
The Multiplication Table Problem Revisited

Richard P. Brent
Australian National University and
CARMA, University of Newcastle

2 Oct 2019

Copyright c© 2019, R. P. Brent

Richard Brent Carl Pomerance, David Purdum and Jonathan Webster



Short abstract

The multiplication table problem of Erdős concerns the
asymptotics of the function M(n) that counts the number of
distinct products in an n × n multiplication table. We describe
algorithms for evaluating M(n) in quadratic time, and mention a
new algorithm that takes subquadratic time. These algorithms
have been used to compute M(n) for various n 6 230.
We also describe two Monte Carlo algorithms for estimating
M(n). These algorithms are practical for much larger n. In
comparing the efficiencies of the Monte Carlo algorithms, we
were led to consider a function T (n), defined to be the number
of products that occur exactly twice in the n × n table. We
consider the numerical evidence that T (n) � M(n).
The talk describes joint work with Carl Pomerance (Dartmouth),
David Purdum and Jonathan Webster (Butler). For more, see
our preprint arXiv:1908.04251.

Richard Brent The Multiplication Problem of Erdős



Outline

I History
I Two algorithms for exact computation -

naive and incremental
I A subquadratic exact algorithm
I Two approximate (Monte Carlo) algorithms -

Bernoulli and product trials
I Comparing Monte Carlo Algorithms – the function T (n)
I Numerical results
I Avoiding factoring - algorithms of Bach and Kalai

I only have 20 minutes, so have to refer you to our preprint
arXiv:1908.04251 for details.

Richard Brent Outline



The multiplication table for n = 7

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

We sometimes write rows in the reverse order. A set of distinct
entries is shown in blue.
The function M(n) is the number of distinct entries in the n × n
multiplication table: M(7) = 25 in the example shown.

Richard Brent The multiplication table



Some contributors

Erdős Linnik Vinogradov Tenenbaum Ford

None of these well-known mathematicians was able to give an
asymptotic formula for M(n), though Ford [Annals, 2008] found
the correct order of magnitude.

Richard Brent Multiplication is harder than you think



Erdős’s first paper on M(n)
Here is an excerpt from Erdős’s 1955 paper. The text runs
right to left, but the mathematics runs left to right!

Richard Brent Excerpt from Erdős’s 1955 paper



Some notation

f � g means that f = O(g).

f � g means that g = O(f ).

f � g means that f � g and f � g.
f ∼ g means that limn→∞ f (n)/g(n) = 1.

log(x) is a logarithm to any base.
ln(x) is the natural logarithm.

E(x) is the expectation of x .
Prob(x) is the probability of x .

Richard Brent Notation



History
There is an easy lower bound

M(n) >
∑

prime p 6 n

p � n2

lnn
.

Ford (2008) found the exact order-of-magnitude

M(n) � n2

(lnn)c(ln lnn)3/2
, (1)

where c is a mysterious constant that appeared in earlier work
of Erdős (1960):

c =

∫ 1/ ln 2

1
ln t dt = 1− 1 + ln ln2

ln2
≈ 0.0861.

Richard Brent History



Asymptotic behaviour unknown

It is not known if there exists

K = lim
n→∞

M(n)(lnn)c(ln lnn)3/2

n2
.

Ford’s result only shows that the lim inf and lim sup are
positive and finite.
Thus, there is some interest in computing exact or approximate
values of M(n) for “large” values of n.

Richard Brent Asymptotics



Exact computation of M(n) – the naive algorithm

It is easy to write a program to compute M(n) for small values
of n. We need an array A of size n2 bits, indexed 1 to n2, which
is initially cleared. Then, using two nested loops, set

A[i × j]← 1 for 1 6 i 6 j 6 n.

Finally, count the number of bits in the array that are 1 (or sum
the elements of the array). The time and space requirements
are both of order n2.
The inner loop of the above program is essentially the same as
the inner loop of a program that is sieving for primes. Thus, the
same tricks can be used to speed it up. For example,
multiplications can be avoided as the inner loop sets bits
indexed by an arithmetic progression. The sieving can easily be
parallelised.

