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ABSTRACT

For systems of nonlinear equations f = 0 with singular Jacobian 

Vf(x*) at some solution x* e f 1(0) the behaviour of Newton's method 

is analysed. Under a certain regularity condition Q-linear convergence 
is shown to be almost sure from all initial points that are sufficiently 
close to x* . The possibility of significantly better performance by 

other nonlinear equation solvers is ruled out. Instead convergence 
acceleration is achieved by variation of the stepsize or Richardson 

extrapolation. If the Jacobian Vf of a possibly underdetermined system 

is known to have a nullspace of a certain dimension at a solution of 
interest, an overdetermined system based on the QR or LU decomposition of 
Vf is used to obtain superlinear convergence.
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(i)

INTRODUCTION

Whenever the Jacobian Vf(x) of a vector function f : IRn IRn is 

explicitly available, the Newton iteration

1

‘j + i
x. - Vf (x.)f(x.): j j

(1 )

is the natural approach to the numerical solution of the system of nonlinear 

equations f(x) = 0 .

If the Jacobian is continuous and nonsingular at some solution point 

x* e f (0) , the Newton iteration converges to x* from any initial

point x q in a sufficiently small ball centred at x* . The radius of 
such a ball can only be given explicitly if the Jacobian satisfies a 
known Lipschitz condition, in which case the rate of convergence is not 

only superlinear but quadratic.

Locally, the generally good performance of Newton's method can be 
impaired by either discontinuity or singularity of the Jacobian at x* .

In this thesis we study the latter contingency under the assumption that 

f is at least twice Lipschitz continuously differentiable.

If systems of simultaneous equations were generated at random singularity 

would be an extremely unlikely occurrence. However in practice they are 

derived from models of some usually more complex problem in for instance, 
science or economics. In this context singularity of some solution x*
(i.e. its Jacobian Vf(x*)) is a distinct possibility and may be quite 

instructive with respect to the model or the underlying problem. For 
instance some of the model variables may have been chosen badly or a 

relevant functional relation could have been overlooked. Otherwise the 

underlying physical or social system may actually be in some transition 
state or at a bifurcation point.
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Therefore our first aim is to study the behaviour of Newton's method 

in the neighbourhood of singularities such that their existence and kind 

can be inferred from the properties of the iteration sequences generated 
by (1). Secondly we attempt to accelerate the generally slow, linear 

convergence of Newton's method to singularities by suitable modifications.

Throughout the thesis the emphasis is on the theoretical analysis of 

singular problems and prospective techniques for their solution rather than 

the development of an efficient and reliable computer routine.

As often in numerical analysis, we expect from the study of the exactly 
singular case to gain insight into the properties of systems f = 0 which 

are nearly singular, in that the computed values of f are barely 

distinguishable from those of some function f for which f = 0 has 
singular solutions. Methods which converge fast to exactly singular solutions 

could be used during the intermediate stages of iterative schemes for the 
location of nearly singular solutions. Unfortunately this approach has 
severe limitations because the currently available classification of 
algorithms and the mathematical tools for their analysis are asymptotic in 

nature and cannot be applied to the intermediate stage of some iteration.

Except for the scalar case n = 1 , which has been examined in 

considerable detail (for instance in Traub [1]), there are only a few, 

comparatively recent results on singular simultaneous equations. It is 
mentioned on page 119 in [ 2 ] that a solution x* , whose existence is 

guaranteed if the famous Newton-Kantorovich Theorem applies at some point 
x q , may be singular. However this is only possible under the most 

extreme conditions. If the theorem applies at xQ with respect to the 

Euclidean norm of vectors and spectral norm of matrices, it can be seen 
that singularity of Vf(x*) requires with s = xQ - x*



(iii)

f(x*+As) = f (xQ) (A/lls||) 2 .

Furthermore f(xQ) and s must be at the same time left and right 
singular vectors associated with the smallest singular value

||Vfo 11| (A/1!s||) of the Jacobians

{Vf(x*+Xs)}Xe[0(||s||]

and the largest singular values ||Vfq 1 || 1 (l-A/||s||) of the difference 

matrices

{Vf(x*+As) -Vf(x )}, r ,, II-,o AeL o, ||s|| J .

For all its importance in the nonsingular case we can therefore conclude 
that the Newton Kantorovich Theorem is practically never applicable in the 

neighbourhood of singular solutions.

Rail [ 3 ] and Cavanagh [ 4 ] considered the case in which the Jacobian 
is singular at the solution x* itself but nonsingular in some neighbour­
hood of x* . In this rather special situation Newton's method converges 

under suitable assumptions from within some ball centred at x* , as 

shown in Theorem 2.4 (iv) of this thesis. In general we must expect, 
according to Lemma 1.1, that x* is not isolated in the set of points at 

which the Jacobian is singular.

The first result under these more realistic conditions is due to 

Reddien [ 5 ], who showed the convergence of (1) from within the intersection 

of some cone with some ball, provided x* is a regular first order 

singularity as defined in Section 2.1 and Theorem 1.6. Actually Reddien's 
assumptions were considerably stronger in the finite dimensional case, but 

his result applies also to differentiable operators between Banach spaces.
In this thesis we will always assume that the number of equations and

variables equals some fixed integer n .
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An important aspect of Reddien's result is the departure from the idea 

that convergence must be established from within some ball about the 

solution x* , which is in general impossible in the singular case.

In Section 1.2 we introduce the concept of a starlike domain centred at 

x* , which includes balls, cones and the interior of polytopes in the sense of 

Householder [ 6 ] as special cases. The density of such a starlike 
domain A at x* is given by a real number T*(A) e [0,1] , which can 

be thought of as the probability that a point, which is "very" close to 

x* , belongs to A .

In Chapter 1 we examine the general properties of the determinant 
function det(Vf(x)) and the Newtonian iteration function x - Vf 1(x)f(x) ,

on the starlike domain R' in which the Jacobian is nonsingular. This 
analysis leads to the definition of the order k e IN and the degree 

ie{l,0,-l,...} of a singularity. Depending on the degree we obtain 
bounds on the density of domains of convergence3 domains of bounded 

convergence s and domains of contraction3 respectively (Section 1.4) . The 
analysis of Chapter 1 indicates that only singularities of first degree 

can be located by Newton's method in a reasonably stable fashion.

In the first Section of Chapter 2 we introduce the concept of balanced 

and regular singularities, which are necessarily of first degree but may 

have any order k e ]N . As a generalisation of results by Reddien in 
I 5,7l and Decker and Kelley in I 8,9], we establish in Section 2.2 O-linear 

convergence to any regular singularity from within some starlike domain 
W c R' . Then we show in Section 2.3 that the first step from within some 

starlike domain R c R' with density 1 leads into W and thus to 

convergence to x* . Parallel to these developments we establish, under 
the assumption of strong regularity, Q-linear convergence of approximate

Newton sequences.
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Before discussing modifications of Newton's method, we observe in 

Section 3.1 that any nonlinear equation solver, that is Lipschitz continuous

in the values of f , converges at best R-sublinearly to x* from all 

initial points within some starlike domain with density 1 at x* . In 

view of this result the performance of Newton's method in the regular case 

seems quite acceptable and its convergence can be considerably accelerated 

by variations of stepsize (Section 3.3) or extrapolation (Section 4.1).

In the final Section 4.2 we consider the case where, the Jacobian of some 

possibly underdetermined nonlinear system

f (x) =0 with f e IRn+n IRn

has a nullspace of known dimension at a solution x* e f (0) of interest. 

This kind of problem can be solved quite efficiently by bordering based 
on the QR or LU decomposition of the Jacobian.

Test calculations with all discussed methods on a family of singular 
problems in three variables are reported in the Appendix.
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NOTATION AND TERMINOLOGY

With the exception of the integers IT and the reals TR sets are

denoted by script capitals. The characters i,j...q represent integers.
ix$,]R denotes the set of real i*£ matrices, which are represented by

Roman capitals. Vectors are denoted by small Roman letters and scalars 

usually by small Greek characters but sometimes also by small Roman letters.

The sequence of iterates generated by some iterative scheme is usually

denoted by ^xj^j>o c * T^e components of x € IRn occur almost
Texclusively in the examples and are written as x= (£,£,r|) if n=3 and 

Tx = (£ , £ , ..£ ) otherwise.1 2  n

i £For any two open subsets U  c ir and 1/ c ir the linear space of

all functions, that have a continuous q-th Frechet-derivative in x e U  

is denoted by

Cq (U,l/) .

We will usually assume that the Frechet derivatives are locally Lipschitz 
continuous (i.e. Lipschitz continuous in some neighbourhood of each x e U) 

and denote the corresponding subspace of Cq (U,l/) by

Cq ,1 (U,l/) .

In order to avoid ambiguity of superscripts we use the symbol Vqh to 
denote the q-th derivative tensor of h e Cq (U, 1/) . Repeated multiplication

of Vqh from the right by some column vector v e TR"'’ is defined such that

for fixed x e TR and q > Aq e TN 

,Aq
d Vq Aqh(x+Xv)
dXAq X=o Vqh(x)vAq E Vqh(x) V V . ..V

Aq
In particular we consider the expressions

Vqh(x)vq eTR£ and Vqh(x)vq_1 e TR̂ Xl
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as a column vector and a &xi matrix respectively.

Unless otherwise specified ||*|| will always denote the Euclidean 

norm for vectors and the spectral norm for matrices. For fixed x* € IRn 

the elements of IRn are frequently written as x = x*+pt , where 

p= 1!x—x* || and t is an element of the unit sphere

S S {tern11 I ||t||=l} .

Given a particular converging sequence x_. = x*+p.t. ■+ x* and some real

valued function h on a domain that includes {x.}. „ we abbreviate
3 D>°

£ . . _£h = 0(p.) if lim sup |h(x.) |p. < 00
j-K»  ̂ ^

and
£ . . _£h = o(p.) if lim sup |h(x.) |p. = 0 .
-1 j-x» 3

The same notation is used for vectors, matrices or tensors, whose entries 

are real valued functions which satisfy either condition for the same £ .

A real valued function h on some domain of the form

V F {z£]Rn I z = 0 or z/\\z\\cT} with T c S

is said to be homogeneous with the degree of homogeneity i e U  if

h(Xz) = A^h(z) for all z e V and X > 0 .

Each homogeneous function has a unique degree of homogeneity except for the 

trivial function which is homogeneous of any degree. A real polynomial in 
n variables is homogeneous if and only if each nontrivial term in its 

expansion has the same degree i . Vector- , matrix- and tensor valued 

functions are said to be homogeneous if all their entries are homogeneous 
with the same degree of homogeneity.
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Rates of convergence are described in the framework of Ortega and 

Reinbold [10] and matrix related terms are used in agreement with Stewart 

[11].

Within each of the four chapters the equations are numbered 

consecutively from 1 to ca.60 and referred to accordingly. For cross 

references between chapters the equation number is prefixed by the chapter 

number, e.g. (3.4) refers to the fourth equation in chapter 3.

Frequently used symbols and expressions are listed in the Index.



CHAPTER 1

GENERAL RESULTS ON NEWTON'S METHOD
AT SINGULARITIES

1. T h e  D e t e r m i n a n t  F u n c t i o n  in the N e i g h b o u r h o o d  of a S i n g u l a r i t y

As a polynomial in the entries of the Jacobian Vf the determinant 

function det(Vf(x)) is one time less differentiable than f itself.

The determinant function has no particular structure and could be any 

scalar function that is as often differentiable as the Jacobian is known 

to be. To see this we define for any scalar function

6(x) = 6(51(52,-.?n) e C'(]Rn)

and arbitrary x* , f(x*) e IRn the vector function

6(5,£2,..5n)a5

f(x) = f(x*) + (1 )

so that

6(£,£2,..£n)d£

Vf (x)

o I

which implies

det(Vf(x)) = 6 (x) for all x e IRn .
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Consequently the singular set

6 1 (0) = {xe3Rn I 6(x) = 0}

in the neighbourhood of a singular solution or singularity

x* € f"1 (0) n 6”1(0)

can have a rather complicated structure,even if f is highly differentiable 

and x* is an isolated solution.

Consider for instance with some k > 1 the function f e C^+1 0Rn ,3Rn) 

as defined by (1) with

f (x*) = 0 and 6 (E , . . X  ) = sin ) 2 . (2)l n l i  F̂l

It can easily be seen that the singular set consists of (n-1)-dimensional 
hyperplanes,of which countably many intersect with any neighbourhood of 
the unique solution x* . This peculiarity cannot occur if the 

determinant function has an expansion of the form

6(x) =7To(x-x*) + 0(||x-x*||P+1) (3)

oo nwhere tto e C OR ) is a nontrivial homogeneous polynomial of degree p > 1 . 
The unique polynomial tt is simply the leading term in the Taylor 

expansion of 6 at x* if 6 is nontrivially differentiable in that 
not all its existing Lipschitz continuous derivatives vanish at x*, as 

they do in the example defined by (2).

LEMMA 1.1 Arbitrariness of Determinant Function

If 6 e C 10Rn) has an expansion of the form (3) at x* e IRn then 
there is a vector-function f e such that x* is an isolated,
singular solution of f and
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det(Vf(x)) = 6(x) for all x e 3Rn .

Proof. Since 7T0 is by assumption nontrivial there is a vector v e IRn 
such that 7T (v) ^ 0 . Assuming without loss of generality that v is 

the first Cartesian base vector^we see that the assertion is true for f 

as defined by (1) with f(x*) = 0 . ////

In general we do not impose the condition that 6 is nontrivially 

differentiable,as this need not be the case when rank(Vf(x*)) < n-1 even 

though the singular problem may be otherwise well defined.

From now on we consider a given (k+1) > 2 times Lipschitz 

continuously differentiable vectorfunction f e C^+1 ' 1 (IRn JRn) whose 
Jacobian Vf has a nullspace W of dimension m > 0 at a solution point 

x* € f (0) and the determinant function 6 = det(Vf) e C^' 0Rn) .

Newton's method has the important and well known property that it is 

essentially invariant not only with respect to nonsingular linear 
transformations on the range of f [12], but also with respect to 
nonsingular affine ones on the domain of f . With A , B nonsingular 

n><n matrices and y a vector in 3Rn we find that the transformed 

system

f(y) = Af(y+B(y-y)) = 0

generates from some y0 e !Rn a Newton sequence {yj ) j> 0

y_. + l = yj - Vf _1 (v j) f (y.)

which is parallel to the Newton sequence {x_.}̂ >0

x. = x . - Vf (x.)f(x.)D+i 3 3 3

with

with
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in that for all j - 0

Xj = Y + B(yj-y)

provided this is true for j = 0 .

With Vf(x*) = U E VT , UTU = I = VTV , E = diag(0,0,..,G ,..0 )m+l n
the singular value decomposition [ll] of the Jacobian at the singularity

Tx* we may choose A = U and

B E V

0

- lan
am+l

\0

- 1Gn

so that

Vf(y*) = AV f (x * ) B 0,0

where y* = y + B 1 (x* - y)

Provided the ratio o /o between the largest and smallest

nonvanishing singular values is of moderate magnitude as we will assume,

the conditioning of the problem is essentially unchanged. Furthermore
Tthe Euclidean norm of f is preserved as A = U is orthogonal, so that 

statements about the reduction of residual norms during line searches 

apply equivalently to f and f .

Throughout the thesis we can therefore assume without loss of 

generality that f itself is in normal form at x* in that

Vf(x*) = I - P and N = IR™ x {o}n m (4)
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where P is the orthogonal projection from IRn onto the nullspace of
Tthe transposed Vf (x*) . In some proofs we set x* = 0 to simplify the 

notation even further. However all major results are stated in general 

terms such that they apply directly to nonnormalised cases as well.

With Vf|^ and Vf| the restrictions of Vf to the nullspace W 

and its orthogonal complement respectively we can partition the Jacobian 

as follows:
s  \TB , C PVflw '

D , E (l-P)Vf|N ,

where at the singularity

B(x*) = C(x*) = D(x*) = 0 and E(x*) (5)

Loosely speaking,we may consider the first m equations to be the
Tsingular equations as their Jacobian (B,C ) vanishes identically at 

x* and the first m variables to be the singular variables since none 

of them enters linearly into any of the n equations so that the 

corresponding components of x* are in some sense weakly determined. 
Applying the implicit function theorem to the n-m remaining 

nonsingular equations, we can theoretically eliminate the last n-m 

nonsingular variables to obtain a new system of m equations in the first 

m variables with the reduced Jacobian

G(x) E B(x) - CT (x )E (x )D(x ) . (6)

Since E(x*) = I, the reduced Jacobian is well defined and k times

Lipschitz continuous differentiable in some ball of radius r, > 0rb b
about x* . Because of the elementary identity



6

6(x) = det(G(x))det(E(x)) (7)

G determines when the full Jacobian is singular, which leads to the follow­

ing result.

LEMMA 1.2 Polynomial Expansion of determinant Function

Let f e C^ + 1 , l  QRn JRn) have a singularity at x* € f 1(0) n 6 1(0) 

and be such that

6 (x) ^ 0(||x-x*||^+m) . (8)

Then

(i) There are maximal indices p e [m,k+m-l] and Ap e [k+m-p,k] 

such that

Ap-i A
6(x) = £ 7T . (x—x*) + 0 ((Ix—x*|| P) (9)

i=0 1

where the tt̂  are homogeneous polynomials of degree p+i and tt0 is 

nontrivial.

(ii) The discrepancy Am = p-m > 0  is zero iff the linear operator

PV2f(x*)y|^ : N -+ P(IRn)

is nonsingular for some y e IRn , which implies that for some constant 

a  0 and all y e  nRn

7T0 (y) = a det (PV2f (x*) y | ,

where the determinant on the RHS is calculated with respect to two 

orthonormal bases of the domain W and the range P(IRn) .
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Proof. Since Vf has a k-th Lipschitz continuous derivative and 

E(x*) = I, there are Taylor expansions

k -
E (x) = I + I E . (x-x*) + 0(||x-x*||k+1) 

i=l 1

and

G(x)
k

+ £ G. (x-x*) + 0(||x-x*
i=l 1

where the entries of the matrices E and G are homogeneous polynomialsi l
of degree i in (x-x*) e 3Rn . The constant G Q is zero by (5) so that

k -
det(E(x)) = det(I+ £ E.(x-x*)) + 0(||x-x*|| +1)

i=l 1
and

det(G(x))
k

det( £ G^ (x-x*) ) + 0(||x-x* 
i=l 1

.m+k. (10)

= 0(||x-x*||m ) .

Here we have used the fact that det(G(x)) is a sum over products of m 

entries which are all at least linear in (x-x*) . By assumption (8) the 

polynomial

k k -
det(I+ £ E . (x-x*) ) det ( £ G.(x-x*)) = 6(x) + O (|| x—x* || +m) 

i=l 1 i=l 1

must involve terms of order less than m+k which can be ordered to form 

the expansion (9).

(ii) Using again the Taylor expansions of E and G , we derive that 

6(x) = [det (Gj (x-x*) ) + 0 (||x-x* ||m+1) ][l+0(||x-x*||) ]

= det (Gi (x-x*) ) + O (||x-x* ||m+1) ,

which implies p = m iff G l (y) is nonsingular for some y e IRn .
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Since both C(x) and D(x) vanish at x* we have G(x) = B(x) + 0(||x-x*||2) 

so that the linear term in the Taylor expansion of G is given by

G^(x-x*) = Vb (x*)(x-x*) = P V 2f(x*)(x-x*)Im

which completes the proof with a ^ 0 allowing for the initial 

transformation of the problem if it was not in normal form originally. ////

From now on we will always assume that (8) is satisfied so that (9) 

has at least one meaningful term. This may be of order k+m-1 and is 

thus not necessarily given by the Taylor expansion of the only k times 

differentiable determinant function 6 .

2. The S tar l ike Domain of I n v e r t i b i 1i t y  R '

In the one dimensional case n = 1 we have 6 (x) = df(x)/dx so that 

whenever f is nontrivially Lipschitz continuously differentiable

f (x)
'X

(tt Q( 1) yP + 0(yP+1))dy 
x *

VI)
P+1 (x-x*) P+1 + O x-x’ p+2

which means that x* is an isolated point in both the solution set f 1 (0) 

and the singular set 6 1 (0) . Furthermore by Theorem 7.2 in [1 ] for 

s = 1 there is an open neighbourhood of x* from where Newton's method 

converges linearly with Q-factor p/(p+l) to x* .

In the more interesting cases with n > 1 it follows from the mean 

value theorem that x* is isolated in 6 1 (0) iff 6 attains an isolated 

extremum at x* . This strong assumption was used in earlier work by 

Rail [ 3 ] and Cavanagh [4], but as we have seen in Lemma 1.1 there is in 

general no reason why it should be satisfied. Whenever the singularity
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x* is not a priori known to be an isolated point in 6 1(0) we may ask 

for which points in its neighbourhood we can guarantee that they do not 

belong to the singular set.

From now on we will frequently write the elements of IRn in the form

x = x* + pt ,

where p = ||x-x*|| and t belongs to the unit sphere

S = {tern11 I ||t||=l}

of directions in IRn . Because of (9) there are constants r. < 0 and 0) > 0b
such that for all x e IRn with p < r,b

I 6 (x) - pPTTQ(t)| < 0)pP+1 , (11)

which implies that the Jacobian is nonsingular at all points in the open 

set

R' = (x*+pt I teS,0<p<r(t)} , (12)

where r is the nonnegative continuous function

r (t) E min{rb , y | TTq (t) | /a)} (13)

from S to 3R .

Any open set A c 3Rn which like R' has the property

x e A => (l-X)x + Xx* e A for X e (0,1) (14)

will be called a starlike domain centred at x* . It should be noted 

that in contrast to the usual definition of star-shaped domains in complex 

analysis, the central point x* does not in general belong to A . The
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concept of a starlike domain is clearly invariant with respect to affine 

transformations,but not necessarily with respect to nonlinear ones. This 

seems appropriate as the same is true for the concept of a singularity of 

a system of equations.

As an immediate consequence of the defining condition (14)̂  we note 

that finite intersections and finite or infinite unions of starlike domains 

with the same central point are starlike too,so that there are maximal 

starlike domains with respect to certain properties of their points. In 

order to characterise the maximal starlike domain contained in some open 

set we use the notion of tangential directions or tangents.

An element s e S is said to be tangential to a given set A c iRn

It can be easily seen that s e S is not tangential to A iff there 

are constants 9 > 0 and p > 0 such that

at some point x* if t

(x*+pt I teS,cos 1(tTs)<0,0<p<p} n A = 0 .

Consequently the set of tangents of A at x* is closed in S for any 

A c ]Rn . Now we can give the following convenient characterisation of

starlike domains and subdomains.

T H E O R E M  1.3 Staylike domains and Subdomains

/N nLet A be an open set and x* a point in IR . Then

(i) The nonnegative boundary function

n A

0 if t is tangential to IR -A at x*
d(t) (15)

sup {p I {x*+pt} - c A} otherwise0<p<p
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from the unit sphere S to 1  U {°°} is lower semicontinuous, and the set

A E {x*+pt I teS,0<p<a(t)} (16)

is the maximal starlike domain centred at x* and contained in A .

(ii) The set of excluded directions

a. 1 (0) = {teS I An{x*+pt}p>0 = 0} (17)

n  Aequals the set of tangents of IR -A at x* and is closed in 5 .

(iii) Any starlike domain contains a starlike subdomain with 

continuous boundary function and the same set of excluded directions.

Proof. Firstly we show (ii) with CL defined by (15) and A by (16)

(ii) The identity (17) follows immediately from (16). Since

sup{p I {x*+pt}0<p<- c A} = 0
/N

implies the existence of a sequence p_. -* 0 with x*+p^t i A , any direction
—  1 n  'I-in CL (0) must be tangential to IR - A . The converse holds by

definition of CL . The fact that CL 1 (0) is closed follows either from

it being a set of tangents or the lower semicontinuity of CL which will

be established next.

(i) Suppose 0L is not lower semicontinuous at some t e S • 

According to the equivalent definitions of lower semicontinuity given on 

page 40 in [13] there must be a sequence of directions t_. t with 

& ( t j )  -*■ a  <  CL (t) . Since CL is by definition nonnegative this can only 

be the case if a(t) > 0, and consequently t itself and all but finitely 

many of the t^ are not tangential to IR -A at x* . Then there must



12

be a sequence of positive numbers 0 such that at most finitely many

points of the converging sequence

x . e x* + (a(t.) + e .) t . x* + at 3 3 3 D
/\ /sbelong to A • This contradicts the openess of A since a must be

positive so that x* + at e A, as otherwise t would be tangential to 
n ^IR -A . Thus Cl is lower semicontinuous.

Any set of the form (16) does obviously satisfy (14), so that only the 

openess and maximality of A remains to be shown. For any converging 
sequence

x . = x* + p.t. -*■ x* + pt e A 1 3 1

the semicontinuity of d ensures

Pj -> p < &(t) < lim inf ÖL (t ̂) ,
j-XX)

so that all but finitely many of the x̂  must belong to A which is 
therefore open.

~ ANow consider any other starlike domain A c A with the boundary 
function

a(t) = sup{p I x*+ptcA} .

For any t that is not tangential to IRn - A we derive from (15) that 

a(t)  ̂a(t) . For any other t e S there exists a sequence

{x*+p . t . } . c iRn - A 1 3 3-° “

with pj ■> 0 and t̂  t , so that by the lower semicontinuity of a
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ä(t) < lim inf a(t.) < lim inf p. = 0 .
j-K» J j-MX>

n ^Consequently the directions tangential to IR -A are excluded from all
~ .starlike domains contained in A and A is maximal.

(iii) Since the intersection of a starlike domain with any open ball 

about the central point is starlike too^we may consider without loss of 

generality a starlike domain A of the form (16) with d  < 1 . With the 

convention min(0) = 180° the angle

<j)(t) E -j min{c°s 1 (tTs) | s^-Sna (0)} ^ 90°

n — i _ yis a nonnegative continuous function from S to IR with (p (0) = a (0) .

