
ADDENDUM 

I thank the examiners for drawing two obscuri ties in the thesi s 

to my attention. 

In the proo f of Theorem 1.4 (see page 11, line -4), for x > 0 , 

the Turing machine W(a,r,x) attempts to calculate 

min {y cp (x) S y, W(a,r,x-1) S y, and a 

\Ji S x <±> . (x) S y or <±> . (x) > <P (x,y)} 
i i r 

in the obvious way. If this calculation should diverge, there is no 

problem in the proof, for then it is trivially true that 

and \Ji S x <±> . (x) S W(a,r,x) 

W(a,r,x) <P (x) a 

i 

In the proof of Theorem 5.7 (see page 65, line -7), the 

algorithm for the Turing machine W(i,t,n,x) is stated too briefly. 

The algorithm intended is : 

For X S n 1 

If X > n 1 

calculate and output <P . (x) . 
i 

then begin cycling between calculating <±> . (x) 
i 

I 

As soon as the calculation for cpt(x) converges, 

test (a) <±> i (x) > <P t (x) . As soon as the calculation for <±> . (x) 
i 

or for <±> (x) t converges, test (b) <±> . (x) > <±> (x) . 
i t If a negative 

result is obtained for test (a) or for test (b), then at once calc ulate 

and output <P . (x) • 
i 

If positive results are obtained for both tests 

(a) and (b), then output O . 

With this expanded version of the algorithm, the steps in the 

proof of Theorem 5.7 should be quite clear. In particular, note tha t 

if <Pt (x) diverges, then W(i,t,n,x) = q). (x) 
i 
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ABSTRACT 

Computational complexity measures and indexings of algorithms 

are considered within a formal axiomatic system S. S is meant to 

mimic the formal system within which the study of computational 

complexity is (implicitly) carried out - so, for example, S can be 

a conventional axiomatization of set theory. 

The main thrust of the thesis is that for many natural 

questions about the complexity of algorithms, what can be formally 

proved falls unpleasantly short of what is actually true. 

We consider abstract Blum measures over indexings of the 

partial recursive functions. Our results fall into three categories. 

First we consider complexity questions involving some arbitrary 

given partial recursive function f . Associated with f will be an 

algorithm used to define f . Before any other algorithm can be 

admitted as a means of calculating f , it must be proved equivalent 

to our defining algorithm for f. The requirement of being provably 

equivalent defines an equivalence relation on the set of all algorithms. 

We call the equivalence classes provable equivalence classes. We show 

that for natural complexity questions about f, what can be proved 

about f depends on the provable equivalence class to which the 

defining alg9rithm for f belongs. 

Having had our attention focussed on provable equivalence 

classes, we next investigate the relationship between provable 

equivalence and the complexity of algorithms. This relationship is 

complex and not readily summarized, but it is closely involved with 



provable containment between the domains over which algorithms are 

defined. A general conclusion we can draw is that as the difference 

between the complexities of algorithms increases, what can be proved 

about the relationship between the algorithms decreases. 

Finally, we consider provable analogues of complexity classes. 

Two possible definitions for provable complexity classes are proposed, 

based on different bounding conditions - (1) the usual almost-

everywhere bounding used to define complexity classes, and (2) almost-

everywhere bounding with the additional requirement that an explicit 

starting-point for the bounding be given. Various results are 

developed relating the two types of provable complexity classes to 

each other and to ordinary complexity classes. In particular, we show 

that for infinitely many recursive functions f the provable 

complexity, class of f defined using bounding conditions (1) is equal 

to the ordinary complexity class of f and is strictly larger than 

the provable complexity class of f defined using bounding conditions 

( 2) • 
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INTRODUCTION 

The study of computational complexity is carried out within a 

formal axiomatic system. All work done should, in principle, be able 

to be encoded into a formal system, such as a conventional axiomatization 

of set theory. 

The observation that a computer scientist studying the behaviour 

of algorithms is dealing with formally provable properties opens the 

door to a wealth of new insights into the nature of problems in 

computational complexity theory. As Hartmanis says in [9], "the results 

about complexity of computations change quite radically if we consider 

only properties of computations which can be proven formally". 

There are several motivations behind work on provable conditions 

in computational complexity. First, there is the growing interest in 

computer science in proving properties of programs. Then, our continued 

failure to solve certain outstanding problems in complexity theory -

such as the famous P =NP? problem - has raised the suspicion that 

the answers to such problems may be independent of the axioms of set 

theory. ( See [ 11] ) Third, a precedent for the study of provable 

conditions in complexity theory has been set by earlier studies of 

provable conditions in the theory of recursive functions. Finally, 

the intimate connection between formal logical systems and computation, 

the ability to code a formal system into a machine to generate theorems, 

makes the study of the behaviour of algorithms an obvious subject for 

an enquiry into the limitations of what can be formally proved. 
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we investigate provable conditions in computational complexity 

theory by introducing a formal system S of sufficient power to allow 

encoding of all the standard concepts and reasoning used in the study of 

computational complexity . S is to mimic the formal system within which 

a computer scientist studying algorithms works . So, for example, S 

could be a conventional axiomatization of set theory. 

We can now study how results in computational complexity change 

when we demand that certain conditions be formally provable in S; we 

can investigate discrepancies between what is true about algorithms and 

what is formally provable about them in S . The conclusions we draw 

will apply directly to the work done by the computer scientist studying 

algorithms . 

The results in this thesis are not restricted to any particular 

complexity measures . We deal with partial recursive functions on the 

natural numbers :N and with abstract Blum measures of complexity . 

In Chapter 1 we set up the preliminaries . We describe the 

formal system S , establish definitions and terminology , and present 

a number of preliminary theorems which will be useful in proving our 

later results. 

Chapter 2 is a survey of the work that has already been done 

on provable conditions in computational complexity theory . 

In Chapters 3,4 and 5 we present our results . Each chapter has 

an introduction which motivates the work of that chapter and previews 

the results obtained . 

Chapter 3 concerns the problem of establishing complexity 

properties for some (arbitrary) given partial recursive function f . 

-
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We consider three natural questions involving the complexity properties 

of f, and we show in each case that what can be proved about f 

depends on the algorithm initially used to define f . In fact, for 

each complexity property considered, we can explicitly construct possible 

defining algorithms for f using which it cannot be proved that f 

has the property - even when f does have the property. 

The work in Chapter 3 makes great use of the notion of provable 

equivalence of algorithms. Two algorithms are said to be provably 

equivalent if they can be proved to be equivalent. Algorithms that 

are provably equivalent are related in their complexity. In Chapter 4 

we develop a number of results relating provable equivalence to the 

computational complexity of algorithms. 

In Chapter 5 we consider provable analogues of complexity classes. 

Two possible definitions for provable complexity classes are proposed, 

based on different bounding conditions - (1) the usual almost-everywhere 

bounding used to define complexity classes, and (2) almost-everywhere 

bounding with the additional requirement that an explicit starting-

point for the bounding be given. We develop various results relating 

the two types of provable complexity classes to each other and to 

ordinary complexity classes. In particular, we show that for infinitely 

many recursive functions f the provable complexity class of f defined 

using bounding conditions (1) is equal to the ordinary complexity class 

of f and is strictly larger than the provable complexity class of 

f defined using bounding conditions (2). 

Except in Chapter 2, where we adopt a special convention to aid 

reference, results are numbered consecutively in each chapter. 

Theorem 3.4 denotes the fourth result in Chapter 3. 

Thus, 
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Our terminology for partial recursive functions follows that 

of [15] . Our notation and terminology for complexity measures follow 

that of [3] and [10] . 



1 PRELIMINARIES 

In this chapter we establish the basic definitions and terminology, 

and present some preliminary theorems. 

l.l THE FORMAL SYSTEM S 

The idea behind the definition of S is to make S sufficiently 

powerful that all of the standard concepts and reasoning used in the 

study of computational complexity can be reproduced in S. It turns 

out that there is no need to become involved in the details of the 

formal description of S , and so we shall not dwell on them. 

Let S be a formal axiomatic system containing a conventional 

axiomatization of Elementary Number Theory (ENT) and en,.ough of the power 

of axiomatic set theory to enable formalization of straightforward 

mathematical argument 1 • We further assume that S is sound for ENT, 

that is, there is no formula which is a theorem of S and which is false 

under the standard interpretation of ENT. S is to be fixed but 

arbitrary within these constraints. 

In the usual way, through number-theoretic predicates, we can 

encode into S any of the standard enumerations of the Turing machines, 

and can carry out all of the standard reasoning about them2 • Then, since 

S is sound for ENT, any theorem of S which is (under our intended 

interpretation) a statement about Turing machines will also be true. 

1 

2 

An example of such a system is first-order Peano Arithmetic. By ENT 
we mean the theory of number-theoretic predicates expressible in first-
order arithmetic. 

This encoding process is explained in most texts on logic and 
recursiveness. See, for example, [4] or [12]. 
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S will have its own formal language. Rather than concern 

ourselves with the details of such a language, we shall take advantage 

of the intended interpretation of it, and enclose in quotation marks 

those informal statements which are to be understood as having been 

written out in the formal language of S. Statements about partial 

recursive functions will appear in S as statements about Turing 

machines. Thus, when we write "Vx f(x) = x" , it must be understood 

that f is being referred to in S via a specific Turing machine 

representation. 

We use the usual notation to denote theorems of S. Thus, 

f- 11 Vx f(x) = x" indicates that the statement in quotation marks, when 

translated into the formal language of S, is a theorem of S. 

Conversely, f-/- 11 Vx f (x) = x" indicates that the statem~ent is not a 

theorem of S. 

Finally, note that, since S is a formal axiomatic system, the 

theorems of S are recursively enumerable. It follows that the theorems 

of S can be generated primitive recursively. (See [15] . ) 

1.2 BLUM MEASURES 

An abstract Blum measure consists of two parts : an acceptable 

Godel-numbering (which indexes the partial recursive functions) and 

a Blum measure ¢ for ~. (See [3].) For the usual reasoning about 

and ¢ to be reproducible in S , the defining properties of and 

¢ must be theorems of S, in which case we call a provably 

acceptable Godel-numbering and ¢ a provable Blum measure for . In 

this section we present a proper definition of a provably acceptable 

Godel-numbering and a provable Blum measure. 
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Throughout the following, let { M. I i E ~ } be some standa rd 
l 

enumeration of the Turing machines with some appropriate input-output 

conventions. For convenience, we use M. 
l 

to denote both the 

machine and the function of one variable that it defines. 

PROVABLY ACCEPTABLE GODEL-NUMBERING 

i'th 

Let be a partial recursive function of two variables. For 

each i , we write the function AX ~{i,x) as ~ - . 
l 

Then defines 

an effective enumeration of a set {~ . I i EN} 
l 

of partial recursive 

functions of one variable. We extend this to functions of more than 

one variable by associating with a pairing f~nction, that is, a 

recursive bijection <,> 

explicit reference to <,> 

write ~- {<<x,y>,z>) 
l 

as 

:NXN-+N. By convention, we avoid 

and write ~ - {<x,y>) 
l 

~ - (x,y,z) 
l 

and so on. 

as ~ - {x,y) 
~l 

We 

We can now present the definition of an acceptable Godel-numbering 

as follows: 

DEFINITION is an acceptable G~del-numbering if 

(i) Vi 3j M. = ~. , 
l J 

{ii) for some recursive function s , 

Vi Vx Vy ~i (x,y) = ~s(i,x) {y) , 

(iii) for some index v, 

Vi Vx (i,x) = ~- (x) 
V l 

In the definition, (i) states that enumerates all the partial 

recursive functions, (ii) states that Kleene's Iteration Theorem [12] 

holds for , and (iii) states that there is a universal-machine index 

for ~ . For a full discussion of the definition, see [14]. 
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4 

To be able to reproduce in S all the usual reasoning about the 

~- 's , the basic properties of must be theorems of S. For 
i 

purposes of encoding into S, will be represented by a particular 

Turing machine for calculating it. Similarly for < , > . 

We now define a provable analogue of an acceptable Godel-

numbering. 

DEFINITION is a provably acceptable Godel-numbering if 

(i) 1- "<,> is a total, one-one, onto function", 

(ii) 'tf i J ]0 

I- "M. = . II 
i J , 

(iii) for some recursive function s 

1- "s is a total function and 

\.Ii" \.IX 'tfy ( ) ( ) 11 v v ~i x,y = ~s(i,x) y ' 

(iv) for some index v 

1- "\Ji 'tfx (i ,x) = ~. (x) 11 

V i 

The conditions of the definition correspond to what we would 

establish in determining that is an acceptable Godel-numbering. 

(i) We can prove that <,> is a pairing function. 

(ii) Given any Turing machine M. , 
i 

for which we can prove that ~-] 

there is an index J 

calculates the same 

partial function as M. 
i 

(Actually, we would find a 

uniform procedure to produce ~-] 
not needed. See Theorem 1.1.) 

from M. , but that is 
l 

(iii) For some function s , we can show that the Iteration 

Theorem holds with s . 
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(iv) There is an index v which we can show to be a universal-

machine index. 

PROVABLE BLUM MEASURE 

Let be a provably acceptable Godel-numbering. Let P be 

a collection {P. 
l 

i E :N} of partial recursive functions. 

DEFINITION 

(i) 

(ii) 

P is a Blum measure for if 

for some index e , ~e is a recursive function and 

t/i t/x Vn (i,x,n) = 1 P . (x) = n , 
e i 

Vi domain ~-
l 

domain cp _ 
l 

In the definition, (i) says that the relation cp _(x) =n 
l .. 

lS 

recursive in i,x,n , and (ii) says that ~-l and P 
l 

are defined on 

precisely the same set of inputs. For a discussion of the definition, 

see [ 3] . 