Richard Brent Exact algorithms



Exact computation - the incremental algorithm

The naive algorithm takes time � n2 to compute one value
M(n). If we want to tabulate M(k) for 1 6 k 6 n, the time
required is � n3. A more efficient approach is to compute the
differences D(n) := M(n)−M(n − 1).
Assuming we know M(n− 1), we need to consider the products
m × n, for 1 6 m 6 n. Let δ(n) denote the number of these
products that have already occurred in the table. The number of
elements that have not already appeared is D(n) = n − δ(n).
Thus, it is sufficient to compute δ(n) in order to compute D(n)
and then M(n).

Richard Brent The incremental algorithm



Computing δ(n)
Assume we know the divisors of n (these can be computed by
trial division up to

√
n). Suppose that g|n, and let h = n/g. By

symmetry we can assume that g 6
√

n 6 h.
Can we express m× n as a product that already occurred in the
table? If m = i × j and n = g × h, then m× n = ij × gh = ih× jg.
If ih < n and jg < n, then the product ih × jg has already
occurred. Observe that ih < n iff i < g and jg < n iff j < h.
Thus, to compute δ(n), we need to count the unique products ij
with 0 < i < g and 0 < j < n/g, for each divisor g 6

√
n of n.

This can be done by sieving in an array of size n (the naive
algorithm required size n2).
If this is implemented so that work is not duplicated where
rectangles of size g1 × n/g1 and g2 × n/g2 overlap, then the
work is bounded by the number of lattice points under the
hyperbola xy = n. Thus, we can compute δ(n) in (worst case)
time O(n log n) and space O(n).

Richard Brent The incremental algorithm



Example: n = 24

If n = 24, the relevant divisors are g ∈ {2,3,4}.
If g = 2, we sieve over (i , j) ∈ {1} × {1,2, . . . ,11}.
If g = 3, we sieve over (i , j) ∈ {1∗,2} × {1∗,2,3,4,5,6,7}.
If g = 4, we sieve over (i , j) ∈ {1∗,2∗,3} × {1∗,2∗,3,4,5}.
Starred entries give duplicates so may be omitted.
We conclude that m × n is already in the table iff
m ∈ {1,2, . . . ,11,12,14,15}, so δ(n) = 14.
e.g. 12× n = 16× 18, 14× n = 16× 21, 15× n = 20× 18.

Richard Brent The incremental algorithm



Tabulating M(1), . . . ,M(n)

Using the “incremental” algorithm to compute the differences
D(n) = M(n)−M(n− 1), we can compute all of M(1), . . . ,M(n)
in time O(n2 log n) and space O(n) (not counting space for the
output).
This is much better than time O(n3) and space O(n2) using the
naive algorithm!
Another advantage of the incremental algorithm is that the
sieve has size n, smaller than that for the naive algorithm, and
more likely to fit in cache. (In both cases the sieve size can be
reduced by segmentation, but the incremental algorithm still
wins.)

Richard Brent The incremental algorithm



OEIS A027417
The OEIS sequence A027417 is defined by
an = M(2n − 1) + 1. Until recently, only a0, . . . ,a25 were listed.
Using parallel implementations of the naive and incremental
algorithms, we have extended the computation to a30.

n an 4n/an
1 2 2.0000
2 7 2.2857
3 26 2.4615
4 90 2.8444
· · · · · · · · ·
26 830751566970327 5.4211
27 3288580294256953 5.4779
28 13023772682665849 5.5328
29 51598848881797344 5.5860
30 204505763483830093 5.6376

Richard Brent Exact computational results



A subquadratic algorithm

Using the ideas of the incremental algorithm, and some
optimisations that depend on whether or not n is B-smooth with
B = L(n)1/

√
2, where L(n) := exp(

√
lnn ln lnn), we can compute

M(n) in time O(n2/L(n)1/
√

2+o(1)).
For details, see our arXiv paper.
We have implemented the subquadratic algorithm for evaluation
of M(n). It should also be possible to tabulate all the values
M(k) for 1 6 k 6 n in subquadratic time, but the algorithm is
complicated and not yet implemented.
Although the time for evaluation/tabulation is subquadratic, the
result is a little disappointing — we were hoping for something
like Karatsuba’s O(n1.585), but we don’t see how to obtain this.
Since L(n) = O(nε) for all ε > 0, it’s not clear how to evaluate
M(n) in time O(nλ) for any λ < 2.

