness, describe a
modification of the ﬁethqu which is more efficient than Branin's method and
is more successful in finding zeros than Brown and Gearhardt's method.

We note that Chao, Liu and Pan [16] used a modification of Branin's
method, however, in their paper they gave little detail about the

computational efficiency of the resulting method.
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6.2. Branin's Method .

The method can be described as one which follows the solution trajectory
x(A) of
(6.2.1) Fle) - A-vfle) =0, @0 =a .
It is shown in Chapter-1l that the solutions of (6.2.1) are essentially the

same as those of (6.1.2). The method attempts to follow x(A) from

x(0) = X to (1) =r ., which is a root of - f . Then the method continues

to follow «(A) for A > 1 until either the trajectohy passes through a
turning point or the trajectory diverges to infinity (or, in praétice,.goes
beyond some prescribed bound). For the fofmer case the method continues to
follow the trajectory, with A decreésing noQ, possibly on to another
solution. Each point on thevsolutionbbranch Gx(x),k) , at which A =1 ,
represents a solution of (6.1.1). Note that this process is exactly that
described in Chapter 5 except that here ﬁe are not interested in the
accurate determination of the whole sblution branch.

When the solution trajectory diverges, the method returns to x(0) ,
follows the trajectory with A decreasing and repeats the whole process
until divergence occurs again. Thus the method follows the traﬁectory

through T, in both directions.

Branin actually suggested integrating (6.1.2) rather than (6.2.1) and
the corresponding version of (6.2.1) is derived by applying the transformation
1-A= et . Since we wish to follow the solution trajectory in both

directions we need to modify the resulting equation and to follow the

solution of

(6.2.2) Fx(e)) - e_atf[xo) =0, 2(0) =z, ,

where § = 1 if we are approaching a zero or § = -1 if we are leaving a

zero in search of a turning point. For this formulation there is an added
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complication, due to integrating over the infinite interval. On finding a
solution of (6.1.1) and before following the correct trajectory away from
the root, it is necessary to "step over" this root onto the solution of
(6.2.2). In accordance with our comments of Chapters 1-4, we prefer to use
(6.2.2), for then we can follow the solution trajectory using a mefhod

designed to take advantage of the Liapunov stability of (6.2.2) when

s =1.

In his paper, Branin gavé several examples and diagrams which are
important as they give an insight into the beha&iour of the solution
trajectories. In particular he notes that the method is not always
successful since «x(¢) may not pass tthugh all the roots or indeed may not
pass through any. Actually, the method is less reliable than Branin hoped
since he offered a conjecture that the method finds all the solutions of
(6.1.1) if the problem has no extraneous singuldrities (defined below).
This conjecture is not true, as shown in the following example. A
singularity of the differential gquation é(t) = g(x) ié a point x such
that ¢q(x) = 0 . Thus, any solution of (6.1.1) is a singularity of (6.lf2)
and; as described in Chapter 1, is a stable node in the Liapunov sense.
Branin modifies (6.1.2) and considers fhe differehtial equation

z(t) = Adj(J(x)) f(z)/Det (I(x))
where Adj(+) denotes the adjoint. Aparf from a sign, this is equivalent
to (6.1.2). He then defines an extraneous singularity as a point x such
that f(x) # 0 and Adj(J(x))f(x) = 0 . Such points often give rise to a

region of non-convergence, i.e. a region S such that, for any o €S,

the solution trajectory of (6.2.1) does not pass through all the zeros of
f + The following problem is shown to possess no extraneous singularities
but does have a region of non-convergence and so disproves Branin's

conjecture.. Consider (6.1.1) with f(x) given by
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where we have written xT = (xl,xQ) . Then

(6.2.3) Adj (7)) Fx)

and it is easy to show that Adj(J)f

0 if and only if f = 0 . Thus the
problem has no extraneous singularities. The problem has two solutions at
(1,1) and (-1,1) , however solution trajectories of (6.1.2) passing through

points (xl,xQ) such that x, < -1 do not converge to a solution. A full

analysis of the trajectories shows- this, however we brieflyvnote that, when

X, = -1 , the unit vector in the direction of a solution trajectory of

(6.1.2) is é(t)/”&(t)“ and from (6.2.3) is given by

. Q[miﬂ

x(¢

) ,

=l |
where & 1is a Scaling factor. Thus, the trajectory is parallel to the xy
axis. This indicates that no trajectories cross the line Ty = -1 which,

~on further analysis, proves to be the case. So the region.