To be able to reproduce in S all the usual reasoning about the 

measure cp , the basic properties of cp must be theorems of S. 

We now define a provable analogue of a Blum measure. 

DEFINITION P is a provable Blum measure for if for some index e 

(i) Vi V X t/n (i,x,n) = 1 cp. (x) = n e l ' 

(ii) I- II ~ is a total function" e ' 

(iii) I- II Vi tj X ( 3y ~ . (x) = y) ( 3n (i, x ,n) = 1) II . 
l e 
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Let P be a provable Blum measure for ~ . Fr om the i ndex 

e and the Turing mach ine representing in S , we can easily 

construc t a Turing machine U such that 

Vi Vx U(i,x) = min {n I (i,x,n) e 
l } 

and the relationship between U and ~e can be established in s . 

By part (i) of the definition, Vi Vx U(i,x) = P . (x) 
l 

Thus, U 

effectively indexes the p • IS • 
l 

We shall consider the P . 's 
l 

as being 

encoded into S via U. 

Given that the P . 's are being represented in S by a Turing 
l 

machine U, we can rewrite the definition of a provable Blum measure 

as : 

(i), (ii) for some index e 

(iii) 

1- 11
~ is a total function and 

e 

Vi Vx Vn (i,x,n) = 1 ¢ . (x) = e i 

1- 11 V · d · m doma i· n P . 11 
i omain 't' . = 

l l 

.. 

n II 
I 

It can now be seen that the conditions of the definition of a 

provable Blum measure correspond to what we would establish in determining 

that P is a Blum measure. 

(i) '(ii) We have an algorithm (i,x,n) e for testing whether 

(iii) 

P. (x) = n, and we can prove that the algorithm is total. 
l 

We can show that for any index i , ~ - a nd P are 
l l 

defined on precise l y the s ame inputs . 

......... 
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EXAMPLE 

We may define a partial recursive function M of two variables 

so that \Ji Vx M(i,x) = M. (x) 
i 

Let <,> be some simple pairing 

function. M with <,> will form an acceptable Godel-numbering. Let 

M and < , > be encoded into S via some straightforward Turing machine 

representations. Then, since all of the usual reasoning about Turing 

machines can be reproduced in S , the basic properties of M and <,> 

will be theorems of S , and thus they will form a provably acceptable 

Godel-numbering. 

Consider the TIME and TAPE measures on the Turing machines. Both 

will be Blum measures for M. All of the usual reasoning about TIME 

and TAPE requirements can be reproduced in S. Thus, the basic 

properties of TIME and TAPE will be theorems of S , and both TIME and 

TAPE will be provable Blum measures for M. 

Indeed, for any of the usual acceptable Godel-numberings and 

Blum measures, the reasoning used to establish their defining properties 

will be reproducible in S , and so they will be provably acceptable 

Godel-numberings and provable Blum measures. 

Throughout the rest of this thesis, let (j) be a fixed but 

arbitrary provably acceptable Godel-numbering, and let be a fixed 

but arbitrary provable Blum measure for (j) . 

1.3 VARIOUS DEFINITIONS 

DEFINITIONS 

(i) (j) . 
i 

is provably equivalent to (j) . , 
J 

written 

If 

(j) , (j) , t if f- 11 4) . = (j) , 11 
• 

i J l J 

(j) . 
i 

is not provably equivalent to (j) . , we write 
J 

(j) , * (j) . • 
i J 
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(ii) The provable equivalence class of (p. lS the set 
l 

algorithms { (p . I (p . (p.} . 
J J l 

(iii) M. is provably total if I- "M . lS total". 
l l 

Similarly, (p. is provably total if I- II (p • is total". 
l l 

(iv) f is a p-function jf there is a provably total 

that calculates f . 

of 

M. 
l 

If f(x) is defined, we say that f(x) converges and we write 

f(x)4- . If f(x) is not defined, we say that f(x) diverges and we 

write f(x)t . 

We follow the usual convention for interpreting inequalities 

between partial recursive functions - for example, we write f(x) S g(x) 

if either f(x)4- and g (x) 4- and f(x) S g(x) or g(x)t . 

When defining algorithms, we adopt the convention that the 

maximum of the empty set is zero. 

Almost everywhere x (a.e. x) signifies 3y ~x > y. Infinitely 

often x (i.o. x) signifies ~y 3x > y . We shall often write a.e. 

or i.o. when the associated variable is clear from the context. 

We define the complexity class of f (under the measure ~ ) to 

be the class 

C [ f] = { g I 3 i 4) . = g and ~. ( x) < f ( x) a . e. x} . 
l l 

It is usual to require in the definition of C[f] that f and 

g be recursive. However, it is convenient for the statement of our 
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results in Chapter 5 to allow f and g to be partial recursive. 

We will discuss the matter further in Chapter 5. Note that all of our 

results involving C[f] will continue to hold if the class is restricted 

to recursive functions. 

DEFINITIONS 

(i) We say that (j) . lS r-optimal a.e. (i.o.) ' or that (j) . 
l l 

is optimal a.e. (i.o.) modulo r I if 

'vj (j) . = (j) . =) cp. (x) < r(x,4), (x)) a.e. X ( i. 0. x) 
J l l J 

(ii) We say that (j) . 
l 

has an r speed-up a.e. if 

3j (j) . (j) . and r(x,<l)_(x)) < cp. (x) a.e . X 
J l J l 

We noted earlier that TAPE and TIME are provable Blum measures 

for the Turing machine enumeration M. We shall denote by 

the TAPE measure function associated with the Turing machine 

Similarly for TIME. 
l 

TAPE. 
l 

3 M .• 
l 

It will be a convenient shorthand, when the Turing machine 

representing a function f is clear from the context, to let TAPE f(x) 

denote the number of tape squares used by that Turing machine in 

calculating f(x) . 

3 The details of the TAPE measure can be formulated in various ways. 
These details are generally not important to our discussions, and 
we leave it to the reader to fill them in. 



10 

1 .4 SOME USEFUL RESULTS 

It is a consequence of our definitions that the proofs of the 

standard results for acceptable Godel-numberings and Blum measures can 

be reproduced in S for provably acceptable Godel-numberings and 

provable Blum measures. The following theorems make use of this fact. 

The Isomorphism Theorem for acceptable Godel-numberings [14] 

can be reproduced in S. We shall use this result in the following 

form: 

THEOREM 1.1 For some recursive function y 

1- "y is a total, one-one, onto function and 

'vi M." • cpy(i) = i 

Actually, Theorem 1.1 can serve as an alternative definition of 

a provably acceptable G~del-numbering. It is easy to show that if 

Theorem 1.1 holds for a partial recursive function cp , then cp 

(together with some simple pairing function) will form a provably 

acceptable G~del-numbering. The proof starts with the fact that the 

Turing machine enumeration M is a provably acceptable Godel-numbering, 

and then uses the relationship between M and cp to establish the 

requisite properties for cp. 

Any of the various forms of the Recursion Theorem [15] can be 

reproduced in S. We shall use this result in the following form: 

THEOREM 1.2 For every partial recursive function f , there is a 

recursive function m such that 
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1-- "m is a total function and 

Vi Vr tp . m{i ,r) = (p f { . { . ) ) " • i,r,m i,r 

Kleene's Iteration Theorem for Turing machines [12] can be 

reproduced in S . So we have : 

THEOREM 1.3 Let W{i,j,x) be a Turing machine. Then for some 

recursive function w 

1--"w is a total function and 

W{i,j,x) = M {' .) (x)" . w i,J 

The Gap Theorem [10] can be reproduced in S. Our version of 

this result incorporates details that are not made explicit in the 

usual proofs, and so we sketch out a proof of our own. 

THEOREM 1.4 For some recursive function a 

1-- "a is a total function and Va Vr 

(i) is monotonically . . and (p a(a,r) 
increasing 

Vx tp a (a ,r) (x) > tp (x) 
a I 

(ii) Vi Vx > i cp. (x) < tp a {a ,r) (x) or - i 

cp. (x) > tp (x,tp ( )(x)) i r a a,r 

(iii) if tpa and tpr are total functions, then 

a(a,r) is a total function" . 

PROOF Define a Turing machine W{a,r,x) by 

1. W(a,r,O) = 4) { 0) ; a 

2. For X > 0 W{a,r,x) = min {y I 4) {x) < y a - ' 

W{a,r,x-1) < y and Vi < X cp . {x) < y or cp . {x) > tp r{x,y)} I -i i 

'* See th e Adel end"' m. 
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It is now a straightforward exercise to establish that 

(*) 'ifa 'if r 

(i) W(a,r,x) is monotonically increasing in x and 

(ii) 

'if X W(a,r,x) ::: (j) (x) 
a I 

'ifi 'ifx ::: i ~ - (x) < W(a,r,x) or 
i 

~- (x) > (j) (x,W(a,r,x)) 
i r 

(iii) if (j) and (j) are total functions, then a r 

W(a,r,x)+ for every x. 

The arguments used to establish (*) will trans la te easily into 

proofs in S. Thus, the statement of (*) will be a theorem of S. 

By Theorem 1.3, for some recursive function w 

1-"w is a total function and 

'ifa 'ifr 'tlx W(a,r,x) = M (x)" . w(a,r) 

Let a= y O w, where y is as in Theorem 1.1. Then 

1- "a is a total function and 

W(a,r,x) = (j) ( )(x)". a a,r 

This, combined with the statement of (*) as a theorem of S , establishes 

Theorem 1.4. D 

The next theorem shows a relationship between the TAPE measure 

and 

THEOREM 1.5 Let y be as in Theorem 1.1. Then for some recursive 

function h 
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1- "h is a tota l function, 

h(x,y) is monotonically increasing in y , and 

Define h by 

TAPEi (x) < h(x, <f>y(i) (x)) 

<f>y (i) (x) < h (x,TAPEi (x)) 11 

and 

h(x,y) = max {TAPE. (x) , 4 (') (x) IO< i < x, and 
i y i 

TAPE . { X) s y or <p ( . ) ( X) < y} . 
i y i 

Then, for a straightforward Turing machine representation of h , 

it will be easy to prove in S that h has the properties claimed 

for it. The proofs in S will be simple translations of the standard 

arguments that we would use. D 

It is perhaps worth noting that {4y{i) i E N} is a provable 

Blum measure for M ,_ and that the proof above is adapted from the 

proof that any two Blum measures are recursively related. (See [10] . ) 

Our next theorem reproduces in S another standard result. 

THEOREM 1.6 For some recursive function u 

PROOF 

1- "u is a total function and 

Vi <Pu(i) = <f> • II 
i 

Recall from Section 1.2 the Turing machine U, 

U(i,x) min {n I <P {i,x,n) = l} 
e 

<p . (x) • 
i 

By Theorem 1.3, for some recursive function w 
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I- "w is a total function and 

'r/i 'r/x U(i,x) = Mw(i) (x)" . 

Let u y 0 w , where y is as in Theorem 1.1. Then 

I- "u is a total function and 

'r/ i 'r/x U(i,x) = <Pu(i)(x)" . 

Since the cp _ 's are encoded into S via U, we have 
i 

I- "'r/i <Pu(i) = <p • II 
i 

The following result was also observed in [5]. 

PROPOSITION 1.7 If g is a primitive recursive function, then g 

is a p-function. 

PROOF From a primitive recursive schema for g, we can construct 

D 

a Turing machine M. 
i 

for g . A little consideration of the possible 

steps in a primitive recursive schema and of their translation into a 

Turing machine description makes it clear that M. 
i 

is provably total. 

We shall often make implicit use of this result by noting that 

a primitive recursive process must be provably total. 

We observed in Section 1 . 1 that any theorem of S which is 

(under our intended interpretation) a statement about Turing machines 

will be true. Since algorithms <P . ' i 
measure functions 4' . 

i 
and 

all other partial recursive functions are being represented in S by 

D 

Turing machines, it follows that any theorem of S which is a statement 

about these objects will also be true. We shall often use this fact 

in our proofs. 

......... 



1 5 

2 SURVEY OF THE FIELD 

In this chapter we survey the papers that have already been 

published on prova ble conditions in computational complexity theory. 

Although the setting-up in these papers of the formal system, the 

indexing of the algorithms and the complexity measure may differ to 

some degree from ours, the basic approach remains the same, and we 

shall translate the major results of these papers into our own notation. 

As an aid to reference, we shall number the translated theorems as 

they appear in the original papers. 

The study of provable conditions in the theory of computation 

began in the 1950's. Fischer in his own paper on provable recursive 

functions [5] reviews the work done on provable conditiuns in recursive 

function theory. In the 1970's, provable conditions were introduced 

into the study of computational complexity. 

However, despite the promising results achieved and the 

contention of both Hartrnanis [9] and Young [20] that the area deserves 

a thorough investigation, relatively little work has been done on 

provable conditions in computational complexity. We have found only 

five papers in this area, and all were published between 1976 and 1979. 

We survey these papers below. 

Gordon [7] considered complexity classes of p-functions. He 

showed 

THEOREM 1 If f is a p-function and g is recursive with g E C[ f ] 

then g is a p-function. 
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THEOREM 2 There is a recursive function t such that for any 

recursive function g , g is a p - function iff g E C[t] 

A simple observation from Theorem 2 is that if a function is too 

complex, then we cannot prove that it is total. Our own Theorem 4 .11 

is a generalization of Theorem 2 . 

Young (20] produced some surprising results about optimization 

and speed-up among provably equivalent algorithms . 