Richard Brent A subquadratic algorithm



Monte Carlo computation
We can estimate M(n) using two different Monte Carlo
methods. Recall that

M(n) = #Sn, Sn = {ij : 1 6 i 6 n, 1 6 j 6 n}.

Bernoulli trials
We can generate a random integer x ∈ [1,n2], and count a
success if x ∈ Sn. Repeat several times and estimate

M(n)
n2 ≈ #successes

#trials
.

To check if x ∈ Sn we need to find some of the divisors of x ,
which probably requires the prime factorisation of x . There is
no obvious algorithm that is much more efficient than using the
prime factors of x to construct divisors (though we can avoid
factoring, as I’ll explain later if time permits).

Richard Brent Monte Carlo



Monte Carlo computation - alternative method
There is another Monte Carlo algorithm, using what we call
product trials.
Generate random integers x , y ∈ [1,n]. Count the number
ν = ν(xy) of ways that we can write xy = ij with i 6 n, j 6 n.
Repeat several times, and estimate

M(n)
n2 ≈

∑
1/ν

#trials
.

This works because z ∈ Sn is sampled at each trial with
probability ν(z)/n2, so the weight 1/ν(z) is necessary to give
an unbiased estimate of M(n)/n2.
To compute ν(xy) we need to find the divisors of xy .
Note that x , y 6 n, whereas for Bernoulli trials x 6 n2, so the
integers considered in product trials are generally smaller than
those considered in Bernoulli trials.

Richard Brent Monte Carlo



Comparison of the Bernoulli and product methods

For Bernoulli trials, p = M(n)/n2 is the probability of a success,
and the distribution of the estimate for M(n)/n2 after t trials has
mean p/t , variance p(1− p)/t ≈ p/t . (In what follows,
remember that p is a function of n, and p → 0 as n→∞.)
For product trials, the variance involves E(1/ν2), which we
don’t know. (In a computation, it can be estimated using the
sample variance with Bessel’s correction.)
The variance VP after t > 1 trials of the product method is
strictly smaller than the variance VB after the same number of
trials of the Bernoulli method (see next slide).
We find numerically that VP/VB ∈ [1/8,1/4] for n > 3
(at least up to the limits of our computations).

Richard Brent Monte Carlo



A more precise comparison of variances

Consider t fixed. VB,VP , p and ν are functions of n. Any
asymptotic statements are as n→∞.
We have tVB = p(1− p) and

tVP = E[(ν−1 − p)2] = E(ν−2)− p2

but
E(ν−2) 6 E(ν−1) = p,

so tVP 6 p − p2 = tVB. Thus VP 6 VB.
Numerical evidence suggests that VP/VB is bounded away
from zero, so VP � VB. However, we have not proved this.
For future reference, observe that
E(ν−2) = tVP + p2 6 p ∼ p − p2 = tVB.

Richard Brent Comparing variances



The function T (n)
In this table for n = 7 I have coloured the T (n) entries above
the diagonal that occur exactly twice in the full table. Clearly
T (7) = 16, so T (7)/M(7) = 0.64.

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

In general, T (n) 6 M(n) and
T (n)/n2 = Prob(ν = 2) 6 4E(ν−2)� tVB ∼ p = M(n)/n2.
Thus T (n) � M(n) =⇒ VP � VB.
The numerical evidence suggests a very slow decrease in
T/M, something like T (n)/M(n) = O((log log n)−α).

