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Abstract

Gene Golub was interested in both matrix computations and
statistics. In this Golub memorial lecture I will consider a
problem that involves aspects of both – the Hadamard maximal
determinant problem.
The problem is to find the maximal determinant of an n × n
matrix whose elements are in [−1,1]. A matrix achieving the
maximum is known as a D-optimal design and has applications
in the design of experiments. Hadamard proved an upper
bound nn/2 on the determinant, but his upper bound is not
achievable for every positive integer n. For example, if n = 3
then Hadamard’s upper bound is 3

√
3 ≈ 5.2, but the best that

can be achieved is 4.
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Abstract cont.

A Hadamard matrix is an n×n matrix that achieves Hadamard’s
bound. The Hadamard conjecture is that a Hadamard matrix
exists whenever n is a multiple of four. I will consider how close
to Hadamard’s bound we can get when n is not the order of a
Hadamard matrix, and outline a recent proof that Hadamard’s
bound is within a constant factor of the best possible, provided
n is close (in a sense that will be made precise) to the order of
a Hadamard matrix. In particular, if the Hadamard conjecture is
true, then the constant factor is at most (πe/2)3/2.
This is joint work with Judy-anne Osborn and Warren Smith.
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Gene Golub and George Forsythe

Gene H. Golub (1932–2007) George E. Forsythe (1917–1972)

Gene Golub in 2007 at Stanford 50 – a conference celebrating
the 50th anniversary of George Forsythe’s arrival at Stanford
and the 75th birthday (including non-leap years) of Gene
Golub. This was the last time that I saw Gene.
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The Hadamard maximal determinant problem

Suppose A is an n × n matrix with entries in {−1,+1}
(we’ll call this a “{±1}-matrix of order n”).
How large can det(A) be?
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Hadamard’s upper bound

Hadamard (1893) partly answered the question by proving an
upper bound

|det(A)| ≤ nn/2

that can be attained for infinitely many values of n (e.g. all
powers of two). Such n are called Hadamard orders and the
matrices attaining the bound are called Hadamard matrices.
Desplanques, Lévy, Muir, Sylvester, Thomson (Lord Kelvin),
and others also made contributions.

Richard Brent The maxdet problem



Jacques Hadamard

Jacques Hadamard (1865–1963)
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A short proof of Hadamard’s inequality
Consider the “Gram matrix” G = AT A. Note that G is positive
semi-definite, so has non-negative real eigenvalues λj .
Also, diag(G) = nI, so trace(G) = n2. Thus

|det(A)|2/n = det(G)1/n =

(∏

j

λj

)1/n

≤ 1
n

∑

j

λj (by the AGM inequality)

=
trace(G)

n
= n.

Thus |det(A)| ≤ nn/2, and there is equality iff G = nI (because
the AGM inequality is strict unless all the λj are equal).

The proof shows that Hadamard matrices are orthogonal
(up to a scale factor), in fact AT A = AAT = nI.
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Some variants of the maxdet problem

I We can ask the same question for n × n matrices that are
allowed to have real entries in [−1,1]. Since the maxima
occur at extreme points of [−1,1]n, the answer is the same
as before.

I A more general problem is to maximise det(AT A), where A
is an m × n matrix with entries in {−1,+1}, and m ≥ n.
This problem arises in the design of experiments.

I We can ask the same question for (n − 1)× (n − 1)
matrices whose entries are in {0,1}. The answer is the
same, except for a scaling factor of 2n−1 (next slide).
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Determinants of {±1}-matrices and {0, 1}-matrices
An n × n {±1}-matrix always has determinant divisible by 2n−1,
because of a well-known mapping from {0,1}-matrices of order
n − 1 to {±1}-matrices of order n.
The mapping is reversible if we are allowed to normalise the
first row and column of the {±1}-matrix by changing the signs
of rows/columns as necessary.