S = {x | x, < -1} is a region of non-convergence.

In general then, following a tfajectory does not guarantee finding all
or even any soiutions. Despite this failing, Branin's method appears to be
the most reliable of the methods currently available. Unfortunately, to be
sure of finding all the solutions on a trajectory requires a large amount of
computation and so some balance must be found between efficiency and
guaranteed success in finding all zeros on a trajectory. We discuss this

further in section 6.4.
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6.3. The Deflation Technique

6.3.1. A New Formulation
In this section we consider a method of deflation similar to that
applied to polynomial equations. Having found a root, & , of a polynomial
p(a) , other roots can be found by solving the equation
| (@ /() = 0 .
The process is described in detail by Wilkinson [73]. Brown and Gearhardt

[14] extended this idea to solving (6.1.1).
Let r € ' and M(x,r) be a matrix on R" which is defined for all
x € Ur , where Ur is open in D cR" and » belongs to the closure of

U, - Then Brown and Gearhardt define M to be a deflation matrix if, for

any differentiable function f : D c B + R* such that f(r) = 0 and J(»r)
is nonsingular, we have -

Liming (7)o )l > 0

’L'-)OO

for any sequence {xi} such that

limx., = »
7:—)007'

and £ € Ur . Thus any iterative method which converges to a solution of
(6.3.1) _ M(x,r)f(x) = 0
will not converge to r . The process suggested by Brown and Gearhardt is

to find a root r , by some method, then with some deflation matrix M(zx,r) ,

to solve (6.3.1). If, in addition, M(x,r) is chosen to be nonsingular for

all z € R'™\{r} , then any solution of (6.3.1) will also be a solution of
(6.1.1) and, by choice of M(x,r) , will be different from r . The process

can be repeated to deflate out a number of roots rl,r2,..;,rk by solving

Mﬂx,rk)...M(x,rQ]M[x,rl]ij) =0
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and we consider this further in section 6.83.3.
Tﬁe most obvious choice of M(x,r) is I/|lx-r|| , for some norm |*|| on
Rn , and it i§ this form of deflation that we shall consider. Define
n:R"'>R by
n(x) = llz-z| ,

then the deflated function g : D\{r} ¢ R' + ' is defined by

_ f(x)
(6.3.2) | gx) = ")

Brown and Gearhardt suggested taking differences of g(x) to form an
estimate of ‘G(x) , the Jacobian of ’g(xi , and using a discrete version of
Newton's method to solve g(x) = 0 . Wé prefer to form G(x) explicitly in
terms of J(x) and to use Newtoﬁ's method to solve the deflated equation.

From (6.3.2) we have

T
R n'(x)
(6.3.3) G(.’L‘) = F]-(-.TE—)_ J(x)—f(:n) —n—(-i‘-j——— s

where we have written
dn .y -
7 (2) = n'(x)
We note that G(z) is defined only where n(x) # 0 and n'(x) is defined.
. ) L 7 % :
For example, if n(x) = Hx—r”2 = [(x-r) (z-r)]* , then G(x) is defined on
D\{r} . For n(x) = for“p , p=1,0, @G(x) 1is defined on D\Sb , where

51

{2 | x,-r. = 0 for some i}

and

5 = {z | lxi—ri|

. |xj—rj| = |le-r||, » for some Z,§ , © # g} .

These restrictions do not present any difficulties since, in practice, we
extend the definition of n'(x) so that it is defined for all x # r . We

demonstrate this extension for n(x) = ”x—r”p », p =1, for, together with

p = 2 , these are the norms which are most convenient to use in practice.
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(1) (1)

Writing n 1 (x) = Hx—r“i , then formally %% (x) 1is defined only on

Rn\Sl . However, n(l)(x) can be written

(6.3.4) By = f v (e-rs)
i1

where

7 Z
(6.3.5) Y. =
Lol if . < p. .
7 7
(l)
We can define ———(x) arbitrarily on Sl without affecting the results, so
we define it in the natural way by
(1)
an .
(6.3.6) 53:-(x) =Yg s
7
(L) ,
7 =1,2,...,m , and then ag—(x)_ is defined for all «x # » . Similarly,
writing n(m)(x) = Hx—rﬂm , then n(m)(x) can be written
(6.3.7) ' 1y = Z S ( r.)
where

