
Three Ways to Test

Irreducibility

Richard P. Brent

Australian National University

joint work with

Paul Zimmermann

INRIA, Nancy

France

7 April 2009

Outline

• Polynomials over finite fields

• Irreducibility criteria

• First algorithm —
via repeated squaring

• Modular composition

• Second algorithm —
via modular composition
using matrix multiplication

• Third algorithm —
via “fast” modular composition

• Comparison of the algorithms

• The “best” algorithm

• New primitive trinomials

2

Polynomials over finite fields

We consider univariate polynomials T (x) over a
finite field F . The algorithms apply, with minor
changes, for any small positive characteristic,
but since time is limited we assume that the
characteristic is two, and F = Z/2Z = GF(2).

T (x) is irreducible if it has no nontrivial factors.
If T (x) is irreducible of degree d, then [Gauss]

x2d
= x mod T (x).

Thus T (x) divides the polynomial

Pd(x) = x2d
− x. In fact, Pd(x) is the product

of all irreducible polynomials of degree m,
where m runs over the divisors of d. Thus, the
number of irreducible polynomials of degree d is

2d

d
+ O

(

2d/2

d

)

.

Since there are 2d polynomials of degree d, the
probability that a randomly selected polynomial
is irreducible is ∼ 1/d→ 0 as d→ +∞. In this
sense, almost all polynomials are reducible.

3

Irreducibility criteria

Since irreducible polynomials are “rare” but
useful in many applications, we are interested in
algorithms for testing irreducibility.

From the previous slide, T (x) of degree d is
irreducible iff

x2d
= x mod T (x)

and, for all prime divisors m of d, we have

GCD
(

x2d/m
− x, T (x)

)

= 1 .

The second condition is required to rule out the
possibility that T (x) is a product of irreducible
factors of some degree(s) k = d/m, m|d.

Since the second condition does not significantly
change anything, let us assume that d is prime
(as it is in all our examples). Then T (x) is
irreducible iff

x2d
= x mod T (x).

4



One more assumption

All the algorithms involve computations mod
T (x), that is, in the ring GF(2)[x]/T (x).

In the complexity analysis we assume that T (x)
is sparse, that is, the number of nonzero
coefficients is small. Thus, reduction of a
polynomial mod T (x) can be done in linear
time. (The comparison of the algorithms might
be different without this assumption.)

In applications T (x) is often a trinomial

T (x) = xr + xs + 1, r > s > 0 .

5

First algorithm — repeated squaring

Our first and simplest algorithm for testing
irreducibility is just repeated squaring:

P (x)← x;
for j ← 1 to d do

P (x)← P (x)2 mod T (x);

if P (x) = x then
return irreducible

else
return reducible.

The operation P (x)← P (x)2 mod T (x) can be
performed in time O(d). The constant factor is
small. We recommend the fast squaring
algorithm of Brent, Larvala and Zimmermann
(2003). This saves both operations and memory
references, and is about 2.2 times faster than
the obvious squaring algorithm (as implemented
in most otherwise-good software packages).

Since the test involves d squarings, the overall
time is O(d2).

6

Polynomial multiplication

Before describing other algorithms for
irreducibility testing, we digress to discuss
polynomial multiplication, matrix
multiplication, and modular composition.

To multiply two polynomials A(x) and B(x) of
degree (at most) d, the “classical” algorithm
takes time O(d2). There are faster algorithms,
e.g. Karatsuba, Toom-Cook, and FFT-based
algorithms.

For polynomials over GF(2), the asymptotically
fastest known algorithm is due to Schönhage.
(The Schönhage-Strassen algorithm does not
work in characteristic 2, and it is not clear
whether Fürer’s ideas are useful here.)

Schönhage’s algorithm runs in time

M(d) = O(d log d log log d) .

In practice, for d ≈ 32 000 000, a multiplication
takes about 480 times as long as a squaring.

7

Matrix multiplication

Let ω be the exponent of matrix multiplication,
so we can multiply n× n matrices in time
O(nω+ε) for any ε > 0. The best result is
Coppersmith and Winograd’s ω < 2.376, though
in practice we would use the classical (ω = 3) or
Strassen (ω = log2 7 ≈ 2.807) algorithm.