The starlike domain defined by the boundary function

ä (t) - inf a  (s)
''l-cos 1 (sTt) /(p (t)

seS/Cos 1 (tTs) <(J) (t) }►(}) (t) /9Cf

is obviously contained in A and it can be shown that a. is continuous 

as required. However the proof is rather tedious and we prefer a less 

constructive approach based on partitions of unity as described in [14], 

According to Remark 2.1.4 in that book the C submanifold S -  Cl 1(0) of 

5 is paraoompact and has therefore,by proposition 1.2.1, a locally finite 

covering such that

S - a 1 (0) = U{1/. I ie 1} ,

V i  = closure (IA) c S - 6L-1(0) for all i e I , (18)

and each t has a neighbourhood in S - a 1(0) that is disjoint from all 

but finitely many of the . Furthermore there exists by Theorem 2.2.14

a family of functions called a partition of unity

(ni}ic:j - C°°(S-a 1 (0),50
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such that

ni  ̂0 , ni(t) = 0  if t i i/i ,

and

\ r|. (t) = 1 for all t e 5 - d (0) .
iel 1

Since lower semicontinuous functions attain by proposition 2.10 in [15] 

minima on compact subsets of their domain we have by (18) for all i e J

Ci. - min{ct(t) I te\J.} > 0 . l 1 i

Now it can be easily checked that

a (t) = I a .n. (t) < a (t) < 1
• -r 1  1ie J

- 1 ^is a continuous positive function on S - CL (0) . Since a is bounded

the boundary function

a  (t)

o if t e a (0)

d(t)4>(t) /90° otherwise

is continuous on S and defines a subdomain of A with the same set of 

excluded directions 0L 1 (0) .

By construction R' is a starlike domain of invertibilitys i.e. 

a subset of IRn - 6 1(0) . We know from Theorem 1.3 (ii) that the full
domain of invertibility IRn - 6 (0) contains a maximal starlike subdomain

at x* with corresponding minimal set of excluded directions which equals 

the set of tangents of 6 1(0) at x* . In constructing starlike domains 
with some particular property our main aim is to keep the set of excluded 

directions as small as possible. The actual values of the boundary function 
at included, (i.e. not excluded) directions depend on the magnitude of 

higher derivatives as well as technicalities of the mathematical derivation
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and therefore are considered to be of lesser importance.

To justify this approach we define for an arbitrary set A c ]Rn its 

upper outer density at x* as

t *(A) = lim sup L* (An8- ) / L ^ ( B - )  e [0,1] . (19)
p+o n P n P

Here L* denotes the outer measure induced by the n-dimensional Lebesgue n
measure L such that for any subset C c 3Rn n 1 ~

L * ( C )  = inf(Ln (C) I C is measurable and contains C) .

The concept of upper outer density was taken from [16] where hypercubes

are used instead of the balls 8- . Since we are only interested in theP
upper outer density of sets at the singular solution point, the explicit 

reference to x* will sometimes be omitted. Without using the correspond­
ing concept of lower outer density, we refer to t *(A) as the outer

density of A if the limit superior in (19) is in fact a limit. This
must always be the case if t *(A) = 0 . If A is measurable the outer

measure of A n 8- reduces to the proper Lebesgue measure and x*(A) will 
be referred to as the upper density or density of A respectively.
In the latter case T* (A) can be interpreted, loosely speaking, as the 

probability that a given point,which is very close to x* belongs to A . 

Starlike domains are measurable as they are open and have a well defined 
density at their central point which is completely determined by the set of 
excluded directions.

LEMMA 1.4 Density of Starlike Domains at x*

(i) The density of a starlike domain A with boundary function 

CL : S-*IR is given by

t*(A) = 1 - L (cl~ 1 (0)) / L  (S ) .n-i n-i
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(ii) If A has a density at x*, then

3Rn - A has the density 1 - T*(A) , 

A n C = 0 =» t *(C) < 1 - t *(A)

where C may be any subset of IRn .

Proof. By Fubini's theorem [16] we can obtain the measure of AnB- 
by integrating over the intersections of A with spheres of radius < p 
so that

L (AnB-) n p
fP

L _ {x*+pt I teS, d (t)>p}dp .
'0

Changing the integration variable from p to \i -  p/p and expanding the 

spheres by a factor of 1/p , we find

L (AnB-) = pn P

With L (B-) = pnL (B), we derive from the Lebesgue Dominated Convergence n p n i
Theorem applied to the characteristic functions of the sets in the 

integrand

T* (A)

r 1

J0
L {x*+yt I teS,CL{t) >pp}dy . n-1

0̂ n-1p+o

r l n-1 .y dp Ln —(l
1
n L (S) -  Ln-1

- 1

- 1

n- 1
/L (8,) ,

which completes the proof of (i) as we must obviously have T*(A) = 1  if
a“ 1(0) = 0  .

(ii) The complement IRn - A is also measurable so that

L* ((iRn-A) nß-) / L (B-) = 1 - L (AnB-)/ L (B-) ,n p n p  n p n p
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which gives for p -*■ 0 the limit T*0Rn-A) = 1 - T* (A) . The second 

assertion is an immediate consequence as by definition of the outer measure

Ln(CnB-p) A n V  ' Ln la'

_ - lBy definition of r in (13), the set r (0) of directions that are

excluded from R' is the solution set of the restriction of the nontrivial

homogeneous polynomial 7T0 to S which is a nontrivial analytic function

on the smooth manifold S . As stated on page 240 in [17] the solution

sets of nontrivial analytic functions have zero Lebesgue measure so that 
1Ln_^(r (0)) = 0 . Now we compile the properties of R' in the following 

lemma.

LEMMA 1.5 The Starlike Domain of Invertibility R'
Under the assumptions of Lemma 1.2 let r and R' be defined by (12) 

and (13) respectively. Then

(i) The starlike domain of invertibility R' includes the set of 

regular directions S' = S - ttQ1 (0) and excludes the set of irregular 

directions

r (0) = (teS I R 'n{x*+pt) =0} = S n tt 1 (0)p>o o

which has Lebesgue measure zero in S -

(ii) R' has density 1 at x* and any set in its complement 

3Rn - R' , in particular the singular set 6 1(0) , has outer density zero.

(iii) At any irregular direction t e ttq1(0), that is not tangential 

to the singular set 6 *(0), the polynomial tto attains a local extremum.

(iv) The smallest singular value G(x) of Vf(x) satisfies
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a(x*+pt) = o(pp/m) 

p(x*+pt) = o(pp/m) 

a(x*+pt) = o(pAm+1)

for all t e S

-l . .for all t € =i
O

O

-iimplies t e

o
o

Proof.

(i) has already been established. (ii) follows from (i) by Lemma 

1.4. For the proof of (iii) assume x* = 0 .

(iii) Suppose 7T0 (t) = 0  is not a local extremum. Then there must be

sequences {t .}. and {t+} . in S such thatD 3>i D D>1

lim t. = lim t+ = t and tt (t.) < 0 < tt. (t+) for all j . 
i i  o -] o -jj-XX> -* j-XX) J J

Because of (9) there must be a sequence of multipliers {p .} .r  :>i such

that

6 (p . t .) < 0 < 6 (p .t+) ,] ] ID

which implies by the meanvalue theorem the existence of vectors

with 6(yj) = 0

of the t . and D

for
+

= p . (a . t .+ (l-a .) t+)D D D D D

all j > 1 . Since 

we must have

, cu e (0,1)

the y./P- are convex combinations D D

lim y ./||y . || = t
j-x» J J

so that t is tangential to 6 (0) . Consequently any t e ttq 1(0) that

is not tangential must be a minimiser or maximiser of 7T0 .

(iv) Since all but the smallest m singular values of Vf are non­

zero at x* , we derive from (9)
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a(x*+pt) = o(6 (x*+pt) 1,/m) = «
' 0(pp/m) for t e S

. o(pp/m) for t e it

s of the Jacobian Vf

- i

o
Applying Lemma 1.2 (i) to the minors of the Jacobian Vf which are the

Tentries of the adjugate adj(Vf ), we find that

m-1adj(Vf(x*+pt)) = 0(p ) ,

since the nullspace of any minor at x* must have a dimension greater 

than or equal to m-1 . Now we obtain by Cramer's rule for regular t e S'

G 1 (x*+pt) = ||Vf 1 (x*+pt) ||

-Am-1HadjVf (x*+pt) || / I 6 (x*+pt) I = 0(p m

so that any t e S must be irregular if G(x*+pt) = o(p^m+1) . ////

Since nontrivial homogeneous polynomials are unbounded and all their 

stationary points have zero valuefit is quite likely that they have no 

extrema besides possibly the origin. In this case the set of directions 

excluded from R' is minimal,so that the boundary function of the maximal 

starlike domain of invertibility differs from r only in size but not in sign. 

If there are irregular directions t at which tto attains an extremum, we 

could theoretically enlarge R' by including either t or -t, provided 

tt1 exists and tti (t) ^ 0 . However such extensions seem of little use and 

would complicate the analysis of Newton's method significantly. When p = m  

or m=l, Lemma 1.5 (iv) implies

G (x*+pt) = o(pP/m) » t c tto1 (0) ,

so that the irregular directions are exactly those along which the Jacobian 

is particularly illconditioned unless m = n  in which case it vanishes
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completely at x* . Thus we can conclude that we do not lose much by 

confining our analysis of Newton iterations in the neighbourhood of x* 

to the starlike domain R' .

3. R a t i o n a l  E x p a n s i o n  o f  the N e w t o n i a n  I t e r a t i o n  F u n c t i o n

The convergence of some iteration xj + j = to a fi-xe<3 point x*

is frequently demonstrated by showing that the iteration function g has 

in the neighbourhood of x* a Jacobian with spectral radius less than 1 .

In our singular case such a contracting linear approximation to the

Newtonian iteration function

g(x) e x - Vf 1(x)f(x) (20)

does not in general exist,since g is undefined in the singular set 6 (0) 

and usually unbounded on its domain IRn - 6 1(0) . Using again the adjugate 

adj(Vf(x)) , we can write

g(x) - x* = [6(x)(x-x*) - adj(VfT (x)]f(x))/6(x)

= adj(VfT (x))!Vf(x)(x-x*) - f(x)]/S(x) .

Under the assumptions of Lemma 1.2, the matrices and vectors in the 

numerator as well as the scalar 6 (x) in the denominator have Taylor like 

expansions in terms of (x-x*) . Hence we can approximate g(x) - x* in

R' , where it is well defined, by some form of rational expansion as 

developed below.

T H E O R E M  1.6 Rational Expansion of Newtonian Iteration Function

Under the assumptions of Lemma 1.2 let g be defined by (20). Then

(i) There are Ap > 1 vector functions
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u. £ C OR ,3R ) for i = 1 - Am , , Ap - Aml

whose components are polynomials such that the rational vector functions

, i+Am p00. n -l #rkX _n. gi = u i/TTo € C OR -TT0 (0) JR )

are homogeneous of degree i, and for all x* + pt e R'

Ap-Am . Ap-Am+i
IIg (x*+pt) - x* - I PZLg±(t)|| < Y (— ----p^ --

i=l-Am

where y is a suitable positive constant.

U 0 (t)
(21)

(ii) There is an index k e [l,k] such that

pVk+1f(x*) ^ 0 and PVg f(x*) = 0 for q e [l,k] ,

which will be called the order of the singularity.

(iii) The degree of the singularity, i.e. the lowest index i for 

which u* and consequently g^ are nontrivial,cannot be greater than 1 , 

and g^(t) belongs to N for all t e S' .

(iv) For any regular t the vectors g_̂  = g^(t) solve the block 

triangular Toeplitz system

r a  , o ......................................................o  ] ’ g i-Am '

A , A 
2 1 g 2-Am

A  , A  , A 
3 2 1 •

. . •

• • • • • g o

• g ,

. g
• • • • 2

0 •

I A Ap .............. .. A 3' A 2' A lj . g A ,

where Z = Ap-Am and A^ = A^(t) = Vif(x*)ti

0

TT A t 
2 2

/(i-1) !

(22)
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T T  T n «q(v) If the vector (y . ,y . >••-Y A ) e 3R solves the firstl-Am 2-Am q-Am
q < Ap "rows" of the linear block system (22) for some regular t e S' 

then its first q - Am-1 component vectors must be correct in that

y^ = g^(t) for i = l-Am,...,q - 2Am-l .

Proof.
(i) Note that Ap > 1 by Lemma 1.2 (i) . Deviding (9) by pP, we 

obtain for x = x* + pt J- x*

Ap-i . A

ö(x*+pt)/pp = I pTr.(t) + 0(p P) . (23)
i=0 1

Because of (11) and the definition of r in (13) we have for x = x* + pte R' 

the lower bound

I 6 (x*+pt)/pP | > j I tt o (t) I . (24)

There is a unique polynomial of the form

Ap-1 .
V(x*+pt) E £ p^V.(t)

j=o :
such that for any regular t

Ap_1 . A
V (x*+pt) I pJTT.(t) = 1 + 0 (p P) , (25)

j=0 3
where the remainder on the RHS is usually not uniform in t e S' . Since

the ttj are homogeneous polynomials of degree (p+j), we can show by
induction that the V. are of the form , where e. is a

3 J 0 J
homogeneous polynomial of degree j(p+1) . This is true for j = 0 as

obviously V0 = 1/tt . Now suppose the assertion holds for all qe [0,j] 

with j > 0 . Identifying terms in (25), we find the recurrence
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V. = - f ) TT. V 1 /TT
3+1 vqi0 3+1-q 0

v / q +2) TT . e /TT „
L j + l-q q oq=0

= - ( y TT . G TT̂  q) /TT̂ +2v L ̂ n + i-qqO  oq=0

Each term in the sum has the same degree

(j+l-q+p) + q (p+1) + p(j-q) = (p+1)(j + 1) ,

so that they add up to a homogeneous polynomial ej+1 °f degree 

(p+1)(j+1) as asserted. Since r is continuous on the compact domain S 

it must be bounded,and there is a constant y > 0 such that for all 

x*+pt e R'

IV(x*+pt) I < Y 1/|tt0 (t) Ap

Multiplying (23) by V(x*+pt) we obtain for some y 9 > 0

IV (x*+pt) 6 (x*+pt) /pP -l I < j  y 2 (P/tt0 (t) )Ap

After division by 6(x*+pt)/pP we obtain by (24) for p < r(t)

I pP/6 (x*+pt) - V (x*+pt) I < (y2/TTQ (t)) (p/TTn (t))Ap (26)

Applying Lemma 1.2 (i) to the entries of the k times Lipschitz 

continuously differentiable adjugate, we derive the expansion

k-i . -
adj(VfT (x*+pt)) / p ™  1 = I p 3F.(t) + O ( p )  ,

j=o 1
(27)

where the entries of the matrices are homogeneous polynomials of

degree j+m-1 in t € S . As a consequence of (ii) at most the first Am

matrices {F .}.3 3=0/••-/Am-l can vanish identically. However this fact is
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not needed in this proof. With A ̂ as defined in (iv), we find the Taylor

expansion

k+1
pVf(x*+pt)t - f(x*+pt) = I p^d-I) a . (t) t + 0(pK+2)k+2.

j=2 j 3 (28)

so that

k-1
Vf(x*+pt)t/p - f(x*+pt)/p2 = I p3v.(t) + 0 (p ) ,

j=0 3

where the components of the vector function

vj (t) 5 j T i Aj+2(t)t

are homogeneous polynomials of degree j+2 in t e S . Multiplication of 

(28) from the left by (27) gives for x = x * + pt ^ x*

[(x-x*)6 (x)-adj(Vf1(x))f(x)] / p1 

where the vector functions

k-1 .
I PDw (t) + 0(pk) , (29)
j=0 3

I .J (t) = y f  (t)v. (t)L q l-qq=0

are homogeneous polynomials of degree j+m+1 in t e S . Since by 

definition (20) for x = x* + t f. R'

g(x*+pt) - x* = p1_Am ^p6(x)t-adj (VfT (x)) f (x)]/p
6(x)/pp

equation (21) follows from (26) and (29) with

m+l

q+l-Am r
r qy v .w
j=0 3 q-3-1

y jW

rq+i

for q = 0, . . ., Ap-1

v j=0 j o  q-j

Since each term in the sum has the degree

j (P+1) + (q-j)p + (q-j+m+1) = q(p+1) + m + l  ,
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their sum is a homogeneous polynomial of degree q(p+l)+m+l, so that with 

i = q+l-Am the rational vector function g^ = u^/TTg+^m is homogeneous 

of degree

(i+Am-1) (p+l)+m+l - p(i+Am) = i .

(ii) We have to exclude the possibility

PV^f(x*) = 0 for q = 1,..,k+1 (30)

which would imply G(x) = 0(pk+1), so that by (7) 6(x) = 0(pm ^ +2 )̂ which 

contradicts assumption (8).

(iii) The hypothesis that the {g.}. r * n vanish identically ini le[l-Am,lJ
t e S' will be shown by induction to imply (30), which has been ruled out 

in (ii). If (30), which is obviously true for q = 1, holds for all 

q  ̂ i ^ 1 we obtain,multiplying the (Am+l+i)-th "row" of the linear 

system (22) from the left by P ,

i .
0 =  I PA (t) g = t~  PA t ̂ q 2+i-q l+l l+l q=l

i
(i+i):P V i+1f(x*)t1+1

Since this identity holds for all t e S' which is open in 5 we must 

have PV^+1f(x*) = 0 .

The second assertion in (iii) is a consequence of the linear system

(22) whose (i+Am)-th "row" reads simply A g/> = 0 . 
i i

(iv) Based on the expansions (21), (28) and

k+1
Vf(x*+pt) = I p̂  1A . (t) + 0(pk+1) 

j=i 3
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the linear system can be obtained by identifying terms in the equation 

Vf(x*+pt)(g(x*+pt)-x*) = pVf(x*+pt)t - f(x*+pt) .

(v) Obviously we must have

q~Am a-Am+l
Vf(x*+pt) (g(x*+pt) - x* - £ p y.) = 0(pq )

i=l-Am 1

so that by Lemma 1.5 (iv) for regular t with (21)

q /Sin i. . , q-Am+i q-2AmI P (g.-y.) + o(pM ) = o(pH ) ,
i=l-Am 1 1

which implies g^ = y^ for i = 1-Am, . . . ,q-2Am-l . ////

The order k of the singularity,as defined in Theorem 1.6 (ii), gives

the order of the first nonvanishing term in the Taylor expansion of the 
TJacobian (B,C ) of the singular equations. In the scalar case k+1 is

Acommonly called the multiplicity of the root x* . The degree i of the 
singularity in the sense of Theorem 1.6 (iii) has apparently not been 

discussed in the literature before. At least in the context of numerical 
methods the degree seems to give a more fundamental classification than 

the order. In the nonsingular case tto is a constant and (21) reduces 
to a Taylor expansion with leading term of order i = 2 . Thus we can 

think of a nonsingular solution as a second degree singularity, which 

suggests some correspondence between the order of the Newton process at a 
singularity and its degree. This link is certainly tenuous as we can 

see from the following family of examples which illustrate the results 

of the Theorem 1.6.

For some integer Am > 0 let f be defined as

— £2 
2 ^

l C - .l+Am
1+Am

(31)



27

so that the Jacobian and its determinant are given by

and

V f (£,£)
\

c

1

„ 7 _ v _Am6(£,C> = U

T -1The unique solution x* = (£*,£*) = 0  belongs to the singular set 6 (0) ,

which consists of the £-axis and the £-axis if Am > 0 . Since 6 is

of order p = Am+1 in p = ||x|| = /£2+£2 , and m = rank(Vf(x*)) = 1, the

use of Am = p-m is consistent with its definition in Lemma 1.2. An

elementary calculation yields the Newtonian iteration function as

+ <32>

T T Twhich can be rewritten with (£,£) = pt = p(y,A) as

g (C » 0  = p 1 Am̂ 1_Am( t )  + pg i ( t )  '

where

-  < t  ^ A n ' 0 ) T

and

g1 (y,A) •1+Am *)

Since

Newton

g^ ^  is nontrivial the degree is given by i = 1-Am

sequence (xj = (5j'Cj) }j>0

For any

we obtain from (32) the recurrences

■j + i and
’j + i

Am - 1 .̂-Am
1+Am 2 (33)

TWe analyze only the case where (£0,£ ) , and consequently all subsequent

iterates belong to the first quadrant

o 5 {(5,C)T I 5 > 0 < c}

which is a starlike domain. To this end we consider the ratio
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_ r - 1/ (l+Am) . nfor 3 > 0

which satisfies the recurrence

, , , - r Am 1 -Ann l/(l+Am)a . = h a . = { ■ ■- - - - a . + — a . 23+1 3 Vl+Am 3 2 3 J

The iteration function h has the derivative

h' (a) = Am( 1 1 -Am-1'j i / (l+Am)- -r- al+Am 2 )2

which vanishes at the minimizer

a = [(l+Am)/2]1 / ( 1 +Am)

and increases monotonically in a > 0 towards the limit

1/ (l+Am)
lim h'(a) 
a-*»

1_(i+Am)
1+Anr < (£ )v,e'

2^1/(l+Am)

Here we have used the Taylor expansion of e to obtain the
inequality on the right.

Provided a„ > 0 we have for j > 1 o J

a. = h(a. ) > h(a) = ( l + A m ) ^ 1+^m  ̂ > a 
3 3-1

so that for j > 2 with some mean values £ ̂ e (h (a) ,°°)

(dj + l-aj) / (a_.-a_._i) = h* (e^) £ [o, (2/e) 1//( 1+Am) ] ,

which ensures that the sequence converges at least O-linearly to the 

unique fixed point

~ Am/ (i+Am) _ 2 Am"1 _l/(1+Am)
l+Am
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For the Newton iterates {(£.,£.) }. themselves this has the following3 3 3^0
consequences. After the first step we have

r = IF /a )1+Am < _i_ £I+AmJ V  j " (l+Am) S
so that by (33)

r < (^+Am) 
3+1 " (l+Am)

Since C is halved at each step,the Newton iteration is contracting in 

the domain

 ̂ T , 12 5 {(5.0 « a c < (l+Am)
ri+Am-.9 ; •

in that g(0) c Q. and

Pj + 1  ̂ Pj(y + Am)/ (l+Am) for j > 1 .

Consequently Newton's method converges from all points in 0 and the 

asymptotic rate of convergence is linear with the Q-factor

5j±L r Aa .3 + 1 M i/(i+Am)

k aj . J 21/(1+Am)

4. General Results on Domains of Convergence and Contraction

Let XQ c ]Rn - {x*} be the set of all initial points from which 

Newton's method converges to a given solution x* in a finite or infinite 

number of steps. Formally XQ may be written as

CO 00 oo 00

X = U g~j(x*) U n U n g~j(B , ) ,
j=l q=l l-l j=£ l/q

(34)

where denotes again the unit ball with radius l/q about x* , and

the inverse image g [̂V) contains all those points from which j Newton 

steps are well defined and lead to a point in the set V c ]Rn . This rather
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unwieldy expression for XQ will be used below to show that it is 

measurable and has therefore an upper density at x* .

Since the iteration (0.1) is only defined as long as

6(x.) = det(Vf(x.)) ^ 0, the set Xn is disjoint from 6 (0), so that 3 J o
all its subsets which will be called domains of convergence (to x*) must 

primarily be domains of invertibility. Iterative methods of any kind are 

usually expected to have spherical domains of convergence in the neighbour­

hood of an isolated solution x* , which implies that the full set of 

points from which the method converges to x* is open, provided the 

iteration function is continuous. Whereas Newton's method has spherical 

domains of convergence in the nonsingular case,this requirement is in 

general not satisfied at a singularity x*, as we know from Lemma 1.1 that 

x* is only in special circumstances an isolated point of the singular set. 

Thus we obtain in general the following result.

LEMMA 1.7 The Full Domain of Convergence X Q
For f e C10Rn ^Rn) and x* e f 1(0) let g and Xq be defined by 

(20) and (34) respectively. Then

(i) XQ is a Borel set but need not be open.

(ii) g(X -X°> c X - X° ,0 0 0 0

where X° denotes the interior of X o o

Proof.
(i) By continuity of g in its domain IRn - 6 *(0), the sets 

g  ̂(B^ ) are °Pen so that the countable unions and intersections on the 

far right of (34) must define a Borel set. Thus we are left with the set

of points from which Newton's method converges in finitely many steps.
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By induction over j > 0 we can show that

j“1 o
g : (x*) = C. n fl g 0Rn-6 (0)) (35)

3 £=0

where the sets C^ are closed in 3Rn . For j = 0 we set CQ = {x*} , 

as g° is the identity mapping on IRn .

Now suppose (35) holds for some j > 0 . Since the inverse image 

of intersections equals the intersection of the corresponding inverse 

images, we have

g 3 1 (x*) = g ^C.) n (I g ^0Rn-6 *(0)) 
D £=1

(36)

Let x^ -* x be a sequence of points in g 1 (CM . If x i 6 1 (0) , the 

point g(x) is well defined and must be the limit of the g(x^) e C^ by 

continuity of g . As C^ is closed, we have either x e g !(Ĉ ) or 

x e 6 1(0), so that the set

.-i

C = g 1 (C .) u 6 1 (0)3 + 1 3

is closed. Since by definition g 1 (Ĉ ) £ ]Rn - 6 (0), we obtain finally

C n GRn-6_1(0)) = g"1(C.) ,

which substituted into (36) gives (35) for j+1 . Clearly each g 3 (x*) 

is a Borel set so that the same is true for their countable union and 

consequently X q itself.

To show that X q need not be open we construct the following example. 

At some point xQ ^ x* we can define f e C2(]R ,IR ) such that the matrices 

Vf(xQ) and FQ E V2f(x )(xQ-x*) are nonsingular and furthermore 

f(xQ) = Vf(xQ)(x -x*) which is always possible since f and its 

derivative at xQ are independent. Now we can easily calculate that
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g(xQ) = x* and det(Vg(xQ)) = det (Fq ) /det (Vf (x q )) ^ 0 .