1 0 1
1 1 0
0 1 1


 double
−→




2 0 2
2 2 0
0 2 2




border
−→




1 1 1 1
0 2 0 2
0 2 2 0
0 0 2 2




subtract
−→
first row




1 1 1 1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1



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Design of experiments

The field of Design of Experiments was pioneered by
Charles Sanders Peirce (in the period 1877–1883) and later
developed by Ronald Aylmer Fisher (around 1926–1935).
Suppose we want to perform m experiments to find information
about the effect of n variables, where m ≥ n. For example, we
could be trying to estimate the weights of n objects using m
weighings, or estimate the effect of n different drugs on m
patients. We can model the experiment by an m × n matrix A of
{0,±1} entries.
Provided the outcomes are linear functions of the variables, a
sensible criterion to choose the best experimental design is to
maximize det(AT A). Here the Gram matrix AT A is called the
information matrix of the design.
An m × n {±1}-matrix A for which det (AT A) is maximal is
called a D-optimal design, and if m = n it is called saturated.
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Charles S. Peirce and Ronald A. Fisher

Charles S. Peirce (1839–1914) Ronald A. Fisher (1890–1962)

Richard Brent Peirce and Fisher



Other criteria

Several other design criteria have been suggested. One that
would be close to Gene Golub’s heart is E-optimal design,
which seeks to maximise the smallest eigenvalue of the
information matrix – equivalently, maximise the smallest
singular value of A.

Gene’s numberplate

In this talk I will only consider D-optimal design, which
maximises the product of singular values of A, or (equivalently)
maximises the differential Shannon information content of the
parameter estimates.
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The Hadamard conjecture

It is conjectured that Hadamard matrices exist for orders
n = 1,2, and 4k for all positive integers k (it is easy to prove
that these are the only possible orders). This conjecture is
known as the Hadamard conjecture, although it is not in
Hadamard’s papers; it was first explicitly stated by Paley.
Paley (1933) showed how to construct a Hadamard matrix of
order q + 1 when q ≡ 3 mod 4 is a prime power, and of order
2(q + 1) when q ≡ 1 mod 4 is a prime power. Combined with a
doubling construction of Sylvester (1867), this shows that
Hadamard matrices of order n = 2r (q + 1) exist whenever q is
zero or an odd prime power, r ≥ 0 and 4|n.
Many other constructions have been found. Since 2005 it has
been known that all n = 4k ≤ 664 are the orders of Hadamard
matrices. However, it is not known if the Hadamard orders have
a positive density in N (compare the sequence of primes).
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The Hadamard conjecture (Paley’s conjecture)
It seems probable that, whenever n is divisible by 4, it
is possible to construct an orthogonal matrix of order n
composed of ±1, but the general theorem has every
appearance of difficulty.

Paley, 1933

Raymond Paley (1907–1933)

Paley was killed by an avalanche while skiing near Banff in the Canadian Rockies.
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A Hadamard matrix of order 428

A Hadamard matrix of order 428 constructed by Kharaghani and Tayfeh-Rezaie (2005); since then
668 has been the smallest order n = 4k for which a construction (or existence proof) is not known.
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D(n) and R(n)

Let D(n) be the maximum determinant of an n× n {±1}-matrix,
and

R(n) :=
D(n)

nn/2 ≤ 1

be the ratio of D(n) to the Hadamard bound.
Recall that n is a Hadamard order if a Hadamard matrix of
order n exists, and a non-Hadamard order otherwise.
For example, 1,2,4,8,12,16,20,24 are Hadamard orders;
3,5,6,7,9,10,11,13 are non-Hadamard orders.
R(n) = 1 iff n is a Hadamard order.

Richard Brent The functions D(n) and R(n)



R(n) for small n

n R n R n R n R
– – 1 1 2 1 3 0.77
4 1 5 0.86 6 0.74 7 0.63
8 1 9 0.73 10 0.74 11 0.61
12 1 13 0.86 14 0.74 15 0.63
16 1 17 0.75 18 0.74 19 0.64
20 1 21 0.78 22 0.70? 23 0.61?
24 1 25 0.86 26 0.74 27 0.63?
28 1 29 0.74? 30 0.74 31 0.62?