THEOREM 2 

(i) 

(ii) 

(iii) 

For some p-functions CT and r, Vi 

<P (') =(p., CT i i 

for any 

< r(x,P. (x)) 
i 

<P, <P (') J CT i 

a.e. x , 

<pCT{i) (x) S r(x,Pj {x)) a.e. x . 

Basically, (iii) says that <PCT (i) is a.e. r-optimal within 

its provable equivalence class. Thus, for some p-function r, given 

any algorithm <P. 
i 

for a partial recursive function f , we can 

effectively construct another algorithm <P for f which is a.e. 
CT(i) 

r-optimal within its provable equivalence class. 

THEOREM 3 Let <Pr be provably total. For any provably total 

we can effec~ively construct a <P . 
J 

such that 

1 <P . , 
i 

1 In Young's statement of the theorem, <P and <P . are allowed to r i 

be recursive. However, we can see the proof working only when 
and <P . are provably total. 

i 



(i) <P . 
J 

<P . 
l 
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(ii) for any <Ph~ <P j , we can effectively construct a 

such that 

Thus, 

I- II <P 
k 

if 

also calculates 

f is 

f and 

and a.e . x" . 

the function calculated by <P. , then 
l 

within the provable equivalence class 

<P . 
J 

of <P . 
J 

every algorithm has an effectively constructible <P speed-up a.e. r 

Furthermore, the speed-up relationship can be proved. 

The next theorem shows that an algorithm may be optimal 

(modulo some recursive function) without our being able to prove so. 

THEOREM 6 

(i) 

(ii) 

There exist recursive r and cp. such that 
l 

<P. 
l 

is 

for any 

r-optimal a.e. 

cp. = q). 
J l 

f/- "cp. is r-optimal a.e." . 
J 

Young gave another result, Theorem 5, about functions having 

algorithms that cannot be proved to be optimal. However, the proof 

is flawed. Our own Theorem 3.3 is a strengthening of Theorem 5. 

The other three papers on provable conditions in computational 

complexity de'al with the TIME and TAPE measures on the Turing 

machines. 

This work is done in the context of Turing machines as recognizers 

of formal languages. Inputs are finite strings from some alphabet. The 
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halting states of a Turing machine are either ACCEPT or REJECT. 

The language recognized by M. 
l 

is the set L (M.) 
l 

of all inputs on 

which M. finally enters the state ACCEPT. 
l 

For any integer x , 

TIME. (x) 
l 

is the maximum number of machine steps used by M. 
l 

on any 

input string of length x . Similarly for TAPE . 

Naturally, the famous P NP? problem 2 has received 

attention. 

Baker [l] showed that the addition of various provable conditions 

to the definitions of P and NP does not simplify the P = NP 

question. 

Hartmanis and Hopcroft [11] considered a relativized version of 

the P =NP? problem. Let PA denote the set of all languages 

recognized in polynomial-time by deterministic Turing machines operating 

with the set A as an oracle, and let NPA denote the set of all 

languages recognized in polynomial-time by non-deterministic Turing 

machines operating with the set A as an oracle. 

THEOREM We can effectively construct a Turing machine M. such 
l 

that L (M.) 
l 

is the empty set and "P 
L (M.) 

l 
L (M.) 

NP l II is independent 

of 

2 

s . 

P is the set of all languages recognized in polynomial-time by 
deterministic Turing machines. NP is the set of all languages 
recognized in polynomial-time by non-deterministic Turing machines . 
For an extensive discussion of P , NP and the p =NP? problem, 
see [6]. 
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Since L (M.) 
i 

is empty, p 
L (M.) 

i = NP 

However, it is not known in S that L (M.) 
i 

L (M.) 
i iff P = NP 

is empty , and so the 

theorem above does not actually say that 11 P = NP 11 is independent of 

S. Nevertheless, this theorem does raise the suspicion that the 

P = NP question might not be resolvable within the axioms of set 

theory. 

Hartmanis and Hopcroft established in [11] two other independence 

results for the TIME measure. 

THEOREM We can exhibit a recursive function t such that the 

equality of the TIME complexity classes 

{L (M.) I 'r.fn TIME. (n) < t (n)} and 
i l 

{L(M.) I 'r.fn TIME. (n) < t 2 (n)} 
i i 

is independent of S. 

THEOREM We can exhibit a Turing machine M. 
i 

'r.Jn TIME. (n) 
i 

2 = n but TIME. (n) < 2n 11 
• 

i 

such that 

We generalize this last result in our Theorem 3.1. 

Hartmanis in [8] defined a provable analogue of a complexity 

class for the TIME and TAPE measures, and presented a number of 

results relating the provable complexity classes to ordinary complexity 

classes. We discuss this paper further in Chapter 5 where we generalize 

many of its results to abstract provable Blum measures, and so we shall 

give here only two of the major theorems from [8]. 
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THEOREM There exist recursive functions t such that 

{L(M.) If- " 'ti n TIME. (n) < t(n) " } c {L (M . ) I 'tin TIME. (n) < t(n) } . 
l l i l l 

Thus, there are functions t for which the provable TIME 

complexity class of t is strictly smaller than the ordinary TIME 

complexity class of t . We generalize this result in our Theorem 5.3. 

THEOREM If M. is recursive and 'tin TAPE. (n) > n, then 
J J 

{L(M.) If- "'tin TAPE. (n) < TAPE. (n) "} = {L(M.) I 'ti n TAPE. (n) <TAPE. (n) } . 
l l J l l J 

Thus, for a certain natural class of resource-bounding functions, 

the provable TAPE complexity classes coincide with the corresponding 

ordinary TAPE complexity classes. We generalize this result in our 

Theorem 5 . 6 . 

Finally, let us note that many of the results from [8] , [11] 

and [20] are collected in [9]. 
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3 ANOMALOUS ALGORITHMS AND 
PROVABLE COMPLEXITY PROPERTIES 

In any practical situation, when considering some particular 

partial recursive function f , we must have {at least implicitly) an 

algorithm to define f . Before we can admit any other algorithm as 

a means of calculating f, that algorithm must be proved equivalent 

to our defining algorithm for f . 

The requirement of being provably equivalent defines an 

equivalence relation on the set of all algorithms. We call the 

equivalence classes of this relation provable equivalence classes. 
' -

{See the definitions in Section 1.3.) Theorem 4.5 shows that for any 

partial recursive function f , the set of all algorithms that calculate 

f divides into infinitely many provable equivalence classes. 

Let f be an arbitrary partial recursive function. Depending 

on which provable equivalence class our defining algorithm for f lies 

in, we will form quite different answers to typical questions involving 

f. In this chapter, we consider three basic questions about f 

1. To what complexity classes does f belong? 

2. Does f have an algorithm which is optimal modulo some 

given recursive function? 

3. When f itself is taken as the resource-bounding 

function for a complexity class , by how much must we 

increase f before admitting new functions into the 

complexity class? 
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In each instance we demonstrate the existence of anomalous 

defining algorithms for f , that is, defining algorithms for f 

under which there is a significant discrepancy between what is true 

about f and what can be proved about f . Our results are presented 

properly in Section 3.2. They can, however, be paraphrased as follows 

THEOREM 3.1 For any recursive function r, there is a defining 

algorithm for f under which f cannot be proved to be calculable 

by an algorithm of complexity bounded by r - even though, in many 

cases, the defining algorithm itself will have complexity bounded by r. 

THEOREM 3.3 For any recursive function r, there is a defining 

algorithm for f under which f cannot be proved to have an algorithm 

optimal modulo r - although f may well have such an algorithm and , 

in many such cases, the defining algorithm for f will itself be 

optimal modulo r. 

THEOREM 3.5 For any recursive function r, there is a defining 

algorithm for f under which it cannot be proved that the complexity 

class C[r(x,f(x))] is strictly larger than C[f] - although, in many 

cases, this will be true. 

Further, in each theorem, such anomalous defining algorithms can 

be effectively constructed. 

These theorems show that when investigating the computational 

complexity properties of functions we must relate our results to the 

algorithms used to define the functions rather than to the functions 

themselves, and that our results may be severaly limited by the peculiar-

ities of these defining algorithms within the formal system we employ . 

--
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3.2 RESULTS 

THEOREM 3.1 For some p-functions o , g 

(i) I- " \Ji \Jr \Jx if (j). (x)+ and (j) (x) + , then (j) (' ) (x)+" 
]. r o i,r 

(ii) 

(iii) 

(iv) 

DISCUSSION 

and \Ji 

I/- 11 3k 

\Jr if (j) r 

(j)k = (j) o(i,r) 

= (j) , , 
]. 

is recursive, 

and cp < (j) r k 

<±> c· ) (x) < g(x,<P. (x)) o i,r J. 
a.e. x . 

then 

J..O. II , 

We shall talk as if S were the formal system within which the 

study of computational complexity is carried out. 

In (11], it was shown that a Turing machine could be explicitly 

produced which ran in 2 n time but which could not be formally proved 

to run faster than 2n time. Our result is a generalization of this. 

Let m be recursive, and let (j). calculate a function f . ~r i 

By (iii) , (j) 
0 

( i, r) also calculates f Note that o is a p-function. 

Thus, (j)o (i ,r) can be effectively constructed from 

by a process which is provably total. 

(j) . 
]. 

and 

By (ii), if the defining algorithm for f is taken to be 

and 

(j) or any algorithm provably equivalent to (j) we will 
o(i,r) o(i,r) ' 

not be able to prove that f is calculable by an algorithm of complexity 

bounded infinitely often by (j) . r However, if <P . S (j) a.e., then 
J. r 

f can in fact be calculated by an algorithm of complexity bounded almost 

everywhere by (j) . r 

then cp s (j) 
o(i,r) r 

Further, by (iv), if g(x, <P .(x)) S (j) (x) 
J. r a.e. x , 

a.e . , so that the discrepancy between what we can 

prove and what is true is even greater. Indeed, we can prove at most 
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that <p . 
a(i,r) is bounded by <P r on finitely many inputs. 

The question arises as to whether we are actually in danger 

of encountering such anomalies in practical situations. The difficulty 

here is that there is no way we can know whether our defining algorithm 

for a function is anomalous. 

It might be hoped that we could avoid such anomalies by restricting 

ourselves to what is arguably the more practically meaningful class of 

provably total algorithms. However, {i) shows that if 

provably total, then so is <P {' ) • a i,r 

<P. 
l 

and <P r are 

Since the function g in {iv) may be large, cp 
a{i,r) may itself 

always be large, and perhaps we can be safe from anomalies when dealing 

with algorithms of small complexity. We shall discuss this further, 

after the proof, for the more concrete case of the Turing machines with 

the TIME and TAPE measures . 

PROOF OF THEOREM 3 .1 

ALGORITHM IN (i,r,j,x) 

1. Mark off log x tape. Generate the theorems of S and 

write them down until the log x tape is full. Check 

whether the formula and cp < <P 
k r i . 0. II has 

been written down . 

2. If the formula has not been written down, then calculate 

and output (p. {x) . 
l 

3 . If the formula has been written down, then calculate and 

output 

1 + max { <P (x) I O < n < x and Cf> {x) < <P {x)} n n r 

--
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DISCUSSION OF THE ALGORITHM 

1. Log will be to some appropriate base. We don't actually 

calculate log x but rather, say, the greatest integer q Slog x. 

As we noted in Section 1.1, the theorems of S can be generated 

primitive recursively. So, all of this step can be done primitive 

recursively. 

2. ~ - (x) is calculated by inputting (i,x) to the Turing machine 
i 

representing in S. 

3. The test <p (x) S (x) is carried out by testing progressively 
n r 

(n,x,0) = 1 (n,x,l) = 1 up to (n,x, ~ (x)) 1 where 
e I e I e r I 

e is the index associated with <p in the definition of a provable Blum 

measure. (See Section 1.2.) 

The algorithm translates into a Turing machine T(i,r,j,x) . By 

Theorem 1.3, for some p-function t 

I- "Vi Vr "dj "dx T(i,r,j,x) Mt ( . . ) ( X ) II • i,r,J 

Let v =yo t, where y is as in Theorem 1.1. Then 

I- II 'rj i 'rj r 'rj j (. . ) V i,r,J M (' ')II • t i,r,J 

By Theorem 1.2, for some p-function m 

1-- ""di .'r/r ~m (i,r) = (' (' ))II • v i,r,m i,r 

Let o = m. Then o is a p-function and 

( *) 1-- 11 Vi "dr "dx c· ) (x) = T(i,r,o(i,r) ,x)" . o i,r 

--

........... 
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We now establish each section of the theorem in turn. 

(i) Consider the algorithm operating on some (i,r,j,x) Suppose 

that <.p. (x) + and <.p (x) + . 
i r Step 1 is primitive recursive and therefore 

converges. Step 2 converges because <.p, (x)+ . 
l 

Since <.p (x)+ r 
and 

is total , step 3 must also converge. So the algorithm will converge. 

This sort of reasoning could be carried out in S for T. 

Thus 

if <.p . {x) + 
i 

T(i,r,j,x)+ " . 

and <.p { x) + , r 

So, from {*) I 

r 11 \J i \Jr \Jx if <.p . {x) + and <.p ( x ) + , then 
i r 

<.p (' ) {x) + II • o i,r 

then 

For the remaining sections of the proof, let i be arbitrary 

but assume that <.p is recursive. r 

(ii) Suppose r " 3k <.pk = c.po {i,r) 

We shall establish a contradiction. 

. " i. 0. • 

By the theorem, for some n, <.p = <.p • and P S <.p i.o. n o(i ,r) n r 

So, for some x n, we must have that (x) S <.p (x) n r and the theorem 

will appear on log x tape in step 1 of the algorithm . 