Assuming that x* is not isolated in <5 1 (0) , we find that x is ao
clusterpoint of g 1(6 1(0)-{x*}) c IRn - XQ since g is because of its

nonsingular Jacobian at x̂  locally 1-1 . Thus XQ cannot be open as

it contains the point x which does not belong to its interior X° . ////o o

The inclusion (ii) in Lemma 1.7 means that each point in some Newton 

sequence {x_̂ }_. Q with xQ e XQ - X° belongs to the closure of the 

complement 3Rn - XQ , which consists of all those initial points from which 

Newton's method does not converge to x* . Clearly such a theoretically 
converging iteration would be numerically highly unstable and could hardly 
be realised on a digital computer in finite precision arithmetic. Therefore 

we restrict our attention to the interior X° which could theoretically be 
empty even if XQ has positive measure and upper density at x* . Moreover 
we contend that (14) is quite a natural condition on the domain of 

convergence nominated in a local result.

If the line segment

{Ax* + (l-A)xo I Ac (0,1)}

does not fully belong to the interior X° > then the statement that x iso o
an element of X0 should be considered a global rather than a local 
convergence result. By Theorem 1.3 (ii) XQ contains no nonempty starlike 

subdomains if and only if all directions in 5 are tangents of its 

complement IRn - X° • As we will see later,this may be the case even 
though the interior X° is nonempty and has x* as an accumulation point. 
Nevertheless our main interest lies with starlike domains of convergence 

to a central point x* for which a certain degree of numerical stability
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can be expected. Particular examples of such starlike domains of 

convergence are balls, cones and their intersections which were used by 

Reddien [5,7] and Decker and Kelley [8 ] in their work on singular 

problems.

To give a simple example of a starlike domain of convergence, we 

consider f as defined by (31) with Am = 0 . The one dimensional nullspace 

W of Vf(x*) is spanned by (1,1) , so that f is not in normal form.

The recurrence (33) gives directly for j > 1

T±(1,0) . In the presence of higher order terms a starlike domain of

convergence R has to be bounded and may typically take the form

so that the Newton iteration converges from any initial point in 
T I{(£,C) j C^o)/ which is a starlike domain with the excluded directions

>
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The actual construction of such a set R will be given in Chapter 2 for 

the class of regular problems which includes the example considered here. 

Since obviously L {±(1,0)} = 0 the starlike domain R and consequently 

by Lemma 1.4 (ii), the domain of convergence XQ have density 1 at x* .

For Am > 0 the family of examples (31) shows that the degree of a 

singularity x* can be arbitrarily high negative and we may still have 

convergence from within a nonempty starlike domain so that XQ has positive 

upper density at x* . However this case is rather special in that it is 
known that all but the first 1+Am derivatives of f vanish identically 

in IRn , which enables us to calculate the Newton iteration exactly even for 

points that are arbitrarily far away from the singular solution x* . In 

contrast a truly local convergence result has to be based on the values of 
finitely many derivatives of f at x* and a nonzero Lipschitz constant 
of the highest one alone. Under these more realistic conditions nothing 

can be said about the values of f and its derivatives outside a certain 
ball so that convergence can only be guaranteed from within domains V c ]Rn 

for which the set of intermediate points
OO

U gi (P)
i=0

is bounded. Any such V must be bounded itself and will be called a

domain of bounded convergence.

In particular the first step from any point x = x* + pte V n R' must 

be bounded by some radius ß > 0 . Since p < r and tt0 are bounded 
on S ,there is a constant > 0 such that by (21)

^  <*• <?• A

||g(x*+pt)-x*-p1g*(t) || < y ^P1+V | tto (t) 11+ m+1 , (37)

which implies by definition of g^
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(||û (t) ||-py£/|tt0 (t) |)pX

< ||g(x*+pt) -x* || I 7T 0 (t) I (38)

< (||u*(t) ll+PY* / I TT0 (t) I ip1 .

ANow it follows for i = 1 that the condition

||g (x*+pt) -x*|| £ 3 (39)

is met at all points in the starlike domain

f . f- \ (t) ßK(t)■( x*+pt teS ,0<p<min^ r (t) ,
l+Am

I - ' I Y i ' 1+llu, (t) ||

which has the same set of excluded directions as R' itself and thus density 
1 at x* for any ß > 0 .

For i = 0 we find that the condition (39) is violated at all points 

in the starlike domain

T = { x*+pt I teS ,0<p< (I! uQ (t) || -ß I Tr 0 (t) |Am) I tt0 (t) I /y 0 }
where Am > i+1 = 1 .

Unless gQ = u0/TT̂ m is bounded all with ß > 0 are nonempty so

that by Lemma 1.4 (ii) for any domain V of bounded convergence:

T*(P)  ̂ 1 - t *(T ) < 1 • To illustrate this situation we consider the P
function f defined by (31) with Am= 1 . Outside the ball B1 we can

Tmodify f such that it equals the linear function x - (3,3) for

||x|| > 2 and is smooth in between. Since the first step from any x̂  with

||x || > 2 leads to the separate solution (3,3) , any domain of convergence
to x* = 0 must be contained in the set P2 as defined by

P ß  5  { ( C , o T  I | l g ( O C ) l l  =j /5 2 H 2 H 2 / S 2 + 2 ?  <  b |  ,
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which is a starlike domain with the set of excluded directions

{(VI,X)TeS I IA I > 2ß|y I} .

We know from the analyses of the unmodified problem function that the 

Newton iteration is contracting after the first step from any xQ within 

the first quadrant Q so that the set 0 n P must still be a starlike 

domain of convergence in the modified case. ([nF has the set of 

included directions

{ (p, X)TeS I 0 < X < 2p} ,

so that we have the following situation:
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In the fourth quadrant the situation is exactly the same as in the first

since the recurrence (33) is for Am= 1 unaffected by a sign change of
£ . It does not really matter what exactly happens in the second and third

quadrant as our main intention is to demonstrate that there are cases in

which starlike domains of convergence do exist but some open sets of

directions are necessarily excluded. This kind of situation seems to be
/\typical for the case i = 0 just studied.

AIf finally i < 0 the condition (39) implies with some > 0

lluj(t)|| |n0(t) I < ^  Itt0 (t) 11+Am+1 + pY£ <

which means that any domain of bounded convergence V is disjoint from 
some starlike domain

Tß = {x*+pt I teS , 0<p<min{ ||û  (t) || | T r Q (t) | , t (t) } } . (40)

Since ||û  (t) ||2 17T0 (t) | 2 is an analytic function from S to ]R , which 
does not vanish identically we derive from Lemma 1.4 (ii) and (i) that 
T*(V)  ̂ 1 - t *(T0) = 0 which means that any domain of bounded convergencep
has outer density zero.

To illustrate this possibility we consider again the vector function

(31)/ this time with A m = 2 , and modify it outside the unit ball as described
/\in the case i = 0 . It can be easily checked that the Newton step from any 

point in the starlike domain

T = {<£,C)T I 1 > C2 < U P

is either not defined (£=0) or leads outside the ball with radius 2 
about x* = 0 . Consequently any domain of convergence to x* must be 
disjoint from T which has density 1 , since there are only two excluded
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directions, namely ±(0,1) . However we know from the analysis of the

unmodified problem that the Newton iteration is contracting in the domain 

Q. , so that

0 E {(£, C)T I 0 < C < ^ C 3 , C2 + C 2 <1)

must still be a domain of convergence for the modified function. Thus we 

have the following picture.

x* + W

The situation is essentially the same for all Am > 2 , so that whenever 

the degree is negative there may be a domain of bounded convergence whose 

closure contains the singularity x*, but it must always be disjoint from 

some starlike domain T with density 1 . Since any infinite Newton 

sequence x^ -* x* must approach x* through the narrowing channels 

excluded from T , it seems intuitively clear that this type of convergence 

would be numerically rather unstable. This notion can be made more precise

in the following way.
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THEOREM 1.8 In s ta b il i ty  o f  Convergence to S ingularity  with Degree i  < 1 .

Un der  t h e  a s s u m p t i o n s  o f  Lemma 1 . 2  l e t  -* x* be  an y  i n f i n i t e  

Newton s e q u e n c e  w i t h

l i m  s u p | | x . + -x *  11/1| x . -x *  || = 03 < 1 .
j -X X ) J 3

(41)

Then we h a v e  i f  i  < 0

l i m
j-x» _

I "x i 4 . r y ll
min itttt— zt;—rr I ? 0 ' llg(y) - **ll > 3X . - X .

3 + 1 J
(42)

and i f  i  = 0

l i m
j-x»

x i + r y ll
min ^ luT— I T T  i 6 (y )  ?  0 ' l ta(y) -  x*| |  > B)!y-x* 

j+ i j'l

w h e r e  3 an d  3 a r e  a r b i t r a r i l y  l a r g e  p o s i t i v e  c o n s t a n t s .

Proof.  F i r s t l y  we n o t e  t h a t  b e c a u s e  o f  (41) f o r  a l l  b u t  f i n i t e l y  many j 

HXj  + 1~Xjll ~ IIx j _ x *H " Hx j + 1“ x *ll ^ Pj + 1 ( 1 - ü3 ) / ( 1 + ü3) ,

so  t h a t  t h e  a s s e r t i o n s  m u s t  be  t r u e  i f  t h e y  h o l d  w i t h  t h e  r a t i o  

llx j  + 1- y | | / l l x j  + 1- x jll r e p l a c e d  by | |xj  + J - y | | / p  } .

By c o n s t r u c t i o n  o f  T  , a s  d e f i n e d  i n  (40) f o r  i  < 0 ,  we hav e
P

| | g ( y ) - x * | |  > 3 f o r  a l l  y e . S i n c e  t h e  s p h e r e  S i s  c o m p a c t ,  t h e  

s e q u e n c e  {x^ = x* + p_. t_. ) j >Q h a s  a nonem pty  s e t  o f  t a n g e n t s  w h ich  m u s t  a l l  

be  e x c l u d e d  f r om  J  a s  none  o f  t h e  i t e r a t e s  ca n  b e l o n g  t o  T . Now
p 3

c o n s i d e r  an y  s u b s e q u e n c e  w i t h  t j . -* t  e 5 . S i n c e  t h e  d i r e c t i o n s

e x c l u d e d  f r om  a r e  n ow he re  d e n s e  t h e r e  i s  a s e q u e n c e  o f  i n c l u d e d

d i r e c t i o n s  s -> t  . A g a in  we s e l e c t  an  i n d e x  s e q u e n c e  { q . } .  w h e re  some 
q l  i>o

o f  t h e  q ’ s may be  r e p e a t e d  s u c h  t h a t  y .  E x* + p ^  s q . e f o r  a l l  b u t

f i n i t e l y  many i  . Then we o b t a i n  by t h e  t r i a n g u l a r  i n e q u a l i t y .

l i m  | |x j  . - y i l|/Pi  < l i m  | | t j  - t | |  + l i m  | | t - s q . | |  = 0 . 
i-x» 1 j-x» j-x» 1

( 4 4 )
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As any subsequence of ^xj^j>o ^as a sut)Seciuence with a unique tangent, 

the assumption that (42) does not hold must lead to a contradiction to (44). 

For i = 0 we derive from (38) that |!g(y)-x*|| > ß||y-x*|j for all y in 

the starlike domain

{x*+pt I teS , 0<p<||uQ (t) || ITT0 (t) I / (y0 +31 TTo (t) I 1+Am) } (45)

whose set of excluded directions has zero measure in S , so that (43) can 

be shown in the same way as (42) . ////

Each Newton correction g(x.) - x. is the solution of a linear system1 3
in the Jacobian Vf(x^) whose conditioning is deteriorating as we approach 

the singularity x* . The best one can possibly hope for is that each 

step can be calculated with a relative error bounded by some constant 

e e (0,1), so that the numerically evaluated new point xj+1 satisfies

lx . , - g (x .3 + 1 3 X . - X . < £3 + 1 3 (46)

Unless the rate of convergence even of the exact Newton sequence is
Aalready less than linear, we know from (42) for i < 0 and from (43) for 

i = 0 that this accuracy is not enough to prevent intermittent steps away 

from the solution which are arbitrarily large either in absolute terms or 

at least relative to the previous distance from the solution. Thus even 

the existence of a domain of bounded convergence with positive upper outer 

density is not sufficient to ensure that there are Newton sequences which 

converge in a reasonably robust fashion.

Therefore we introduce the stronger concept of a domain of contraction 

to describe a subset E c lRn - 6_1(0) that satisfies

g(E) c E and B (E) = sup{ Mg (x) -x* M /1| x—x* |l | xcE} < 1 .



41

If i = 0 any domain of contraction E is disjoint from the corresponding 

starlike domain (45) with ß = 3(E) so that all of them have outer density 

zero. For i = 1 we derive from (38) that any t must be disjoint from 

the starlike domain

{x*+pt I teS,0<P<(||u1 (t) H-B I ito (t) I 1+Am) I 7Tq (t) l/Yj} ,

where again 3 = 3(E) . Unless

supllgJ (t) II = suplluj (t) 11/17To (t) I 1+Am < 1

all these starlike domains are nonempty so that no domain of contraction 

can have upper outer density 1 . Thus we can compile the following 

bounds on the upper outer density of a domain of bounded convergence V
/Nand a domain of contraction E at a singularity of degree i .

H-
>

A O H*
 > II o A

i = 1
/\

i = 2

T * (P) 0 < 1 < 1 = 1

T* (E) 0 0 < 1 = 1

where i = 2 represents the nonsingular case. We can usually expect that

T*(V) < 1 for i = 0 and T*(E) < 1 for i = 1 , and it will be shown in 
Chapter 2 that T* (V) = 1 for the wide class of regular first degree singularities.

5. General Results on Rates of Convergence

It might be thought that the numerical difficulties of Newton's method 

if applied to the vector function (31) with Am= 1-i > 2, are somehow 

related to the fact that x* is poorly isolated as a solution in that

||f (x*+XeJ) I! = 0(X1+^m) .
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Clearly x* e f 1(0) is a nonsingular solution iff for all z e 3Rn

||f (x*+z) || 1 = O(||z|| 1)

so that linear growth of the residual ||f|| along any smooth path emanating 

from x* ensures quadratic convergence of Newton's method,provided the 

initial point is sufficiently close to x* and the Jacobian is Lipschitz 

continuous. In the singular case however there is in general no direct 

correspondence between the degree of isolation of x* , i.e. the growth 

order of the residual in its neighbourhood, and the performance of Newton's 

method.

TTo see this we append f = (f^f^) as defined in (31) by a third 

component function

f 3(£/C»n)= \ £ 2 + \ n 2 #

where r| is a new variable in which f and f2 are considered to be 

constant. A simple calculation gives

/3 ||(f1,f2,f3)|| > |f,| + I f 2 I + t f 3 1 > \  II (Scroll2 .

so that x* = 0 is as strongly isolated as possible for a singular solution 

with Lipschitz continuous Jacobian. However since the Jacobian of the 

extended system is (permuted) triangular, the recurrences (33) are 

unaffected and the speed of convergence of Newton's method is therefore at 

best unchanged.

Nevertheless there is a relation between the behaviour of Newton's 

method and a certain sufficiency condition for isolation as given in the

following theorem.
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THEOREM 1.9 Isolation Condition and Rates of Convergence

Under the assumption of Lemma 1.2 with k > k+Am let x_. -»■ x* be 

any converging Newton sequence. Then

(i)

then x*

If
| ( 4 - i  V 4-1PV f(x*)t ^ 0 for all t e M n S (47)

is an isolated solution of f , i.e. an isolated point in f 1(0) .

(ii) If (x.}3 I>o
belong to

converges O-quadratically all its regular tangents

T r (teS I PV2f(x*)tt=0} .

(iii) If {xj}j>o converges Q-subquadratically in that

lim inf p ./p.j i + ij-HX> J J

then it has at least one tangent in W n S

(iv) If x* is a first order singularity of degree 1 and the

isolation condition (47) is satisfied then {x.}. provided it has no3 3-0
tangent in N n S n tt̂ ^O) converges either Q-quadratically or

lim inf p . /p. < 0 3 + 1 3"J -XX) -1 J

which means at best Q-linear convergence.

Proof.
(i) Suppose there is a sequence of solution points 

(x_. = x* + pjt_. } £ f (0) with

p . - + 0 and t . ■ + t e S .3 3

Using the Taylor expansion of f at x* we derive

O = [f (x.)-f (x*) ]/p. = Vf(x*)t. + 0(p.)
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and similarly

k+1O = P[f(x .)-f(x*) ]/p.D 3
V-4-1 k+ 1PV f(x*)t* /(k+1)! + o(p.) ,

so that in the limit as p . tends to zero
3

k+l k + 1Vf(x*)t = 0 = PV f(x*)t

(ii) Since {x^=x*+p^t ^ q converges Q-quadratically we have

lim sup p. /p2 = lim sup ||g (x .) -x*\\/p . < 00 .J+1 j 1 3j+OO J J j+OO J

For any subsequence {tj }^>q £ {t̂ }_.>o that converges to a regular 

direction t e S' we find

lim ^(tj.) = tTq (t) ^0 and Xj e R' 
i-K» 1 i

for all but finitely many i , so that by (21)

lim sup
i+oo

V £-2
E PDi gS.(tji)£=1-Am

<  CO

Since Pj -* 0 this can only be the case if

g^(t) = lim g ^ t j j  = 0 for £=1-Am,...l
i+oo

Then the first Am "rows" of the linear system (22) are trivially satisfied, 

and we obtain multiplying the (2+Am)-th "row" from the left by P

PAig2 ^  = 0 = \  PA2(t)t = PV2f(x*)tt

which proves assertion (ii) .

(iii) Let {xj be a subsequence for which

2lim Pj./pj.+i = 0 and lim tj, = t e S .
i+OO 1 i+00 1
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By assumption f is twice differentiable so that

Vf(x.)(x. -x*) = -(f(x.)-Vf(x.)(x.-x*)) = 0(p.) .1 D+1 3 3 1  3

Dividing by P • +1 we find for the subsequence

lim Vf(x. )t. = lim 0(p2 /p . ) = 0 ,

so that all clusterpoints of the subsequence {t_. ^ must belong

to W . As S is compact {x^} must have a tangent in W .

(iv) Since {x.}. has no tangent in M n S n tTq^O) there is a 3 3— ®
lower bound (J) > 0 such that for all but finitely many j

(J>0 < (J)(t j)  = m in {c o s  1 (sT t_.) | seSnWn7T0 1 (0) } .

The function (j)(t) gives the minimal angle between some direction t and 
the set of irregular directions in M . Similarly we define

0 ( t )  = m in {c o s  1 (sT t )  I seSnN} < (}) ( t ) . (48)

With 0 such that 0„ <45 and o o

0 Q < ^  m in {c o s  1 ( t T s) | seWnS , t eT  o r  t eT T ^ fO )  and <J> ( t )  > - j  <j)Q } •

the set of directions

Ü = {teS I 0 ( t) <0Q / c}) ( t ) > c f ) o  ]■

and i t s  c l o s u r e  a r e  d i s j o i n t  f rom T and n 1 (0) n S , so t h a t

Ej = min { I rr 0 ( t )  I t e U )  > 0 ,

p Q -  i n f  { r ( t )  j te(J} > 0 ,

and similarly

e 2 = min { || g j ( t )  || | t e d }  > 0 .
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The positiveness of follows from the fact that, because i = l, the

first nontrivial coefficient vector g^t) can only vanish at a regular 

direction if t e T , as shown in the proof of (i).

Whenever t̂  e U and < pQ we have by (37)

ii , . „  ̂ 2 . 2+Amp. t. -p.g, t. < y p./£iih3 + i 3+1 i 3 1 ' r 3 i (49)

which implies because g ^ (tj) e

sin 0(t . )  ̂sin3 + 1 cos 1 (tT+lgx (tj)/||gi (t^ ||)

min
Xe]R Atj+r 9i(tj)/llgi(tj

. . . 2+Am.< Y 1Pj/(e2ei ) •

Thus we find that for sufficiently large j

tj e U and p̂  < p = minjp0 , ejC^^Yj * sin 0Q

ensures t. e LI . Unless {x.}_ converges quadratically it has by 3+1 3 3-°
(iii) a tangent in N which must be regular by assumption. Since
furthermore lim p. =0 < p all but finitely many iterates must belong to

j-K» J
the set

{ x * + p t  I t e l l  , p<p}

Finally we derive from (49) that

lim inf p . /p. > lim inf -i-x» 3 + 1 3 -i-KO !|g1( t j ) | | - y 1pj/£12+Am > e.

which completes the proof. ////

Even though it could not be shown conclusively,it seems likely that 

Newton sequences always have integer order unless f involves 
fractional powers. At singularities quadratic convergence from certain 

initial points is theoretically possible but numerically unstable,as
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rounding errors will prevent the minimal angles between the tj and 

directions in T from becoming arbitrarily small. Without analyzing the 

nature of such domains of quadratic convergence in any detail, we note that 

for all Q-superlinearly converging Newton sequences {x^=x*+Pjt )j>0 with

lim p /p. + 0
j-xx> 3 J

llg(x.)
lim sup Tj :----

P • /P •3 + 1 3
j->co 1 pj + 1/pj

^ lim sup 0 . (50)
l-~° y 1

Even under the optimistic assumption that each Newton step can be calculated 

with a uniformly bounded relative error G , the numerically evaluated new 

iterate could be any point in the ball

{xe3Rn I ||x-x*|| < e||g(xj-x_.il - ||g(x )-x*||} ,

which is by (50) nonempty for sufficiently large j . We have noted that 

in general any neighbourhood of the singularity x* contains points 

x = x*+pt where the Newton step is either undefined (6(x)=0) or leads 

further away from the solution (||g (t) ||> 1) . Thus superlinear convergence

of the unmodified Newton method on a singular problem seems unlikely to 

occur in practice and is not even desirable.
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CHAPTER 2

STARLIKE DOMAINS OF CONVERGENCE 
AT REGULAR SINGULARITIES

1. Balanced and Regular S ingu la r it ies

An apparent shortcoming of the theory developed so far is that the
Acrucial degree i e [1-Am,l] is only defined implicitly through Theorem 1.6

Aand we have no rule to compute it at any given singularity. Clearly i = l

if A m = 0 which is by Lemma 1.2 equivalent to the condition that with

k = l  the linear operator

B(y) = — ■ PVk+1f (x*)yk |w : N + P0Rn) (1)

is nonsingular for some y e 3Rn . As will be seen later x* is still a

first degree singularity if it is of order k>l as defined in Theorem 1.6 

and det(B(y)) does not vanish identically. Such singularities will be 

called balanced because the lack of determinacy caused by the singularity 

of the Jacobian Vf(x*) is essentially compensated at the level of the 

(l+k)-th derivative. Assuming again that f is in normal form at x* we 

have the Taylor expansions

— k+1 k — k+1B(x) = B(x-x*) + 0(P ) = P B (t) + 0(p ) ,

— k+1 k— k-4-1C(x) = C(x-x*) + 0(p ) = p C(t) + 0(p ) , (2)

D(x) = 0 (p) and E(x) = I + 0(p) .

so that the reduced Jacobian (1.6) satisfies

G(x) = pkB(t) + 0(pk+1) . (3)
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Since the leading terms on the RHS are of order k in p we obtain 

instead of (1.10)

det(G(x)) = det I G.(x-x*)I + 0
i=k

k(m-l)+k+i

km , _ , mk+1.p det(B(t)) + 0 (p ) ,

which implies because of (1.7) by comparison with (1.9)

p = km , Ape [k-k+l,k] (4)

and

7T (y) = adet (B (y) ) , (5)

where a ^ O  allows again for linear transformations into normal form.

At balanced singularities the linear system (1.22) can be solved 

explicitly provided f is sufficiently often differentiable. Multiplying 

for i = 1-Am,...,£-k the (i+k)-th "row" by P and adding the result to 

the i-th "row" we obtain the block triangular Toeplitz system

■\ » o .............................................0 1
' g . - A m  '

r \

0

A  , A 2 1 • g 2 - A m
A A
A  , A  ,3 ' 2 A 1 •
• . 9o 0

• . ^ P A  tk + 1  k+i

.................................................. ^2 \ A  t + PA, t2 2 k + 2  k+l

0 •
•

A
, Ap-k

A A A

' * * ’ * ' a 3 ' A 2 ' A l g £ - k
 ̂ J

£ - k - l  , ^ £ -1
£ - k  A £ - k t +  £

where £ =  Ap-Am > k - (m+1) (k-1) , Ai = A^t) = V1f(x*)t1 1 /(i-1) ! as
before and

- A^(t) = (A^(t)+PA^ (t)) for i = 1-Am,...,£-k .
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The square matrix A ^ in the diagonal has by (5) the determinant

det(A1(t)) = det[Vf(x*) + pVk+1f(x*)tk/k!] = TTQ(t)/a

so that for all regular t e S' the system (6) can be solved by back 

substitution which yields in particular

gi = 0 for i<l and gj (t) = A : 1 (t) PA^+i (t) t . (7)

Thus all balanced singularities are of first degree. Unfortunately we 

have to assume within the framework of Theorem 1.6 that f is 

k+l 5: 2 + (m+2) (k-1) times differentiable,to obtain a first order approxi­

mation to g by g lf whereas the form of the latter suggests that k > k 

should be sufficient. This is indeed the case as shown below. Since II* || 

denotes the spectral norm of a matrix,the smallest singular value of B(t) 

is given by the continuous function

0
V(t) = <

, IIS * (t) ||

if B (t) is singular 

otherwise
(8)

on the compact domain S . Combining results from Lemma 1.5 and Theorem 

1.6 we obtain the following lemma for the balanced case.