Table: R(n) for n ≤ 31 (“?” means conjectured)

Each block of two columns corresponds to a congruence class
of n mod 4. Within the columns of R(n) values there are
interesting oscillations. Data from Will Orrick’s website
http://www.indiana.edu/~maxdet/.

Richard Brent R(n) for small n
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The Barba bound

For the three congruence classes n ≡ 1,2,3 mod 4 there are
specialised upper bounds on R(n) that are slightly sharper than
the Hadamard bound R(n) ≤ 1.
For example, if n ≡ 1 mod 4, there is an upper bound due to
Barba (1933):

R(n) ≤ (2n − 1)1/2(n − 1)(n−1)/2/nn/2 ∼ (2/e)1/2 ≈ 0.86.

This bound is attained for all n = q2 + (q + 1)2, where q is an
odd prime power [Brouwer, 1983], as well as in the small cases
q ∈ {1,2,4}.

Richard Brent The Barba bound, n ≡ 1 mod 4



Two strategies for lower bounds

There are two ways that we can obtain a lower bound on D(n)
or R(n) if Hadamard matrices of order “close” to n exist.

I minors: Choose a Hadamard matrix H of order h ≥ n, and
take an n × n submatrix with a large determinant ∆. There
are theorems about minors of Hadamard matrices which
give a lower bound on ∆, e.g. h = n + 1⇒ ∆ = hh/2−1.

I bordering: Choose a Hadamard matrix H of order h ≤ n,
and add a suitable border of d = n − h rows and columns.
For example, if n = 17, we can construct a maximal
determinant matrix of order 17 by choosing a Hadamard
matrix of order 16 and an appropriate border.

We consider bordering as it gives better results in general, and
the probabilistic method is applicable to it.
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Conjectured lower bound on R(n)

It appears plausible that there always exists such a
matrix with determinant greater than 1

2hn, where
hn = nn/2 is the Hadamard bound.

Rokicki, Orrick et al (2010)

Tomas Rokicki Will Orrick
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Known lower bounds on R(n)

What can we say about lower bounds on R(n)?
Rokicki, Kazmenko, Meyrignac, Orrick, Trofimov and
Wroblewski (2010) verified numerically that R(n) > 1/2 for all
n ≤ 120, and conjectured that this lower bound always holds.
However, the theoretical bounds are much weaker.
Until recently, the best published result,1 even assuming the
Hadamard conjecture, was

R(n) ≥ 1√
3n

.

This bound tends to zero as n→∞.

1Brent and Osborn, EJC 2013.
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Improved lower bounds on R(n)

Using the probabilistic method, we2 recently showed that

R(n) ≥ cd

for some cd > 0 that depends only on d = n − h.
For all n ≥ 1 we have

R(n) ≥
(

2
πe

)d/2(
1− d2

( π
2h

)1/2
)
.

Also, if the Hadamard conjecture is true, then d ≤ 3 and

R(n) ≥
(

2
πe

)d/2

≥
(

2
πe

)3/2

>
1
9
.

The bound 1
9 is independent of n (and does not tend to zero).

2Brent, Osborn and Smith, arXiv:1402.6817, 2014.
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A naive approach

How can we use the probabilistic method to give a lower bound
on R(n)?
An obvious approach is to consider a random {±1}-matrix of
order n, hoping that a random matrix often has a large
determinant. (It does, but not large enough!)
In 1940, Turán showed that the

E[det(A)2] = n!

for {±1}-matrices A of order n, chosen uniformly at random.
Compare this to the Hadamard bound det(A)2 ≤ nn.

E[det(A)2] = n! ≈
(n

e

)n√
2πn� nn.

This weaker than what we need by a factor of almost en.

Richard Brent Turán’s result E[det(A)2] = n!



Erdős and Turán

Pál Erdős (1913–1996) Pál Turán (1910–1976)
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Chebyshev’s inequality

We use Chebyshev’s classical “tail inequality”.
Theorem [Chebyshev, 1867]. Let X be a random variable with
finite mean µ = E[X ] and finite variance σ2 = V[X ]. Then, for all
λ > 0,

P[|X − µ| ≥ λ] ≤ σ2

λ2
.