Now, consider the algorithm on (i ,r , o (i ,r) , x) The theorem 

is found in step 1, so we go to step 3. Step 3 converges as <.p 
r is 

total. Since n S X and (x) S <.p (x) n r , the output from step 3 will 

be greater than <.p (x) n 

-
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Thus, f rorn ( *) , (j) (. )(x)+ o i,r and (j) (. ) (x) > (j) (x) o i,r n But 

Contradiction. 

(iii) It follows from (ii) that for every x the algorithm on 

(i,r,o(i,r) ,x) 

Hence 

goes to step 2, and therefore 

= c.p. 
l 

T(i,r,o(i,r) ,x) = (J) . (x) 
l 

(iv) Consider T operating on some (i,r,o(i,r) ,x) The calculation 

for step 1 requires log x tape. Since the algorithm goes to step 2, 

it follows that 

TAPE T(i,r,o(i,r) ,x) 

Define g by 

< log X + TAPE (j). (x) . 
l 

g(x,y) = max {~o(a,b) (x) I OS a S x, 0 Sb< x, 

(x) 
a = y and TAPE T(a ,b, o(a,b) ,x) 

Note that if (x) = y and 
a 

TAPE T(a,b,o(a,b) ,x) slog X + TAPE (j) (x) 
a 

and so Po(a,b) (x)+ . 

Clearly then, g is total. 

< log X + TAPE (j) (x)} . 
a 

then T(a,b,o(a,b) ,x)+ 

The proof that g is total could be carried out in S for some 

straightforward Turing machine representation of g. 

Therefore, g is a p-function. 

Finally, observe that for x > max { i , r } , 

c· ) {x) s g{x, P. (x)) . a i,r i 
D 

---
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Let us consider the result for the Turing machine enumeration 

M with the TAPE and TIME measures. 

It is easy to arrange the function t in the proof so that 

M (. . ) calculates step 1 using log x tape and step 2 with the 
t i,r,J 

instruction set for M. built into it. 
i 

Then, whenever the theorem 

is not found in step 1, TAPEt(' ' ) (x) slog X + TAPE. (x) i ,r,J i 

By Theorem 1.2 for M, for some p-function m 

Mm(i,r) M ( ' (' ))" • t i,r,m i,r 

Now, define o(i,r) to be t(i,r,m(i,r)) rather than m(i,r) 

Results (i), (ii) and (iii) will still hold. 

(iv) to 

(iv) I TAPE c· ) (x) < log X + TAPE. (x) o i,r i Vx. 

However, we can tighten 

Further, if we alter the algorithm in step 1 to lay off and work 

in log log x tape, then to calculate step 1 will require no more than 

x Turing machine steps 1 for sufficiently large inputs x . Following 

the same development as above , we will again have (i), (ii) and (iii), 

but will be able to tighten (iv) to 

(iv) II TIME (. ) (x) < x + TIME. (x) o i,r i a.e. x. 

These ·results show that anomalous algorithms may be very close 

in complexity to even the 'fastest ' algorithms for calculating functions . 

Two examples of the consequences of this are that anomalous algorithms 

1 2 The TIME cost may, of course, be greater - x , for example - if 
we are using inappropriate input-output conventions. 
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will appear in the class of LOG- SPACE algorithms, and it is possible 

that our failure to prove P = NP is the result of using an anomalous 

defining algorithm for an NP-complete problem . 

so, anoma lies cannot be avoided by a restriction to provably total 

algorithms or to ' fast 1 algorithms . It is only a hope that intuitively 

natural defining algorithms will not be anomalous . 

Next, we have some preliminaries for Theorem 3 .3. 

The Speed-up Theorem states 

For any recursive function r, there is a recursive function f such 

that 

Vi ~- = f ~ - has an r speed-up a.e. 
i l 

It is a simple exercise to observe that in the theorem we can 

also have 

Vi ~- = f a.e. ~ - has an r speed-up a.e. 
i l 

Examination of a standard proof of the Speed-up Theorem, such 

as that in [19], shows that f can be effectively constructed from r , 

that this construction process is provably total, and that if r is 

provably total, then so is f. In fact, we have 

THEOREM 3.2 For some p-function \ 

( i) for any recursive ~r , ~\(r) is recursive and 

Vi ~- = ~\(r) a . e. (p . has a speed-up a . e . ; 
i i r 

(ii) f- 11 Vr if ~r is total , then ~\ (r) lS total" . 
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We use this result in the following theorem. 

THEOREM 3.3 For some p-functions o , g 

(i) 

(ii) 

(iii) 

(iv) 

1- 11 'rli 'rlr 'rfx if <.p. (x) + and <.p is total, then 
i r 

<.p (' ) (X)i' II o i,r 

and 'r/i 'rlr if <.pr is recursive, then 

<.po (i,r) 

<.p = <.p k o(i,r) 

<.p. ' i 

and 

cf> (. ) (x) < g(x,4>. (x)) o i,r i 

is 

a.e. x . 

<.p -optimal i. o ." , r 

DISCUSSION 

Let <.p be recursive, and let <.p. calculate a function f. r i 

By (iii), <.p also calculates f. 
o(i,r) 

By (ii), if the defining algorithm for f is taken to be 

<.p or any algorithm provably equivalent to <.p we will 
o(i,r) o(i,r) ' 

not be able to prove that f is calculable by an algorithm that is 

<.p -optimal i.o. r 

Further, by (iv) if 

However, <.p, may in fact be <.p -optimal a.e. 
i r 

<.p. 
i 

is optimal a.e. modulo a sufficiently small 

function, then <.p will itself be <.p -optimal a.e. 
o(i,r) r 

As we observed for Theorem 3.1, the anomalous algorithms are not 

readily avoided. From (i), if <.p. 
i 

and are provably total, then 

SO lS <.p (' ) . o i ,r. Further, by the same sort of construction as was 

presented in the discussion after the proof of Theorem 3 .1, for the 

Turing machine enumeration M we can tighten (iv) to 

(iv) I TAPE (' ) (x) < log X + TAPE. (x) 'rfx' and o i,r i 

(iv)" TIME(" )(x) < X + TIME.(x) a.e. X. o i,r i 

--
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PROOF OF THEOREM 3.3 

ALGORITHM IN {i,r,j,x) 

1 . Mark off log x tape . Generate the theorems of S and 

write them down until the log x tape is full . Check 

whether the formula and is <.p -optimal i.o" 
r 

has been written down. 

2 . If the formula has not been written down, then calculate 

and output (j). {x). 
i 

3. If the formula has been written down, then calculate and 

output (j)A{r) {x) , where A is as in Theorem 3 . 2. 

The algorithm translates into a Turing machine T{i,r,j,x) . 

Following the same procedure as in the proof of Theorem 3 .1, for some 

p-function cr 

{ *) 1- 11 Vi Vr Vx <.p c· ){x) = T{i , r ,cr( i,r,),x) ". a i ,r 

We now establish each section of the theorem in turn . 

{i) Consider the algorithm operating on some (i,r,j,x) . Suppose 

that <.p. {x) + 
i 

and is total. Step 1 is primitive recursive and 

therefore converges. Step 2 converges as (j) . (x)+ • 
i 

By Theorem 3 . 2, 

since is total, is total . Also, the calculation of the 

index A(r) converges since A is total. Therefore, step 3 converges . 

So the algorithm will converge . 

This sort of reasoning could be carried out in S for T. Thus 
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I- " 't;j i Vr Vj Vx if c.p .(x) + and c.p is t o t a l, t hen i r 

T(i,r,j,x)+" . 

So, from (*) 

I- 11 Vi Vr Vx if c.p, (x)+ and c.p is tota l, then i r 

c.p (' )(x)+" . o i,r 

For the remaining sections of the proof, let i be arbitrary but 

assume that c.p is recursive. r 

(ii) Suppose 1- 11 3k 

We shall establish a contradiction. 

and is <P -optimal r 
. " i. 0. • 

Almost everywhere x , the theorem will appear on log x tape 

in step 1 of the algorithm. 

Therefore, T(i,r,o(i,r) ,x) = c.p :\(r) (x) 

So , from ( * ) , c.p . = c.p ( ) a . e . o(i,r) :\ r 

By the theorem, for some 

c.p -optimal i.o. r 

Thus c.p n = c.p :\ (r) 

and <Pr(x, ¢b(x)) < 

a.e. So, by 

¢ a.e. X . n 

n ' 

Theorem 

a.e. x. 

and 

3. 2, for some b , 

But, since c.p n is c.p -optimal i. 0. , ¢ (x) S <Pr(x, ¢ b(x)) r n 

Thus ¢ (x) < ¢ (x) i.o. x. n n So c.p (x) t i.o. X • n 

is 

c.pb = c.p 
n 

i.o. X . 

However, a.e. and, since c.p 
r is tota l, <P>-. (r) i s tota l. 

Contra diction. 

(i ii ) It follows from (ii) that Vx T(i,r, o (i, r ) , x ) = (p . (x ) 
i 

He nce = c.p . 
i 

-
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(iv) It aga i n fo llows from (ii) tha t 

Vx TAPE T(i,r,a(i,r) ,x) S log x + TAPE <.p , (x) . 
i 

Let g be defined in the same way as in the proof of (iv) in 

Theorem 3.1. 

Then g is a p-function and Cf> (' ) (x) < g(x, 4> . (x)) o i,r i a.e. x . 

As a simple corollary to Theorem 1.4, we have the following 

version of the Gap Theorem: 

THEOREM 3.4 For some p-function s 

(i) Vr Vi Vx::::. i cp . (x) < <.p S(r)(x) or 
l 

cp . (x) 
l 

> <.pr(x, <.p S(r) (x)) ' 

(ii) r- 11 Vr if <.pr is total, then <.p S(r) is total" 

We use this result in the following theorem. 

THEOREM 3.5 For some p-functions o , g 

(i) r- "Vi Vr Vx if <.p. (x) + 
i 

and <.p r is total, then 

<.p c· ) (x)+" ; a i,r 

and Vi Vr if <.p r is recursive, then 

. 

(ii) <.p ( • ) (x) <.p (x, <.p ( . ) (x) ) 1.0. o i,r r o i,r 

(iii) <.p (' ) = (j) . ' o i,r i 

(iv) Cf> (. ) (x) S g(x, 4> . (x)) o i,r i a.e. x . 

XII 
' 

-

D 

............ 
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DISCUSS ION 

Let ~ - c a lculate a function f . 
l 

bounding function for a complexity class . 

Consider f as the resource-

A typical question is whether 

a certain increase of the bound f will admit new functions into the 

complexity class . This question can be posed as follows : 

Let ~r be recursive. Does C[ ~ (x,f(x))] properly contain C[f]? 
r 

Theorem 3.5 states that if the defining algorithm for f is 

taken to be ~o(i,r) or any algorithm provably equivalent to o(i,r) ' 

then even if C[ ~ (x,f(x))] does properly contain C[f] , we will not r 

be able to prove it. In fact, we will not even be able to prove that 

there is an algorithm whose complexity lies between 

infinitely often. 

f(x) and (x ,f(x)) r 

As we observed for Theorem 3.1, the anomalous algorithms are 

not readily avoided. If ~-l and ~r are provably total, then so 

lS (. ) . o i,r For the Turing machine enumeration M we can tighten 

(iv) to 

(iv)' TAPE (' ) (x) < log x + TAPE. (x) Vx , and o i,r i 

(iv) 11 TIME (. ) (x) < x + TIME. (x) a .e. x . o i,r i 

PROOF OF THEOREM 3.5 : 

ALGORITHM IN (i,r,j,x) 

1. Mark off log x tape. Generate the theorems of S and 

write them down until the log x t ape is full. 

whether the formula 

11 3k ~ .(x) <~k (x) s ~ (x, ~ .(x) ) i.o . x" 
J r J 

has been written down . 

Check 
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2. If the formula has not been written down, then calculate 

and output (!) .(x) 
i 

3. If the formula has been written down, then calculate and 

output (!) B(r) (x) , where B is as in Theorem 3.4. 

The algorithm translates into a Turing machine T(i,r,j,x) 

Following the same procedure as in the proof of Theorem 3.1, for some 

p-function o 

(*) (!) (. ) (x) = T(i,r,o(i,r) ,x)" . o i,r 

We now establish each section of the theorem in turn. 

(i) Using Theorem 3.4 in place of Theorem 3.2, the argument here 

follows the same pattern as in the proof of Theorem 3.3 (i). 

For the remaining sections of the proof, let i be arbitrary 

but assume that (!) is recursive. r 

(ii) Suppose f- 113k (j) ( . ) ( X ) < <pk ( X ) < (j) ( X , (j) ( . ) ( X ) ) i.o. X 11 
• o i,r r o i,r 

We shall establish a contradiction. 

Almost everywhere x , the theorem will appear on log x tape 

in step 1 of the algorithm. Therefore T (i ,r ,o (i ,r) ,x) = (!)B (r) (x) a.e. x. 

So, from (*), (!) . = (!) a.e. o (i,r) B (r) 

By the theorem, for some n , 

(!) (' )(x) < 'P (x) S (!) (x, (!) (' )(x)) i.o. x. o i,r n r o i,r 

So, for some x n , (!)B (r) (x) < Pn(x) S (!)r(x, (!)B (r) (x)) 

But by Theorem 3.4, Pn(x) S (!) B(r) (x) or Pn(x) > (!) r(x , (!)B (r) (x)) . 

This is a contradiction since is recursive and, therefore, 

is recursive. 