1 if ¢ =429 and z. =Zr. ,

10 o
(6.3.8) §, =4-1 if 72 =129 and 2. <r, ,
7 70 Z0
0 if © # 1y
and 7, is the smallest < such that
|x.-r.| = |x.—r.|
i1 Jd d
(m) .
for 4 =1,2,...,m . Normally (x) is undefined if

Ix.—r.l = |x. -r. , however we make the formal definition
1 1 10 0
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(6.3.9) —a—”—.(x) =6,

(=)

2 =1,2,...,m , and then d (x) is defined for all x Ffr.
If A 1is a nonsingular matrix and x and y are vectors, then

4 + xyT is nonsingular if and only if 1 + yzh—lx # 0 and the Sherman-

Morrison formula states that

' -1 T,-1
(6.3.10) (A+xyT)"l'= At uTl—A—l— >
Ity 4 @
~ (see Householder [35]). Thué, from (6.3‘3),
. 1, T(x)” f(x) N Exg J(z) "t
(6.8.11) - G(x) ~ = n(x)|J(x) ~ n
@) - Lt
e “nlz)
Weiting q(x) = -J(z) “f(x) and
(6.3.12) . o(x) = ;n,(m) ,
| Hale)” s

some simple algebra using (6.3.2) and (6.3.11) shows thatb

—G(x)_lg(x‘) = q(x)o(x)

Therefore the Newton iteration

| -1
(6.3.13) @ =@ - Glx) g(xi)
for solving g(x) = 0 can be written
(6.3.14) = Tppg =% F q(xi)c(xi]

This represents an impfoved formulation of the deflation technique for we
see that Newton's method applied to the equations g(x) = 0 can be
implemented without the need to evaluate derivatives of g(x) directly.

Moreover, for some <% ,k Gﬂxi) may be nearly singular and whilst this may

be because J@xi] is nearly singular we see from (6.3.11) that it may also
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be because G(mi) is large. If this is the case then, in applying (6.3.13),

we have none of the difficulties involved in calculating G(xi]_lg(xi] . If

o(xi) is large then suitable damping can easily be applied to the step in

(6.3.14).

6.3.2. The Relation with Branin's Method

Our view of deflation follows from (6.3.14) which shows that the
resulting method is essentially Euler's method for integrating (6.1.2) with
a special choice of step-size and as such is similar to Branin's method. We
note that Eulér's metho& is only first‘ofder for (6.1.2) and so will be less
successful in following the solution trajectory than the higher order
methods previously discussed. Tﬁis is-borne out in practice, as we show in

section 6.4. Also we note that .O(xi) is often an unsuitable choice of

step-size in (6.3.14) and we demonstrate this below. First we prove two

lemmas.
LEMMA 6.3.1. Let n : B°' >R be defined by n(x) = Hm—rﬂp R

p=1,2 or », for some r . Assume that, for p =1 and « , n'(x) is

defined by (6.3.6) and (6.3.9) respectively. Then, for any x # r ,
| vt o) =
(6.3.15) . - n'(z) (z-r) = n(z) .

3 an _ ’ . . .
Proof. For p =1, ami (x) = Y; oo where Y; 1s given in (6.3.5).

Thus

)

r n
! - = -
n'(x)” (x-r) iZ£ Yi(xi r,

and from (6.3.4), the result follows.

For p=2, n'(x) = (z-r)/|lx-r|| and so (6.3.15) follows immediately.

Finally, for p = o , .ggl-(x) = Gi , where 6i is given in (6.3.8).
Z
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So ' ~

T 2 ‘
n'(z) (z-r) = ) 8, (x;-r,)
4=l

and the result follows from (6.3.7). a

We note that (6.3.15) is true for all norms of the form

1l

lell = (Tax)¥

for any positive definite matrix A or of the form

lell = (¥ Io'cilp]l/p ,

»

1=1
p = 1 , assuming that, in each case, 'n'(x) is defined so that it exists
for all « # r . We have restricted our attention to the cases p=1,2

and « since these are the pracfical choices.