For example, let X = det(A), where A is a random {±1}-matrix
of order n. Then µ = 0 and σ2 = n! (by Turán’s theorem).
Let’s take λ = nn/2/2 (half the Hadamard bound). Then

P

[
|det(A)| ≥ nn/2

2

]
≤ 4n!

nn ∼
4
√

2πn
en

is tiny if n is large. Thus, large-determinant matrices are rare!

Richard Brent The small chance of finding a large-determinant matrix



A different approach – bordering a Hadamard matrix

Suppose n = h + d where h is the order of a Hadamard matrix
H, and d is small. (If the Hadamard conjecture is true, we can
assume that 0 ≤ d ≤ 3.)
We can start with H and add a “border” of d rows and columns.
Since H has a large determinant (as large as possible for a
{±1}-matrix of order h), we hope that the resulting order n
matrix will often have a large determinant.
To analyse the effect of a border on the determinant, we need
to look at the Schur complement.

Richard Brent A better idea?



The Schur complement

Let

A =

[
H B
C D

]

be an n × n matrix written in block form, where H is h × h,
and n = h + d > h. (Here H does not have to be Hadamard,
any nonsingular h × h matrix will do.)
The Schur complement of H in A is the d × d matrix

D − CH−1B.

The Schur complement is relevant to our problem because

det(A) = det(H) det(D − CH−1B).

The Schur complement is not in general a {±1}-matrix.

Richard Brent The Schur complement



Proof of the determinant identity

To prove the Schur complement identity

det(A) = det(H) det(D − CH−1B),

just take determinants of each side in the identity

A =

[
H B
C D

]
=

[
I 0

CH−1 I

] [
H B
0 D − CH−1B

]
.

You can verify this “block LU factorization” directly by block
matrix multiplication, or derive it by block Gaussian elimination.

Richard Brent Proof of the determinant identity



Application of the Schur complement
Let H be an h × h Hadamard matrix that is a principal
submatrix of an n × n matrix A, where n = h + d as usual.

A =

[
H B
C D

]
.

I Since H is Hadamard, HHT = hI and det(H) = hh/2, so

det(A) = hh/2 det(D − h−1CHT B) .

I The problem is to maximise the order d determinant

|det(D − h−1CHT B)| .

(The sign of the determinant is not important, only the
absolute value is of interest to us.)
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A small numerical example

Suppose we want to construct a large-determinant {±1}-matrix
of order 5. We could start with the order 4 Hadamard matrix

H =




+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1




which has det(H) = 16, and add a border along the right and
bottom.
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Choosing B, C, D randomly
Suppose we randomly choose B, C and D to give

A =




+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 +1 +1 −1 +1



.

Then

BT H = (HT B)T = [+2,−2,−2,−2],

C = [+1,+1,+1,−1],

CHT B = 2− 2− 2 + 2 = 0,

det(D − h−1CHT B) = det(1) = 1,
det(A) = det(H) · 1 = 16.

This is disappointing as det(A) is no larger than det(H).

Richard Brent Random border



Choosing only B randomly
Let’s choose B randomly, but then choose C to avoid any
cancellation in the inner product C · HT B, then choose D to
maximise |det |. This gives

A =




+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 −1 −1 −1 −1




In fact BT H = (HT B)T = [+2,−2,−2,−2],

C = [+1,−1,−1,−1],

CHT B = 2 + 2 + 2 + 2 = 8.

det(D − h−1CHT B) = det(−1− 2) = −3,
and det(A) = det(H) · (−3) = −48. By reversing the sign of one
row in A, we get the maximum possible determinant (48).
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Generalisation: a good construction
Choose the h × d {±1}-matrix B uniformly at random.
We want to choose C and D (depending on B) to maximise the
expected value

E[|det(D − h−1CHT B)|].