L E M M A  2.1 Properties of R’ and g 1 at Balanced Singularities

Let f e Ck+1 ' 1 QRn ,!Rn ) be in normal form at a k-th order balanced 

singularity x* e f 1(0) . Then

(i) At all points x = x * + pt e R' the inverse Jacobian takes the

form

1

- 1 -1 T -1 -G C E

■E 1DG 1 , E 1 + E 1DG 1CTE 1
(9)

with
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G 1 (x) = p k B !(t) + V ^tjCKp1 k) = V 2 (t)0(p k) . (10)

(ii) The smallest singular value 0(x) of Vf(x) satisfies

pkV(t)(1+0(p)) if t e S'
0 (X*+pt) = <

. k o(p ) otherwise

(iii) There is a constant d such that for all x = x* + pt e R'

||g(x) - x* - g i (x-x*) |) < d(p/V(t)) (ID

where the homogeneous vector function

g. : (IRn -7T 1 (0) ) -> W c ]Rn1 n —

is given by

g^x-x*) = pg,(t) = —

--1 -TI , B (t) C (t)

0
(x-x*) , (12)

with C (t) as defined implicitly in (2).

Proof.
(i) By definition of r in (1.13) the matrices Vf,E and therefore 

by (1.7) also G are nonsingular at all points in R ' , so that the inverse 

Jacobian must take the given form. Equation (10) follows from (3) by the 

Perturbation Lemma 2.3.2 in [10]-

(ii) Using (2) we derive from (i) for t e S'

G 1(x) , 0(P°) , --1B (t) , 0
1 (X) = iCLo 0(p°)

-k= P
0 , 0

+ 0(p)
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Hence we find for the spectral norm

a 1(x*+pt) = ||Vf 1 (x*+pt) || = p kv 1 (t) (14-0(p) )

- 1which proves assertion (ii) for regular t . For t e S n ttq (0) the 

assertion follows from Lemma 1.5 (iv) with p = km .

(iii) In order to obtain an approximate expression for f(x) we use 

the obvious identity

rP
f (x) Vf(x*+yt) dy

>*0
t . (13)

It follows from (2) and (3) that

r P

J0
B(x*+yt)dy

k+i
(k+1)

k+2.B (t) + 0(p )

and similarly

rP
Jo

C(x*+yt)dy
J0 k+1

(k+1)

C(x) + 0(p"f2) ,

2-- G(x) + 0(pk+2)

p _. . . _ . k+2

D(x*+yt)dy = D(x) + 0(p3) and E(x*+yt)dy = pE(x) + 0(p2) .
J0

Substituting these expansions into (13) we find

f (x)

I V j-i
G(x) + 0 ( p  )k+1

-  D(x) + 0(p2)

1 t . , . k+i,c (x) + 0(P )

E(x) + 0(p)

(x-x*)

Multiplying from the left by (9) we obtain

1Vf (x)f(x) = F(x)(x-x*)

where F(x) =

k+1 i + I!g 1 (x) I!o (p )
' k+11 g 1(x)ct (x) + |Ig 1 (x) |!o(pk+1)

^ “ k+l^E 1 ( x ) d ( x ) + ° ( P 2 ) + | I g 1 (x) ( |0(Pk + 2 ) , I + 0 ( p )  + ||G 1 (x) | |0 (p k + 1 )

(14)
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In general the bottom left submatrix is 0(p), whereas for k=l it is 

0(p2) , a fact that will be used in Chapter 3 but is as yet unimportant.

Because of (2), (10) and the boundedness of V we have

G 1(x)CT (x) = B 1(t)CT (t) + V !(t)0(p)

- lwhich completes the proof as we may use again (10) to bound ||G (x) || . ////

That balanced singularities are not the only ones of first degree 

can be seen from the following example. The function

f (5,0 = (y Ctf C2)T

has a second order singularity at x* = 0 with m=2=n . The Newtonian 

iteration function is easily calculated as

/\so that i= 1, whereas the matrix

B(y,X) =

which represents the leading, linear terms of the Jacobian is always 

singular. Consequently the singularity is not balanced. Nevertheless the 

Newton iteration converges linearly from all points that do not belong to 

either axis. The reason for this is that; even though the lack of definition 

caused by the vanishing Jacobian at x* is compensated at the level of the 

second derivative with respect to C and the third with respect to £ , the 

resulting different speeds of convergence are mutually independent. By
oadding higher order terms to either component of f , e.g. £ to the 

first, this independence can be destroyed which usually makes i negative

0 , 0

0 , X
for (y,X) e S ,

and leads to less regular behaviour of the Newton iteration.
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Whereas in the example given above

g (t) = at for some a e 3R iff tt (t) = 0  ̂l o

we have by Lemma 2.1 (iii) at a balanced singularity

gx(t) = t k/(k+l) for all t e S' n hi (15)

This equation suggests that g may be contracting in some domain 

including all regular directions in M . An arbitrary set is said to 

include a direction t e S at a certain point, if it contains a starlike 

domain that include t . Clearly the statement (15) is void if all 

directions in M are irregular. Excluding such degeneracy we introduce 
the following concept of a regular singularity.

A singularity x* of order k is said to be regular if the linear 
operator B(t) as defined by (1) is nonsingular for some t e N n S so 
that x* is balanced and

tt0(N) ? {0} . (16)

In those cases where the nullspace of the Jacobian Vf(x*) is spanned by 

a single vector t e S we find

_ _ ]̂_J_ 1 V4. 1B (t) is nonsingular <==> B(t)t = PV f(x*)t ft o .

Thus the regularity condition on the LHS is equivalent to the isolation 
condition introduced in Theorem 1.9 (i). For m> 1 neither condition 

implies the other as we can see from the following examples.

Firstly consider the function

f(5,s> = (f <C2+C2) . |c'‘>T
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with m = 2 = tu , k = l  and f 1 (0) = {x*=0} . The linear terms in the

Jacobian form the matrix
(

TB (y, A) = for (y,A) e S
0 , 0

which is obviously always singular, whereas

B(y, A)(y ,A)T = (y2+A2,0)T = (1,0)T

can never vanish. Hence the isolation condition but not the regularity 

condition is satisfied.

Secondly consider the function

with m = 2  = n , and k = l  . Since all points on the £-axis are solutions

of f the isolation condition cannot be satisfied at x* = 0 but the 

matrix

regular. By adding higher order terms one can easily make x* an isolated 

solution without changing B .

In what follows we will consider the case of a regular first order 

singularity as the most important and likely possibility . Even though 

isolation of x* as a solution is implied by regularity if m = l  we will 

otherwise not make the assumption that the singularity is isolated in f (0) .

f ( C f C )  =

y , o
B ( y ,A) =

A , y
T Tis nonsingular for all (y,A) e S except ±(0,1) so that the problem isT

As a consequence of Lemma 2.1 (ii) the condition number of Vf(x*+pt)
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—is of order p or larger unless the singularity is pure in that the 
Jacobian vanishes completely at x* (i.e. m=n). In the well researched 

scalar case n=l every singularity must obviously be pure, and correspond­

ingly the conditioning of the 1X1 matrix formed by the derivative of f 

poses no numerical problem. For n > 1 a pure singularity of order k is 

balanced iff it is regular iff

- , , . 1 r7k+ 1 .. . kB (t) = —  V t(x*)t k I

is nonsingular for some and consequently almost all t e S . As will be 

shown in Lemma 2.2 most Newton sequences {x_.=x*+p^t^}_.>o that converge 

to a regular singularity x* do so along a regular direction t = lim t̂  

so that by (3) and (10) in the pure case

lim || V f (x ) || || V f 1 (x ) || = 11B (t) || ||b (t) I! . (17)

Here we have used the fact that Vf = G if m = n . Hence the conditioning 

of the Jacobian as such is unlikely to cause numerical difficulties at a
pure, regular singularity. However due to cancellation the relative error

l 1cin the computed values of f(xj = 0(p^ ) and Vf(x_.) = 0(pd may grow

rapidly as P^ tends to zero.

For the general, nonpure case the regularity assumption (16) implies 

that the pure, reduced system discussed in Section 1.1 is regular too as 

its Jacobian G is according to (3) dominated by B . The converse is not 
true as we can see from the family of examples (1.31) with Am> 0 . Using 
the second component of f to eliminate £ = (1+Am) 1£1+^m we obtain the 

reduced system of one equation

-i_i+Amvfx(£,(1+Am) £ ) 1 .-2r2(l+Am)2 (1+Am) t,

with the derivative
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,r a “ l ^ + A m .  , , a N ~ l r l + 2 A mG(£,(l+Am) £ ) = (1+Am) £

Since the isolation condition (1.47) is clearly satisfied the reduced system 

must be regular whereas the full system has degree 1-Am < 1 and is 

therefore not even balanced. This situation occurs because the leading 

terms in both components of f are powers of the nonsingular variable £ 

so that B does not dominate G .

The regularity assumption amounts to the condition that for the 

singular equations,the leading terms in the singular variables are at most 

of the same order as the leading terms in the nonsingular ones and form a 

system of m homogeneous equations in m variables whose Jacobian is not 

everywhere singular.

2. Domains of Contraction at  Regular Singular i t ies

Firstly we derive from Lemma 2.1 (iii) some useful relations between

the iterates of a Newton sequence {x.=x*+p.t .}. with x. = g(x.) and
1 1 J J>° l + i  1

V = v(t.) .
j 3

Provided the ratio (p^/Vg) is small enough the first step from 

x q = x* + P0tQ e R' is essentially a projection like mapping to the vector 

p g (t ) in the nullspace W . Whenever g (t ) ^ 0 we derive from (11) 

that the angle ^ 1(tQ) between g i(tQ) and the exact t is bounded by

sin ijj (t ) = min
1 0  AXeiR

At -AAA 1 HVV
(k+l)dpQ

kvoiig1(ta)H
(18)

Similarly we obtain for the angles between the subsequent iterates

t  ̂ and the subspace N

Sln 6j + 1 = yiw l|tJ+1 ' yl1 5 d(Pj/Vj’ 2/Pj+l • (19)
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Using the uniform bound

c = max{ lie (t) II + V (t) I teS}

we derive from (11) with (12)

x . , -x* - -— — 3+1 k+1 (x_.-x*) II < kc Q , d— — — --  s m  0 . + —  p .(k+1) V . 3 -.2
j V2 U  3

(20)

which implies by the inverse triangular inequality

V.
k+1

kc „ . d „
oSijvT sln V  7  pj

J Vj

and furthermore

(21)

s i n  Aip_. = min | | t -  At  ̂ || <
XelR

c . n . (k+1)d „—  s i n  0.  + -------2—  P.
V -  ̂ kV DL  j

(2 2 )

where AvL>. is the angle between two consecutive directions t . and t .
J 1 3 + 1

According to Theorem 1.9 (iii) any subquadratically converging Newton 

sequence has a tangent in M . Now we can show that the Newton iteration 

from some initial point x } = x*+p^tj must converge to a regular 

singularity x* if p i and the angle between tJ and some regular 

s e S' n W are sufficiently small. This result was obtained by Decker and 

Kelley [ 9 ] under the assumption that x* is strongly regular as will be 

defined after the next lemma and by Reddien [ 7 ] under the assumption that 

det(V^ f(x*)s^) 7* 0 for some s e N . This is never satisfied if any 

linear combination of the component functions of f is linear in x . 

Excluding only those directions in W along which the smallest singular 

value of Vf is o(p ) we obtain the following result.

LEMMA 2.2 Linear Convergence near N at Regular Singularity

k“l" 1 1  n nLet f e C ' OR ,R ) have a regular singularity of order k > 1 at 

x* . Then there are two nonnegative continuous functions
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A A

<|> : W n S -> ]R and p : N n S -* TR 

such that for any regular direction s e S' n N the starlike domain

W(s) = {x*+pt I teS,cos 1(tTs)<$(s) ,0<p<p(s)}

is nonempty and any Newton sequence 

onverges to x* with

{x ,=x*+p.y.}
3 33  1-1

from some x

|p.+i/pj - k/(k+l)I < [4(k+1)] 1 for all j > 1

and in the limit

pj + i/pj -+ k/(k+1) , tj ■> t e M n S' .

Proof. With the convention min(0) =90° the angle

1 — I T  — 1 o4> (s) = —  min{cos (t s) I teSnTT (0)} < 452 1 o

is obviously a nonnegative continuous function in s e M n S with 

<j)1( 0 ) = S n W n 7 T 1(0) . Consequently the two minima

V(s) = min{v(t) I teS , cos (tT s) < (J)(s) } ,

r(s) = min{r(t) | teS , cos (tT s) ^ cp (s) }

exist and are both nonnegative and continuous on S n N with 

V 1 (0) = r 1 (0) = (f> 1 (0) . Abbreviating X(s) - ^  sin ^(s) < -j we

now define recursively

sin 4>(s) min X(s)
kc/V(s)+k~x(s)

(k-f 1) dr (s) 
(k~x(s))V2 (s)

P(s) (k-x(s))V 2 (s) 
(k+1)d sin cf)(s)

e W(s)

(23)

(24)

(25)

(26)

(27)

can

(28) 

(29)
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which ensures 

continuous on 

W(s) = 0  iff

p (s) < r (s) < r (s)

W n S with <p 1 (0) 

ttq (s) = 0 .

Both functions are nonnegative and 

p 1 (0) = (j) (0) so that for s e S n hi

Keeping s e hl n S ' 

Newton iterates (x^=x*+p 

maintains the properties

fixed we show by induction that the sequence of 

jt from any initial point e (tf = (jj ( s)

/x /s A  Apj < p = p(s) , 8j < (J) = cf)(s) , ipj < <j> = (p(s) (30)

where ^  is the angle between s and t_. , whose boundedness by 4>
A  /Vimplies Vj ^ V E v(s) which will be used frequently. For the first

Aiterate x the three conditions must hold by definition of (ij and 

because of the inequality

sin 0 = min||t -z|| < ||t -ss t || < sin (j) .
1 zeW 1 1

Assuming that (30) holds for all i < j we obtain with (28)

(31)

kc . d „ s m  $ ,, ., , % % „ XN  sin 0. + — x- p. < — — - f - (kc/v+k-y(s)) < — — —(k+l)vi 1 v? i (k+1) A (k+1)

which implies by (21)

X (s) 
(k+1)

k~X < wi+i < k+X
k+1 " p. " k+1 for i = 1. . . j (32)

so that

i+i * Pi
k+X
k+1 < p for i = 1...j . (33)

Using the left inequality in (32) we obtain from (19) and (29)

dp . (k+1)
1 *sin 0 . < —------- < sin A .1 + i ^ 2 . . sV (k-X)

(34)
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In order to obtain an upper bound on we consider the sums

i=l
Pi - Px k+1U-xJ . (k-X) . £

s -aTT^T Sln * (35)

and

j-1
l

i=l
 ̂ d(k+1) j-1V
' v2 (k-x) L P 

i=l

Aij;. in (22) i

j
lb . < ill + y^j + l M L

i=l
-1 , T .Ij - COS (s tl)

(k+1) sin (j> (36)

A J

sin ^j + 1 < s -̂n 41 + I sin Â _. .
i=l

Using (35) and (36) we derive from (22)

j
£ sin A
i=l

<_jl sin 0 + k+1 sin 4)
V l U - x J + ik.iHk-y), sin $ 

k(l-X)
Adding to this sum sin ({) and applying the first inequality implicit 

in (28) we find

sin ifj. ^ Xj+i (i-x) (2+k~X)c/V+ (k +2k-2kX~X)/^
kc/v+k-x

It can be checked easily that the fraction in brackets is always ^3 so 

that by definition of x - \

sin llJj + 1 < sin 4>

Thus we have shown that all iterates stay in the set

W(s) = {x*+pt I teS / cos 1 (tTs) < (f>(s) , 0<p<p(s) , 0 (t) < $(s)}

which is by definition of p(s) a subset of R' . Since (33) and (34)

hold for all j > 1 we see from (21) that
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lim p +i/p. = k/(k+1) ,
j-X» -* ^

so that we must have linear convergence at the asserted rate.

Furthermore the Q-linear decline of 

for any j > j

p_. and implies by (22)

-1 t j_1 cos (t.t~) < £ Ai|>
3 3 i=j

0 (Pj) (37)

Hence the {t } form a Cauchy sequence in S whose limiting directions 

t satisfies

cos 1 (tTs) < (j)(s) and 0 (t) = lim 0. = 0 ,
j+oo 3

so that t e W n S' by definition of (j) in (25) and 0 in (1.48)

As an immediate consequence of Lemma 2.2 we note that the union

111 i U (W(s) I seWnS'}

is a starlike domain of convergence too. Moreover the set of intermediate 

points
OO

V = U g3 (W) 
j=o

is by (23) a domain of contraction with

I V 4-Wsup { ||g (x) -x* ||/||x-x* || I xeVj < ^ < 1 .

The domain V is not necessarily open but it contains the starlike domain 

W , which includes all regular directions in N n S .

According to (24) the limiting direction and unique tangent t£ M
/\

of any Newton sequence from within W(s) is regular too so,that all but 

finitely many iterates must belong to the starlike domain of convergence
A

W (t) c [0 . This suggests a certain numerical stability of the iteration
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as an occasional numerical error in the calculation of the next point is 

unlikely to lead immediately outside the domain of convergence W .

However if the errors rotate the directions t_. persistently towards an 

irregular direction in N the convergence pattern may break down. This 

can be the case even if the relative error in calculating the steps is 

uniformly bounded by some arbitrarily small e > 0 .

A sequence c ^  be called an approximate Newton sequence

of relative accuracy e if

lxj + 1-g(xj)|| / ||x -x || < e < 1 for all j > 1

Using the triangular inequality we obtain from (11)

:j + 1_x*~gi (Xj-X*) II < e||xj + i-x.|| + d(p./v.)2

< ePj + 1 + (£ + dp^/vb pj (38)

Now we can replace (20) by

( x . - x ’‘j + i k+1 j s epj+i +
, d , kc q£ H— y P . + 7■ --  s m  0 .V2 3 (k+1)V. 3

3 3
(39)

which implies

P j 4- i < 1 _ e )  5 k+1 + £ + Ar P . + kc--  sin 0 .V2 (k+1)V. 3
3 ^

(40)

and furthermore

» , k+1s m  Aib . < — —  3 k e (1 + ~~~L) + “T
P3

d , kc • O7  p , + -77— - --  sin 0 .V2 (k+1)V. 3
3 3

(41)

where Aijjj is again the angle between t^ and t.+i
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Whenever
p . < 2p . t . t .D+i J 3 D+i (42)

we have

so that by (38)

which implies

X. - x . < p . ,1 l+i 3" 3

2lx. -x*-g (x.-x*)|| < (G+dp./v.)p. '3+1 1 3  " 3 3  3

sin 6,+i < (G+dp./Vj)pj/p.+i ,

k . .. d kc . n• , , _x ~ 7TT (x -"X*) ^ G + — ?- p . + — -■■■■- s m  0 . p .3+1 k+1 j L  V 3 (k+1)V. 3J 3

(43)

and finally

3 + 1
Pj k+1

, d , kc Q
,£ V PJ 0^1“  sin eu3 3

(44)

Whereas (43) suggests that the angles 0^ between the directions t_. 

and M can be uniformly bounded we see from (41) that the t 's may 

rotate at each step through an angle greater than sin 1(e) within the 

nullspace W . Therefore we have to make the assumption that x* is a 

strongly regular singularity in that it is balanced and all directions in 

N are regular, i.e.

N n 7T !(0) = {0} o (45)

In the case m = dim(W) = 1  this equation is equivalent to the regularity 

condition tt0(M) ^ {0} . For m>l strong regularity is a rather restrictive 

condition which can only be satisfied if p = km is even. By its definition 

tt0 is homogeneous of degree p so that for any t e S n N

7T0 (~t) = (-1) 7T 0 (t) .
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If m > 1 and p is odd there is a continuous path of directions in 

S n M connecting -t and t along which tt̂  must vanish by the mean- 

value theorem at some s e S n W . The condition (45) is equivalent 

to the assumption that B(z) is nonsingular for all nonzero z e W  which 

was originally used by Decker and Kelley in [ 9 ]. Under the assumption 

of strong regularity we can obtain a version of Lemma 2.2 which applies to 

approximate rather than exact Newton sequences.

LEMMA 2.3 Linear Convergence of Approximate Newton Sequence

Let f £ Ck+1/1 (IRn dRn) have a strongly regular singularity of order
1k at x* e f (0). Then there are positive constants 0 and p such that

any approximate Newton sequence {x . = x* + p . t . }. of relative accuracy

£ < e =
sin 0 
4 (k+1) that starts at some x l

j j
in the starlike domain

V - {x*+pt I tcS , 0(t)<0 , 0<p<p}

stays inside (/ and converges linearly to x* with

lim sup sin 0. < 4£
j-x»

and

lim sup
j->00

J±L
pj k+l < E 1+ ((k+l)sin 0) - l

Proof.
By assumption of strong regularity we have S n W n ttq (0) 

that with the convention min(0) = 90°

0 , so

0 = ^  min {0 (t) I t£Sn7T0 1 (0) } £ (0,45°] .

—  l —  l —  ~  *and because v (0) = S n 7T0 (0) = r (0)

r E min {r(t) | t£S , 0(t) < 0} > 0 ,

V E min (v(t) I tfS , 0(t) < 0} > 0 .
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Now we define recursively

sin 6 min -{sin 6 , v/(4kc) } < —

and

p = min < r , V'

4d(k+l) sin 0 > < V‘
8 (k+1)d

so that

~ _ sin 9 1e =  ~ c — —  <4 (k+1) 8(k+1) *

Firstly we show for arbitrary e V  that any x j +1 satisfying

lx . -g (x .) II < e ||x . -x . ' D+l y 3 " " 3 + 1 3

belongs also to V .

/ \  /\By definition of V , 0 and p we have for all x.=x* + p.t. e l
3 3 3

V . = v(t.) 
3 3

d „ kc A 3^  p: + ikTitrsin ej £ iösiy
so that with (40) by definition of £

Pj + i < k + *5 < k + h < ,
pj (k+1)(1-e) k+7/8

Thus we obtain from (41) for the angle between t. and t.
3 3 + 1

a I  ̂k+1s i n  All».  ̂ —;—  
3 k 2e + 8 (k+1) < -L < I ,8k 8

which implies for AiJk  £ [0° ,90° ]

T 3
t . t . , = c o s  Alii. > — f

3 3+1 ^3 4

so that the condition (42) is satisfied. Hence we can apply (44)

k-*2 < Mj + i < k+b
k+1 Pj k+1

with

(46)

to derive 

(47)

so that by (43)
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sin 0 <3 + 1
k+1
k-*5

sin 0 sin 0
2(k+1) 2k-l < sin 0

Therefore all iterates {x_.} must belong to \J and since by (47)

PJM ^ Pj k + h j n k+}5
k+ij  ̂ H k+1V. ^3 + 1

the approximate Newton sequence converges linearly to x* . Applying 

again (43) we have with (47)

lim sup sin 0. < £ lim sup (p./p. ) < 4e3 j 3 + 1j-*CO J j-K» J J

and similarly by (44)

lim sup
j-K» P j k+1 < e 1 + 4kc

(k+1)v
Awhich is equivalent to the last assertion by definition of 0 ////

Lemma 2.3 establishes a remarkable numerical stability of the Newton 
iteration in the neighbourhood of strongly regular singularities even though 
the assumption that a sequence of Newton steps can be calculated with 
uniformly bounded relative error is certainly optimistic. However we can 

realistically expect that the error occurring in the calculation of the 
steps has a comparatively small component orthogonal to the nullspace W 

of the Jacobian at x* and a main component parallel to it. Even if the 
latter is rather large (e.g. 25% of total step length) the iterates would 
remain inside (/ since the bound (43) on the angle between the t j' s 
and M  is largely unaffected.

As a consequence of Lemma 2.3 we note that l/ is a domain of 

contraction not only with respect to g but to any approximate iteration 

function g : IRn - 6 1 (0) -+ IRn that satisfies

| | g (y)  -  g (y )  | | / | | g ( y )  -  y[| < e for all y e 1/ .
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The ratio of contraction is bounded by (47) so that

sup (||g(y) - x*||/||y - x*|| | yel/} < (k + ̂ -)/(k+l) .

3. F i r s t  Step Analysis and Main Result

If W = Rn , i.e. in the case of pure, regular singularities, the two 
lemmas of Section 2 are quite strong since then the starlike domain of 

convergence W has density 1 at x*, and the domain of contraction l/ 

contains a deleted spherical neighbourhood of x* . However the assumptions 

of Lemma 2.3 are unlikely to be satisfied if m = n > l  since we have 

already noted that strong singularity is a rather restrictive condition 
whenever m > l  . In general we can expect that m=dim(N) is small 

compared to n so that the directions included in W or V represent 

only a small fraction of the full unit sphere S in IRn . Fortunately
we can show that for most directions fco e S the first step from some
point x = x* + p0t0 € R' leads into W or 1/ provided pQ is

sufficiently small and the calculation of the step is sufficiently 
accurate.

THEOREM 2.4 Starlike Domain of Convergence R at Regular Singularity 

Let f e 1,1(IRn )3Rn) have a regular singularity of order k at 
x* . Then

(i) There is a nonnegative continuous function r : S TR such that 
the Newton iteration converges linearly to x* with Q-factor k/(k+l) 

from any initial point in the starlike domain

R = {x = x* + pt I teS , 0<p<r(t)} .

(ii) The domain R has density 1 at x* since the closed set of

excluded directions
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r 1 (0) = {teS I Rn{x* + pt} = 0}1 p>o

is given by the intersection of S with the solution set tt 1(0) of the 

nontrivial homogeneous polynomial

tt(z ) = tt (tt (z ) g (z ))tt (z ) .o o  l o

(iii) For any t e r 1(0) that is not necessarily excluded from all 

starlike domains of convergence to x* either of the following conditions 

must be satisfied

A7Tq (z ) or tt (z) = tto (ttq (z) gx (z) ) attains a local extremum at t .

d^+1g](t) = 0 and — —  f(x*+yt) | = 0
dp

£ + 1where £ e [l,k] is the smallest index for which V f(x*) is nontrivial.