LEMMA 6.3.2. Let f :DcCR'+R' and f(r) = f(#) = 0 where
r € Int(D) , P € Int(D) and »r # 7 . Let N,cD and Ny © D be convex
neighbourhoods of r and ¥ respectively such that Nr‘h N, is empty.

Suppose also that J(x) is Lipschitz continuous on N, and on N, and

that J(ac)_l exists and is bounded on both v, and N% . Finally, let
n(x) = Hx—r”p for p = 1,2 or e and suppose, for the cases p = 1,® ,
that n'(x) s defined by (6.3.6) and (6.3.9) respectively. Then with

o(z) defined in (6.3.12), it follows that

(i) <if {xi} 18 a sequence such that lim x, = r , then

lim ULni] =1
and
(i1) there exists a constant K such that for all x € Nr\{r} s

lo(x)| = K/|2-7| .

Proof. We assume that the norm used in the proof is the same norm that
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defines n(x) . From our.assumptions, n'(x) exists on N . Also n'(x)
is bounded on - D \{r} , in particular, for each x # r , |n'(x)|| = n if
p=1 and |n'(x)|| =1 if p = 2 or o . In addition n(x) is bounded

away from zero on Ny and J(z)™} is bounded on Ny Writing

n'(z) () ()
nlx) ?

oalx) =

it follows that there is a constant 'Ll such that

IMwlsLﬂﬂxw
for all =x € Nﬁ . The result now follows because o(x) = l/[l+a(x)] and
f(#) =0 .
To prove (1i) we define the function wu(x) by
u(z) = flx) + J(x)(x-r) .

Then, from [53, Theorem 3.2.5] and the Lipschitz continuity of J(x) on

Nr , there is a constant Lé > 0 such that, for all x ¢ Nr R

() || = Llle-2l® .

Also, from the assumptions, there is a constant K2 > 0 such that

o)™ = &,
for all x € Nr . Now o(x) can be written
0@ = VO 1 ) -Ie) (war) ]
= @) x u x)(x-r

_ n'(x)T(x-r) N n'(x)TJ(x)_lu(x)
n(x) n(x)

From Lemma 6.3.1 we have

n'@) @) _
n(x)

and so
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n'(x)TJ(x)—lu(x)

1 ; a(x) = ()

.

Because n(x) = |lxz-r|| and the way in which |n’(x)|| is bounded, it follows

that, for each x € Nr\{P} s

| 1+a(z)| < nKQLQHx—rH .

Since of(x) = (1+a(x))—l the result follows with X =v(nK2L2]_l . 0

Part (i) of Lemma 6.3.2 shows that,‘in the region of a solution»gthef
than - » , the method behaves like Newton's metth and tends to Newton's
method as iterates converge to the new zero. Part (ii) shows that, in the
region of r , the stepsize 0o(x) is large and, under the conditions of the
theorem, acts to force iterates away from f . Unfortunately, far from r o,
the signs of o(x)  and q(x)o(x) and, close to r , the magnitude of
é(m)c(m) are all unpredictabie.' This is in contrast to the scalar case
where, urder extra differentiability conditions, q(x)o(x) tends to a finite
limit as x > r . For the Qector case this unpredictability means that the
behaviour of the method is also ﬁnpredictable; This is borne out in practice
and the following example shows that the method can fail in simple cases.

Consider (6.1.1) with f(x) given by

3
uxl—Bxl—xQ

flx) =

x2—x
12

where we have written & = Erl,xQ T . This problem is taken from Brown and
Gearhardt's paper and has three zeros at (1,1), (0,0) and (-0.75,0.5625) .

Suppose the first zero found is at r = [l,l]T and we perform deflation with
n(x) given by n(x) = [xz-rl| . We define the function s(x) by
(6.3.16) s(x) = g(x)o(x)

and the set B by



1
> < 2 -
\ X l, .'122 X

~ 2

With eT = (1,1) and ef = (1,0) an equivalent definition of B is
T T
(6.3.17) B = {z | ey(x-r) > 0, & (z-r) <Of .