Guided by our numerical examples, approximate this by
choosing C = (cij), where

cij = sgn(HT B)ji for 1 ≤ i ≤ d , 1 ≤ j ≤ h

so there is no cancellation in the inner products defining the
diagonal elements of C · HT B.
Finally, choose D = −I (we can adjust the off-diagonal
elements of D later).
In the case d = 1 this construction is due to Brown and
Spencer (1971); also (independently) to Best (1977).

Richard Brent A good construction for d ≥ 1



Entries in the Schur complement
Write F = h−1CHT B, so the Schur complement is D − F .
The choice of D is unimportant when h is large, so for the
moment we’ll ignore D and concentrate on F .

I Diagonal elements. By a counting argument [Brown and
Spencer 1971, Best 1977]

E[fii ] = 2−h
h∑

k=0

|h−2k |
(

h
k

)
=

h
2h

(
h

h/2

)
=

(
2h
π

)1/2

+ O(h−1/2).

I Off-diagonal elements. If i 6= j , then

E[fij ] = 0 and V[fij ] = E[f 2
ij ] = 1.

We expect the diagonal elements to be “large” (of order h1/2)
and the off-diagonal elements to be “small” (of order 1).
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Another numerical experiment

Let’s try our construction with n = 6, h = 4, d = 2. We choose
a Hadamard matrix H of order h = 4 and add a border of width
d = 2. Repeat 104 times, computing F = h−1CHT B and det(F )
each time.
In a typical experiment we find

mean(F ) =

[
1.5002 −0.0076
−0.0002 1.4993

]
≈ E[F ] =

[
1.5 0
0 1.5

]
,

but
mean(det(F )) = 1.6877 6= det(E[F ]) = 2.25.

What went wrong?
The problem is that elements of F are correlated.
In particular, E(f12f21) 6= E(f12)E(f21) = 0.
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Correlations between elements of F

Looking at the definition of F , we see that fij depends only on
the choice of columns i and j of the random border B.
Thus, fij and fk` are independent if (and only if)

{i , j} ∩ {k , `} = ∅.

In the numerical example on the previous slide, f12 and f21 are
correlated in a way which tends to reduce the determinant!
However, the diagonal elements f11 and f22 are independent.
Thus

E[f11f22] = E[f11]E[f22].
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Inequalities for the fij

Best (1977) showed, using the Cauchy-Schwarz inequality, that

|fij | ≤ h1/2.

The Cauchy-Schwartz inequality also shows that, if i 6= j and
k 6= `, then

E [|fij fk`|] ≤
√

E[f 2
ij ]E[f 2

k`] = 1.

Using these two inequalities and the fact that the diagonal
elements of F are independent, we can get a useful lower
bound on E[det(F )]. I will show you the cases d = 2,3.
In both cases we get the correct order of magnitude, hd/2.

Richard Brent Inequalities for the elements of F



Lower bound on E[det(F )] when d = 2

We want a lower bound on E[det(F )] for fixed d and large h.
If d = 2, then

det(F ) = det
[
f11 f12
f21 f22

]
= f11f22 − f21f12.

Thus

E[det(F )] = E[f11f22]− E[f21f12]

≥ E[f11]E[f22]− E[|f21f12|]

≥ 2h
π
−O(1),

where O(1) means some constant, independent of h.
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Lower bound on E[det(F )] when d = 3

If d = 3, a similar argument is

det(F ) = det




f11 f12 f13
f21 f22 f23
f31 f32 f33


 = f11f22f33 + other terms,

and a typical “other term” has expectation O(h1/2) as

|E[f12f21f33]| ≤ E[|f12f21|] max(|f33|) ≤ h1/2.

Thus, using independence of f11, f22 and f33,

E[det(F )] = E[f11f22f33] + O(h1/2) =

(
2h
π

)3/2

+ O(h1/2).
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Lower bounds for d ≤ 3

Using the fact that there must exist a matrix F0 such that
det(F0) ≥ E[det(F )], and explicitly bounding the error terms,
we3 can prove:
Theorem. If 0 ≤ d ≤ 3, n = h + d , where h is the order of a
Hadamard matrix, then

R(n) ≥
(

2
πe

)d/2

.

