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Recalling Part I

This is Part II of a combined talk. Here is a quick summary of
Part I.
H is a Hadamard matrix of order h. We (probabilistically) add a
border of d rows and d columns so that the n × n {±1}-matrix(

H B
C D

)
has large (expected) determinant. This gives us a lower bound
on the maximal determinant function D(n). (n = h + d)
Since |det(H)| = hh/2 is fixed, this amounts to choosing the
border (B,C and D) so that the Schur complement D − CH−1B
has a large determinant. Note that H−1 = h−1HT .
We define F := CH−1B = h−1CHT B and G := F + I.
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Determinant of the Schur complement

We are interested in the determinant ∆ of the Schur
complement D − h−1CHT B = D − F , where H,B,C and D are
{±1}-matrices.
We can always choose D so that

|det(D − F )| ≥ |det(F + I)| = |det(G)| .

Thus, there is no harm in assuming that D = −I since this will
give valid lower bounds on |∆| (even though −I is not a
{±1}-matrix). In the following we consider G = F + I.
The diagonal elements gii of G are expected to be of order
h1/2, and the off-diagonal elements of order unity, so h−1/2G is
expected to be a perturbation of the d × d identity matrix.
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Dependencies in the Schur complement

With our probabilistic construction, the elements of the matrix
F = h−1CHT B are not independent. (If they were, the lower
bound proofs would be much easier!)
However, from the construction, fij depends only on columns i
and j of the random matrix B. Thus, fij and fk` are independent
whenever {i , j} ∩ {k , `} = ∅.
Note that the diagonal elements fii are mutually independent,
as fii depends only on column i of B.
Similar remarks apply to G = F + I.
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A small example (h = 4, d = 2, n = 6)
Consider the case n = 6. It is known that
D(6) = 160 = 10× D(4), so the Schur complement
determinant ∆ satisfies |∆| ≤ 10 (achievable).
Writing the matrix entries as E[gij ]± V[gij ]

1/2,
the probabilistic construction gives

G ≈
(

2.5± 0.5 0.0± 1.0
0.0± 1.0 2.5± 0.5

)
.

Here E[g11g22] = E[g11]E[g22] = 6.25 (they are independent),
but E[det(G)] = E[g11g22 − g12g21] ≈ 5.69 < 6.25
as E[g12g21] ≈ 0.56 6= 0 (g12 and g21 are not independent).
The off-diagonal elements of G conspire against us to reduce
E[det(G)] from what would be expected if we just considered
the diagonal elements of G.
This motivates the following Lemma.
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A determinantal inequality
Lemma
If E ∈ Rd×d , |eij | ≤ ε for 1 ≤ i , j ≤ d, and dε ≤ 1, then

det(I − E) ≥ 1− dε .

Proof. See [BOS, arXiv:1211.3248v3, Lemma 8].
Remark. The Lemma is best possible, since it follows from a
well-known rank-1 update formula that

det(I − εeeT ) = 1− dε .

Gerschgorin’s theorem gives the weaker inequality

det(I − E) ≥ (1− dε)d .
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Inequalities of Chebyshev and Cantelli
Let X be a random variable with finite mean µ and standard
deviation σ = V[X ]1/2 > 0.
Chebyshev’s inequality says that, for any positive λ,

P[|X − µ| ≥ λ] ≤ σ2

λ2
.

Cantelli’s inequality is analogous but one-sided:

P[X − µ ≥ λ] ≤ σ2

σ2 + λ2

and by symmetry

P[X − µ ≤ −λ] ≤ σ2

σ2 + λ2
.
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Notation: µ and σ2

In the following we assume h ≥ 4.

µ := E[gii ] = E[fii ] + 1

is the expectation of the diagonal elements of G. From Part I,

µ = 1 + 2−hh
(

h
h/2

)
>

(
2h
π

)1/2

.

Also,
σ2 := V[gii ]

is the variance of the diagonal elements. From Part I,

0.045 ≈ 1− 3/π < σ2 ≤ 1/4 .