Since we are working over GF(2), our matrices
have single-bit entries. This means that the
classical algorithm can be implemented very
efficiently using full-word operations (32 or 64
bits at a time). Nevertheless, Strassen’s
algorithm is faster if n is larger than about
1000.

Good in practice is the “Four Russians”
algorithm [Arlazarov, Dinic, Kronod &
Faradzev, 1970]. It computes n× n Boolean
matrix multiplication in time O(n3/ log n).

We can use the Four Russians’ algorithm up to
some threshold, say n = 1024, and Strassen’s
recursion for larger n, combining the advantages
of both.

8



Modular composition

The modular composition problem is: given
polynomials A(x), B(x), T (x), compute

C(x) = A(B(x)) mod T (x).

If max(deg(A), deg(B)) < d = deg(T ), then we
could compute A(B(x)), a polynomial of degree
at most (d− 1)2, and reduce it modulo T (x).
However, this wastes both time and space.

Better is to compute

C(x) =
∑

j≤deg(A)

aj(B(x))j mod T (x)

by Horner’s rule, reducing mod T (x) as we go,
in time O(dM(d)) and space O(d). Using
Schönhage’s algorithm for polynomial
multiplication, we can compute C(x) in time
O(d2 log d log log d).

9

Faster modular composition

Using an algorithm of Brent & Kung (1978),
based on an idea of Paterson and Stockmeyer,
we can reduce the modular composition
problem to a problem of matrix multiplication.
If the degrees of the polynomials are at most d,
and m = ⌈d1/2⌉, then we have to perform m
multiplications of m×m matrices. The
matrices are over the same field as the
polynomials (that is, GF(2) here).

The Brent-Kung modular composition
algorithm takes time

O(d(ω+1)/2) + O(d1/2M(d)),

where the first term is for the matrix
multiplications and the second term is the time
for computing the relevant matrices.

Assuming Strassen’s matrix multiplication, the
first term is O(d1.904) and the second term is
O(d1.5 log d log log d). Thus, the second term is
asymptotically negligible (but maybe not in
practice).

10

Using modular composition

Recall that our problem is to compute
x2d

mod T (x). Repeated squaring is not the
only way to do this.

Let Ak(x) = x2k
mod T (x). Then a modular

composition algorithm can be used to compute
Ak(Am(x)) mod T (x). Since

Ak(Am(x)) =
(

x2m)2k

mod T (x) = Am+k(x),

we can compute x2d
mod T (x) with about

log2(d) modular compositions (instead of d
squarings).

For example, if d = 17, we have (with all
computations in GF(2)[x]/T (x)):

A1(x) = x2, (trivial)
A2(x) = A1(A1(x)) = x4, (≡ 1 squaring)
A4(x) = A2(A2(x)) = x16, (≡ 2 squarings)
A8(x) = A4(A4(x)) = x256, (≡ 4 squarings)
A16(x) = A8(A8(x)) = x216

, (≡ 8 squarings)
A17(x) = A16(x)2 = x217

, (1 squaring)

using only 4 modular composition steps.

11

Second algorithm

To summarise, we can compute
Ad(x) = x2d

mod T (x) by the following
recursive algorithm that uses the binary
representation of d (not that of 2d):

if d = 0 then
return x

else if d even then
{U(x)← Ad/2(x);
return U(U(x)) mod T (x)}

else
return Ad−1(x)2 mod T (x).

The algorithm takes about log2(d) modular
compositions. Hence, if Strassen’s algorithm is
used in the Brent-Kung modular composition
algorithm, we can test irreducibility in time
O(d1.904 log d).

12



Third algorithm

Recently, Kedlaya and Umans (2008) proposed
an asymptotically fast modular composition
algorithm that runs in time Oε(d

1+ε) for any
ε > 0.