Richard Brent The function T (n)



Numerical results
The ratios T (n)/M(n) and VP(n)/VB(n) are given in the table.
(Monte Carlo estimates for n > 100, rms error <

∼1 ulp.)

n T/M VP/VB n T/M VP/VB
2 0.333 0.333 105 0.548 0.183
3 0.500 0.250 1010 0.509 0.199
4 0.556 0.196 1020 0.478 0.209
5 0.643 0.161 1030 0.462 0.213
6 0.556 0.204 1040 0.452 0.215
7 0.640 0.170 1050 0.446 0.217
8 0.600 0.163 1060 0.441 0.218
9 0.611 0.129 1070 0.437 0.219

10 0.548 0.141 1080 0.432 0.219
11 0.623 0.130 1090 0.429 0.220
12 0.593 0.154 10100 0.426 0.221

100 0.595 0.145 10200 0.411 0.223

Richard Brent Numerical results



Theoretical results

The conjecture that T (n) � M(n) “almost” follows from results
of Kevin Ford [Annals, 2008].
Ford says (via email, 18 May 2019):

“I suspect that Theorems 4,5 remain valid for c = 0,
but my method of proof breaks down there. In particu-
lar, this would imply that T (n) � M(n), a positive pro-
portion of entries occur just twice, and similarly a pos-
itive proportion occur exactly 2k times for any k > 1.
As far as I know, nobody has worked this out; probably
a good student project."

If, on the other hand, the proportion of entries that occur exactly
2k times is o(1) (for all k > 1), then it follows that
VP(n) = o(VB(n)).
Proving this might be a project for a good student.

Richard Brent What can be proved?



Further algorithmic considerations

When comparing the Bernoulli and product algorithms,
comparing variances does not tell the whole story, because we
also need to factor x (for Bernoulli trials) or xy (for product
trials), and then find (some of) their divisors.
For large n, the most expensive step appears to be factoring,
which is easier for product trials because the numbers involved
are smaller (although the number of divisors is typically larger).
However, it turns out that factoring can be avoided!

Richard Brent More on Monte Carlo algorithms



Avoiding factoring large integers

We can avoid the factoring steps by generating random
integers together with their factorisations, using algorithms due
to Bach (1988) or Kalai (2003).
There is no time to describe these algorithms today. If you are
interested, I suggest that you start with Kalai’s paper for a
description of his algorithm (since it is simpler than Bach’s),
then read Bach’s paper, or the book Algorithmic Number
Theory (by Bach and Shallit), for a description of Bach’s
algorithm.
When using Bach’s or Kalai’s algorithm, the most expensive
step is primality checking. It is desirable to replace rigorous
primality tests by the (much faster) Rabin-Miller probabilistic
primality test, or a similar test that has a sufficiently small
probability of error. An occasional error in primality testing will
have only a small effect on the Monte Carlo estimates.

Richard Brent Algorithms of Bach and Kalai



References

E. Bach, How to generate factored random numbers,
SIAM J. on Computing 17 (1988), 179–193.
E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1,
MIT Press, 1996.
R. P. Brent and H. T. Kung, The area-time complexity of binary
multiplication, J. ACM 28 (1981), 521–534 & 29 (1982), 904.
R. P. Brent, C. Pomerance, D. Purdum and J. Webster,
Algorithms for the multiplication problem, arXiv:1908.04251v1.
P. Erdős, Some remarks on number theory,
Riveon Lematematika 9 (1955), 45–48 (Hebrew).
P. Erdős, An asymptotic inequality in the theory of numbers,
Vestnik Leningrad Univ. 15 (1960), 41–49 (Russian).

Richard Brent References 1/2



K. Ford, The distribution of integers with a divisor in a given
interval, Annals of Math. 168 (2008), 367–433.
H. A. Helfgott, An improved sieve of Eratosthenes,
arXiv:1712.09130v2, 24 April 2018.
A. Kalai, Generating random factored numbers, easily,
J. Cryptology 16 (2003), 287–289.
H. Maier, Primes in short intervals, Michigan Math. J. 32
(1985), 221–225.
T. Oliveira e Silva, Fast implementation of the segmented sieve
of Eratosthenes, Dec. 28, 2015.
G. Tenenbaum, Sur la probabilité qu’un entier possède un
diviseur dans un intervalle donné, Compositio Math. 51(1984),
243–263 (French).

Richard Brent References 2/2