The upper bound 1/4 is attained at h = 4,
and the lower bound 1− 3/π is the limit as h→∞.
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A new lower bound for D(n)

Theorem
Suppose n = h + d where d ≥ 0 and h ≥ 4 is a Hadamard
order. Then

D(n) ≥ hh/2µd
(

1− d2

µ

)
≥ hn/2

(
2
π

)d/2(
1− d2

√
π

2h

)
.

Remarks
By a result of Livinskyi (2012) on gaps between Hadamard
orders, d = O(h1/6). Thus(

1− d2
√

π

2h

)
= 1−O(n−1/6)→ 1 as n→∞ .
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Lower bound for R(n)

Corollary

R(n) ≥
(

2
πe

)d/2 (
1−O(n−1/6)

)
as n→∞ .

Remark

The factor (1−O(n−1/6)) can be omitted if d ≤ 3.
We conjecture that it can always be omitted.
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Idea of proof of the Theorem

The idea is to choose B uniformly at random, and say that the
choice is good if the resulting matrix G = I + h−1CHT B is
“close” to the diagonal matrix µI in the sense that all the
elements of µ−1G − I are sufficiently small.
If the probability of a good choice is positive, then a good
choice must exist, and we obtain a lower bound from the
determinantal lemma (if it is applicable).
The probability of a good choice can be bounded using
Chebyshev’s inequality and our results on E[gij ] and V[gij ].
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Sketch of proof

Let λ be a positive parameter to be chosen later. Using
Chebyshev’s inequality, for the off-diagonal elements with
variance 1,

P[|gij | ≥ λ] ≤ 1/λ2 .

For the diagonal elements with variance σ2 ≤ 1/4,

P[|gii − µ| ≥ λ] ≤ σ2/λ2 .

If

d(d − 1) · P[|gij | ≥ λ] + d · P[|gii − µ| ≥ λ] < 1, (∗)

then there is a positive probability that none of the blue
inequalities hold. (∗) holds if λ = d . With positive probability we
can apply the determinantal lemma with ε = µ−1d to µ−1G
(provided dε ≤ 1, i.e. d2 ≤ µ, so ε is sufficiently small).
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Sketch of proof (continued)

With positive probability,

det(µ−1G) ≥ 1− dε = 1− d2/µ .

This is equivalent to

det(G) ≥ µd (1− d2/µ) .

The theorem follows from the Schur complement lemma, as∣∣∣∣det
(

H B
C D

)∣∣∣∣ ≥ |det(H)| · | det(G)| = hh/2|det(G)|

for some choice of the {±1}-matrix D.
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What if h < πd4/2 ?

The Theorem is trivial if µ ≤ d2, as then (1− d2/µ) ≤ 0 and we
don’t get any useful information.
Since µ ∼ (2h/π)1/2, this means that the Theorem is only
useful when h ≥ πd4/2 (approx.), or roughly d = O(h1/4).
In this situation we can apply the construction with random B
and see what happens. In all the cases that we have tried, a
few random trials are sufficient to find a matrix G such that

det(G) ≥ µd ,

so we can ignore the factor (1− d2/µ) in the Theorem.
There are some theoretical improvements that go some way
(but not all the way) towards justifying this. We’ll outline them
if time permits.

Richard Brent Small h



The Lovász Local Lemma

We need to state the Lovász Local Lemma [Erdős and Lovász,
1975].