It is simple to show that, for all x € B, n(x) = 1 - o and so

n’(x)T = [0,-1] for « € B . Some straightforward algebra gives

2
[3+xl—uxl]xl

' _ 1
(6.3.18) qx) = - el X
ux +3m2+A(x)x
1 1 2
where A(z) = —lei + 3 + Qxl . Then it follows that, for all x € B ,-
M) (1-2,)
o(x) =

4 (e, -1) % (z, +1/2) (2, +3/2)

Now A(xz) < 0 for all x € B and it follows that o(z) < 0 for all

x € B . Therefore, from (6.3.16) and (6.3.18), for all «x € B ,

T _ olx) é _ o(x) :
e18(®) = - Kz [3+x1'”“1]x1 = Aoy (@1 (e r3)ay
and so, for all x € B ,
T
(6.3.19) eys(x) > 0 .
Similarly, for x € B ,
T _ olx) 4 3.2 '
e s(x) = - Z(a—ﬁ-{l+acl--L}acl+4.vcl+aacl+A(:Jc)acQ]

But, if x € B , Ly < 2 - %y S0, for x € B,

S (wtriedredion e oon)

T
e s(x) < - Ly

From the definition of A(x) we can now derive

(6.3.20) els(x) < - zg; (x-l)Q[uxiﬂsxfe] <0

for all z € B . Thus, if « € B , it follows from the definition in
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(6.3.17) and from (6.3.19) and (6.83.20) that x + s(x) € B . Therefore, if

xo € B , the iterates defined by (6.3.14) must all be in B and so can

never converge to another zero. This is in contrast to Branin's method
which is globally convergent for this problem, in that the solution

trajectory of (6.2.1) passes through all three zeros for any zy -

6.3.3. Multiple Deflation
All we have said can be applied to deflation with respect to several

zeros. Suppose we have found zeros TisPhsee sty of f(x) . Then, letting

nk(&)’z Hx—rk” , the deflated function gk(x) is given by

- flx)
g, (x) = . R
k nl(x),.,nk(x)
where g, : D\{rl,. ,rk} c Bn > Rt The Jécobian, Gk(m) , of gk(x) is
given by
B (z)-f(z) 5 ikl
G, (x) = J(x)-f(x) ), -
k nl(x)...nk(x), i) nj(m)

which is the generalisation of (6.3.3). Now using formula (6.3.10), simple

algebra gives

-Gk(x)‘lgk(x) = q@)o, (2)
.where

1

SACY (@)

l+q(x)T Y

=1 nJ( )

Thus, in the general case, (6.3.14) becomes

IR IR CHLACH
Again with this formulation, it is often easy to overcome the problem of

Gk(x) being almost singular. This is detected if Ok(x) is large and
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again, suitable damping can easily be applied.

-

6.4. Numerical Results

In this section we describe some numerical tests performed on the
methods of sections 6.2 and 6.3. The implementation of Branin's method
(Method 1) is essentially an extension of the method NEW/2 described in
Chapter 4. Changes were included, first to step over a solution and follow
the trajectory away from the root. On finding a root, to step over and find
a new starting point, the equation

f@) = D) - 107

was solved, where k ~is the number of roots found so far. Secondly, thé
sign of - Det(J(x)) was monitored so fhat the method was aware of passing a
turning point. The deflation teéhnique (Methodv2) was implemented as
described in section 6.3 with the 1, 2 and norms. Since there was no
appreciable difference in the résults; the o« norm, beiﬁg the éimplest to

evaluate, was used in the experiments. Given Ty o the method based upon

that of Brown and Gearhardt can be written as

(i) find a root r, by Newton's method,

(ii) deflate with respect to »r

1 and begin again, using <«

0

as starting guess, to find a. further root r,

(iii) deflate by r, and repeat until a termination criterion

is satisfied.
Also, for both methods, iterations were continued until
(a) x. became too large and a test of the form Hmi—cH < A was

violated, where ¢ and A were function dependent, e.g.,

cT = (0,0) and A = 10 for function 3 below,



126

(b) the required number of zeros were found, (for each function
the ?umber of zeros required was preset - the values are
given below as 2zmax ), or
(c) the maximum number of iterations was exceeded, (if a method
took more than 35 function evaluations to find one zero then
iterations were terminated).
The methods were tested on the follbwing eight functions, chosen because
they were.known to have more than one zero. In each case the methods were
initiated with ten starting guesses which were chosen at random from a
region surrounding the zeros of interest. The first four functions were

described in Brown and Gearhardt [14].