The algorithm is complicated, involving iterated
reductions to multipoint multivariate
polynomial evaluation, multidimensional FFTs,
and the Chinese remainder theorem.
See the papers on Umans’s web site
www.cs.caltech.edu/~umans/research.htm

Using the Kedlaya-Umans fast modular
composition instead of the Brent-Kung
reduction to matrix multiplication,
we can test irreducibility in time Oε(d

1+ε).

Warning: the “Oε(· · ·)” notation indicates that
the implicit constant depends on ε. In this case,
it is a rather large and rapidly increasing
function of 1/ε.

13

Comparison of the algorithms

So the last shall be first,
and the first last

Matthew 20:16

The theoretical time bounds predict that the
third algorithm should be the fastest, and the
first algorithm the slowest. However, this is
only for sufficiently large degrees d.

In practice, for d up to at least 4.3× 107, the
situation is reversed! The first algorithm is the
fastest, and the third algorithm is the slowest.

A drawback of the first (squaring) algorithm is
that it is hard to speed up on a parallel
machine. The other algorithms are much easier
to parallelise. However, this is not a major
consideration if we are working on many
trinomials, as we can let different processors
work on different trinomials in parallel.

14

Example, d = 32 582 657

Following are actual or estimated times on a
2.2 Ghz AMD Opteron 275 for d = 32 582 657
(a Mersenne exponent).

1. Squaring (actual): 64 hours

2. Brent-Kung (estimates):

• classical: 265 hours (19% mm)

• Strassen: 254 hours (15% mm)

• Four Russians: 239 hours (10% mm)
(plus Strassen for n > 1024)

3. Kedlaya-Umans (estimate): > 1010 years

The Brent-Kung algorithm would be the fastest
if the matrix multiplication was dominant;
unfortunately the O(d1/2M(d)) overhead term
is dominant.

Since the overhead scales roughly as d1.5, we
estimate that the Brent-Kung algorithm would
be faster than the squaring algorithm for
d > 7× 108 (approximately).

15

Note on Kedlaya-Umans

Éric Schost writes:

The Kedlaya-Umans algorithm
reduces modular composition to the
multipoint evaluation of a
multivariate polynomial, assuming
the base field is large enough.

The input of the evaluation is
over Fp; the algorithm works over Z

and reduces mod p in the end. The
evaluation over Z is done by CRT
modulo a bunch of smaller primes,
and so on. At the end-point of the
recursion, we do a naive evaluation
on all of Fpm , where p is the current
prime and m the number of
variables. So the cost here is ≥ pm.

[Now he considers choices of m;
all give pm ≥ 1.36× 1027.]

Our estimate of > 1010 years is based on a time
of 1 nsec per evaluation (very optimistic).

16



The “best” algorithm

Comparing the second algorithm with the first,
observe that the modular compositions do not
all save equal numbers of squarings. In fact the
last modular composition saves ⌊d/2⌋ squarings,
the second-last saves ⌊d/4⌋ squarings, etc.

Each modular composition has the same cost.
Thus, if we can use only one modular
composition, it should be the one that

saves the most squarings.

If we use ⌊d/2⌋ squarings to compute

x2⌊d/2⌋
mod T (x), then use one modular

composition (and one further squaring, if d is

odd), we can compute x2d
mod T (x) faster than

with any of the algorithms considered so far,
provided d exceeds a certain threshold.

In the example, the time would be reduced from
64 hours to 44 hours, a saving of 31%.

Doing two modular compositions would reduce
the time to 40 hours, a saving of 37%.

17

Computational results

In 2007-8 Paul Zimmermann and I conducted a
search for irreducible trinomials xd + xs + 1
whose degree d is a (known) Mersenne
exponent. Since 2d − 1 is prime, irreducible

implies primitive. The previous record degree of
a primitive trinomial was d = 6972593.

d s
24036583 8412642, 8785528
25964951 880890, 4627670, 4830131, 6383880
30402457 2162059
32582657 5110722, 5552421, 7545455

Table 1: Ten new primitive trinomials xd +xs +1
of degree a Mersenne exponent, for s ≤ d/2.