(iv) For Newton's method to have a spherical domain of convergence

about x* it is sufficient that tt 1 (0) = {0} and necessary that tt iso o
either nonnegative or nonpositive on IRn (assuming n>l).

Proof. Without loss of generality we assume x* = 0 .

/N  / \

(i) Since p(s) and sin cf)(s) are bounded the function

t V2 (t)p(g1 (t)/||g1 (t) |[) ||g1 (t) ||v2 (t) sin$ (gj (t)/||g1 (t) ||)>>
r (t) E min-lr(t) , ---------------------- , -------------------------------- >

 ̂ dr,+cv (t)+v2 (t) 2d 'b
is well defined and continuous on S • Now we derive from (18) and (21) 

that for any xQ = x* + pQt0 € R

sin lp1 (tQ) < sin $(gx (t())/||gl (tQ) ||) and pj < p (g j (t0)/ \ \ g 1 (t„ ) ||) , 

so that x e W(g (tQ)/||gi (tQ) ||) which implies the assertion by Lemma 2.2. 

(ii) Inspecting the individual terms in the definition of r(t) we

see that r(t) = 0 iff
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t e r 1 (0) = V 1 (0) c tto 1 (0) or otherwise gx (t) e tt0 1 (0) .

It follows directly from the expression for gt (z) in (12) that the m 

nontrivial components of TT0(z)gi(z) are homogeneous polynomials of 

degree p + 1 in z so that tt(z ) is a homogeneous polynomial of degree 

(p+2)p in z e 3Rn . Clearly t e 5 belongs to the solution set 7T 1 (0)

o f  TT iff

tto (t) = 0  or otherwise tto (gi (t) ) = 0

which shows that r 1 (0) = tt 1 (0) n S . For any z e W we have 

g (z )tTq (z ) = ztto (z)k/(k+l) and consequently tt(z ) = tt̂ +1 (z) Ck/(k+l) so 

that neither tto (z ) nor tt(z ) can vanish identically as by assumption 

tt (s) = det(D(s)) 7i 0 for some s e W .

(iii) We know from Lemma 1.5 (iii) that t e tt 1(0) must be tangential 

to 6 1(0) and therefore by (1.15) necessarily excluded from any starlike 

domain of invertibility unless tt0 attains an extremum at t . Now 

suppose tt (z) does not attain a local extremum at some
/s—  1 -  1t e S n tt (0) - tt (0) , that is included in a starlike domain ofo

convergence A with boundary function CL . Since A is open and ttq has 

the same sign in a sufficiently small neighbourhood of t in S , there must 

be sequences t . -> t and t+ -+ t of included directions such that

tt ( t . )
1
kmvv tt0 (g(t.)) < 0 < ttq (g(t.))

^ + TT(t .)3
. ,+.kmVV

Since CL is lower semicontinuous and positive at t the Newton steps

from y. E u.t. and y+ = u .t+ to z. and z + respectively are well 3 3 3 3 3 3 3 3
defined for y^ smaller than some yu with yu •* a(t) . Combining

(1.11) with (11) we obtain
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r km . , .  , , km.6z.) = p . TT (g (t.) ) + o (p . )3 3 0 1 1 3

so that p_. < p_. may be chosen sufficiently small such that

6 (z .) < 0 < 6 (z .) 
3 3

. - 1Since Vf (x)f(x) is continuous on a domain of invertibility there must

be multipliers cu e (0,1) such that the Newton step from each

y. = p . (a . t . + (1-a.)t .) £ A 3 3 3 3 3 3

,-ileads to a point z. e 5 (0) . By assumption A is a domain of 

convergence to x* = 0, so that we must have z^ = 0 for all j Since

the y./p. are convex combinations of the t. and t. we find 
3 3 3 3

Sj E y_./||y_. || -* t, so that t. is tangential to the set of points from 

which Newton's method converges in one step. Writing y^ = T_.Sj we

derive from z

0 = Vf(yj)yj - f(y ) T .Vf(T . S . ) - 3 3 3
( T

Vf (psj dp

£t £ + 1

j „ptlr . .. £+i £+2
(ITITT 7 f(x )sj + 0(Tj > '

Here we have used the fact that V f(x*) = 0 for i = 2..£ . After

division by t £+1 we obtain in the limit

£+1
d , 5+1 5+1—    f(x*+pt) = lim V f(x*)s . = 0 ., £+i 'p=o 3dp H j-*»

Because of (1.47) a similar argument applied to the identity

PVf(y^)yj = Pf(y ) shows that

. , 0k+1 k+1k ! PV f(x*)t
' B (t) , CT (t) ] 

0 , 0
t = 0

which implies g (t) = 0  as B(t) is nonsingular.
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(iv) If tt01 (0) = {0} the set V 1 (0) = tt()1(0) n S is empty, so that 

V = min {v(t) I teS} > 0 and furthermore

r n min \~2 (k+1)~d ' min{r (t) I » Ikj (t) || ^ 1} j > 0 .

Now consider any point x. = p.t. with p. < r . If ||g.(t.)|| ^ 1 thend i d  : 1 3
Pj < r < r(tj) so that convergence is guaranteed by (i) . If ||gx (t̂ ) || < 1

we obtain from (11)

V. < dp .
[ k + X  V j  J  ̂ 2k+l 

Pj ” 2k+2 Pj

Thus we must have in any case at least Q-linear convergence to x* .

If TTn attains positive and negative values there must be a

t e S n tt01(0) that is neither minimiser nor maximiser and therefore 

necessarily excluded by Lemma 1.5 (iii). ////

The fact that R and consequently the full domain of convergence X( 

discussed in Section 1.5 have density 1 at a regular singularity is 

probably the most important result of this thesis. Whenever the 

equivalent regularity conditions

det(B(t)) 7̂ 0 <=> ||Vf (x*+pt) || = 0(p k)

are satisfied for at least one t e N n S then the probability that Newton's 

method converges linearly to x* from a given point x q in the ball 

is 1 - o (p° ) .

Since nontrivial homogeneous polynomials are unbounded and all their 

stationary points must have zero value it is quite likely that they have 

no local extreme besides the origin. If this is the case and the set

T 5 |teS' I g,(t) = 0 , Vll+1E(x*)t£+1 = oj = S
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is empty then the set of directions excluded from R is minimal so that 

the boundary function of the maximal starlike domain of convergence to x* 

differs from r(t) only in size but not sign. In the case of pure 

singularities we have m = n  and P = I  so that T reduces to

T E {teS' I Vk+1f(x*)tk+1 = 0} (48)

which must be empty if the isolation condition (1.47) is satisfied. For 

any t e r 1(0) that satisfies either of the two conditions in Theorem 

6.1 (iii) the question whether it is necessarily excluded can only be 

decided on the basis of (2+k)-th and higher derivative information.

To illustrate the result we consider the following examples in two 

dimensions. After suitable nonsingular affine transformations any function 

f e C 3 (IR2 ,3R2) with a Jacobian of rank 1 at a first order singularity 

can be written in the form

so that

rf (̂ )
1 52 + - C22  ̂ 2 ^
a _2C  +  + BU +  | c 2 J+ o ( | | | | | 3)

Vf(^)
a £ + 1 + + YC

+ 0 ( | | | | | 2 )

If T = 0 the problem is irregular as B vanishes identically. Otherwise 

we can use linear transformations to obtain T = 1 , a = 0 and 

e e {-l,0,+l} . Thus we find

TT0 (C.C) = 5 , g , ( S . O =  i((C2+£i;2)/5,0)T , ^(£,5) = i ( 5 2+ec2) -

Consequently the set of excluded directions is given by
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S _ 1n tt (0)
{±(0,1)T}

,

{± (0,1) T , (±l,±l)T//2}

if £ e {o,l}

if e = -1

Since TrQ attains positive and negative values in the neighbourhood of 
T(0,1) the C-axis is necessarily excluded from any starlike domain of

invertibility, so that 5 n tt 1 (0) is minimal if £ > 0 . If £ = -1 the
/\

two straight lines { £ = ±el are mapped by g x into the origin but tt 

attains positive and negative values in their neighbourhood. Since p = k = l  

we have with T = 1 and a = 0

dy‘
V 0

y=o ,2ß+Y. and M
l-nj

\ f \0
J y=° -2B+Y,

so that by Theorem 2.4 (iii) the directions { (±1 ,±1)//if} are necessarily 

excluded whenever |y| f |231 .

Secondly we consider the case where the Jacobian of f e C3(IR2/3R2) 

vanishes at a regular first order singularity. After suitable affine 

transformations we have with £ e {-1,0,l}

so that

4

Vf (|)

1  £2 + £
2 ^

aSC + § ?2

£ , e?

/ a£ + Be

+ odi^ i i3) ,

We need only consider

ir„(C,C) = a£2 + ßtt - aec2 = (£,?)

+ o(||̂ ||2)

a , j ß

B / -a£
(c> •
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2 2 1 2Depending on whether the determinant det(V ttq) = -(a £ + — ß ) is positive, 

negative or zero there is a spherical domain of convergence, a minimal set 

of two necessarily excluded straight lines or one not necessarily excluded 

straight line respectively. The last case is particularly interesting as 

we have for ot = 1 and 3 = 0 = £

with

f 'c>

i ?22
+ odl^ll3) ,

Vf(^)
£ , 0

C , S
+ odl^ll2)

This example has already been considered briefly in Section 2.1. If the 

higher order terms are zero all points on the C-axis are solutions of f 
and Newton's method converges from all other points linearly to the 

particular solution x* = 0 . Even though x* is not an isolated solution 
we obtain from Theorem 2.4 a starlike domain of convergence to x* with 
only the £-axis excluded. In contrast the result is not applicable to 

the other solution points which are first order singularities of degree 
zero with m =1 .

1 . rpIf the higher order terms are of the form (- — £ ,0) then both

f[\)

f I r2 . I r4 1
2  ̂ 4

and the determinant of the Jacobian

f ?  , -?3 I
det(Vf) = det

vanish only at the origin x* = 0 . The Newton iteration is given by

£2 + C'

>

j+1 1 ' V 1
f  \

S
j+1 J

—  —  2 + 4
^ 5
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which yields linear convergence to x* from all points on the £-axis with
3 1ratio — and from all others with ratio — . Consequently f has a

spherical domain of convergence, which does not follow from Theorem 2.4 (iv)

as the condition 7T 1 (0) = {o} is not met. If on the other hand f is of

the form

then the determinant det(^) = i f  - vanishes on the parabolas {£ = ±£2} 

so that the £-axis must be necessarily excluded.

At strongly regular singularities we can obtain a version of Theorem 

2.4 that applies to approximate Newton sequences but restricts the initial 

points to starlike domains,which have in general a density less than 1 

at x* .

THEOREM 2.5 Domains of Convergence for Approximate Neuton Sequences

Let f e ' (IRnjRn) have strongly regular singularity of order k
/ \  /Nat x* . Then we have with e and sin 0 as in Lemma 2.3.

(i) There is a constant e < £ and a family of nonnegative continuous 

functions c] ^rom -S to 3R such that any approximate Newton
sequence of relative accuracy £ e [0,£] converges Q-linearly to x* if 

the initial point belongs to the nonempty starlike domain

R^ = {x*+pt I teS , 0<p<r^(t)} .

(ii) The closed set of excluded directions is given by

r^1 (0) = jteS' I ||g1 (t) || < e[(l-e)sin 0-e] !| u r (0) .
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(iii) If the set

I k+l k + 1 — 1 _ — 1C = {teS I PV f(x*)t =0} c gj (0) u r (0) (49)

is empty there is an £ e (0,£) such that for all £ e [0,£)

- 1 - 1 * r^ (0) = S n tt0 (0) = r (0) ,

which implies that R includes all regular directions and has therefore 

density 1 at x* .

Proof. Starting from some x0 = x * + P0tQ e R' we derive from (38) for any 

approximate first iterate x j = x*+pit j

(i-e)pj  ̂ (l|g1 (t0) ||+e+dpo/v2 (tfl)) p0 (50)

Provided g 1(tQ) is nonzero the minimal angle 0j between t and hi is 

not greater than the angle between t^ and g^tg) 6 ^ so that by (38)

sin 6 t < sin = min Xtj- (tQ)/\\gl (t( 
XelR

l! l̂ ( t o> l|Po P'

e+dp0/v2 (t0)

IIWII
1 +LI IIWIU

dP0
IIgi (t0) IIv2 (t0) -

(51)

where the last inequality follows by (50).

Whereas the condition p T < p can be met by sufficiently small pQ whenever
At0 is regular we see from (51) that the condition sin 0 < sin 0 can only

be satisfied if

£ sin 0____
1 G 1+lkl (tg) || 1

which is for £ e (0,1) equivalent to
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e <
sin 0

1+sin 0+ljgj (tc
_i

sin 0
/\

1+sin 0

Taking the supremum over the initial directions we obtain the upper bound

sin 0£ r min •< e 1 ,
1+sin 0+min{ ||g1 (tQ) |! | tQcS * }- 1

which is well defined and positive as g l cannot vanish identically by 

Theorem 1.6.

Abbreviating

n (t) = (l-£) || g (t) || sin 0 - e (1+H g (t)||)p i  l

we can now define the boundary function

r£ (t) = max|o,min{r (t) , y  p||g1 (t) || 1 , (t) V 2 (t)/d}|

which implies (ii) as

r (t) = 0 iff TT. (t) = 0  or otherwise n (t) < 0 . £ 0 £

It follows from (51) with the fourth inequality implied in the definition
A

of r that sin 0, < sin 0 whenever x„ e R c R . Furthermore we£ 1 o £ ~
derive from the same inequality

l|gi (t0) || + £ + dp0/V2 (t0) < j  (l-£) ||gj (t0)|| ,

so that by (50) and the third inequality implied in the definition of r^
A

also Pj < p . Thud the first step of any approximate Newton sequence of 

relative accuracy £ e [0,£) from within leads into V which was

constructed as a domain of linear convergence in Lemma 2.3. The inclusion 

(49) holds by the second part of (7). Multiplying the same equation from 

the left by A^t) we find that for all s e 5'
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llg! (S) II > a - min j ||pVfk+1 (x*) tk+1 ||/!|a i (t) || | tesj ,

where the minimum on the RHS exists since the ratio of the two norms is

continuous on the compact domain S . If the set C in (49) is empty 

a is positive and we can define

£ = min |c,sin0/(l+sin0+a ) | ,

so that for all £ € [0,£) and t £ S'

IIgj (t) || > e[(l-e)sin 0 - e] 1

which implies (iii) by (ii). ////

Considering Theorem 2.5 we note that the regular directions that

are excluded from a given starlike domain R are those for which g,(t )£ 1 0
is comparatively small. This means for an approximate Newton step from 
xQ= x* + pQtQ to xl = x* + pjtj that the ratio p /pQ is rather small

Abut the minimal angle 0j between W and may be greater than 0 .

Even though x} can belong to the singular set or be otherwise unfavourable 

there is a fair chance that the next step leads into V and then to 
convergence. In the case of pure singularities we have g 1(0) = T as 
defined in (48) so that (iii) applies if the isolation condition (1.47) is 

satisfied. In general we can expect a comparatively stable numerical 
convergence of Newton's method at strongly regular singularities, including 

in particular all those with m = 1 that satisfy the isolation condition.
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CHAPTER 3

MODIFICATION OF NEWTON'S METHOD 
AT SINGULARITIES

1. The Numerical D iff icu lty  of Singular Problems

At first glance it might be thought that the singularity of the 

Jacobian at a solution point represents a merely technical difficulty for 

Newton's method, which could be overcome by suitably chosen alternative 

methods. In fact singular problems are inherently more difficult to solve 

than nonsingular ones, and even Q-linear convergence in a reasonably stable 

fashion is quite an achievement. To see this we consider an arbitrary 

iteration of the form

x = h(x.,f (x.)) , (1)D + i 3 3

where h : IR2n ->- 3Rn satisfies the identity

h(x,0) = x for all x e TRn (2)

and has a Jacobian V^h with respect to f such that

H(x) E -V^h(x,0) is continuous in x at x* . (3)

The iteration function h may involve values of arbitrarily high 

derivatives of f at x and several intermediate or previous points and 

could even be designed or selected in view of the particular problem 
function f at hand.

The two conditions (2) and (3) hold in particular for iterations of

the form



81

x . = x . - H (x .) f (x .) (4)l+i 1 3 3

provided H(x) is continuous in x . In order to enhance the global 

convergence properties of Newton's method a bounded matrix H is often 

used as a substitute for the inverse Jacobian whenever Vf is singular or 

nearly singular. Usually such modifications are only meant to apply at a 

finite number of intermediate points before the unmodified Newton iteration 

converges superlinearly to a nonsingular solution. For examples of such 

modified Newton methods see [18], [19] and [20]. D. Gay advocated in [21] 

to treat singular or nearly singular problems by defining H on the basis 

of the singular value decomposition of Vf as a continuous approximation 

to the inverse Jacobian. Like any method of the form (1) for which (2) 

and (3) are satisfied this approach is not viable in the exactly singular 

case.

Expanding h(x^,f(x^.)) at (x_.,0) and f e C 1(IRn,3Rn) at a singular 

solution x* € f 1(0) we obtain from (1)

Xj+i = h(Xj,0) - H(Xj)f(Xj) + o (11 f (x j) ||)

x_. - H(x*)Vf(x*) (x_.-x*) + o(Pj) ,

so that

x -,, - x* = A (x.-x*) + o(p.) ,3 + 1 3 3
(5)

where p_. = |[x -x*|| as before and

A E I - H(x*)Vf(x*) .

Thus we have a perturbed linear difference equation and according to a 

remark on page 193 on [10] it is "essentially" necessary for linear 

convergence that the spectral radius of A , i.e. the modulus of its 

largest eigenvalue is less than 1 . Apparently most results have been
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developed under this condition which is clearly violated in our case since 

Aw = w for all w in the nullspace W of Vf(x*) . With M c !Rn the 

range of H(x*)Vf(x*) and 0 the orthogonal projection onto the 

orthogonal complement we derive from (5)

p (x. -x*) = Q (x.-x*) + o(p.) ,* 3+1 * 3 3 (6)

which implies that h has at x* no spherical domain of contraction in

the sense of Section 1.5. This does not preclude the existence of a

Q-linearly converging sequence {x.}. c ]Rn - {x*} with
3 3 — ®

p^ + i/p_. < Y e [0,1) for sufficiently large j .

Dividing (6) by p^ we obtain for the angle 0^ = 0(t^) between 

tj = (Xj-x*)/Pj and M1 .

llQtj+i COS 0. > Y 1 COS 0. + o(p°)3+1 3 3

so that in the limit

•y lim sup cos 0 . > lim sup cos 0 . ,
j-KO  ̂ j-KO

which requires because y < 1

lim 0 . =  90
j-x» ]

This means that the component of x^ - x* orthogonal to M must become 

infinitely small compared to the main component parallel to M . In 

practice rounding errors will prevent cos 0^ from becoming arbitrarily 

small, which destroys the Q-linear rate of convergence in a theoretical 

sense. However, unless A has eigenvalues of modulus larger than 1 , 

these errors need not be magnified and the main component parallel to M 

may still be reduced Q-linearly until the solution has been approximated 

with satisfactory accuracy. Nevertheless it seems obvious that Q-linear
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convergence will only occur from a comparatively small set of initial 

points x q , namely those for which 0Q is close to 90° . If A is 

symmetric with ||a || = 1 and M1 = W = P(IRn) it can be easily seen that

lim A^
j-x» P ,

which is always the case for the iteration (4) with H based on the 

singular value decomposition of the Jacobian. Then it can be expected 
that all initial points,for which cos 0Q is not negligible,are projected 

into the affine set x* + N during the first few steps. Subsequently the 

steps are of o(p^) anĉ  maY converge sublinearly to x* or lead out of 
the ball B in which the expansion (5) is valid. In the case n=2 and 

rank(A) =1= rank(Vf(x*)) we have the following situation:

x* + N

Sublinearly
converging
sequence

linearly converging 
sequence

Slowly 
diverging 
' sequence

Boundary of ball B
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Depending on the higher order terms,iteration sequences from within T 
can theoretically inch along x* + N out of the ball 8 , then skirt 

around its boundary and finally converge through C linearly to x* .
Since a large number of intermediate steps must be expected,the overall 

convergence of such iterations would probably be unacceptably slow. More­

over if such essentially circular iteration sequences did exist from points 

arbitrarily close to x* the whole method (1) would be highly unstable, as 

rounding errors could lead to repeated return trips to the boundary of 8 .

The situation shown in the figure is indeed typical for the general 

case, and according to the following result we can even rule out R-linear 

convergence from most initial points that are close to x* .

THEOREM 3.1 Sublinear Convergence of Continuous Methods

Let the iteration function h satisfy (2), (3) and be x* a 

singular solution of f e C10Rn,3Rn) with rank(Vf(x*)) = n-m < n-1 .

Then there exist a ball 8 about x* , a starlike domain T centred at 

x* and a subspace M of dimension n-m' < n-m such that

(i) Any iteration sequence ^xj^j>o ^rom some xQ e T that converges 
to Tx* without ever leaving 8 does so R-sublinearly in that

lim sup ||x . -x* ||l / /^ = 1
j ->-co

(ii) The starlike domain T has the set of excluded directions S n II 
and therefore density 1 at x* .

Proof.
Firstly we reduce A by real similarity transformations to a suitable 

block diagonal form. Let M be the subspace of vectors w e IRn for

which



85

lim A^w = 0 .
j -KO

Since w e M implies Aw £ M ̂ and M n W = 0 f we find that M is an 

n-m' < n-m dimensional invariant subspace with respect to A . After a 

suitable orthogonal transformation we can assume without loss of generality

»I ' ^n-m'M = {o} x 3R , (7)

so that A takes the block triangular form

\0

M

By definition of M the (n-m1) x (n-m') matrix M must satisfy lim = 0 
which is according to Theorem 4 in Chapter 1 of [ 2 ] equivalent to the 

condition that the spectral radius of M is less than 1 . On the 
other hand we can show by contradiction that all eigenvalues of T have 
modulus greater or equal to 1 .

Suppose T has a pair of complex conjugate eigenvalues X  , X of 

modulus |X| < 1  with corresponding normalized eigenvectors u , u e (E™ 
Considering the sequence

Yj ’ ’ T 0 'j u+u
z . D . s M . 0

we find for some norm with y r ||m ||<1 , which exists by 2.2.8 in [10].

IIyjII = ||Â u + X̂ u|| < |Ap||u+u|| ,

and consequently

!lzj + 1ll  ̂ llu+u|| ||s|| |Xp + y||z_. |l < ||u+u|| ||s||/(l-y) .

This gives in the limit
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1 im supj-K» < Y lim sup
j -KO

<  OO

which implies because Y < 1

lim ||z . || = 0 = lim |ly . || .
j-KO J j-K» J

T — T T nThus the real vector (u +u ,0) e 3R should belong to M which 

contradicts (7). Consequently the spectral radius of the inverse T 1 is 

less than or equal to 1 .

The matrix equation

UT - MU = S (8)

represents a square linear system in the (n-m')m' entries of the matrix 

U . According to Theorem 2.3.15 in [22] each eigenvalue of the homogeneous 

part on the LHS is the difference between one eigenvalue of T and one of 

M so that none of them can vanish. Hence (8) has a unique solution U 

for arbitrary S and we obtain a similarity transformation of A to the 

block diagonal form

A =
T , 0 ' 

° , M

T , 0 

S , MV r

( I , 0

u , 1 ,
As stated on page 183 in C 6 ] there are positive constants a , ß such that

-<ii aqm  -l and l|Mq|| n q n-m'-lBy q (9 )

where the exponents of q allow for the worst possibility that each T 

and M have only one Jordan block.