Lemma (Lovász Local Lemma, symmetric case)
Let E1,E2, . . .Em be events in an arbitrary probability space.
Suppose that each event Ei is mutually independent of all the
other events Ej except for at most D of them, and that P[Ei ] ≤ p
for 1 ≤ i ≤ m. If

ep(D + 1) ≤ 1

then P[
∧m

i=1 Ei ] > 0. (In other words, with positive probability
none of the events Ei hold.)
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Counting dependencies in the Schur complement

We noted previously that fij and fk` are independent whenever
{i , j} ∩ {k , `} = ∅.
Assume that d > 1. There are 4d − 4 entries in the union of
rows i and j and columns i and j of F .
Thus, fij is dependent on at most 4d − 5 of the other fk`. We
can apply the Lovász Local Lemma with D = 4d − 5.
Instead of λ = d we can take λ =

√
e(D + 1) in the proof of the

theorem. This changes the 1− d2/µ term in the lower bound to
1−O(d3/2/µ). Thus, the result is nontrivial if d = O(h1/3)
instead of the previous (stricter) condition d = O(h1/4).
The resulting bound is sharper for d ≥ 10.
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Hoeffding’s tail inequality
Hoeffding’s tail inequality applies for sums of independent,
bounded random variables.

Theorem (Hoeffding, 2-sided version)
Let X1, . . . ,Xh be independent random variables with sum
Y = X1 + · · ·+ Xh. Assume that Xi ∈ [ai ,bi ]. Then, for all t > 0,

P (|Y − E [Y ]| ≥ t) ≤ 2 exp

(
−2t2∑h

i=1(bi − ai)2

)
.

This can be applied to the off-diagonal elements fij since they
may be written as sums of h independent random variables.
Note that the bound is exponentially decreasing.
Compare Chebyshev’s inequality, where the bound is
polynomially decreasing.
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Another improvement

Using Cantelli’s inequality for the diagonal elements of G,
and Hoeffding’s inequality for the off-diagonal elements, and
allowing different tolerances for the diagonal and off-diagonal
elements (which requires a generalisation of the determinantal
lemma), we can replace the d2/µ = O(d2/h1/2) term by
O(d 5/3/h 2/3).
Now the result is nontrivial for d = O(h2/5)
(compare d = O(h1/3) using the Lovász Local Lemma).
These improvements are significant for small h, but they do not
increase the main factor of order(

2
πe

)d/2

in the lower bounds.

Richard Brent Another improvement



Limitations of the probabilistic approach

The Barba and Wojtas constructions show that, in the cases
d = 1 and d = 2 respectively,

R(n) ∼
(

2
e

)d/2

as n→∞ in a certain infinite sequence of values for which the
Barba/Wojtas upper bounds are attained.
In contrast, the probabilistic method gives a lower bound

∼
(

2
πe

)d/2

.

The factor π−d/2 in the lower bound seems to be an artefact of
the probabilistic method – we are actually estimating the mean
determinant in a certain ensemble of matrices instead of the
maximum determinant.
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Another limitation

In cases where we know the maximal determinant matrices of
order n (that is, for n ≤ 21 and a sparse set of larger n), it is not
always true that a maximal determinant matrix contains a
Hadamard matrix of order 4bn/4c.
Examples are n = 13, 14, 15, 18, 19, 21. In such cases our
construction must underestimate D(n).
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Numerical example

Consider the case n = 668. It is not known if a Hadamard
matrix of this order exists.
We can take h = 664, d = 4. Then µ ≈ 21.55, σ2 ≈ 0.0464.
Our first Theorem gives det(G)/µd ≥ 0.2576.
For comparison, the best known deterministic construction
(based on bordering) gives det(G)/µd of order 1/n 2 < 10−5.
Using the Lovász Local Lemma does not help as d < 10.
Using Cantelli’s and Hoeffding’s inequalities with optimal
choices of the two parameters (the diagonal and off-diagonal
tolerances) gives det(G)/µd ≥ 0.7990.
The best we can expect from the probabilistic approach is
det(G)/µd ≥ 1.
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Conjecture

We conjecture that

R(n) ≥
(

2
πe

)d/2

.

Evidence. The conjecture holds for:
I for 0 ≤ d ≤ 3 (implied by the Hadamard conjecture);
I for all d ≥ 0 if n ≥ n0(d) is sufficiently large;
I for all n ≤ 120 (in fact R(n) > 1/2 for n ≤ 120);
I for many larger values of n for which we have computed a

lower bound on R(n) using a probabilistic algorithm based
on our construction.
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