-

---



(iii) It follows from (ii) that 

Hence 
i 

3 6 

T(i,r , o (i , r) , x) = 4) . (x) 
i 

(iv) Let g be defined in the same way as in the proof of (iv) in 

Theorem 3 . 1 . 

Then g is a p - function and cp (. ) (x) < g(x , 4' . (x)) a i,r i a . e . x . D 
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4 PROVABLE EQUIVALENCE AND 
COMPLEXITY OF ALGORITHMS 

Usually in complexity theory, all algorithms that calculate the 

same function are classed together; but to the computer scientist working 

within a formal system the algorithms fall into provable equivalence 

classes : algorithms can be recognized as equivalent if and only if they 

are provably equivalent. The results in Chapter 3 show that what we can 

prove about the complexity properties of a function depends on the 

provable equivalence class to which our defining algorithm for the 

function belongs. It is natural then to enquire as to the relationship 

between provable equivalence and the computational complexity of algorithms. 

For example, we might pose such questions as : Do the algorithms in a 

single provable equivalence class all have complexities which are , 

in some sense, close together? Do the different provable equivalence 

classes for a function form separate bunches of increasingly complex 

algorithms, or do they interleave? 

In this chapter we investigate these and related questions. Many 

of our results are rather complicated to state. 

some of them below. 

However, we paraphrase 

THEOREM 4.1 Every provable equivalence class contains infinitely many 

algorithms. 

COROLLARY 4 . 4 Let the partial recursive function f be defined on an 

infinite domain . Then from any algorithm 
l 

for f we can effectively 

construct another algorithm ~A (i) for f such that every algorithm 
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provably equivalent to ~A (i) has greater complexity a . e . than every 

algorithm provably equivalent to ~. . 
i 

THEOREM 4.5 Every partial recursive function has infinitely many 

provable equivalence classes. 

THEOREM 4.11 From any recursive ~ - we can effectively construct a 
i 

recursive function t such that for any recursive function g the 

following three conditions are equivalent 

(i) g E C[t] 

(ii) g is less complex than some algorithm provably equivalent 

(iii) 

4.2 RESULTS 

to ~ - , 
i 

domain g provably contains domain~- . 
i 

THEOREM 4.1 Vi the provable equivalence class of ~-i is infinite. 

PROOF Consider an arbitrary ~-l Let y be as in Theorem 4.2. 

There are infinitely many minor modifications we can make to the 

instruction set for each of which obviously will not affect 

the machine's output. Each one of these modifications produces a 

different Turing machine M. 
J 

such that Now, y 

is one-one and I- II ~ ' = M = M. II 

y-l(i) y(j) . i J 
Thus, the provable 

equivalence class of ~- lS infinite. i 

The following result will be the key to many others . 

D 
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THEOREM 4.2 For some p-function a 

(i) f-- "'r/i 'r/ r 'r/x if <P . (x) + 
l 

and <P (x) + , r 

and 'r/i 'r/r if domain <P i c domain <Pr, then 

(ii) 

(iii) for any 

= <P. ' l 

<P ;::::: <P k o(i,r) a.e . 

then <P (' ) (x) + " a i,r 

Basically, this theorem says that each function has provable 

equivalence classes of arbitrarily large complexity. 

Let f be a partial recursive function, let 

<P be defined wherever r f lS . Then <P = f o(i,r) 

<P . = f ' l 
and let 

and every member 

of the provable equivalence class of <P has greater complexity a.e. 
o(i,r) 

than <P r 

This illustrates again that there are 'bad ' defining algorithms 

for functions. For example, the function f may be calculable in 

linear time, but our defining algorithm for f can be so 'bad' that 

every algorithm provably equivalent to it runs slower than super-

exponential time. 

PROOF OF THEOREM 4.2 

ALGORITHM IN (i,r,j,x) 

1. Generating the theorems of S primitive recursively, let 

2. 

be the first 

f-- " <P = <P • II 

pn J 

For each n=O, ... ,x test 

X + 1 indices such that 

<P (x) r 

(a) If some n satisfies the test , t hen calculate and output 

1 + max { <P ( x ) 
pn 

J O ::: n < x and < <P (x) } 
r 
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(b) If no n satisfies the test, then calculate and output 

<P . (x) 
l 

The algorithm translates into a Turing machine T(i,r,j,x) By 

Theorem 1.3, for some p-function t 

Let V 

f- 11 \/i \Jr 'efj \/x T(i ,r,j,x) M ( . . )(x)". t i,r,J 

yo t, where y is as in Theorem 1.1 . 

<P c· ·) = M c· ·)" • v i,r,J t i,r,J 

Then 

By Theorem 1.2, for some p-function m 

f- 11Wi• \Jr /f) _ /f) 11 
v 't' c· ) - 't' c· c· )) · m i,r v 1,r,m i,r 

Let o = m. Then a is a p-function and 

{ *) <P c· )(x) a i,r 
T(i,r,m(i,r) ,x)" . 

We now establish each section of the theorem in turn. 

(i) Consider the algorithm operating on some (i,r,j, x) Suppose 

that (p. {x)+ and <P (x) + . 
1 r Step 1 is primitive recursive and 

therefore converges. Since <P (x) + , the tests in step 2 will converge 
r 

and therefore so will the calculations for (a) Since <P. (x) + , 
l 

{b) will converge. Thus, the algorithm will converge on {i,r,j,x) 

This sort of reasoning could be carried out in S for T. 

Thus 

f- 11 \/i 'rfr \/j 'iix if <P . (x)+ 
l 

and <P (x) + , r then T(i,r,j,x)+" . 

So, from (*), 

if <P . {x ) + 
i 

and <P (x) + r then <P c· )(x) + II• o i,r 

---
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For the remaining sec tions of the proof , let i be arbitrary 

but assume that domain 4) . c domain (p r 
i-

(ii) Consider an arbitrary x . 

Suppose that 4) (x) t . r Then by our assumption, 4). (x)t . 
l 

Al so T ( i, r , 0 ( i, r) , X) t , since the calculation of 4) (x) 
r 

diverges . 

So, by ( *) , 4) (. ) (x) t . 
0 i,r 

Thus, 4). (x) = 4) ( ' ) (x) . i 0 i,r 

in step 2 

Now suppose that 4) (x) + • r We claim that T(i,r,0 (i,r) ,x) 

defined through step(b) of the algorithm . 

For if the test in step 2 is satisfied, say 

T(i,r,0(i,r) ,x) + and T(i,r,0(i,r) ,x) > 4) 

But, by ( *) , 4) (' )(x) 0 i,r = T(i,r,0(i,r),x) 

(pp = 4)0 (i,r) · 
n 

Contradiction. 

pn 

4) 
pn 

(x) 

and, 

So, T(i,r,0(i,r) ,x) is defined through (b). 

Thus, 4) (' ) (x) = 4). (x) 0 i,r i 

So 4)0 (i,r) = (pi · 

(iii) Suppose that 

(x) < 4) (x) then r ' 

from step 1, 

is 

(pk~ 4)0(i ,r) 

Considering step 1 of the algorithm for T(i,r, 0(i ,r) ,x) we see that 

for some n , 

If 4) (x) t , r 

and <l' (x) t . 
pn 

p = k . n 

then as we saw in (ii), 4) (' )(x)t, 0 i ,r and so 4) (x) t 
pn 

If x n and 4) (x) + , then as we saw in (ii), the test in step 2 r 

is not satisfied , and so 4) ( X) 
r 

0 

---
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The following result tells us, among other things, that the 

algorithms in a single provable equivalence class all have complexities 

which are , in a sense, bunched together. 

COROLLARY 4 .3 For some p-functions K and A , Vi 

(i) doma i n ~K (i) = domain ~ i , 

(ii) 

(iii) 

for any ~. ~- ' J i 
<p . < 

J 

~ A(i) = <.p . 
i 

and for any 

~K (i) a . e. , 

~b~ ~A (i) a .e. 

PROOF Define a Turing machine W(i,x) by the following algorithm 

1. Generating the theorems of s ' let 

be the first x + 1 indices such that 1- 11
~ 

_Pn 
~ ' II 

i 

2. Calculate and output <I> (x) + <f> (x) 
Po pl 

+ ... + cp (x) . 
PX 

By Theorem 1.3, for some p-function w 

Mw(i) (x) W(i ,x) 

Let K =yow, where y is as in Theorem 1.1. 

Then K is a p-function and Vi Vx ( ) · ~K (i) X = W(i,x) . 

It is now easy to see that Vi 

(i) domain ~K (i) = domain <.p . , 
i 

(ii) for any ~- ~-
] i 

I a . e . 

Define by A(i) = o(i,K(i)) where 0 is as in Theorem 4 . 2 . 

Then A is a p-function and Vi 

(iii) ~A (i) = ~-i and for any ~b ~ A(i) a .e. D 

--
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Let f = ~ - be defined on an infinite domain. 
l 

Then ~ - and 
l 

~A(i) represent distinct provable equivalence classes for f , with 

every member of the provable equivalence class of ~A(i) having greater 

complexity a . e . than every member of the provable equivalence class of 

~i Let us say that the provable equivalence class of ~A(i) has 

greater complexity a.e. than the provable equivalence class of ~-l 
Similarly, ~AoA(i) = f and the provable equivalence class of ~AoA(i) 

has greater complexity a . e. than the provable equivalence class of 

By successive applications of A , we can form representatives 

for an infinite chain of provable equivalence classes for f , with 

each class having greater complexity a . e . than the preceding classes . 

We can state this observation as 

COROLLARY 4 . 4 For some p - function A , Vi 

(ii ) if ~- is defined on an infinite domain, then the 
l 

provable equivalence class of ~A(i) has greater complexity 

a . e . than the provable equivalence class of ~-l 

A natural question is : ijow many provable equivalence classes 

does a function have? Our next result gives the expected answer. 

THEOREM 4 . 5 Every partial recursive function has infinitely many provable 

equivalence classes . 

PROOF Let f be a partial recursive function . 

If f is defined on an infinite domain, then Corollary 4.4 shows 

that f has infinitely many provable equivalence classe s . 

--
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Now suppose that f is defined on only a finite doma in. Further, 

suppose that f has only finitely many provable equivalence classes -

say n distinct provable equivalence classes represented by 

We shall establish a contradiction by constructing 

a representative <P . 
l 

for a new provable equivalence class for 

Let x = max {x 
0 

f(x)+} . Define a Turing ma chine 

the following algorithm 

1. For X < XO calculate and output <P , 
pl 

2. For X > XO , generate the theorems of 

II <P • = <P II or II <P • <P II or II {p . . . . 
J pl J P2 J 

If one of these theorems lS found, output 

For some recursive function w, 

MW ( j) (x) = W ( j , X) . 

Let t =yow, where y is as in Theorem 1.1. 

Then V j Vx <Pt ( j) (x) = W ( j , x) 

By the Recursion Theorem, for some 

Therefore, Vx <P . (x) 
l 

= W(i,x) 

l , <.p. = 
l 

= 

1. 

(x) 

s seeking 

<P II 

pn 

f . 

W(j , x) 

We first show that <P . is 
l 

not provably equivalent to any of 

<P , ... , <P 
P1 p n 

Suppose I- II <P • = <Pp 
II where 1 < k < n , - . 

l k 

Then Vx > XO <P (x) = <P. (x) = W(i,x) = 1 . 
pk l 

But Vx > XO <P (x) = f(x)t . Contradiction. 
pk 

It now follows that Vx > X (p .(x) = W( i , x ) t . 0 l 

Henc e Vx > X <P .(x) = f(x) 
0 l 

by 

--
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Further, 'tfx < XO (J) . (x) = (j) (x) = f(x) Therefore, (j) . = f . . 
l pl l 

Thus, (j) . represents a new 
l 

provable equivalence class for f . 

Therefore, f has infinitely many provable equivalence classes. D 

Our next result is the first of several which show that the 

relationship between provable equivalence and the complexity of algorithms 

is somehow involved with provable relations between the domains of 

algorithms . 

THEOREM 4.6 'tJi 'tlr if 1- "domain (j). c domain (j) " , then for some 
i r 

Results 4.3 and 4.6 give some idea of how widely spread (in terms 

of computational complexity) the algorithms provably equivalent to (j) . 
l 

can be. Corollary 4.3 shows that there is a (j)K {i) which is defined 

whenever (j). is, and which bounds the complexities of all the algorithms 
l 

provably equivalent to (j) . 
l 

Theorem 4.6 shows that if we can prove 

that is defined whenever (j) . 
l 

is, then (j) does not bound the r 

complexities of all the algorithms provably equivalent to (j) . . 
l 

PROOF OF THEOREM 4.6 

Suppose 1- 11 domain (j) . c domain (j) " . 
i - r Let h be as in Theorem 

1.5. Define a Turing machine by the following algorithm 

1. Waste 1 + h(x,(j) (x)) tape squares . r 

2 . Calculate and output (j) . (x) 
l 

Let J = y(k) where y is as in Theorem 1 . 1. 

We first show that (j) . (j) . 
J l 

--
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If <P .(x)t , then ~(x) t and so <P. (x) t . 
i J 

Now suppose that <P . (x)+ . Then <P (x)+ and so , since h is total , 
i r 

the calculation in step 1 converges . Therefore , ~(x) = <P .(x) i 

So, <P. (x) = <P . (x) 
J i 

Thus, 'tfx ({) . (x) = <P . (x) 
J i 

This reasoning could be reproduced in S. So, 

By Theorem 1.5, 'tfx k 

Therefore, h(x, 4>. (x)) > h(x,<P (x)) 
J r 

a.e. x . 

So, since h is monotonically increasing in its second argument, 

4>. > <P a.e. D 
J r 

A modification of this result will also prove useful. 