If the Hadamard conjecture is true, then every positive integer
divisible by 4 is a Hadamard order, so 0 ≤ d ≤ 3, and the
inequality always holds.

3Brent, Osborn and Smith, arXiv:1501.06235v1.
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Lower bound for arbitrary d
If we don’t assume the Hadamard conjecture, then d > 3 is
possible. How large can d be?
From a recent result of Livinskyi (2012), we can assume that
d = O(n1/6). In other words, the “gaps” between Hadamard
orders near n are at most of order n1/6.
Unfortunately, the argument that we used for d ≤ 3 involves
expanding det(F ) to give d ! terms. We then approximate
det(F ) by the “diagonal” term f11f22 · · · fdd and bound the
contribution of the remaining (d !− 1) terms.
The main term is of order hd/2 and the sum the other terms is
of order d !hd/2−1. Thus, this approach is only useful when

h� d !

From Livinskyi’s result, we can assume that h� d6, but this is
not large enough. Hence, we need a different approach.
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Ostrowski’s inequality

Chebyshev’s inequality and a theorem of Ostrowski allow us to
avoid an expansion involving d ! terms.
Theorem (Ostrowski, 1938). If X = I − E is a d × d real matrix
and the elements of E satisfy |eij | ≤ ε ≤ 1/d , then

det(X ) ≥ 1− dε.

If the matrix F is close to a diagonal matrix, we can scale it to
make it close to the identity matrix, and then use Ostrowski’s
inequality to get a lower bound on det(F ).
We expect F to be close to a diagonal matrix with high
probability, because the diagonal elements of F have a
distribution with mean of order h1/2 and small variance, and the
off-diagonal elements have mean zero and variance 1.

Richard Brent Ostrowski’s inequality



Livinskyi, Ostrowski, Chebyshev

Ivan Livinskyi Alexander Ostrowski (1893–1986) Pafnuty Chebyshev (1821–1894)
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Digression

One of the great things about being one of Gene’s students at
Stanford was that there were so many visitors who came to
work with Gene and/or give seminars. Sometimes they even
stayed for several months and taught a course. In this way I
was lucky enough to meet Ostrowski as well as Björck, Bunch,
Dahlquist, Dongarra, Duff, Gear, Henrici, Kahan, Moler, Parlett,
Stewart, Varga, Wilkinson, . . .
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The choice of D

We can no longer ignore the bottom right d × d matrix D.
Recall that

A =

[
H B
C D

]

and the Schur complement of H in A is D − CH−1B = D − F .
We choose D = −I and write G = I + F , so −G is the Schur
complement.
This choice of D is not a {±1}-matrix because there are zeros
off the main diagonal. However, we can later change these
zeros to either +1 or −1 without decreasing |det(D − F )|.
Thus, any lower bounds on R(n) that we prove using D = −I
are valid for {±1}-matrices.

Richard Brent Can assume that D = −I



Good G

Define a “good” G to be one for which all the gij are sufficiently
close to their expected values. More precisely, gij is “good” if

|gij − E[gij ]| < d ,

and G is “good” if all the gij are good.
The motivation for this definition is that, if G is good, we’ll be
able to apply Ostrowski’s inequality to µ−1G, which is close to
the identity matrix. Here µ = E[gii ] = E[fii ] + 1 ∼ (2h/π)1/2.
Recall Chebyshev’s inequality: P[|X − E[X ]| ≥ λ] ≤ σ2/λ2.
This gives us a bound on the probability that an element gij is
bad (the opposite of good). We take X = gij , σ2 = V[gij ], and
λ = d . Then

P[gij is bad] ≤ σ2/d2.

Richard Brent Good G



The off-diagonal elements

Consider the off-diagonal elements gij , i 6= j . For these, σ2 = 1,
so Chebyshev’s inequality gives

P[gij is bad] ≤ 1/d2.

There are d(d − 1) off-diagonal elements, so the probability
that any of them is bad is at most

d(d − 1)

d2 = 1− 1
d
.