Now let

{Xj=x*+(yrJ'/ẑ ')T }_.>o with {y_.} c ir™ and {ẑ .} c IR11 m

be the sequence of iterates generated by (1) from some initial point
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T T Tx Q = x* + (y0,zQ) - It can be easily verified by induction that for all

q > 0

x. - x* = A^(x.-x*) + o(|lx.-x*|l) .D+q D D
(q)Hence there is for each q a sequence of constants £n ■+ 0 such that

(llyjll+llzj < £-1 implies

y - T^y.i+q D
««qz . - M z .D+q d

^ *4q) ( IIy j l!+l|z j II) for all q > 1 . (10)

Now we find with (9) for the angle 0. between x . - x* and MD D
z .

tan 0 p+q llMqzJ| + e ‘q) • (lly .||+l|z.
j+q » W  " M y J I - e <q) • (lly.IKIIz.ll)

ByV  m *tan 9 . + eDq  ̂(1 + tan 0 .)^ ______________ D___a*__________ D_
-l l-m' (q) ,, A .a q - £ ^  (1+tan 0 )

,-qir 1 - l l - m '

(ID

Here we have used the fact that ||T > a ‘q ‘ is the smallest

singular value of T^ . For each integer i > 1 we can choose firstly

and then £. such that

iaßy^q.H 2 < \  and ( i + D e ^ 1 aqm ' 1 < \ (12)

Let B be the ball with radius £ 11 about x*, and consider for all 

i > 0 the starlike domains

T± = {x*+(yT ,zT)T I ||z||/ ||y|| < i , 0 < ||z||2 + ||y||2 < £ ^ 1  . (13)

For x„ £ T. we derive from (11) with (12) that tan 0 < 1 so that the0 1 qi
q.-th iterate x lies either inside T or outside B . Provided the i qi 1
full iteration sequence { x j K >Q from x q e remains inside B and

converges to x* , the subsequence
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r ~ ~T ~ T T _lx. = x* + (y . ,z .) = x
3 3 3 q i+j

must remain in T, and there is an index sequence £. -»• 00 such that i n

1p. = x.-x* ^ £. for all j
3 3 3

and

lim = 0 for all q .
j-*50

(14)

Now we derive from (11) with q = q : and (12) for the angle 0_. between

tj = (Xj-x*)/Pj and M 1

lim sup tan 0. < lim sup tan 0. < —  ,3+1 3 3 3-J-M» J -J-KÖ

which requires

lim || z . ||/1| y . || = lim tan 0. = 0 . 
j-*oo 3  ̂ j ->oo 3

With q any integer and q E q*q1 we obtain from (10), (9) and (14)

lim infj-K»
q*(j+i)

P~ .q*3
lim inf

j-XX>
||y  ~ ... . || 2 (l+tan20~ )q* (3+i) __________ q • (3+i)

||y~ . ||2 (l+tan20~ .)q*j q* 3

Hy~. (j+I) II
lim inf — — 3----  > lim inf

j*400 l|y~.jll j-*°°

|Tqy~ .q*3
L- llyq.jll

(q) 
Jq * j

- C Z "  (l+tan0^ .) 
9.7 • ' I ' 3

-1 i-m' -1 ,l-m' > a q = a (q'q^

It can be easily shown by contradiction that the linear root factor Rj 

must satisfy

i - mn 1/5‘R 1{x.} = lim sup (p.)
3 j-HX> 3

i/j a 1 (q*qi)
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Since q may be chosen arbitrarily large we find for the full sequence

{x .}
3

^{x.}  ̂ lim sup [p.]^ > lim "-1 .-n>nl/q = 1cv q
j -X» -> q-K» 1—‘y U r * "  ‘" ' j

Thus we have shown that any iteration sequence from within the union

T = U T. ,
i=i 1

that remains inside the ball B , can only converge R-sublinearly to x* 

Inspecting (13) we note that T has the set of excluded directions

S n M = {(0,zT)T ■ l }

If we transform A back into its original^general form,the ball B is 
mapped into an ellipsoid B , M into a subspace M of the same 

dimension < n and T into a starlike domain T with the set of excluded 
directions S n M . By Lemma 1.4 (i) T has the density x*(T) = 1 at 

x* . Since R-factors are norm invariant all statements apply to the 
original problem with B replaced by some ball B c B . ////

In view of Theorem 3.1 it is clear that either condition (2) or (3)

must be violated if linear convergence is to be restored. Even if H is
merely bounded or does not exist at all the dilemma is essentially
unchanged as long as h is Lipschitz continuous in f . This is so
because any "sensible" scheme will use the linear information provided by

the Jacobian to drive the iterates into the proximity of x* + N so that
subsequent steps are of o(p) = 0(|!f|l) . which allows only sublinear

convergence. If Vf is Lipschitz continuous and x belongs exactly to

x*+ N then a step which is not o(p) can only be achieved if

||h (x) || 1 = 0(p), which is by Lemma 1.5 (iv) the case for Newton's method 
- iwith H = Vf . Thus we can conclude that unless (2) is violated the
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numerical difficulties observed for Newton's method are essentially 

inevitable and cannot be overcome by multipoint methods or the use of 

higher derivatives.

Given the difficulties discussed above the performance of Newton's 

method at regular singularities is surprisingly good. On the basis of a 

detailed examination of the unmodified iteration carried out in Section 3.2 

we develop methods to accelerate the convergence by variation of the 

stepsize or by extrapolation, in Sections 3.3 and 4.1 respectively.

The condition (2) means that any point at which f vanishes is 

acceptable as a fixed point of the iteration which seems a natural 

property of any nonlinear equation solver. However in certain applications 

it may be known in advance that the solution is singular in which case we 

can border the system by additional conditions e.g. det(Vf) = 0 . On 

the basis of LU and OR decompositions of the Jacobian, this approach 

is developed in Section 4.2 for singular and underdetermined systems of 

nonlinear equations. Test calculations with all discussed methods on a 

family of problems in three variables are reported in the Tables 1-10 of 

the Appendix.

2. Asymptotic Behaviour o f  Newton's Method at Regular S ingu lar i t ies

In Lemma 2.2 and Theorem 2.4 we were mainly concerned with the proof 

of convergence from within R as such. Analyzing the final convergence 

behaviour of the unmodified method at regular singularities more closely , 

we obtain the following result.

LEMMA 3.2 Convergence Behaviour of Regular Newton Sequences

Let f e ' 0Rn,3Rn) have a regular singularity of order k at x*

Then any Newton sequence {xj=x*+Pjt that is regular in that it is
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not disjoint from the starlike domain R, as defined in Theorem 2.4, 

exhibits the following asymptotic properties

p. •> 0 , t. •> t e S' n W

P. ,/P. = k/(k+l) + 0(p.) 3 + 1 3 3

-1 , T .COS (t t.)
0(p.) if m = l  = k 3

O(Pj) otherwise

sin 0. = " 3

0(p.) if k = 1

O(p^) otherwise

K . =
x. -x . 3 + 1 3

j Uxr xj - k+l + 0(pj>

0) . — CO s3
- 1

i—  T -i(x - x .) ( x . - x . )
3+1 3 3 3-1

| | x  . , - x  . | |x ,-x . |
L  3 + 1  3 3 3 - 1  J

O (p_.) if m = 1 = k

0(Pj) otherwise

f(xj)/Pj = \ V2f(x*)t2/k2 + 0(p.)

G(Xj + i} . _ _  .
0 ( x . )  + 0(Pj k+l

1 1 
e , 2

6(x )/6(xj) = rk/(k+l)]km + 0(p )

Proof.
The two limits in (15) were already established in Lemma 2.2 and 

other assertions can be derived from its proof as follows. Equation

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(2 2 )

(23)

all

(2.34)

gives the lower part of (18) and implies with (2.21) assertion (16). The
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lower part of (17) is an immediate consequence of (2.37). Since

sin 9. = 0(p. ) we observe in (2.14) for the case k=l that the3-1 l-i
3

component of x - x* orthogonal to W is 0(Pj_i), which implies with

(16) the upper part of (18). If k=l=m the limiting tangent t must span
-1 TW so that (17) is equivalent to (18) as cos (t t .) = 0_. . As a 

consequence of (17) we have

T 2t.t. = 1 - 0(p .) ,1 1 — 1 1

so that

||xj-x*-(x_._i-x*) ll/p j = ||tj-t. -ipj-*/pj"

l-2tTt. 0. /p.+ (p. /p.)2L 3 3-1 3-1 3 3-1 1 J
4

= (I-P^j/P J 2 + 0(p.)

= 1 - P. ,/p. + 0(p2) = f + 0(p.) , (24)l-i 1 1 k 3

where we have used (16) to obtain the last equality. Applying the above 

result for j and j+1 we find

" y r ’S 11 pj+1/k+o(p-+,> j, , ,
Hx.-x._JI p.A+Otp*) k+l + 0(Pj) '

which proves (19) .

Applying the triangular inequality in S twice we find

w. < cos 
1

-1
t— t T — (x -x .) t 71 l + l 1 1

x . -x . 
1 1+1 1

+ cos-1
T -1(x.-X . ) t .

1 1 - 1 1- 1
X . -X .

1 1 1 - 1

+ cos 1(tTt . ) . (25)1 3-1

T 2 £By (17) we have t_.t_._̂  = 1 - 0(p^ ) with £=1 or £=2 . Then we find

'‘Vi-.1 Vi
llxj~xj-ill

. 2£+l
pj-rpj+0(pj

2 2 . 2 £+2 p.+p. -2p.p . +0 p.
1 1-1 1 1-1 1

_ , 2 £1 - 0(p_. ) ,

which can be applied for j and j+1 to obtain with (17) from (25) the 

upper and lower part of (20) for £=2 and £=1 respectively.
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For future reference we prove the more general result

f(x.(A))3

2 r- 

2
A2 1-A

2 k 2(k+1)
V2f(x*)t2 + 0(p J , (26)

where

x .(A) = x . + A(x . , -x .)
3 3 3 + 1 3

x* + A(x. -x*) + (l-A)(x.-x*) 3 + i 3

= x* + pjCAg^t.) + (l-A)t ) + PjAg2 ( U  + o(pJ . (27)

The last equality holds by Theorem 1.6 (i). From the Taylor expansion of 

f at x* we derive with gi e N

f(Xj(A)) = p j (1-A) Vf (x*) tj + p_. A Vf (x*) g2 (t j)

+ j  pj V2 f (x*) ( Agi (t_.) + (1-A) tj )2 + 0(p!) .

Substituting

and using

Pjtj = + + °(Pj)

t . + 0(P .) = t = t . + 0(P .) ,3 3  3 - 1 3

we obtain with (16) and g (t) = t k/(k+l)

f(x. (A)) = p‘(A+(l-A) (k+1)2/k2)Vf(x*)g2(t)

+ j  p.(l-A/(k+l))2V2f(x*)t2 + 0(p.) 
z 3 3

The (2+Am)-th "row" of the linear system (1.22) reads

V2f(x*)tgi(t) + Vf(x*)g2(t) = j  V2f(x*)t2 , (28)

which allows the elimination of Vf(x*)g2(t) and gives after some elementary

manipulations (26). With the elementary inequality e > (1+1/k) assertion
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(22) follows directly from Lemma 21(ii). The last equation (23) is a 

consequence of (1.9) and (2.4). ////

Lemma 3.2 shows that the regular Newton sequences converge to a 

regular singularity in a very structured way. We notice in particular 

that the residual f(x ) becomes colinear to V 2f(x*)t2 and its length
j

declines linearly with a ratio of k/(k+l), so that any given vector norm 

of f is reduced at each step unless V 2f(x*)t vanishes completely. 

Excluding the latter possibility we derive from (26) that the ratio between 

the actual gain ||f(x_.)|| - ||f(x_. + i)|| and the linearly expected reduction

- —  || f (x.+A(x . -x.ax 3 D+i i X=o Ilf (X.

is given by

1 - llflx )||/||f(x )|| = -2k+1 - + 0(p ) ,
J J (k+1)2 J

where || • || may be any elliptic norm. Consequently the usual line search 

conditions of stabilised Newton methods (e.g. Goldstein test [23]) will 

always be met by the full Newton step during the final approach to a 

regular singularity. However it was found in [24] that such modifications 

can slow down the iteration considerably before the final pattern has been 

established.

If a Newton sequence does not converge superlinearly as usually 

expected the first noticeable sign is obviously that the ratio K . between 

consecutive stepsizes fails to become arbitrarily small. Provided the 

sequence converges at all the limiting point x* must be a singular 

solution of x* . Naturally it is important to determine the type of 

singularity by interpreting the unmodified Newton iterations before any

convergence accelerating procedures may be applied.
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Whereas by (19) at regular singularities

K ./(1-K .) -> k ,
3 3

this is not necessarily true in other cases. For instance we find for the 
1 2 1 tsystem f = (— £,-jC3) whose unique unbalanced singularity x* = 0 is of 

order k = 1, that all Newton sequences satisfy asymptotically

K./(l-K.) -v 2 (29)

and

GO . +  0 , f (x .) = (0,^-p^)T + o(p!) , (30)3 3 3 3 3

O(Xj + i)/0(x.) + 4/9 , <5 (x )/6 (x.) 2/9 . (31)

Whereas by (29) and (30) the singularity could be of second order and 

regular,the two limits in (31) cannot be matched with (22) and (23) for 

any k and m as 2/9 is not an integral power of 4/9 .

Even though a proper determination of numerical rank [25] requires 

the singular value decomposition of the Jacobian,one can get some indication 

as to the dimension of the nullspace W from the LU decomposition and 

may use the smallest diagonal element in U as an estimate for 0 . If 

the small elements in the diagonal of U decline at different rates or 

oscillate,the problem has most likely an irregular singularity to which 

the analysis of this thesis does not apply,even though extrapolation of 

the kind described in Section 3.4 would work for the unbalanced problem 

mentioned above. If on the other hand gô  tends to zero, K./(l_Kj) 

comes close to an integer k and a and 6 decline with rates that are 

compatible in the sense of (22), (23), then we can be reasonably sure to 

deal with a regular singularity for which the modifications developed in

Sections 3.3 and 4.1 are designed.
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3. Variation of the Stepsize at Regular Singularities

According to Lemma 3.2 regular Newton sequences approach x* along 

a unique tangent t e S' n W roughly reducing the distance to x* by a 

factor of k/(k+l) at each step. Now it seems promising to accelerate the 
convergence by taking a step (k+1) times the Newton correction or its 

projection into some approximation W to the nullspace W . For the 

scalar case where necessarily m=n=l this idea is rather old and has been 

shown to restore the quadratic rate of convergence of the unmodified method 

at nonsingular solutions by Schroeder [26] and several other authors. 

Unfortunately this situation is very atypical for the general multi­

dimensional case in which Rail [ 3 ] and more recently Reddien [ 7 ] have 

discussed the properties of such corrected Newton steps. Rail's paper 

suggested that the multidimensional case could be treated successfully in 
essentially the same way as the scalar case. Unfortunately his analysis 

contains a flaw which amounts to the omission of certain cross terms and 
was first detected by Cavanagh. Reddien found in test calculations [ 7 ] 
that the corrected Newton step from some point x̂  = g(x_. ^) leads usually
to a point x! \ much closer to the solution x* than x. = g(x.) but 3+1 3+1 3
that the subsequent Newton step from x!^ tended to be disadvantageous.

In our framework this means that x!1̂ can lie outside W and may even

belong to the singular set 6 1 (0) . If x!^j is an element of R the

next normal Newton step leads back into W, but it may be large enough to

offset the original gain in the step from x̂  to xj+i * Whereas this
situation seems typical in the general case;we find that at strongly

1 /

regular first order singularities convergence of order 2/3 can be obtained 
by taking two normal Newton steps after each corrected Newton step of 

double length. This result holds only if certain cubic terms do not vanish
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and does therefore not apply to Reddien's test function which involves no 

cubic terms at all.

Considering a corrected Newton step from some point x_. 

in the neighbourhood of a regular singularity with arbitrary 

we obtain from (27) with X = k+1

= x*+p.t . e W 3 3

k and m ,

(l) x .D + l x* + p . 
3

(k+1)g (t.) - k t . 1 3 3
+ (k+1) p^g2 (t.) + 0(p.) (32)

Now we look for conditions under which

0(p2.) and (1 ) (33)

so that the next Newton step whether normal or corrected is well defined 

and does not increase the distance to x* . We know from (2.12) that

(k+l)g^(t) - kt = 0 for t e W n S /

-1 T-but g (t) can be rather large if the minimal angle 0(t) = cos (t t) 

between t and some t e N is not small. Imposing the condition 

sin 0^ E sin 0(t_.) = 0(p ) we find that the first requirement in (33) is 

satisfied and that the term

(k+1)p . g (t.) 
3 2 3

(k+1)p?g (t.) + o (p3) , t. e N
3 2 3  3 3

is now leading in (32). In order to show that belongs to W we3 + 1
( 1)have to bound the angle between xj+i ~ x* an(3 some regular direction in

N  , which seems only possible if

7T0 (t) ^  0 and 0 ^ g (t) e N  for all t e N n S . (34)

In other words the singularity must be strongly regular and the then well 

defined vector g 2(t) must be a nonzero element of W for all t e M n S . 

By (28) and (2.15) we have for t e hi n 5
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Vf(x*)g2(t) = ( V2f(x*)t2 , (35)

so that the condition (34) can only be met at a regular first order 

singularityfexcept for rather special cases where V f(x*)t vanishes 

for all t e N n S . Excluding the latter possibility we must have k=l 

and Am=0 so that with (2.15) according to the second "row" of the linear 

system (2.6) for t e N n S'

(Vf+PV2f(x*)t)g2(t) = I PV3f(x*)t3 . (36)

Consequently we have to assume that the RHS does not vanish for any 

t € N n S in order to ensure (34), which leads to the following result.

THEOREM 3.3 Second Order Three-Point Method

Let f € C3' 1 (IRn,]Rn) have a strongly regular first order singularity 

at x* . If

PV3ft3 7̂ 0 for all t e N n S (37)

then there exists a constant (5 such that the three point iteration

yj + 1 = 2g(g(g(y ))) - g(g(y3) (38)

converges Q-quadratically to x* with

0( yj+rx ^ o ( II y j  —x* IU|yj+r x*

from all initial points in the starlike domain

(39)

1/ = {x*+pt I teS,0(t)<0 , 0<p<p} c I/ ,

A

where l/ , 0(t) and 0 are defined as in Lemma 2.3
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Proof.
By definition of 0 in Lemma 2.3 we have

min { ITT o (t) tc.S , 0 (t) <0} > 0

Aso that there are constants c l , E c/V and c 3 such that by Theorem 

1.6 for all x = x*+pt e 1/

||g(x) -x*-pgl (t) -p2g2 (t) || < c ^ 3 , 

||2g1 (t) —11| < c2 sin 0 (t)

and

||g2 (t)-g2 (t) || < c 3 sin 0 (t) , 

where t e W with cos 0(t) = tTt .

(40)

Because of the assumption (37) it follows from (36) that g^(t) cannot 

vanish for any t e N n S t so that there are constants c^ and c5 such 

that

0 < c 4 < I!g2 (t) || < c 5 for all t e  N n S . (41)

Abbreviating

/ \  2 ^  ^  c & E (c2+2pc3)(c3sin0+3ci+pc3c 1) ,

we can now define

p r min <p ,
c, sin04
16c 6c,6 ^

(42)

According to equation (2.47) in the proof of Lemma 2.3 l) is a domain of 

contraction so that for any

x„ = y. = x*+p0t 0 £ 1/ c 1/

~ 1 3
Xi+i = g(xi} = X*+Piti e V , 4 < Pi+1/Pi ^ j  for i = 0,l .
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According to Theorem 1.6 (iii) and equation (35) the vectors g 

(t) always belong to M so that by (39)

p, sin 0
1

CO

0
cxi 

0
 

Q.VI sin 0 + p 03c i

p2 sin 02 CO
0

CXJ 
•—

1

Q.VI sin 0 + p 3 c
1

, 2 /v< p d (c sin 0 + p c c + c  ) .K0 3 0 3 1  1

Now we obtain from (40) for the corrected step from x to2

X, = y . = 2g(x ) - x that3 j+i 2 2

||x3-x*-2p22g2 (t2)||

£ P2 c2 sin 02 + 2p2c3 sin 02 + 2p’c j

£ P«(C2+2PoC3> (C3 Sin0 + PoC3Cl + C 1> + PoCl S PoC6 '

where we have used c2 > 1 to obtain the last inequality. Hence 

by (41) for P 3 = ||x3 —x*||

C 4P 0/S - P 0C 6 £ P 3 S 2 C 5P o + P?C 6 •

Since p Q < p as defined by (42) we have

P 0 C6 S V 16 S C 5/16 '

so that

P 0c4/16  -  P 3 / P 0  ~  ^ P  0 c  5 -  2  '

and furthermore by (43) with g2 (tQ) e M

sin 0 3 < PpC6 (PgC4/16) 1 < sin 0 .

Consequently y j + i = x 3 belongs to l/ with 

llyj + 1 - x *ll  ̂ 3c5IIyj —x*|| 2 < j IIYj-x’
so that the sequence {yj} converges Q-quadratically to x* .

(t) and

(43)

we find

(44)

Equation

(39) follows from the first inequality in (44). ////
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It was found in practical calculations that the three-point method may 

still converge quite rapidly even if a regular first order singularity is 

not strongly regular. As we can see in Table 5 each fully corrected Newton 

step causes a shift of direction within N which can theoretically lead to 

a point x* + pt with t irregular. However since by assumption of 

regularity almost all directions in W are regular this is unlikely to 

occur,and as gj (t) = tk/(k+l) for all t e N n S ’ the next step can be 

favourable even if t is nearly irregular, i.e. 17T Q(t)| small.

The assumption that the singularity be of first order is essential 

because otherwise any fully corrected Newton step is likely to lead to a 

point outside W . This can be observed in Table 8 where only every fifth 

Newton step is corrected, which nevertheless destroys any prospect of 

convergence.

As we can see in Table 1 and Table 5 the two point method

y. + 1 = 2g (g (y_.)) -g(y^) (45)

converges like the three point method quite rapidly to regular first 

order singularities. This observation could not be supported theoretically 

because the ratio between consecutive angles 0^ = 0 ( (y^-x*) /1|ŷ  —x*||) is 

bounded but not in general less than 1 . However it can be shown on the 

basis of (39) that any combination of one three-point step (38) with q-1 

two-point steps (45),or equivalently one normal Newton step with q two-

point steps,yields a (2q+l)-point method which converges from within some
/\

starlike domain c R with density 1 . If the solution x* is in fact

nonsingular we have for each two-point step (45)

yj+1 - x* = 2[g(g(y^))-x*] - (g(y.)-x*)

= 2 0( ||g(yj) -x*|!2) + O (|!yj-x*II2) = o( ||ŷ -x*||2) ,
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so that the (2q+l)-point iteration does still converge provided it comes 

sufficiently close to x* . The efficiency of the (2q+l)-point method in 

the sense of Brent [27] is given by

_______ log(R-order)_______
evaluations of f and Vf

' i+q
l+2q log 2

q
l+2q log 2

if det(Vf(x*) ) f 0

(46)

if det(Vf(x*)) = 0 ,

where x* is assumed to be a strongly regular first order singularity in 

the second case. Here we have relaxed the usual definition of the R-order 

of an iterative process at a solution point x* [10] to mean the minimal 

R-order of all iterations from within some starlike domain of density 1 .

Mow it would theoretically be the best strategy to start with the 

unmodified Newton iteration (q=0) until the convergence pattern described 

in Lemma 3.2 is observable, then to increase q gradually by taking more 

and more two-point steps and finally to revert to the unmodified method 

when the rounding errors become significant or the solution turns out to be 

only nearly singular. Unfortunately there is no simple criterion to

decide whether any of the domains has been reached and the working

hypothesis that the singularity is strongly regular can never be verified. 

At each iteration point y^ we can calculate the angle UL between the 

Newton correction g(y^) - y^ and the previous step y^ - y . i . If ok 

is sufficiently small we may select a two-point step of the form (45) and 

otherwise a normal Newton step must be taken. The challenge to implement 

this kind of "line search" in a computer routine could not be met in this 

thesis.

On our test problem the three-point method (q=l) and the two-point 

method (q=°°) converge with similar speeds to a first order singularity with 

one or two dimensional nullspace LTables 1,5] and a nearly singular solution
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[Table 4J. In all three cases the three-point method exhibits a more 

regular convergence behaviour, with 0̂  -> 0 as ensured by (39), than the 

two-point method, which takes intermittently steps away from the solution. 
Even though this problem might be overcome by a judicious choice of q < 00 , 

it seems doubtful whether q should ever be raised above 1.

In the nearly singular case both multipoint methods are faster than 

Newton's method during the initial phase of the iteration, which is listed 

in Table 4. Once the residual ||f|| is of the same magnitude as the smallest 

singular value of the Jacobian at the solution, Newton's method is naturally 

superior, so that a final switch back to q=0 would be advantageous in 
both singular and nearly singular cases.

Whenever the assumption of Theorem 3.3 are not satisfied we face the 
dilemma that any fully corrected Newton step may lead to a point outside 

W, which was observed in Table 8 for a five point method at a strongly 
regular third order singularity. Several authors, e.g. Reddien [ 7 ] and 
Keller [28], suggested to determine from the singular value, eigenvalue, or 

simply some triangular decomposition of Vf(x^) an approximation W(x) 
to W and then to project the Newton correction g(x^) - x̂  into W(x) 

before multiplying it by k+1 . This idea is based on the observation that 
after several normal Newton steps x̂  - x* belongs essentially to N , 

i.e. = 0(tj) is small. If this is so we can assume that

x. = g(g(x. )) with x . „ e R ,3 j - 2  j - 2

so that x. = g(x. )3-1 3-2 belongs to W(s) for some s £ S ' n W . Then we
have by (2.34) 0(t^) = 0(p_.) and because of (2.14) with (2.32)
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g (Xj)-x*

JI91 (Xj) ”X*||

0(p j) if k = 1

0(p .) otherwise ,
for i = 1,2

Using again (2.32) one can easily show that this implies

g (x^ - x .

I|g<xj> "x o °(Pj> , (47)

and furthermore if k = 1

e 9(xi+i)-x i+i
!|g(-j+i>—j+i o( p . ) (48)

where x. = g(x.) as usual, l + i 1
Hence the angle between the Newton correction evaluated at x^ and the 

nullspace W is O(p^) and the corresponding angle at the next iterate

x. is only 0(p.) if k = l  . 1 + 1 1

As will be shown in Section 4.2 the approximate nullspaces N(x)

derived from matrix decompositions of Vf are spanned by vectors

(v.(x)}. which are Lipschitz continuously differentiable on some
1 1 = 1 ..m

neighbourhood U of x* provided this is true for Vf . The ranges of

the Jacobians {Vv.(x*)}. are in general not contained in M = W(x*)
1 1= 1 ..m

so that for some j e [l,m] and a suitably scaled vector z e lRn

s = VVj (x*) z e S - hi . (49)

Without loss of generality we can assume that Vj is normalised such that 

v_. (x) = Vj (x) /||Vj (x) II £ S for all x e U .

Since the columns of the matrix

V* n (v (x*),v2 (x*),...v^(x*)) e 1Rnxm

span N we find for the minimal angle 0. between v.(x*+Xz) and WA 1
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sin 0, = min ||v*y-v. (x*+Az) ||A rn DyeTR

= min^ ||v*y-v . (x*) -As|| - 0(A2) 
y£3Rm ■*

= A sin 0(s) - 0(A2) ,

where 0(s) is the minimal angle between s and N which is by (49) 

nonzero. Hence we conclude that the angle

0 (x ) max 0(t) 
teSnW(x)

max min cos (t s) 
t£SnW(x) s e S n N

is by differentiability of the {v.}. of 0(p)3 ;j = i . .m but in general not

smaller.