We used the first algorithm to test irreducibility
of the most difficult cases. Most of the time was
spent discarding the vast majority of trinomials
that have a small factor, using a new factoring
algorithm with good average-case behaviour
(the topic of another talk).

18

Recent results

Since Sept 2008 we have been searching for
primitive trinomials of degree 43112609 (the
largest known Mersenne exponent).

Dan Bernstein and Tanja Lange have joined in
the search and contributed CPU cycles.

So far we completed about 98% of the search
and found four new primitive trinomials
x43112609 + xs + 1:

s = 3569337, 4463337, 17212521, 21078848

Testing irreducibility took about 119 hours per
trinomial on a 2.2 Ghz AMD Opteron, using
our first algorithm. The “best” algorithm would
take about 69 hours (saving 42%).

Most of the time (about 22 processor-years) was
spent sieving out reducible trinomials at an
average rate of about 32 sec per trinomial
(×43112609/2 trinomials).

19

Acknowledgement

Thanks to Éric Schost for his comments on the
work of Kedlaya and Umans; to Dan Bernstein
and Tanja Lange for contributing computer
time to the search for d = 43112609; to Alan
Steel for independently verifying our new
primitive trinomials using Magma; and to
Victor Shoup for his package NTL, which was
used to debug our software.

References

[1] V. L. Arlazarov, E. A. Dinic, M. A.
Kronod & I. A. Faradzev, On economical
construction of the transitive closure of an
oriented graph, Soviet Math. Dokl. 11

(1975), 1209–1210.

[2] W. Bosma & J. Cannon, Handbook of

Magma Functions, School of Mathematics
and Statistics, University of Sydney, 1995.
http://magma.maths.usyd.edu.au/

20



[3] R. P. Brent, P. Gaudry, E. Thomé & P.
Zimmermann, Faster multiplication in
GF (2)[x], Proc. ANTS VIII 2008, Lecture

Notes in Computer Science 5011, 153–166.
http://wwwmaths.anu.edu.au/~brent/

pub/pub232.html

[4] R. P. Brent & H. T. Kung, Fast algorithms
for manipulating formal power series, J.

ACM 25 (1978), 581–595.
.../pub045.html

[5] R. P. Brent, S. Larvala & P. Zimmermann,
A fast algorithm for testing reducibility of
trinomials mod 2 and some new primitive
trinomials of degree 3021377, Math. Comp.

72 (2003), 1443–1452. .../pub199.html

[6] R. P. Brent & P. Zimmermann, A
multi-level blocking distinct-degree
factorization algorithm, Finite Fields and

Applications: Contemporary Mathematics

461 (2008), 47–58. .../pub230.html

21

[7] R. P. Brent & P. Zimmermann, Ten new
primitive binary trinomials, Math. Comp.

78 (2009), 1197–1199. .../pub233.html

[8] P. Bürgisser, M. Clausen & M. A.
Shokrollahi, Algebraic Complexity Theory,
volume 315 of Grundlehren der

mathematischen Wissenschaften,
Springer-Verlag, 1997.

[9] D. Coppersmith & W. Winograd, Matrix
multiplication via arithmetic progressions,
J. Symb. Comput. 9 (1980), 251–280.

[10] M. Fürer, Faster integer multiplication,
Proc. 48th STOC Conference, 2007, 57–66.

[11] J. von zur Gathen & J. Gerhard, Modern

Computer Algebra, Cambridge Univ. Press,
1999.

[12] K. Kedlaya & C. Umans, Fast modular
composition in any characteristic, Proc.

FOCS 2008, 146–155. http://www.cs.
caltech.edu/~umans/research.htm

22

[13] A. Schönhage, Schnelle Multiplikation von
Polynomen über Körpern der
Charakteristik 2, Acta Inf. 7 (1977),
395–398.

[14] É. Schost, Fast irreducibility test, personal
communication, 4 June 2008.

[15] V. Shoup, NTL: A library for doing number
theory. http:www.shoup.net/ntl/

[16] G. Woltman et al, GIMPS, The Great
Internet Mersenne Prime Search.
http://www.mersenne.org/

23