This argument does not assume independence!
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The diagonal elements

We need V [gii ] for a diagonal element gii of G. By a
combinatorial argument, we can show that, for h ≥ 4,

V [gii ] = 1 +
h(h − 1)

2h+1

(
h/2
h/4

)2

− h2

22h

(
h

h/2

)2

≤ 1
4
.

Thus, we can take σ2 ≤ 1/4 in Chebyshev’s inequality. This
gives

P[gii is bad] ≤ σ2

d2 ≤
1

4d2
.

Thus, the probability that any diagonal element is bad is at
most 1/(4d).
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Putting the pieces together

Putting the pieces together,

P[G is bad] ≤
(

1− 1
d

)
+

1
4d

< 1.

Thus,
P[G is good] = 1− P[G is bad] > 0.

Since there is a positive probability that a random choice of B
gives a good G, some choice of B must give a good G.
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Completing the proof

We can apply Ostrowski’s inequality to X = µ−1G if G is good
and ε = d/µ is sufficiently small.
The condition on ε is dε < 1, which is equivalent to d2 < µ.
This leads to the following theorem, which gives a useful
inequality provided d2 < µ.
Theorem. If d ≥ 1, n = h + d there exists a Hadamard matrix
H of order h, and µ ∼

√
2h/π is as above, then

D(n) ≥ hh/2µd (1− d2/µ).

Note. Since µ is of order h1/2 ≈ n1/2 and d � n1/6 [Livinskyi],

d2/µ� n1/3/n1/2 = 1/n1/6 → 0,

so the condition d2 < µ is satisfied for all sufficiently large n.
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The lower bounds on D(n) and R(n)

Theorem again. If d ≥ 1, n = h + d there exists a Hadamard
matrix H of order h, and µ ∼

√
2h/π is as above, then

D(n) ≥ hh/2µd (1− d2/µ).

In this lower bound, the factor hh/2 comes from the determinant
of H, the factor µd comes from the expected product of the
diagonal elements of G, and the factor (1− d2/µ) comes from
Ostrowski’s inequality.
Corollary. If d ≥ 1, n = h + d as above, then

R(n) ≥
(

2
πe

)d/2(
1− d2

√
π

2h

)
.

Since d2/h1/2 → 0 as n→∞, this is close to the bound
R(n) ≥ (2/(πe))d/2 that we obtained for d ≤ 3.
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Randomised algorithms
The probabilistic construction can easily be used to give a
randomised algorithm for finding large-determinant matrices,
i.e. nearly D-optimal designs.
The algorithm actually works better than the theory suggests.
In all the cases that we have tried, it is easy to find an n × n
{±1}-matrix A with

det(A)

nn/2 ≥
(

2
πe

)d/2

.

In practice, the main difficulty is in constructing a Hadamard
matrix of the required order h, because constructions for
Hadamard matrices are scattered throughout the literature and
sometimes appeared in obscure journals or conference
proceedings. There is no known “efficient” and “uniform” way to
construct a Hadamard matrix of given order h (if it exists).
We do not want to try all 2h2

possibilities!
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Optimality of the bounds

Consider the inequality

det(A)

nn/2 ≥
(

2
πe

)d/2

which our probabilistic algorithm suggests is always true
(and is close to what we can prove).
The factor (2/e)d/2 is asymptotically optimal (as n→∞) for
d ≤ 2; we do not know if it is asymptotically optimal for d ≥ 3.
The factor π−d/2 is not optimal, but seems to be an inherent
limitation imposed by the probabilistic method, which is
estimating a mean rather than a maximum.
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Conclusion

We’ve seen that probabilistic ideas are useful for
I proving lower bounds close to Hadamard’s upper bound on

the largest-possible determinants of {±1}-matrices of a
given order, and

I finding large-determinant {±1}-matrices (optimal designs).

I hope you are convinced that probabilistic ideas are
relevant even for problems that do not appear to involve any
randomness. There are many other examples that I could have
given if we had more time. See, for example, the book by Alon
and Spencer.
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