Consequently the projection of the Newton correction g(x^)-Xj into

W(Xj) is by comparison with (47) unlikely to reduce the angle with W

significantly if the singularity is regular. If it is furthermore of

first order the angle between N and the Newton correction at the next

iterate xj+1 i-s (48) much smaller than what we can possibly ensure

by any kind of projection. Rather than expending any computing time for

the approximation of W by W(x) we prefer to take one or more normal

Newton steps between any two corrected Newton steps,which was already

shown to be successful in the case of regular singularities with k = 1 .

The unmodified Newton iteration functions approximately as a power method

for the calculation of the eigenvectors of the homogeneous vector function 
- 1gj : ]Rn - ttq (0) -*■ W . Since by (2.15)

g: (t) = At for t £ S' , A £ JR <s=> t £ M n S' , A = k/(k+l) ,

this process which is based on values of Vf and f generates Newton 

corrections which are at least as "close" to N as any approximation

W(x) that is based on the current Jacobian alone.
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In the case of higher order singularities we have already noted that a 

fully corrected Newton step can never be taken even after arbitrarily many 

normal steps. Thus we consider partially corrected Newton steps of the 

form

x., = x. - X.Vf 1 (x,)f(x.)D+1 1 3 3 3
X.

x* + p .3
(1 k+l} 1 '

kX . _ i
^ 5  (t.jc (tj)

(1 " Xj} 1

t. + o(p.)1 D

with Xj £ (l,k+l), so that the leading term on the RHS has a nonzero 

component in N provided this is true for t^ . Abbreviating

AXj 5 (1' ^ >  £ (0'kTT) (50)

we derive from Lemma 2.1 (iii) the inequalities

sin 0. <
3 + 1

(X .-1) sin 0 . + —y p . 3 3 V 2 3 p/ pj+1 (51)

and

I x -x*-AX . (x .-x*) II < n.p. =
D+i J J 3 D

t— kX . c -
sin 0^ + —  p(k+1)v D "D

j "
j ' (52)

where = V(tj) as before end J z <J C*-* i).

As immediate consequences of (52) we obtain

Ip. /p . - AX.I < n ■D+1 3 D 1 3 (53)

and for the angle AiJk  between t^ and tj+1

sin Aip_. < nj/AXj . (54)

Now suppose we want to choose X_. = X for some constant X > 1 . Then it

follows from (51) and (53) that the size of the 0^ can only be controlled

if
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1A-l 1 = X-l
AX 1-X/(k+l) (55)

This condition is sufficient for the existence of starlike domains of 

convergence as constructed in the following theorem.

THEOREM 3.4 Partially Corrected One Point Method

Let f e Ck+1 '1 0Rn ^ n) have a regular singularity of order k at 

x* e f (0) . Then there exist for any fixed X £ (1,1+k/(k+2)) and
A

all regular directions s £ W n S two positive constants cj)̂ (s) and
/\

p^(s) such that the partially corrected Newton iteration

x. = x. - XVf 1 (x .) f(x .) D+l 1 1 1

converges to x* from all initial points in the starlike domain

-1 , T^(s) - (x*+pt I teS , cos (t s) < <j)̂ (s) , 0<p<p^(s)}

and satisfies asymptotically

^ +  1 -> ( 1  -  7- ^ r ) >  kk+l , „ and t .k+2 1 ■> t e S' n M

Proof.
The proof of this result is omitted because it is based on the same 

idea as the proofs of Lemma 2.2 and the next Theorem 3.5. ////

It seems doubtful whether the partially corrected one-point method 

considered in Theorem 3.4 represents a real improvement over the unmodified 

iteration. The simplicity and structure of the latter is lost and the 

reduction of the linear Q-factor from k/k+1 to AX > k/(k+2) is only a 
small gain especially for k > 3 . It was found in practical calculations 

[Tables 5,8] that the partially corrected one-point method, though faster 

than Newton's method, was not competitive with other modifications.
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Instead of imposing the condition (55) we can control the size of the 

by taking a normal Newton step after each partially corrected step, 

which leads to the following result.

THEOREM 3.5 Partially Corrected Two-Point Method

Let f e Ck+ '1 0Rn,]Rn) have a regular singularity of order k at

x* £ f 1(0) . Then there are,for any fixed multiplier X £ (l,k+l) and

all regular directions s in hi, two positive constants (fu (s ) and p. (s)A A
such that the two-point iteration

yi+1 = X g (g(y±)) - (X-i)g(y..)

converges to x* from all initial points in the starlike domain

-1 . T.W^(s) = {x*+p t I t£S , cos (s t)<0^(s) , 0<p<p^ (s)} ,

with

Hyi+rx*!l x— ---- —  < 3(1- 7~~r) for all i > 0|!y.-X*|| k+1 (56)

and in the limit

»yi+rx*
||Yi-x*|| k (l-rra .(k+1) k+1 (57)

y -x*

li y i~ t  e hi n S' . (58)

Proof.
Including the intermediate points g(y^) we obtain the sequence

{x.}. with L 3 1>0

x . - y. and x ., r g(y.) for i > 0 21 1 21+1 1

Let ipj and the constants (j) , v and r be defined for fixed s e hi n S'
~ ~ A

as in Lemma 2.2. Our aim is to choose cf>̂ < <f> and p-̂ < r such that'X
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for all j

p < p. , 0 . < (J), and ^ •< (f> 3 A 3 A 3 (59)

~ _ 1 rp ~whenever p < p, and ^ = cos (s t ) < (J),
0 A 1 0 A

To this end we impose several conditions on ({>̂ and P-̂  the first of 

which is the inequality

sin 4> + ■—  < n
V) A v A i min k+r - AA (60)

where AA is given by (50)

It follows from (53) for the normal Newton step (A ^=1) from some point 

Xj = x ^  satisfying (59) that by definition of n in (60)

I < Jl.4 k+1 n * 2i+1 
p 2 i k+1 + 0 < min k+h

k+1 k+1 AA (61)

and consequently by (51)

sin 0 . < 4d p ./V'21+1 21 (62)

Provided 0^  - ^  and ^2i+i < ^ w î;’LC^ wi H  be ensured later^ we

obtain from (53) for the partially corrected Newton step to x2 i+2

-y AA < A - p < < r\ + AA < min{7—f , -g- AA }■ ,2 p .. 1k+1 2

so that by (51) with A2 i+1

2i+i

A and (62)

(63)

n d , . 2  lOkds m  0 . < —— (4kp .+p . ) -ry < —---  p . .21+2 {52 21 21+1 AA v 2AA 21 (64)

Imposing the condition

V2AA
px < lökl sin (65)

we can ensure that ®2i+i an<̂  ®2i+° are ^ess than (f)̂ provided (59)
holds for j = 2i . In order to bound ip .J we note that by (54) with Oj
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as implicitly defined in (52) .

2i i
I  sin All, < I  (n j+n /AX)

j=0 J £=0
(66)

As long as (59) holds we know from (62), (63) and (64) that for some 

constant c > 0

nU+2 + 'W/AX < cp
2i

which gives by (61), (63) and (54)

(67)

sin ijt < sin + sin AlpQ + 2cpQ (k+1) 2

< (l + ̂ r) sin (L + (Ä- + 2c (k+1)) p, .v A V A

By a suitable choice of first (p < (f) and then p, < r we can ensureA A
that the RHS is less than sin cj) and that the conditions (60) and (65) are 

simultaneously satisfied. Then (59) must hold for all j > 0 so that by 

(61) and (63)

2 i+ 2 . |k+i5< m m
2 i k+i • stt+ \ AXI minfer ' fAX

min k+1j 2
3AA ' hk 1 '

k+ij [k+1 4

which implies (56) as AA < 1 . Therefore the p^ and consequently by 

(62) and (64) the decline Q-linearly so that by (53) with A ^  = 1

and A . = A21+ l

J * T ’ ( ^ +°<p2i>HAA + 0<P2i,)
21

which proves (57). The t̂  e S form by (66) and (67) a Cauchy sequence 

whose limit t is because of (59), (62) and (64) a regular direction in

N . ////
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As an immediate consequence of Theorem 3.5 we obtain the following 

corollary.

COROLLARY 3.6 Q-Superlinearly Converging Iteration
Let f e Ck+1'10Rn,3Rn) have a regular singularity of order k at x* . 

Then there exists for every initial point yQ in R as defined in Theorem 

2.4, a nondecreasing sequence of multipliers

A . -+ k+1 1

such that the iteration

yj+1 = ^jg(g(Yj)) - (A^-i)g(yj (68)

converges Q-superlinearly to x* in that

||yj + i-x*||/||yj-x *|| ■+ 0 .

Proof.
Initially we may choose constantly A_. = 1 . According to (58) the

effectively unmodified Newton iteration approaches x* along a unique,
/\

regular tangent, say t e W . After finitely many steps the process must
~  / \

reach a point in W^+^(tx) as defined in Theorem 3.5. Then we can change

over to the two point iteration with A. E k + y . The new sequence hasD ^
A

again by (58) a regular tangent, say and must reach after finitely
~  ̂ 3many steps the domain W 3 (t ) . Then we may reset A. to k + — andk+ /4 2 3 4

repeat the readjustments such that in the limit A_. -> k+1 and consequently

AAj -> 0 , which ensures Q-superlinear convergence by (56). ////

If the solution x* is in fact nonsingular we have

Yj + 1 - X* = A.(g(g(y.))-x*) - (A .-1) (g(y ,)-x *) = 0 (||y ̂ -X* || 2 )

so that the iteration converges for any multiplier sequence
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{A.} c (l,k+l) Q-quadratically to x* , provided it comes sufficiently 1 1 — o
close to x* .

As in the case of the (2q+l)-point method discussed at the beginning 
of this section, we again face the problem that no simple criterion is

A

available to decide whether any of the starlike domains W,(s) has beenA
reached. If A_. is increased too rapidly the iteration may not converge 

at all and if it is increased too conservatively the convergence will be 

initially slow and when A . comes finally close to k+1 the theoretical 

benefit might be completely foiled by rounding errors. As we can see in 

Table 8 for the case k=2 and m=l the partially corrected two-point 
method with fixed A=2.8 converges quite nicely with O-factor^0.044, 
once the convergence pattern has been established. Since none of the 

other methods discussed in this thesis except extrapolation, is applicable 
at higher order singularities, the development of practical criteria for 
the choice of the A_. in a two-point iteration of the form (68) would be 

a considerable achievement.

Unless the singularity x* is pure (n=m) fast convergence of a 
sequence ŷ  x* implies by Lemma 2.1 (ii) rapid deterioration of the

conditioning of the Jacobians {Vf(yj} . The partially or fully corrected 

Newton steps are only advantageous as long as they can be calculated with 

a high relative accurace since otherwise they may lead to a point outside 
W . Therefore the variations of stepsize discussed in this Section should 

mainly be applied during the intermediate stages of an iteration 

especially if the singularity is not strongly regular.
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CHAPTER 4

EXTRAPOLATION AND BORDERING

1. Extrapolation at Regular Singularit ies

According to equation (3.22) in Lemma 3.2 the conditioning of the 

Jacobian at a regular Newton sequence deteriorates by a factor between 

^ and at each step no matter how high the order of the singularity.

This "cautious" approach to the singularity should enable the unmodified 

method to "squeeze" the maximal accuracy out of the routines for the 

evaluation of f , the Jacobian Vf and the subsequent solution of a 
linear system in Vf . We know from Lemma 2.3 and Lemma 3.2 that the 
convergence of regular Newton sequences is reasonably robust and very 

structured, so that it seems promising to extrapolate the location of x* 
without abandoning the unmodified Newton iteration.

For the scalar case n=l several authors, e .g. Ostrowski T 2 91 and King 

[30] have developed extrapolation procedures to speed up the convergence 
of Newton's method to both singular and nonsingular solutions. Like most 
acceleration techniques for slowly converging scalar sequences i31] (e.g. 

Aitken's 62-process [ 1 ] or the e-algorithm T 32]) these methods involve 

divisions by function value differences or derivatives. Therefore they 
are not directly applicable to vector sequences and could be computationally 

expensive if division by derivatives would generalise to multiplication by 
inverse Jacobians. Another feature of these methods is that the extrapolated 

point serves as initial point for a new cycle of the respective scheme, as 
for instance in King's fourth order three-point method. In contrast we will 

never actually "take" the step to the extrapolated point which, though 

probably a good estimate for x* , is of dubious value as a starting
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point for subsequent steps.

Now let be a regular Newton sequence in the sense of Lemma

3.2. Abbreviating k = k/(k+l) we obtain in agreement with (3.32) as 

first stage of the extrapolation the sequence

t(:>D + i
X . , -KX.3 + 1 3
1 - K x* + O(p^) for j > 0 . (1 )

Substituting k by the approximation

(x . -X ) (x ,-x . )1 + 1 3  1 3”1 ,K . cos 0). = ------------2------ = K + 0 ( p . )
3 3 l l q - q - J I 2 3

with kj and oĵ  as defined in Lemma 3.2 we obtain the formula
T, . JiX.-X. I! 2 X . , -(x. -x.) (x.-x. )x.-(1) = 11 3 3-1 1 3 + 1 3 + 1 3 3 3-1 3~i

3 + 1 ||x.-x. II2 - (X -x.)T (x.-x. )3 3-1 3+1 3 3 3-1
which reduces in the scalar case n=l to Aitken's 62-process. In what 

follows the form (1) will be preferred as it allows the interpretation as 
Richardson's deferred approach to the limit applied to an assumed 
expansion

i 23x . = x * + v k j + v k  +... , for j > 0 . (2)3 1 2

Since k is always positive we can write = h^ so that (2) looks
exactly like the h2-error expansion of a central difference scheme for

the solution of differential equations T33 ]. It should be noted that in

contrast to this classical case the expansion (1), if it exists at all,
depends not only on the problem as such but also on the particular Newton
sequence, so that the vectors v̂  are in fact functions of the initial

point xQ . Truncating (2) after q terms, we define the extrapolants 
/ \

x_. as unique solutions of the linear system
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(q) ~ q-£ ~ 2 (q-&) ~ q(q-£)x. 0 = x;H + v .Kh + v ...v
d-£ : 1 2 q

which implies in particular x (0) ‘j

for &=0,...q , 

for all j ^ 0 . Eliminating the

unknowns v0 , we derive from Lagrange's extrapolation formula

(q) (- D t
‘j-£ £ . q-Z36 u n (l-K1) n (l-K1)

q
l x (3)

i=l i=l
/ \

The x . can be calculated recursively by linear iterative extrapolation 

of the form

(q)_Kq+i (q) 
.(q+D _ J ______ fill.
k .D l - K q+1 (4)

which is a special case of a formula given by Bulirsch [34] and

effectively eliminates the leading K ^ +1^3 term in the expansion of x!^ .
/ \

As we will see later this is only true if x. is considered as a function3
of x. rather than x. , so that we have the extrapolation triangle3"2q D-q

(1)

first column : regular Newton sequence 

(l+q)-th column : q-th stage extrapolants

(l)

(l)- r X . ,
2 J  2 J

(2) (3)X . , . . .X .
2 J  2 J

(5)

The extrapolants have been indexed such that the subscripts indicate the 

number of function and Jacobian evaluations required for their calculation. 

In practice the extrapolation should only be started when the unmodified 

Newton iteration exhibits the convergence pattern described in Lemma 3.2.

Without deciding the question whether (2) exists or not we show that
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(q) r  \Pq+11= 0 Kj(l+q)'

provided f is sufficiently often differentiable.

In order to establish this result we consider for some fixed regular
— — A A __

direction s e S’n N the starlike domains W E W(s) and W E W(s) c [ij 

as defined in Lemma 2.2. Let

(J = (teS j cos 1 (tTs) < <f)(s) , 0(t) < (J)(s) }

and

U = {teS I cos 1 (tTs) < 4>(s) } c (j

be the sets of those directions that are included in ((/ and W respectively 

For any t e (J we derive from (2.12) with (2.28)

IIgx (t) —k 11| < k c V 1 sin (j) < x/(k+l) »

so that

119,(0 11 > (k-X)/(k+l)

and

sinCcos 1 (tTg i (t)/||gj (t) ||) ] < y = j  sin 4

Thus we have by the triangular inequality in S

cos 1 (sTg 1 (t)/j|g1 (t) ||) < 5 (p/4 ,

which implies by definition of <f) in (2.25) that

a = inf {I TT(t) I I teD} > 0 , (6)

where tt is the homogeneous polynomial of degree p(p+2) defined in
A

Theorem 2.4 (ii). Abbreviating k E Ap-Am we obtain from (1.21) for all 

E x* + pt E x* + z e Wx
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g (x)
k ui (z) [tt0 (tt0 (z) g l (z) ) ]

X* + l — ---

i+Am

i=l TT (z) i+Am + 0(pk+i) (7)

where the remainder on the RHS is by (6) uniform in t e Ü . By (2.5)

and (2.12) the components of the vector function tt (z)g (z) areo 1
homogeneous polynomials in z, so that the components of each term in the 

expansion (7) are homogeneous rational functions of the form

n/V : IR - - 1
(0 ) (8 )

For each integer i let H^ be the set of all scalar functions of the
oo nform (8) with £ e IN and g e C OR ) a homogeneous polynomial of degree 

i + p(p+2)£ . Then we have for any nonzero y e H n and A e IR - {0}

n (Ay) /tt (Ay) ̂  = Aig (y) /tt (y) ,

so that all elements of H. have the degree of homogeneity i . It can 

be easily seen that

h , h  e H. , A e R h + A h  e H^ ' (9)

h e H • , h e H-vl l => h  • h 6 tf. -r l+i (10)

and

i ^ i <> H-r n H. = {0}l l

Therefore the sets form linear subspaces of C (3R.n — tt 1 (0) ) and their

direct sum

OO

H e U (H . + H . ... + H + .. .H. + H- }. , -i 1-1 0 1-1 1i=l
oo n  —  ]is a subalgebra of C OR -tt (0)) , i.e. H contains all sums and products

of its elements. H consists of all rational functions of the form
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h = T/TT?j : IRn - it 1 (0) 3R ,

00 nwhere & £ 3N and T £ C OR ) any polynomial. Ordering the terms in T 

according to their degree we obtain the unique decomposition

h  =  ( n n + n , + . .  .n ) / tt0 1 a

i=i
hi , hi e f̂i , ĥ, / 0 / hi +q o ^

where the {r|j}je[0 q] are homogeneous polynomials of degree 

i + (p+2)p£ + j . We are mainly interested in vector functions

(ID

h c H n E H x H x ... x H

n

for which the decomposition (ID exists with 1m £ . The smallest

index iQ for which h. / 0 will be called the order ord(h) of h . 

For our purposes the following properties of the elements in Hn are 

important.

L E M M A  4.1 Polynomials over Powers of tt

Let (J , W , {H^ } and f/n be the sets defined above and g 1 e

the leading term in the expansion (7) of the Newtonian iteration function 

g . Then

(i) For any h e and j e IN the entries of the derivative

tensor V^h belong to H. . .
i - l

(ii) The restriction of any h e Hn to Ü is bounded so that for 

all x* + z = x* + pt £ I'J

h (z) O(pord(h) ) .

(iii) For any h e fD the composition h o g 1 belongs also to .
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(iv) For any vector function h e Hn with iQ = ord(h) > 0 
 ̂ na vector function h e H with

ord(h) > ord(h) + 1

such that for all x* + pt = x* + z e W

k+ih(g(x)-x*) = h^ (gj(z)) + h(z) + 0(p ) ,

where the remainder on the RHS is uniform in t e Ü .

Proof.
£(i) The partial derivative of h = r \/u with respect to some 

£ is given by

9h f 9p 0 9tt
3? = r  35 - 35 A £ + 1

Each term in the denominator polynomial has the same degree

deg „ in _ z 3jl r ac n as j deg(g) + deg(TT) - 1

so that 9h/9^ is homogeneous of degree

deg(n) - £ deg(TT) - 1 = deg(h) - 1 .

Thus each component of the gradient Vh belongs to H. J and we 

obtain assertions (i) by induction on j .

(ii) Without loss of generality we can assume h = r \/u  e Hi
by (6)

n i
Ih (z) I = In (z)/ tt(z) 'I = p 0 |n(t)/Ti(t)

-£< p V  max{In(t)I tell} .

there is

(12)

variable

can

so that
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( i ü ) For all

h °

z e irH we have with h = T|/tt 

g x (z) = h (g ̂ (z) ) = h (ttq (z) g ̂ (z) )/tt0 (z) i

n (TT0 (z) gj (z) )
I Z7Tq (Z) TT (TT o (z) gi (z) )

Furthermore by definition of it

TT o ( %  (z) gj (z) ) = 7T ( z) /TT 0 (z)

and because of (2.15)

g 1 (7T0 (z) g i (z) ) = K7TQ (z)gi (z) ,

so that

IT (TT 0 (z) g i (z) ) = (F (z)/7T0 (z) ) 7Tq (( TT (z)/7Tq (z)) KTTq (z) g 

= k Ptt (z) P+1f q (g] (z) ) /TT0 (z)

= KP7T(z)P+17To (TT0 (z) g i (z) )/F0 (z)P+1 

= KP [7T(z)/TTo (z ) ]P+2 .

Thus we can rewrite (13) as

h(gj(z))
n(FQ (z)9 i (z))/Kpi
Ä,(p+2) i-£(p+2)TT ( Z) TTQ (z)

If i < £(p+2) then h is already in the form (8).

multiply both denominator and numerator by f q (f q (z)g (z)) 

makes the denominator by (14) a power of tt . Hence h ° g 

H and since for all nonzero z e lRn and X e ]R - {o}

h (g 1 (Xz) ) = h (Xg j (z) ) = X Mg^z))

(13)

(14)

(z) )

Otherwise we 

lip+1) which 

belongs to

the composition h ° gj must be an element of fh .
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(iv) Because of (2.32) we have g(x) - x* = 0(p) which allows us to 

ignore the higher order terms of h , so that without loss of generality

A

k
h =  y h. , h . £ H n , h. ^ 0 .

• ■ 1 1 1  1= 1 0 0
A

For each i e li ,k] we have the Taylor expansion

k-i

j = l
(g(x)-x*) = h^ (g i (z) ) + £ -jy- (gj (z) ) (g (x) -x*-gi (z) )

1 „k-i+i . . . . . .  , ..k-i+i+ —------- V h .(y.)(g(x)-x*-g (z))
(k-i+1)! 1 1

where for some mean value Oh £ (0,1)

y^ = Ch(g(x)-x*) + (l-0h)g (z)

Because of (i), (iii), (10) and g e H the vector functionsq q

(15)

w . .(z) = V^h.(g (z))l j l Ä l I g (z)u q ^=2
unbelong to n and have the order

ord(w^_.) > i - j  + 2j = i + j .

Because of (7) and (ii) the lowest order term in the discrepancy

between w . .(z) and ii

Vhii (g i ( z) ) (g (x) -x*-gJ (z) ) ̂

is given by

v V t g ^ z ) )  (g (x) -x*-g] (z) ) ̂  10(pk+1)

i-j+2(j-i) . /1V , j-l , k+i , k+ivP hi (gi(t)) (g2(t)+0(p))J 0(p ) = 0(p )

since i > 1 < j .
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Thus (12) holds with

h =
i=i +1 o

h 0 gi +
k k-i
l l w.Vj!

i=i j=l ij

k+iprovided it can be shown that the remainder in (15) is 0(p ) for each

i e [i ,k]. Since x e W we derive from Lemma 2.1 (iii)

Uy^/p - Kt || = ||0t (g (x) -x*) /p + (l-ai)g1(t) - Kt||

- aill (g(x)-x*)/p - gj <t) || + ||gj (t) - Kt||

< dp/V2 + K c v !sin cj) < [4(k+l)1 sin (p ,

where the last inequality follows from the definition of and p in

(2.28) and (2.29) respectively.

Therefore we have

\k-h] Ily.H k+^1
k+1 p k+1 J (16)

and the angle A l p  between y^ and t satisfies

sin Alp = min ||t-Ay.|| < sin ({) ,
XeTR 1

so that with cj) < (p/4

cos (sTy||y^||) < cos 1(sTt) + cos 1 (tTy||y^||) < y  (J> .

Consequently s^ E ŷ /||ŷ || belongs to U and we obtain from (i) and (ii) 

with (16)

Vk i+1hi (y^)(g(x)-x*-gi(z))k i+1

ii ||2i—k— l 2(k-i+i), , , . , NVk-i+iIlyJ P hi (si) (g2 (t)+0(p) )

, k+10(p ) ,

which completes the proof. ////
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After these preparations we can now prove the main extrapolation 

result.

THEOREM 4.2 Extrapolation at Regular-Singularities

Let f e Ck+1'10Rn TRn) have a regular singularity of order k at 
- 1 Suppose the Newton sequence

Xj=x_. ;j>o converges regularly to x* with the unique tangent

x* € f (0) with rank (Vf(x*)) = n -m< n
r (o),lx.=x . j .
1 3 i

s e w n S’ . Then there exist k > k-(m-t-l) (k — 1) functions

( h ^ )  £ j -j c Hn with o r d ( h ^ )  > q +1 such that the sequences of

where h q  ̂ eq+i

{x(q)
3  ̂j^q

de f i n e d  by (3) satisfy for j ^ 2q

(q)X .
3

= X* + h ( q ) (x.3-2q-x*)
A

+ 0 (IIx . -x* ||k+1)3-2q (17)

= X* + Pq+1 h (q) 3- 2q q+l (s) + o(pq+2 ) ,3~2q (18)

Hnq+l is the "leading term " in the r e p r e s e n t a t i o n  (11) of

(q) / \
h " 1' . Consequently each sequence {x^ ^j>q with q e [0,k-l] converges

linearly to x* such that

ii. (q) ..*ll
lim
j-K»

J+L f , ^ c^+ lk
lx(q)-x.|
3

k+1 if h (q)(s) ? 0 q+l (19)

and

lim l|x!q) -x*]!1^  < 
j-K» 3 k+1

q+i
otherwise. (20)

Proof
According to (3.15) all but finitely many of the iterates {x.} belong

to the set

V = El g  ̂(W) , g(P) c V c (jj
j=0

of all points from which Newton's method converges to x* without ever
/N

leaving W . By (2.32) we have for any x = x*+pt e V and all j > 1



124

k-h
k+1

 ̂ < llĝ  (x) —x* jl <
P

k+h
k+1 < 1 . (21)

On the domain V we define recursively the vector functions

, , . (q) q+1 (q)(q+i) _ g °g°q - K g °gg = --- 2---------- ----- — for q > 0q+i1 - K
(2 2 )

with

(°) , ,g (x) = x for all x £ V .