I' COROLLARY 4.7 'tf i 'tf r if I- "domain <P. c domain <P " 
l r ' then for some 

({). ({). , <P < <P. a.e. 
J i r J 

PROOF Suppose 1-- "domain <P. c domain <P " • 
i - r 

Now I- "domain <Pr = domain <P II from the definition of a provable 
r 

, 

Blum measure. 

So I- "domain <P. C domain <P II . 
l - r 

By Theorem 4.6, for some <P . <P . , <P < <P a . e . 
J l r J 

D 

Let f be a partial recursive function defined on an infinite 

domain. In our remarks following Corollary 4.3, we showed that starting 

with any provable equivalence class for f there is an infinite chain 

of provable equivalence classes for f , with each class having greater 

complexity a.e . than the preceding classes. The next corollary shows 

--
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that it is also the case that every provable equivalence class for f 

interleaves with others . 

COROLLARY 4.8 If ~ - is defined on an infinite doma in , then for some 
l 

PROOF 

and some ~-l 
cp 

l 
< cp < 'P . a . e . 

a J 

By Theorem 1 . 6 , for some p-function u 

f- II 'tj i = ..+, II 'r . . 
l 

but >fa ~ -a 1 

Suppose that 

a= cr(i , u(i)) 

~-l is defined on an infinite domain . 

Let where er is as in Theorem 4 . 2 . 

So , ':f, ~ - and cp < cp a . e . a 1 1 a 

Now f- "domain ~ . 
l 

Therefore f- "domain ~- C 
l -

By Theorem 4.2 f- "\Jx if 

So f- "domain ~- C domain 
l 

By Corollary 4.7 , for some 

domain <F. " 
l 

domain u ( i) 

~. (x) + 
l 

and 

~a 
II . 

~- "' ~-"' , 
J l 

cp > cp 
k l 

a . e . 

II . 

~u(i)(x)+ ' 

cp < cp a . e . a J 

then (x) +" . 
a 

We now observe that Corollary 4 . 7 has a partial converse. 

THEOREM 4.9 \Ji ' for any recursive ~r ' 

if for some ~- ~-
J l 

then for some ~t = r 

PROOF Suppose that 

cp (x) < cp. (x) 
r J 

\Jx > m 

cp s <p a . e . , r J 
f- "domain ~- C domain ~ t 

II . 

r 

l 

is recursive and tha t for some ~ . ~- ' J l 

Define ~ t by the following algorithm : 

D 

--
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For x Sm, outp ut (j) ( x ) r f r om a tab le o f v a lues 

(j) (0) , <P (1) , ... , <P (rn) 
r r r 

For X > rn , 

output (j) (x) r 

if P (x) S P . (x) 
r J 

else output 0 . 

We now show tha t 

then c a lcula te a nd 

I-- "domain (j) . c domain (j) " 
i t 

For X S m I (j) t(x) + since values are looked up in a table . 

For X > m if <P . ( x)+ then p .(x) + and so (j) t(x) + . I i ' J 

Thus , domain (j) . 
i c domain <P t . 

This reasoning could be reproduced in S . Therefore 

1-- " domain (j) i c domain <P t " . 

For ou r next result we call on the Union Theorem , a proof of 

which may be found in [10]. 

UNION THEOREM Let { f j n E N} n be a recu rsively enumerable 

sequence of r ecursive f u nctions such that Vn Vx 

Then for some recu rsive function t , Vr 

¢ < t a . e . iff r 3n ¢ < f a . e . r n 

f (x) < f 
1

(x) n n+ 

Corollary 4 . 3 shows that we can bound the complexities of the 

algorithms provably equivalent to 

result can be strengthened . 

THEOREM 4 . 10 For any recursive 

t. (effectively computable from 
i 

p < t. a . e . iff for s ome r i 

(j) . . 
i 

(j) . 
i I 

When 

there is 

i) suc h that 

(j) . ,.._, (j) . p ,.._, 
I 

J i 

(j) . 
i 

a 

Vr 

< 
r 

is recursive, that 

recursive function 

¢ . a .e . 
J 

0 

---
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Then not only can we bound the 

complexities of the algorithms provably equivalent to ~. , 
i 

but we can 

bound them so tightly that there is no 'gap' between them and our 

resource-bound. 

PROOF Suppose that ~-i 
Generating the theorems of 

indices such that 

and 'vn 

is recursive. 

s , let be the first n + 1 

= ~ •II 
i 

Define the sequence { f I n E :N} n 

f n+l f n + 1 . 

This sequence satisfies the requirements of the Union Theorem, and so 

for some recursive function t. , 'vr 
i 

<±> < t. a.e. iff 3n <±> < f a.e. r i r n 

In the proof of the Union Theorem, t is constructed from the 

sequence {f 
n n E :N} Examining this construction, we see that 

in our case t. is effectively computable from i . 
i 

t. = for some p-function K . ) 
i K(i) 

Now, 'vn <p < f 
pn n 

Therefore, if for some ~- ~- <p s <p a~ e. , 
J i , r J 

then 3n <p < f a.e. and so <p < t. a.e. r n r i 

Further, for each n I- II ~ • = (pp i 
0 

So I- "domain ~- C domain f II . 
l - n 

By Theorem 4. 6, for some ~ - ~- , f s <p . a.e. 
J l n J 

Therefore, if <p < t. a . e. , then 3n <p < f a.e . r i r n 

and so for some ~ - ,...__, ~- <p < <p . ,...__, a.e. 
J i r J 

(In fact, 

Thus, 'v r ' <p < t. 
r 1 

a .e. iff for some ~- ~-
J l 

<±> < <±> . a.e. 
r J 

by 

D 

---
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Let ~- be recursive. 
i 

From results 4.7 and 4 . 10 , we see 

that Vr 

if f-- "domain ~ . c domain " 
i r ' then cp < t. 

r i 
a.e. 

Thus, if an algorithm's complexity is not bounded by t. 
i 

then 

we cannot prove that the algorithm's doma in contains domain ~-
i 

This 

illustrates that as the difference between the complexities of algorithms 

increases, what we can prove about the relationships between the 

alg~rithms decreases . 

Results 4 .7, 4.9 and 4.10 show a relationship between provable 

containment of domains, provable equivalence and computational 

complexity. 

THEOREM 4.11 

We draw these results together in 

For any recursive ~. , 
i 

there is a recursive function 

t. 
i 

(effectively computable from i) such that for any recursive 

function g the following three conditions are equivalent : 

(i) g E C [t.] i , 

(ii) for some ~-J 
::::::: ~-i , g E C [¢ .] 

J 
I 

(iii) for some ~r g f-- "domain ~- C domain II 

i r 

PROOF Let ~ - be recursive, and let t. be as in Theorem 4 . 10. 
i i 

The equivalence of (i) and (ii) is given by Theorem 4.10. 

That (ii) implies (iii) follows from Theorem 4.9. 

That (iii) implies (ii) follows from Corollary 4 . 7. D 

The equivalence of (i) and (iii) is especia lly interesting because 

it equates a purely formal property (a provable relat ionship between 

---
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domains) with a complexity property (computability within a given 

resource-bound) . 

The equivalence of (i) and (iii) also generalizes the following 

result from [7] 

COROLLARY 4 . 12 There is a recursive function t such that for any 

recursive function g 

g E C[t] iff g is a p - function . 

PROOF Let ~ - be provably total , and let t = t. be as in Theorem 
l l 

4 . 10 . Then for any recursive function g 

g E C[t] 

iff for s ome ~r = g 1- "domain ~ - c domain ~ " 
i - r 

iff for some ~r = g , ~r is provably total 

iff g is a p - function . 

Actually , in the above , t bounds the complexities of the 

provably total algorithms as tightly as possible in the sense that 

there is no ' gap ' between them and the resource- bound t : 

If ~r is provably total , then 

I- "domain ~ - c domain ~ " and so cf> < t a . e . 
i r r 

If cf> < t a . e ., then for some 
r 

~- is provably total . 
J 

~ . ~- ' J l 
cf> < <p . 

r J 
a . e . and 

D 
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5 COMPLEXITY CLASSES AND 
PROVABLE COMPLEXITY CLASSES 

5. l INTRODUCTION 

Many results in abstract computational complexity theory revolve 

around the notion of a complexity class, and much of the work with 

particular complexity measures - such as the TIME and TAPE measures 

on the Turing machines - consists of determining to what complexity 

classes a given function belongs. In this chapter we consider provable 

analogues of complexity classes. 

We define the complexity class of f (under the measure 'P ) to 

be the class 

C[f] = {g I 3i ~- = g and 'P. < f 
i i 

a.e.} . 

It is usual to require in the definition of C[f] that the 

functions f and g be recursive. For the work in this chapter, 

however, it is convenient to admit a greater generality by allowing f 

and g to be only partially recursive. Nevertheless, if the requirement 

that f and g be recursive i s added to the definition of C[f] and 

to the (forthcoming) definitions of 

results will continue to hold. 

B [f] and A [f] then all of our 

Suppose that we have a defining algorithm ~d for a partial 

recursive function g . 

~i = ~d and 

To show that 

cp 
l 

< f a .e." 

g lS ln C [ f ] we must prove 
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However, proving the mere existence of an algorithm for g that runs 

within the resource-bound f is not particularly satisfactory. In 

practice, we strive to exhibit such an algorithm. 

prove for some i that 

and <p 
l 

< f a.e . " 

That is, we aim to 

Theorem 3.1 tells us that for any recursive function f , there 

will be infinitely many possible defining algorithms ~d for g such 

that we cannot even prove 

and 'P. < f 
l 

i.0. II 

So certainly, if our defining algorithm for g is a 'bad' one, then 

we will not be able to exhibit an algorithm for g that runs within 

the resource-bound f. But perhaps there is a ' good' defining algorithm 

for g using which we can exhibit such an algorithm . 

The question can be posed as follows Does there exist an 

algorithm ~d = g such that for some 1 we can prove 

"~. 
l 

and <p 
l 

< f 

Clearly , this is equivalent to 

such that we can prove 

11 ¢ . < f a . e . 11 ? 
l 

a.e . 11 ? 

Does there exist an algorithm ~-l g 

The above question suggests a provable analogue of the complexity 

class of f . 

B [f] 

We define the class B[f] as follows : 

{g 1 3i ~- = g and 
l 

I- " <p . < f 
l 

" } a.e . . 
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The class C[f] consists of all the partial recursive functions 

for which there is an algorithm that runs within the resource-bound f. 

The class B[f] consists of all the partial recursive functions for 

which there is an algorithm that can be proved to run within the 

resource-bound f . 

A variation on the class B[f] is suggested by consideration of 

the almost-everywhere bounding conditions. Writing out in full the 

provable condition for B[f] , we have : 

f- 11 3n Vx > n <p. (x) < f (x) 11 
• 

i 

This condition guarantees the existence of a starting point n for the 

bounding, but gives no value for n. In a practical situation, it 

would be natural to ask that some explicit value for n be given. The 

required condition can be written as : 

3n f- 11 Vx > n <p. (x) < f (x)" . 
i 

Let us denote by A[f] the class defined with this condition. That is 

A [f] {g 1 3i <P . = g and 3n 
i 

f-"\:Jx > n <p _( x) < f(x)"}. 
i 

Even more stringent than the requirement that an explicit starting-

point for the bounding be given is the requirement that the complexity of 

the algorithm be bounded by f everywhere, that is, on every input. 

This sort of bounding is considered in the study of the TIME and TAPE 

measures on Turing machines. Hartmanis in [8] considered provable 

complexity classes defined with everywhere bounding for the TIME and 

TAPE measures . His work, like most work on these measures, was in the 

context of Turing machines as recognizers of formal languages. 
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THEOREM 5.11 For infinitely many recursive functions f 

A[f] f B[f] = C[f] 

5.2 RESULTS 

To begin the results, we note the obvious. 

OBSERVATION 5.1 It follows immediately from the definitions that for 

any partial recursive function f 

A[f] C B[f] C C[f] 

We shall be concerned with conditions that force the above 

inclusions to be either proper inclusions or equality. The next half-

dozen results deal with the relationship between the A-classes and the 

C-classes. First, we have a means of producing from ~t a function 

THEOREM 5.2 For some p-functions K and g, Vt 

PROOF 

(i) Vx > t cpK (t) (x)::: g(x,~t(x)) , 

{ii) if ~t is defined on an infinite domain, then 

~K (t) A[~t] 

In the following algorithm for a Turing machine, let the p-

function y be as in Theorem 1.1. 

ALGORITHM in (t,x) 

1. Mark off log x tape. Within that length of tape, generate 

and write down the theorems of S . Whenever a theorem of the 
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form "\;fy ::: n cp i (y) S tp t (y) 11 appears, check whether n S log x 

and i Slog x, and if they both are, then write down the 

description of before going on to the next theorem . 

Stop when the log x tape is full. 

For each description written down , simulate 

operating on the input x. Record the maximum of the values 

M {x) • 
y-l(i) 

Add 1 to this maximum and output that value. {If no 

descriptions were written down, then output 1.) 

Let us consider each of the steps for the algorithm operating on 

some arbitrary {t,x ) . 

1 . Log will be to some appropriate base . We don ' t actually deal 

with log x but rather, say, the greatest integer q slog x . The 

marking- off of log x tape requires no more than log x tape . 

As we noted in Section 1 . 1 the theorems of S can be generated 

primitive recursively . The calcu lations of the indices y-1 (i ) will 

converge since -1 
y is a p - function . All of the other operations in 

this step can be done primitive recursively . 

Thus, the calculations in step 1 will converge and will use 

log x tape . 