.8
1. fl %xl - Smlr— Ty s

_ 2
Fp=@y ~ %

This system has three zeros and zmax = 3 .

2 .
2. fl (xlfleﬂxl—31nm2) s
f2 = (cosx2—xl)(x2fcosxl) .
This function has four zeros in the unit quaré with others elsewhere. gzmax

was set equal to U .

3. frem®my -t

H

2 2
fé‘ ©y + %, - L ]

which has U4 zeros, gzmax = 4 .

1
=

_ 2 2
I fy s et 2w - b,

. 2
f2 =z + x, + zq - 8 ,

(xl—l)2 + (2x2—v5)2 + (x3—5]2 T

This function has two roots and zmax = 2 .

5
W
"
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5. Problem 1 of section 2.5, which has several zeros, 2zmax = 2 .

6. Problem 3 of section 2.5, which has two close zeros in the positive
quadrant and others elsewhere, zmax = 2

7. A function from Chao, Liu and Pan [16],

fi = x tx, t Xy tx, - 1,

f2 =X, tx, -xgtxy - 3,

. 2 2 2
f3 = xy + x, + Zq +v:1:4 -4

~
=
|
"
'_‘l
l_l
| S——
N
+
8
N
+
w
+
8
i
=

X

which has two zeros so . zmax = 2 .

8. fi =X -x, +tx

3 5 1
fi, =x - m2 -x, +tx
TR T 3 5 °?

2
>

+

fs = @5 - = + (5w,
and this function has four zeroé, zﬁax =44 .

The results of the numerical tests are given in Table 6.1 where, for
each method, the first line gives the number of zeros.found in the ten runs
and the second line gives the number of equivalent function evaluations per
zero, where one Jacobian evaluation is considered as #n equivalent function
evaluations. This measure of the amount of work done was used since Method
1 attempts to improve efficiency by evaluating J(x) only when necessary
and not necessarily each time f(x) is evaluated. The criterion that

iterations be terminated at a zero was that ”f@xi) -6 .

|, <10
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) TABLE 6.1
METHOD ‘ FUNCTION
1 2 3 m 5 6 7 8
1 ‘23 31 29 17 20 17 20 2n
49 52 50 6l 37 53 60 129
2 10 28 17 13 12 12 11 1
oy 22 19 39 31 30 41 7
3 20 30 29 15 18 17 18 15
22 31 28 52 23 10 55 82

The results show, as predicted, that Method 1 is more successful in
finding zeros and,lin fact, found 79% of thé maximum possible whereas
Method 2 found only 50%. However, Method 2 was considerably more efficient
in terms of the amount of work expended per zero. This was largely due to
the fact that Method 1 follows a trajectory in both directions and often
requires_several more iterafions than Method 2 before terminating because
of criterion (a) above.

In order to attempt a balance, a new method was written (Method 3)
which followed the solutions of (6.1.2) like Method 1 but ohly as accurately

as Method 2. The basic iteration is therefore

_ -1
(6.4.1) Toig =T - J(mi) f@ri)lok(xi)lﬁ
where 6 is as described in equation (6.2.2). Notice that the presence of

the term Iok@xi)[ in (6.4.1) precludes the possibility of converging again

to a known simple root. The results for this method are also given in
Table 6.1 and show it to be a possible compromise between Methdds‘l and 2.
Methed 3 found 70% of the possible zeros but was less efficient than Method
2, pfimarily because, like Method 1, it follows trajectories in both
direcfions. Note that Method. 3 represents a simple modification of the

method of Brown and Gearhardt and gives a significant improvement to the
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performance of that method. For practical problems, the actual choicg of
method would erend upon how one balances computation cost with the need to
find as many zeros as possible.

Finally, we note that we also used the method of section 5.2 to follow
the solution of (6.2.1) with H(x,t) given by (6.2.2). (This was the
motivation for the work of Menzel and Schwetlick [49].) The method was
modified to give second order convergence to solutions of (6.1.1) however,
since the method is designed to'follow_a solution trajectory with some
accuracy and sihce this is not reqﬁired in this application, the method did
not give any improvement over our implementation of Branin's method, which

did not demand very high accuracy in the region of a turning point.
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