2 . The description of M 
y-l{i) 

will be in some standard form such 

as quintuples . Suppose the description fills D. 
i 

tape squares . Then 

the simulation of M _1 {x) 
y (i) 

tape. 

will require no more than Di · TAPE _1 (x) 
y (i) 



58 

From step 1, we have that I- "\Jy > n 

n < log x , . < 1 i _ og X and D. < log X 
i 

'±> , (y) < 4) (y) II 

i t 
and also 

Let us note here that if 

then ¢ . (x) + , 
i 

and so M _1 (x) + . 
y (i) 

Let h be as in Theorem 1.5. 

Then, since i < x , TAPE _1 (x) h(x, 'Pi(x)) 
y (i) 

Therefore, since h is monotonically increasing in its second argument , 

TAPE -l (x) < h(x, 4)t(x)) 
y (i) 

So, Di• TAPE -1 (x) < log x • h(x, 4)t(x)) 
y (i) 

By running the successive simulations over the same tape, we 

can arrange that the tape used in step 2 is just the tape used in the 

lengthiest simulation. 

Thus, step 2 requires less than log x • h(x, 4)t(x)) tape. 

Also, if 4)t(x)+ , then the calculations in step 2 will converge . 

3. For the addition of 1, we allow one extra tape square. 

Finally (assuming without loss of generality that h 1) if 

we overlay the calculations in step 1 and the subsequent calculations, 

then the entire algorithm requires no more than log x • h(x, 4)t (x)) tape. 

Also, if 4)t (x) + , then the algorithm will converge on (t,x) 

The algorithm translates into a Turing machine W(t , x) By 

Theorem 1. 3, .for some p-function w 

W(t,x) = M (x)" w(t) · 

Further, from our discussion above, we can ensure tha t 

Vt Vx TAPEw(t) (x) < log x · h(x, 4) t(x)) 



59 

By Theorem 1 . 5, 

Vt Vx > t 4> (x) < h(x,TAPEw(t) (x)) . y(w (t)) 

So, Vt Vx > t cp (x) :S h(x,log x•h(x, <P t(x))) y(w (t)) 

Let K =yow, and define g by g(x,y) = h(x,log x•h(x,y)) . 

Then K and g are p-functions, and 

Vt Vx > t <±>K (t) (x) < g(x,<Pt(x)) . 

Thus, we have established part (i) of the theorem. 

We next prove part (ii). 

Suppose that <P t is defined on an infinite domain and 

We shall establish a contradiction. 

Since <PK (t) E A[ <P t] , for some i and some n, 

= c.p. 
l 

and I- " Vy > n 

Therefore, for some x , <P t(x)~ and the theorem 

and also the description of 

written down in step 1 of the algorithm in (t,x) . 

Since <Pt (x) ~ , the algorithm will converge on (t,x). 

By the construction of the algorithm, W(t,x) > M _1 (x) . 
y ( i) 

By Theorem 1.1, <P = M yow(t) w 
II Therefore 

<PK (t) (x) = Mw(t) (x) 

That l S , c.p K ( t) ( X) > <Pi ( X) • 

= W(t,x) > M _ 1 (x) = 
y (i) 

But and c.pK (t) (x) . Contradiction. 

<P . (x) 
l 

will be 
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Thus, if ~t is defined on an infinite domain, then 

~K(t) f A[ ~ t] 

using Theorem 5.2, we can generalize a number of results from 

[8]. First , we generalize Corollary 2 [8]. 

COROLLARY 5.3 For some p-function g , for any partial recursive 

function f defined on an infinite domain, 

A[f] C[g(x,f(x))] 

PROOF Let K and g be as in Theorem 5.2. 

Assume without loss of generality that Vx Vy g(x,y) > y. 

Then A[f] c C[g(x,f(x))] 

Let ~t =f . Then ~K(t) E C[g(x,f(x))] 

but if f is defined on an infinite domain, then ~K(t) f A[f] 

Next , we generalize Theorem 3 [8]. 

THEOREM 5 . 4 For infinitely many recursive functions f 

A[f] C[f] 

0 

0 

Thus, A-classes may be strictly smaller than C-classes. If 

we take A[f] to represent what we can prove to be computable within the 

resource-bound f , then for infinitely many resource-bounds f , what 

we can prove to be computable within f is strictly less than what is 

computable within f. 

Actually, we can prove a stronger version of Theor em 5.4 : 
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For some p-function T , Va 

'+> T(a) 
is monotonically increasing and 

Vx 

if 

if 

> '+> (x) ; 
a 

is provably total , then 

is recursive, then '+> T (a) 

'+> T(a) is provably total; 

is recursive and 

The existence of the p-function T shows that there is 

actually an algorithm to produce functions f = 't> T(a) such that 

A[f] ~C[f]. Part (i) tells us that f can be made arbitrarily 

large. From part (ii), 

total. 

PROOF OF THEOREM 5.4' 

f will be a p-function when '+> a 
is provably 

Let g be as in Corollary 5.3. 

can be calculated by a provably total 

Since g is a p-function, g 

'+> • r 

Let. a. be as in Theorem 1.4. 

Define T by T(a) = a. (a , t ) · 

By Theorem 1.4, Va 

Then T is a p-function. 

is monotonically increasing and 

Vx 

(ii) if '+la is provably total, then 't>T (a) 

Now suppose that '+la is recursive. 

By Theorem 1.4, '+> T (a) 
is recursive and 

Vi Vx > i ¢ i (x) < 't)T(a) (x) or 

cf> i(x) > g(x, 't)T(a)(x)) . 

is provably total . 
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Therefore, C[g(x, (j) ( )(x))] C C[ (j) ( )] . 
T a - T a By Corollary 5 . 3 , 

A[ (j)T(a)] C[g(x, (j)T(a) (x))] . D 

We should note further that if K is the p-function from 

Theorem 5.2, then whenever (j)a is recursive 

Thus, as well as having an algorithm to produce functions f 

such that A[f] C[f] , we also have an algorithm to produce functions 

that lie in the difference C[f] - A[f] . 

Our next result is an extension of Theorem 5.4. It generalizes 

Corollary 4 [8]. 

COROLLARY 5.5 For any recursive function G, for infinitely many 

recursive functions f , 

A[G(x,f(x))] C[f] . 

This shows that even if we increase the resource-bound f by 

an arbitrary recursive function G, there will be infinitely many f 

such that what we can prove to be computable within G(x,f(x)) is 

strictly less than what is computable within f . 

PROOF The proof follows the same pattern as for Theorem 5.4'. 

Use Theorem 1.4 to produce recursive functions f such that 

C[g(x,G(x,f(x)))] C C[f] . 

Then, by Corollary 5 .3, A[G(x,f(x))] C[g(x,G(x,f(x)))] . D 
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We have not managed to establish, for general provable Blum 

measures, the existence of recursive functions f such that A[f] = C[f] 

However , if ¢ has certain special properties, we can show that 

Vt A[ <±' ] = C[ <±' ] t t 

First, we need some definitions. 

DEFINITIONS 

(i) A Blum measure ¢ is said to be finitely invariant if 

if ~- = ~- a.e., then 
i J 

= <.p. 
i 

and <p . a.e. 
J 

(ii) A Blum measure ¢ is said to have the Parallel Computation 

Property (PCP) if Vi Vj 3 k 

Vx ~k(x) =1(~i(x) 

~, (x) 
J 

and <±'k (x) = min 

if ¢. (x) < ¢. (x) 
i J 

otherwise 

{<±'.(x),<±'.{x)}. 
i J 

The idea behind finite invariance is that we can modify an 

algorithm's behaviour on finitely many inputs without increasing the 

algorithm's almost-everywhere complexity. 

The idea behind the PCP is that we can run two algorithms 

in parallel without any extra cost in terms of complexity. 

We now introduce provable analogues of definitions (i) and (ii). 

DEFINITIONS 

{iii) We say that ¢ is provably finitely invariant if 



Vi 

(iv) 

and 

V j if 4) . = 4) . 
l J 

3k (pk = 4). 

We say that 

4)k (x) ={4)i(x) 

4) . (x) 
J 

3n r- 11 Vx > n 

l 

<fl 

64 

a . e. , then 

and 3n r- 11 Vx > n cp k(x) < <fl .(x)" -
J 

has the provable PCP if V i V j 3k 

if <F. (x) <<fl . (x) 
l J 

otherwise 

<Pk(x) <<F.(x)". 
J 

Note that, in general, if we can show that a Blum measure is 

finitely invariant and has the PCP , then our arguments will be 

reproducible in S and will show that the measure is provably finitely 

invariant and has the provable PCP. 

THEOREM 5.6 If cp is provably finitely invariant and has the 

provable PCP , then 

PROOF Suppose that f E C[ <fl t] . 

Then for some l , 4). = f 
l 

and <fl , < cp 
l t a.e. 

Since <F has the provable PCP , for some k , 

Vx 

otherwise 

and 3n r- 11 Vx > n <flk(x) < <F t(x)" . 

Notice that = <.p. 
l 

a.e . 

Since <fl is provably finitely invariant, for some J , 
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(j) . = (j) . and 3 m r- 11 Vx > m <i>. (x) s cp (x) II . 
J l J k 

Thus, (j) . = f and 3v r- 11 rfx > V <p . (x) s <p (X) II . 
J J t 

Therefore , f E A [4> ] D 
t 

The above result generalizes Theorem 7(1) [8] and Corollary 8 [8]. 

It is a simple exercise to check that the TAPE measure is provably 

finitely invariant and has the provable PCP. 

Theorem 5.6 indicates what strong conditions are required to 

guarantee the existence of recursive functions f such that A[f] = C[f] 

Many natural measures are finitely inva riant. However, most natural 

measures do not have the PCP - for example, the TIME measure does not 

have the PCP [2]. 

For general provable Blum measures, we have the following result, 

which generalizes Corollaries 9 and 10 [8]. 

THEOREM 5.7 For some p-function b , Vt 

PROOF 

C[ (j)t] c A[b(x, <i> t(x))] and 

C[4>t] C A[b(x,~t(x))] 

Define a Turing machine W(i,t,n,x) by 

IF x > n and 4> i (x) > (j) t(x) and 4> . (x) > <i> (x) 
l t 

THEN output 0 ELSE calculate and output (j) .(x). 
l 

By Theorem 1.3, for some p-function w 

W(i,t,n , x) = M (' t )(x)
11

• w i, , n 

Let 0 = yow , where y is as in Theorem 1.1 . 

Then 0 lS a p-function and W(i , t,n,x) = (j) ( • t ) (x) II • 0 i, ,n 
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Define b by 

b(x,y) = max { ¢ ( . ) (x) a i,t,n I O < i,t,n < x and cp (x) 
t = y} . 

It is a simple exercise to show that b is a total function 

Vi Vt Vn , for x > max {i,t,n} , ¢ . (x) < b(x, 4' t(x)) . a(i ,t,n) 

Our arguments will be reproducible in S for a straightforward 

Turing machine representation of b. 

Thus, b is a p-function and 

1-- 11 V i Vt Vn , for X > max { i , t , n } , cp ( X ) < b ( X ' cp t ( X ) ) II • 
a(i,t,n) 

Then for some i and some n, 

Therefore tpa(i,t,n) 

Let m = max {i,t,n} 

= 4) . = f . 
l 

Then 

4) . = f and 
l 

1-- 11 Vx > m <p . ( X) < b ( X 1 <pt ( X ) ) 11 
• 

a(i,t,n) 

Thus, f E A[b(x, Pt(x))] 

By making the proof more complicated - for example, by 

incorporating arguments from Lemma 5 .12 - we could have forced the 

D 

inclusions between the classes in Theorem 5.7 to be proper inclusions. 

We now present some result for the B-classes. 
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For the following theorem we adopt the convention that the TAPE 

cost of a Turing machine computation does not include the number of tape 

squares initially required to write down the input value. 

THEOREM 5 . 8 For the TAPE measure on the Turing machine enumeration M, 

for any partial recursive function f , 

if 1- "f (x) :::. log x a. e . " , then B [f] C [f] 

In Lemma 11 [8] Hartmanis establishes a similar result for the 

TIME measure . 1 He attributes the result to A. Meyer. 

Note that f may be greater than log without our being able 

to prove it . Indeed, we can produce arbitrarily large recursive 

functions f such that "f(x ) :::. log x a . e ." . Nevertheless , for 

the TAPE resource-bounds f usually considered, if f(x):::. log x a . e ., 

then we can prove it . 

PROOF OF THEOREM 5 . 8 

Suppose 1- " f(x):::. log x a.e." , and suppose that g E C[f] 

We shall show that g E B[f] 

For some 1 and some n, 

Vx > n TAPE. (x) < f(x) 
l 

M. 
l 

g and 

Define a Turing machine M. 
J 

by the following algorithm 

1 In Lemma 11 [8] there is no provable condition corresponding to our 
condition that 1- "f (x) :::. log x a. e." . It seems to us that such 
a provable condition is necessary for the proof to work. 
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Lay-off log x tape. Within that length of tape, seek a 

y > n such that TAPE. (y) > f (y) . 
i 

(It is easy to arrange 

the search procedure so that if there were a y > n such that 

TAPE. (y) > f(y) and f(y)+ , then for sufficiently large x , 
i 

the search would find such a y .) Stop when the log x tape 

is full . 

2 . If such a y is found, then output O . 

3. If no such y is found, then, re-using the log x tape, 

calculate M. (x) 
i 

using the instruction set for M. . 
i 

Since Vx > n TAPE. (x) < f(x) , the algorithm always goes 
i 

through step 3. 

Therefore, M. = M. = g . 
J i 

We now present an argument, which can be reproduced in S , to 

show that TAPE. (x) S f(x) a.e. 
J 

Suppose that Vy> n TAPE.(y) S f(y). 
l 

Then for every x , the algorithm goes through step 3. 

Therefore, Vx TAPE. (x) S max {log x,TAPE. (x)} . 
J i 

So, Vx > n TAPE.(x) S max {log x,f(x)} . 
J 

Since f(x) > log x a.e., TAPE. (x) S f (x) 
J 

a.e. 

Now suppose it is not the case that Vy> n TAPE. (y) < f{y) . 
i 

Then 3y > n TAPE. {y) > f {y) 
i 

and f{y)+ . 

Because of the search procedure in step 1, for all sufficiently large x , 

the algorithm goes through step 2 . 

Therefore , TAPE. (x) = log X a . e . 
J 

Since f{x) log x a . e ., TAPE. (x) < f {x) 
J 

a .e. 
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Thus , TAPE. (x) < f(x) 
J 
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a.e . 

The above argument can be reproduced in S . 

Thus , 1- "TAPE. (x) S f(x) 
J 

So , g E B [ f] 

a . e ." 

For general provable Blum measures we have the following result 

THEOREM 5 . 9 For some p-function d , for any partial recursive 

function f , 

C[f] C B[d(x , f(x))] 

PROOF Let h be as in Theorem 1. 5 . 

Define d by 

d (x , y) h(x , max {log x,h (x,y ) }) 

Then d i s a p - function . 

Suppose that g E C[f] 

Then , for some i , ~- = g and P . Sf a . e . 
l l 

Let y be as in Theorem 1 . 1 . Then, by Theorem 1 . 5, 

TAPE - l (x ) 
y ( i) 

< h(x,¢ . (x)) < h(x,f (x)) 
l 

It follows from Theorem 5 . 8 that , for some J , 

a.e. 

M. = M and I- "TAPE. (x) < max {log x , h(x , f(x))} a . e. " 
J y - l(i) J 

Applying Theorem 1 . 5 and the definition of d, we have 

1- " ¢ (x) < d(x,f(x)) a.e." y ( j) 
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Now, ~y(j) = Mj = My-l(i) 

Thus, g E B[d(x,f(x))] 
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= ~ - = g. 
i 

From Theorem 5 . 9 we can deduce 

THEOREM 5.10 For infinitely many recursive functions f , 

B[f] C[f] 

D 

Thus, if we do not require that some explicit starting-point for 

the bounding be given, then for infinitely many resource-bounds f , 

what we can prove to be computable within f is equal to what is 

computable within f. 

Actually, we can prove a stronger version of Theorem 5.10 

THEOREM 5.10' For some p-function T , Va 

(i) is monotonically increasing and 

Vx 

(ii) 1-- "if is total, then 
T (a) 

is tota l" ; 

The existence of the p-function T shows that there is 

actually an algorithm to produce functions such that 

B[f] = C[f] Part (i) tells us that f can be made arbitrarily 

large. From part (ii), f will be recursive when ~a is recursive, 

and f will be a p-function when ~a is provably total. 



I! 

,, 

I 

I, 

I! 

11 

71 

PROOF OF THEOREM 5.10' 

Let d be as in Theorem 5.9. Since d is a p-function, d 

can be calculated by a provably total (j)r 

Let a be as in Theorem 1.4. 

Define T by T(a) = a( a , r ) . Then T is a p-function. 

By Theorem 1.4, for any a 

1- 11 'i/i 'ifx > i <P i(x) < (j)T (a)(x) or 

There f Ore , B [ d ( X , (j) T ( a ) ( X ) ) ] C B [ (j) T ( a ) ] 

By Theorem 5.9, C[ (j) ( )] C B[d(x, (j) ( ) {x))] T a - T a 

So ' B [ (j) T (a) ] = C [ (j) T (a) ] . 

It also follows from Theorem 1.4 that for any a 

(i) (j)T(a) is monotonically increasing and 

'i/x (j)T (a) (x) ::: (j)a (x) ; 

(ii) (j) 
T (a) 

I- II if is total, then is total " . D 

The proofs of Theorems 5.4' and 5.10' can be combined to yield 

THEOREM 5.11 For infinitely many recursive functions f , 

A[f] B[f] = C[f] 

Thus for infinitely many resource-bounds f , what we can prove 

to be computable within f will differ depending on whether we require 

that an explicit starting-point for the bounding be given or simply ask 

that almost-everywhere bounding be demonstrated. 
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Although our results so far for the A-classes and the B-classes 

have shown differences , Theorem 5 .11 is the first result to actually 

demonstrate that the two types of classes are different. 

PROOF OF THEOREM 5.11 

Let g and d be as in results 5.3 and 5.9 respectively. 

Define m by m(x , y) = max {g(x,y) ,d(x,y)} . 

Then m is a p-function and can be calculated by a provably total 

Let a be as in Theorem 1.4. 

Define T by t(a) = a( a , r ) Then T is a p-function. 

r 

We can now follow the proofs of Theorems 5.4' and 5 .10' to show 

that for any a 

(i) is monotonically increasing and 

(ii) I- II if is total, then is total" 

(iii) [ ] C [ ] B ~T (a) = ~T(a) ; 

(iv) if is recursive, then 
T (a) 

is recursive and 

D 

We showed in Theorem 5.6 that for some measures, 

Vi A[¢ .] = B[¢.] = C[¢ .] i i i 

On the basis of Theorem 5.6 and of Theorem 7 [8), it may be wondered 

whether the complexity classes of the form C [<r> .] 
i 

are the only ones 

for which there can be equality with the corresponding provable complexity 

classes. In the case of the B-classes, we can show that for many 

measures this is not so . 
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First , some preliminaries . 

DEFINITION A Blum measure ¢ is said to be proper if Vi ¢ EC[¢ .] 
l l 

Many natural measures are proper - for example, the TIME and 

TAPE measures are proper. 

LEMMA 5 .1 2 For some p-function k 

(i) k(x,y) is monotonically increasing in y 

(ii) Vt if ~t is defined on an infinite domain, then 

PROOF We can define a p-function K such that 

Vt Vx ~K (t) (x) 

Note that if ~t (x)+ ' 

= 1 + max { ~. (x) 
l 

then ~K(t )(x) + . 

and 

Suppose that ~t is defined on an infinite domain and that 

¢i < ~t a.e. 

Then for some x, ~t (x)+ , i S x and ¢i (x) < ~t(x) 

Therefore, ~K (t) (x) {-

So, ~K (t) i ~i . 

and ~K (t) (x) > ~i (x) 

Thus, if ~t is defined on an infinite domain, then 

Define k by 

k(x,y) = max { ~ (x) , ¢ ( ) (x) r K r 
0 < r < X and ¢ (x) S y} . r 

Then k is a p - function and k(x , y) is monotonically increasing in y . 
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Further , Vt Vx > t 

4>K (t) (x) S k(x, 4> t(x)) . 

So , if q:> t is defined on an inf inite do ma in, then 

D 

We can now show tha t for proper provable Blum measures there a re 

cla sses C[f] tha t are not equa l to some C [4>. ] 
l 

B[f] = C[f] . 

THEOREM 5 . 13 Let 4> be proper . 

Then for infinitely many recursive functions f , 

A[f] B[f] = C[f] 

Vi C [4> .] -/- C[f] . 
l 

and 

and for which 

PROOF Let g, d and k be as in resul ts 5 . 3 , 5 . 9 and 5 . 12 

respectively . 

Define m by m(x , y ) = max {g(x , y ) , d(x , y) , k(x , y)} . 

Then m 1s a p-function and can be calculated by a provably total 

Let a be as in Theorem 1 . 4 . 

Define T by T (a) = a (a , r ) . Then T 1s a p - function . 

We can now show that for any a 

(i) q) T(a) is monotonica lly increasing a nd 

Vx <PT (a ) (x) <Pa (x) ; 

(ii) f- II i f <Pa is tota l, then q)T (a) is tota l" 

<P r 
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(iv) i. f <.pa is recursive, then <.p 
T (a) 

is recursive and 

A( <.p -r(a)] f C( <.p -r(a)] ; 

(v) if 4' is proper and <.pa is recursive, then 

\;j i C (4' . ] I C [ <.p ( ) ] . 
i T a 

(i) to (iv) follow as in the proof of Theorem 5.11 . 

We now prove (v). 

Suppose that 4' is proper, that <.p 
a 

is recursive and that 

We shall establish a contradiction. 

Therefore, for some J , <.p, =4'. 
J i 

Since is recursive, <.p 
T ( a) 

Therefore, <.p.(x)+ a.e. x. 
J 

and q:, < (f) •-'t'() J T a 

is recursive. 

By Lemma 5.12, C(<.p.] 5 C[k(x, 4' .(x)] 
J / J 

a.e. 

Since k is monotonically increasing in its second argument, 

k(x,4'j (x)) < k(x,<.p-r (a) (x)) a.e. 

Therefore, C(<.pj] f C[k(x,<.p-r(a) (x))] . 

Now, by Theorem 1.4, C[m(x,<.p-r(a) (x))] c C[ <.p-r(a)] . 

Therefore, C [k (x ,<.p T (a) (x))] c C [<.p -r (a)] . 

So, C[<.pj] f C( <.p-r(a)] . 

That is, C(4'i] f C[<.p-r(a)] 

But this contradicts our supposition that C(4' .] = C[ <.p ] i -r(a) · 
D 

It is perhaps worth noting that the argument to show (v) above 

can be adapted to give a proof that 

THEOREM For any proper Blum measure ¢ , 

form a class-determining set . 

the functions 4' do not 
i 
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This proof differs from the usual proofs o f the theorem in 

that it uses the Gap Theorem rather than the more difficult Union Theorem . 

{See [13].) 

As for showing differences between B-classes and C-classes, the 

best we have is 

THEOREM 5.14 There exist provable Blum measures ¢ and recursive 

functions f such that 

B[f] C[f] 

To prove Theorem 5.14, we need a few preliminaries. 

DEFINITION A set F of partial recursive functions is said to be 

recursively presentable if for some recursively enumerable Y c N, 

F = {({). I i E Y} -
i 

LEMMA 5.15 For any partial recursive function f , 

B [f] is recursively presentable. 

PROOF An appropriate set Y is enumerated by the following algorithm 

Generate the theorems of S. Whenever a theorem of the form 

"¢. < f a.e." is generated, output i . 
i 

The following result appears in [10]. 

THEOREM There exist Blum measures ¢ and recursive functions f such 

that C [f] is not recursively presentable. 
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In the proof of this Theorem , a Blum measure P is constructed 

for which C[O] is not recursively presentable . 

It is easy to check that ¢ is a provable Blum measure . 

By Lemma 5 . 15 , B[O] C[O] 

So , Theorem 5 . 14 is established . 
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CO NCLUSION 

The study of provable conditions in computational complexity 

provides new insights into the nature of problems in the complexity of 

algorithms , for it considers the limitations on what we (working as we 

do within a formal axiomatic system) can come to know about an algorithm's 

properties. The main thrust of this thesis is that for many natural 

questions in computational complexity what we can come to know , that is , 

what we can formally prove, falls unpleasantly short of what is actually 

true. 

The results in Chapter 3 show that what we can establish about 

the complexity properties of a partial recursive function f depends on 

the algorithm we initially use to define f . 

For every partial recursive function f , there exist anomalous 

<lefining algorithms - anomalous because of the discrepancy between what 

is true about the algorithms and what can be proved about them. We can 

never know what limitations our particular defining algorithm for f 

imposes on us, for the only algorithms that we can recognize as 

calculating f are those provably equivalent to our defining algorithm 

for f. Anomalous algorithms exist among the provably total algorithms 

and also among the ' very fast ' algorithms . It is only a hope that 

intuitively natural defining algorithms are not anomalous . 

In Chapter 4 we investigated the relationship between provable 

equivalence and the computational complexity of algorithms . This 

relationship is complex and not readily summarized, but it is closely 
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involved with provable relationships between the domains over which 

algorithms are defined. A general conclusion we can draw from the 

results in this chapter is that as the difference between the 

complexities of algorithms increases, what we can prove about the 

relationships between the algorithms decreases. 

Chapter 5 concerned provable analogues of complexity classes. 

The differences between the B-classes and the A-classes show that what 

can be proved to be computable within a given resource bound may differ 

depending on whether we ask merely that almost-everywhere bounding be 

demonstrated or require further that an explicit starting-point for 

the bounding be given. 

In a practical situation , it seems natural to require that an 

explicit starting- point for the bounding be given. In that case, the 

differences between the C-classes and the A-classes show that for 

infinitely many recursive functions there will be a discrepancy between 

what is true and what can be proved about the complexity of the function, 

no matter what algorithm is used to define the function. Furthermore, 

such discrepancies will occur even among those functions that can be 

proved to be total . 

Our work here has left some obvious open questions - for example, 

are there functions f such that A[f] = C[f] ? Perhaps answering 

such questions requires only the invention of more ingenious algorithms , 

or perhaps it awaits the introduction of provable conditions into deeper 

areas of complexity theory, such as the rich theorems relating recursive 

enurnerability of classes to complexity properties . 
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Beyond these things , however, lies the h a unting question of what 

it is about an algorithm that limits our ability (working within our 

formal system) to analyse its complexity properties . Certainly, very 

complex algorithms are difficult for us to analyse, but the answer is 

not that simple since, as we showed in Chapter 3, anomalous algorithms 

are to be found even among the LOG-SPACE and LINEAR-TIME algorithms. 

Clearly, a much deeper understanding of the relationship between formal 

provability and computational complexity is required. 
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