Because of (4) it can be easily checked by induction on q > 0 that

x (q) = g ^  (x. ) for all j > 2q . (23)3 3-2q

On the basis of Lemma 3.7 (iv) we show by induction on q that there are 

h (q) e H n with ord(h^) > q+ 1 such that for all x = x*+z = x* + pt e V

g ^  (x) = x* + h ^  (z) + 0(p^+1) t (24)

which is true for q = 0 with h^°^ = g^°^ e H . Suppose (24) holds for
^ (q )some q > 0 . By Lemma £.1 (iv) there is a function h e H with

 ̂(cr) ^ord(h ) > q+2 such that for all x = x*+pt = x*+z e

h ̂  (g (x) -x*) = h ̂  (g (z)) + h ^ ( z )  + 0(p^+1) .q+1 1

Applying the same result again we obt'ain a function h ^  c H n with 

ord(h M ) > q + 2 such that for all x = x*+pt = x* + z e U

(q) ^ (g)h (g (g(x)-x*)) + h (g(x)-x*) q+i l

= hq+)l(gi(gi(z))) + ^ (q)(z) + 0(p^+1) .

Since by homogeneitv of h ^  and (2.15)q+i

h^qN g  (g (z))) = Kq+1h^q^(g (z)) , q+i Jl q+l
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we derive from the definition (22) with (21) for all x = x*+pt = x*+z e V

(l-«q+1)g^q+1  ̂(x) = g ^  (g(g(x))) - Kq+1g ^  (g(x))

:* + h ^  (g(g(x))-x*) - xq+1C x*+h^ (g(x)-x*)] + 0(p )

(l-Kq+1)x* + h^q^(g (g(x)-x*)) + h ^  (g(x)-x*) q+1 l

- Kq+1[h^q)(g (z)) + h ^  (z) ] + 0(pk+1) q+1 l

= (l-Kq+1)x* + fi(q)(z) - Kq+1K (q)(z) + 0(pk+1)

Thus (24) holds for 

h (q+1>

q+1 with

h (q)-Kq+,h (q)
1 - Kq+1

Hn ord(h(q+1)) > q + 2 .

Therefore (24) holds for all q > 0 which implies (17) by (23)

Since each h ^  c 11° is differentiable in some neighbourhood of q+l q+i
As e U it must be locally Lipschitz continuous so that by (3-17) and Lemma

(q) u (q)4.1 (ii) with ord(h

(q)x .3

- h ) > q + 2 q+l

pq+1 h ^  (t . ) + 0 (p . )l"2q q+l 3"2q ^J~2q

Pq+13-2q h ̂  (s) + 0 (p . )q+l ]-2q
/s (G )For any fixed q e [0,k-l] this implies (18) and (3.16) if h^+i q

Otherwise there must be a constant t such thatq

lx!3 ’ -X* II < T o f ’3 q 3”2q for all j > 2q ,

which implies

lim |Jx
j-K»

(q) l/j lim p1/3
—I q+2

L j‘ j-2q lim j- 2 q+l
H .

c--J-KX3 3 -  2 q

q+2 f \k
= k+1

q+2
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where the last inequality holds by 9.3.1 in [10]. ////

/ \

As we can see in Table 2 the leading terms h q  ̂ are in general

nontrivial,since the first four extrapolation columns (q=l,2,3,4) converge

linearly with Q-factors V4 , Ve , Vi 6 and V3 2 as predicted by (19) .

With the notable exceptions of the column q = 1 and of course q = 0 the

singular and nonsingular variables converge with the same Q-factor, so that
/ \

the ranges of the vector functions h are in general not contained inq+i
N . Since by (is)

f^q) = f(x^q)) = Vf (x*) (x^q)-x*) + 0 (I) x q) -x* II2 )

)q+13"2q Vf(x*)h(q)(s) + 0(p. )q+l 3“2q

the residuals {f^q^)j>2 decline essentially colinearly at the same rate
as the discrepancies '„x̂r (q)4 V  _

j - 2 q Hence we can gauge the progress of
each column towards x* by evaluating the residual f(q ) even though it
provides no reliable measure of the distance to x*, since the angle 

between h^q|(s) and N can be large or small and may even be zero. 

By (3.26) we have with X = 1

(0)f' = f(x.(1)) D + i 3 2(k+1)
-̂-- V2f(x*)s2 + 0(p3)

2 3

and with X = k + 1

(1) p.(k-l)
f:;; = f(x.(k+D) = —  v2f(x*)s2 + o(Pj) ,

so that

iim 11/11̂:1j-K» J J

( 1 )

(k3+k2-k-l)/k . (25)

At first order singularities f is 0(p.) = 0(p_._i) which implies that
(1)the leading term ĥ  (s) must be an element of M This is indeed the 

case as we can see in Table 2 that the nonsingular components of both
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and x (l) converge with Q-factor Vs • Whereas for k = 1 the
j 1

first extrapolation column achieves a considerable reduction of the 

residual, this is not the case at higher order singularities as

(k3+k2-k-l)/k > k2 for k > 1 .

Nevertheless we see in Table 9 that the extrapolants x 

third step onwards consistently closer to x* than the 

hold in the limit by (19).

(1)

(0 )

from the 

which must

Especially in cases where the main objective is the reduction of the

residual,the fact that the quality of the extrapolants can be tested by

evaluation of f is certainly a great advantage compared to most other

applications of extrapolation processes. Another important difference is

that the cost of obtaining x. + l from x^ is constant in j, whereas

for instance in the case of differential equations each refinement of the

discretization increases the computational requirements considerably.

Finally we note that in contrast to most other applications the errors of

subsequent iterates x_. are not mutually independent. Strictly speaking

any error that occurs in the step from x . to x . moves the iteration1 1 + 1
onto another Newton sequence with a different expansion (2) should that 

exisl at all.

Suppose the Newton iterates  ̂ have been calculated in

finite precision arithmetic from x^_ . Neglecting the error that

occurs in the extrapolation process itself we obtain from (3) by the 

triangular inequality

lx(q) -g (x . ) |! <1 l-2q
q
l ei _ p V k'q)'2=0 3 *

(26)

where
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€j-l = llxj- r g2q_f'(Xj-2q)|1 for 11 € t0'2q]

and

M £ + i )  £
a^(k,q) = - j ---------- ^ -------- for £ e [0,q] .

n d-K1) n (l-K1)
i=l i=l

As will be shown later we can assume that the errors G 

in j such that for some y e (0,1] and G. > 0

qrow geometrically

£-
s Y e for £ e [0,q ] (27)

Substituting this inequality into (26) we find that

( q  ) —  /n  r  £g ;4 /g . < a (k,q) - I y a (k,q) 
D D Y £=0 ^

(28)

3 £ ^ (£+1)£
L Y x

£=0

,, q> ,, q - 1. ,, q-£+l(1-K^) (l-K )...(1-Kn )

(1-k )(1-K )
0

(l-K)
/  q i /  n (1-k 1) .

/ i=l

By Theorem 348 in [35] the ay have the product form

a (k,q)
Y

(1+yK)(1+yK2) ,..(i+yKq )
(l-K) (l-K2) ......(1-Kq )

< a (k , q) (29)

which can be checked by induction on 

are strictly increasing in k,y and
/N

general result by Laurent [36] the a 

k so that there are limits

q . Since K = k/(k+l) the a^(k,q)

q . According to a much more

(k,q) are bounded in q for fixed

CL (k) = lim a (k,q) < 00
^ q-*» ^

(30)

The a (k) grow exponentially in k as shown in the following Lemma.
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LEMMA 4.3 Growth of Error with Order of Singularity

The bounds Öt̂ (k) defined by (18) and (29) satisfy with 

7T = 3.1415..., for all k e ]N

| iln K j Jin a  (k) + (k+1) < lim k 1 in a  (k) = YTQ(y) + ttz/6 ,
Y k-*» Y

- 1

where

Tn W (1+Yw) | Jin w|dw e Ttt2/12 , 1 - y (1-tt2:/12) 1 .
'0

Proof
Since the ratio (l+yKy)/(l-K^) is strictly decreasing in y > 

can bracket Jin a (k) by the following integrals

Jin 1+YK
1 - K Jin

;2

1+YK y]

1 - K
dy

< Jin (0t (k) ) = I
Y q i

in(l+yKq ) - £n(l-Kq)

< Jin 1+YK
1 - K +  Jin

a
1+YKy]

1 - KJ
dy .

For ß e [-1,1] and i > 0 we derive with w = k j

in(1+ßK^)dy = IJin K -1 fK' -1
w in(1+ßw)dw

n K -1 fK1 _1 -J
(1+ßw) | Jin w|dwiln w Jin (1+ßw) + ß

0 0̂

- i £n (l+ßtr1) + ß | Jin tc | !T.(ß) ,

where

Ti (ß) =
rK

0̂
- 1I in w| (1+ßw) dw < T (ß) < T (-1) •

(31)

(32)

0 we

(33)

(34)
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Substituting (34) for ß = y , - 1 and i = 1,2 into (33) we find 

after multiplication by | £n k |

I Jin k I £n (1+y k ) (1—k 2)2
2 \ 2(1 - k ) (1+y k )

+ YT (Y) + T (-1) 2 2

(35)

< I£n k | £n(a (k)) < yt (y) + T (-1) < YT (y) + T (-1) •I I y l l ' o '  o

Whereas T^y) = t (y) “ 0(|1-k |2), we find with | £n w| > 1-w

a
T j (-1) = T o (-1) - I I£n w| (1-w) *dw < t 0 (-1) - (1-k ) •

K

It can be easily seen that t (y) is decreasing and convex in y c [0,1] ,

so that

T (1) < T n(y) < (l-y)T (0) + y t 0(1)

which implies (32) and the first part of (31) since

T o (0) = 1 , T 0 (1) = tt2/12 and t q (-1) = tt2/6 ,

as stated on page 352 in [37] .

Since obviously

lim K = 1 and lim k|£n k | = 1  ,
k-H» k-K»

we have

lim Ti (3) = t o(3) for i=l,2 and $ = y,-l •
k-*»

and furthermore

lim I£n k 
k-*»

£n (1+YK) (1-k 2)2
(1+y k 2)2 (1-k )

lim 71 £n 
k

2
1+Y (1-K2) lim 7- £n 

k ^  k
2k+l 

M k + 1) 2>
0 .
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Substituting these limits into (35) we obtain the equality in (31) which 

completes the proof. ////

Since |£n K| % k we must expect by (31)

-1
ot (k) % eY

and in particular for y = l  by (32)

k I tt z / 6 +y — (k+1) ] (36)

Olj (k) ~ Gk[7T2/4-(k+i) ] (37)

These approximations are quite good even for small k which are of course 

the only ones of any practical interest. Before listing some exact values
/N _of a (k,q) and a (k) we have to choose a suitable constant Y e (0,1] . Y Y
Since for m<n the condition number of the Jacobian Vf(x. „) is byD-Ä-— • Lemma 2.1 (ii) proportional to p , and the stepsizeJ “36 |xj-£+i xj-r

according to (3.24) approximately p. /(k+1), we can expect that for some 

constant r|

Acj-£ “ X̂j-£+i g(xj-£)  ̂~ nPj-£ ~ AEj K (38)

where we have used (2.16) to obtain the last "equality". Assuming that the
— q ^ *inverse image g (x. ) contains some element x. e W(s) withD-q D"2q

- V *  ~II * p. we may consider the iterate x to be exact.j"2q j~2q ~ *'**' —  “j-q
Differentiating (1.21) we find with (2.12) and Lemma 4.1 (i) for

kVg(x) = Vgx(z) + o(p) = —
- 1 -T B (t)C (t)

+ 0(p)

x = x*+pt = x*+z e W
f I

0 , 0

All eigenvalues of the matrix on the RHS are zero or k so that we can 

expect that the errors satisfy approximately the recurrence relation

~ KEj-il + Aej-£ '
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which leads by (38) to the estimate

'l_Kk (q-ü.)
^ Acj-£

Ac . K 3

1-K 
k-1

(k-i)(£+1)

% _ (k-i) i
1-K

By comparison with ( 27 ) and (33) we conclude that with 
k-iY = K e (1/e,1 ]

k-i k-i, . Ac .k(q) ~ 3 ~ ,, . ^ HK ~ l-ke.4 ~ — — ^ - a y (k,q) — —  ay (k,q)p
1-K 1-K

(39)

In our context this estimate is certainly more appropriate than the 

assumption that all vectors {x_. ^e\_Q -j are computed with errors of

the same magnitude,which is usually made in the case of differential
/\ /N

equations. The ct̂ (k,q) are always smaller than the (k,q) and we

have according to ( 36 ) and ( 37 ) in the limit q 00

a (kJ/dj(k) « e« „k(Y-uVi2) « .631

k-isince KJ" ~ 1/e for sufficiently large k . The values of
/ s ' *  _ _
Oy(k,q) , Otj (k,q) and their bounds O^(k) and (k) are listed in the

following table for k e fl,4l and q e f1,71 .

k = 1 k = 2 k = 3 k = 4

L (k,1)/a j(k,l) 3.0/3.0 4.3/5.0 5.7/7.0 7.1/9.0
i (k,2)/a1(k,2) 5.0/5.0 10./13. 17.1/25. 26./41.
L (k^J/otj (k, 3) 6.4/6.4 17./24. 37./62. 67./127.
i (k,4)/aj(k,4) 7.3/7.3 24./36. 63./118. 138./303.
t (kf 5)/6tj (k, 5) 7.8/7.8 30./47. 94./192. 239./599
(k, 6) /al (k, 6) 8.0/8.0 35./56. 126./275. 368./1020.

t (k,7)/aj(k,7) 8.1/8.1 39./62. 156./360. 515./1750.

i (k)/äj(k) 8.3/8.3 47./79. 294./803. 1890./8450.
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As with all extrapolation procedures we face the difficult question

up to which stage the extrapolation should be carried out. Since the

smallest singular value of Vf declines by (3.22) with a O-factor of K

it would seem desirable to choose q > k such that the (exact) extrapolants
( )

Xj converge faster than the conditioning of the Jacobian deteriorates.
/\According to the table above the diagonal elements a (k,k) equal roughly

~ - (k)the arithmetic mean of a (k,l) and ot (k) so that the error of x. mayY Y 1
still be acceptable if extrapolation works at all. For any q > 0 we have 

by (38) and (39) with (3.16)
£ (q)/c(q) % K l-k
3 + 1 3

so that the error of all extrapolants including the Newton iterates {x^} 

grows unbounded whenever the order k of the singularity x* is greater 

than 1 .

Combining (18) with (39) we obtain for the computed extrapolants x (q)

(q) * II ~ q+i q+i-x* |! % p . — 1—h ^  ^  v k_1i -k nx
+ pj 7 ~ k  V k'q) '1-K

where we have used (3.16) to replace p. by p .«D~2q '3

Y
2q The constant q

was introduced in (38) and can be expected to be of order 10-t if the

calculation is performed in t-digit floating point arithmetic. The 

leading coefficients h^| depend on the terms g^ in the expansion (1.21) 

of g and thus by (1.22) on the higher derivatives of f . Therefore we 

can make no general statement about their magnitude which could grow very 

rapidly with q . If this is so the extrapolants may not ever come closer to 

x* than the Newton iterates {x_.} themselves before the structure of the 

iteration is destroyed by rounding errors. On the other hand some 

extrapolants can approximate the solution up to the desired accuracy long 

before the conditioning of the Jacobian becomes critical. This can be
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observed in Table 2 where the best extrapolants of the 8-th row approximate 

the solution with single precision accuracy while the smallest pivot in the 

LU decomposition of Vf is .004. Since the Jacobian has for x ^ x *  a spectral 

norm close to 1 its conditioning at that stage of the iteration does still 

allow a fairly accurate calculation of the Newton steps. Five steps later 

the solution is already approximated with double precision accuracy, but the 

conditioning of the Jacobian has only deteriorated by a factor of 32.

/ \

The best extrapolants x. in each row of the Tables 2, 6, 9 and 10 

satisfy approximately

qss-jj if k = l  and q «  -j j if k = 2 .

Whereas the first observation can be interpreted as a direct consequence of 

Theorem 4 .1 , the second one seems to indicate some underlying influence of k 

on the structure of the extrapolation table, which is not apparent from our 

analysis. Under the somewhat ideal conditions of our test calculations, 

extrapolation up to at least the sixth stage is quite successful in all four cases.

3 2Compared to the factorisation of the Jacobian which requires n /3+0(n ) 

arithmetic operations at each step,the computational effort for the update 

of the extrapolation table (5) according to (6) is almost negligible even 

for a large number of columns q < n . Since we only have to keep the 

current row of extrapolants the storage requirement is qn words. Thus it seems 

worthwhile to set up an extrapolation table whenever the Newton iteration 

looks like converging to a regular singularity and then to test the quality 

of the extrapolants by periodic evaluation of the residuals f ̂  = f (x ) .

2. Bordering of Underdetermined or Singular Systems

In this final section we consider the numerical treatment of problems 

for which the Jacobian is known to have a nontrivial nullspace at a
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solution of interest. Therefore we allow the nonlinear system to be 

underdetermined so that for some n' - 0

_ pi , n+n' _n,

In many applications the n' additional variables are control parameters 

whose physical interpretation is different from that of the remaining n 

state variables. Typically the dependence of f on the control parameters 
is rather straightforward so that the corresponding partial derivatives of 

f have a simple mathematical form and some may be constant or even zero. 

Since there is otherwise no intrinsic mathematical difference between the 

control parameters and state variables we will avoid the distinction for 

the sake of notational simplicity.

In the neighbourhood of any point at which the Jacobian Vf has full
row rank n , the solution set f 1(0) c ]Rn n forms according to the
implicit function theorem a differentiable n'- dimensional manifold. Of
particular importance is the case n' = 1 , in which the solutions form

smooth curves as long as the condition rank (Vf) = n is satisfied.

Numerical methods for tracing such curves have been developed by several
authors, e.g. I 38] and T39] and there is no real difficulty until the

procedure approaches a singular point, i.e. a solution at which the

Jacobian has rank (n-1) or less. Such points are of particular interest
- lbecause in their neighbourhood f (0) no longer forms a manifold but may 

have a rather involved structure. In the case n' = 1 solution curves 
may end, branch or intersect with one or several other curves.

- lNow suppose we want to locate numerically a solution x* £ f (0) at 

which rank (Vf(x*)) = n-m, where the number of variables n+n' may or may 
not exceed the number of equations n . As a consequence of Theorem 3.1
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linear or faster convergence without discontinuities in the iteration 

function can only be obtained if we find at least m+n' equations in 

addition to the obvious condition f = 0 such that the Jacobian of the 

resulting overdetermined system has full column rank n+n' . Since Vf

has rank (n-m) iff its m smallest singular values vanish it may seem 

natural to impose the condition

G . (x) = 0 for i=l...m .l

Except for the case n' =0 , m=l this approach is not feasible because 

singular values are only differentiable when they are properly separated. 

Otherwise the individual elements of a singular value cluster can hardly 

be identified and the associated singular vectors may rotate very rapidly 

in the corresponding invariant subspace [40]. In any case we need (m+n')m 
rather than m equations to ensure that rank (Vf) = n-m . To see this we 

assume that the leading (n-m) x (n-m) submatrix B(x) is nonsingular in 

some neighbourhood U of x* so that

Vf
B , C

D , E

I , 0 n-m
DB-1 , I

B , C

0  , £ '

(40)

Twhere the m x (m+n') matrix Z is given by

ZT (x) = E(x) - D(x)B (x)CT (x) .

Clearly we have for all x c U

rank(Vf(x)) = n-m Z(x) = 0 ,

so that in particular E(x*) = 0 . The entries of the matrix det(B(x))Z(x) 

represent the determinants of all (n-m+1) x (n-m+1) submatrices of Vf(x) 

that include B(x) . Each one of them involves an element of E(x) that

does not enter into any other determinant,so that the overdetermined system
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f(x) = 0 , E(x) = 0

consists of n+m(m+n') equations which are independent in that any 

subsystem may have a solution in Ü that does not solve the full system.

Provided all leading principal submatrices of B(x) are nonsingular 

it has an LU factorization [ill and we can rewrite (40) as

-l t'L , 0 U , L C
- 1 „TDU , I o , Em

W 4

(41)

which represents a partly completed LU decomposition of Vf without 

pivoting. In the immediate neighbourhood of x* all entries of E(x) will 

be rather small,so that any attempt to complete the factorization would 

lead to large rounding errors.

Since we intend to solve an overdetermined system of some form it 

seems natural to consider a corresponding partly completed QR factorization

(42)

in-mj X vn—iTi; t irixmwhere Rj e 1R is upper triangular and C>22 g IR ' forms
together with Q]2 , Q?i and Q an orthogonal nxn matrix. Whereas

Q and Q i2 are uniquely determined as

' Qi i
= Vf l

k Ö2 1 . 0

the matrices 0 12 and 0 2 2 depend on the particular triangularisation 

method employed. Because of the required orthogonality we derive from

(42)
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R T (I ,0)Vfr 1 n-m
l 2 T T

0 Q +0 0
' 1 1 1 2  21 2 2

2 2,
T T Tso that the m column vectors of (0 ,0 ) must form an orthonormal

' - 1 2 * 2 2

Tbasis of the nullspace M of the (n-m) xn matrix (I ,0)Vf . Inn-m
fact it can be easily seen that any orthonormal basis of M can be used

r p  r p  /v

to form (Q ,Q22) such that (42) holds for a suitable X with every­

thing else unchanged.

In order to develop a more general framework which allows for arbitrary 

pivoting in the LU and QR decomposition we derive from (41) and (42) the 

equation s
-T t]_ - B D 0 (43)

and

-T T~ f >
- B D 0

VfT
I

=
Im m+n

r > ' \
TVf —

0

0 I~ 2 2 V m+n'
X . (44)

The special structure of the matrix (0,1 ,) on both right hand sidesm+n
is related to our assumption that B(x) is nonsingular for x e (J, so that

T Tthe m+n' columns of (0,1 t) toqether with the n columns of Vfm+n
, n+n'span the full space 3R

Now consider any matrix function

W e C1(UjR(n+n')X(m+n')) (45)

such that for all x in the neighbourhood LI of x*

Trank(W(x)) = m+n' and rank(Vf (x),W(x)) = n+n' . (46)

TReplacing (0,1 .) by W we obtain instead, of (43) and (44) the morem+n 2

general matrix equation
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Vf (x)U(x) = W (x)Z(x) , (47)

where the "unknowns" U(x) and Z(x) are n*m and (m+n1) x m  matrices 

respectively. Multiplying from the right by the generalised inverse W 

of W we find

W ' (x)VfT (x)U(x) = E(x) (48)

and

F(x)U(x) E (In + n ,-W(x)W (x))Vf (x)U(x) = 0 (49)

Hence U(x) can be any matrix whose range is contained in the nullspace 

M(x) of F(x) e 3R^n n  ̂ n and the corresponding £(x) is then determined 

by (48)

To show that the dimension of M(x) is m for all x  e U we note
4* rp n 4 . n  ®

that all nonzero vectors of the form (I ,-W1 ~(x)W (x))y with y e IRn+n '
are orthogonal to the columns of W and therefore by (46) cannot be

Torthogonal to the columns of Vf (x) . Consequently the nullspace of the
T . +Ttranspose F (x) is identical to the m + n '-dimensional range of W (x)

so that dim(M(x)) = m for all x e tl . In order to obtain for all

x e U an essentially unique solution U(x) of (49) with full column

rank m we impose nf additional conditions in the form

N (x , U) = (N. . (x , U) ) . ,l] 3 = 1 . .m
i=i..m

(50)

where

N e C 1 (Ux]R nxm mxm,,3R ) . (51)
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For instance we can require that some mxm submatrix of U equals the 

identity by setting

N (x ,U) = MU , (52)

where the constant mxn matrix M is a column permutation of (0,1^) .

This includes the case (43) but allows for arbitrary row exchanges in the

Jacobian Vf during the LU decomposition. Another natural condition 
Twould be U (x)U(x) = I which represents because of its symmetry only 

m(m+l)/2 equations. In addition we can require that some row permutation 

of U(x) is lower trapezoidal (i.e. has no nonzero elements above the 

diagonal) so that

N ..(x,U) ID

Ten u . Pi D
Tu . u . i D

if i < j 

if i > j
(53)

where e. is the i-th Cartesian vector in DR and {p.}. a subseti J i=i. .m
of m indices in [l,n] . In the case of the OR decomposition of Vf, by 

a sequence of elementary reflectors

Qi = (i-2||qi|| 2qiq^) for i=l..n-m

with

the matrix U E

. , nx(n-m) „ ., ,( ^ j '*’̂ n-m e lower trapezoidal

T T T(Qi2/Q22) satisfies the condition

N(x,U) E (-S(x)L (x),I)U = I , (54)m
A A

where S(x) and L(x) denote the matrices S and L computed from the

Jacobian Vf(x) . The identity (54) can be derived from the fact that, for
~T Tall y in the nullspace of (L ,S ) which is spanned by the rows of 

/v—  1(-SL ,1) , we must have
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Q,Q,..Q yI 2 n-m y •

Equation (54) is only important in so far as it allows us to treat the 

QR decomposition (42) in the general framework and has otherwise no 

apparent value.

The normalisation condition (50) will be called nondegenerate at

(x,U) € N 1 (I ) if for any A e IR™*™ m

4r N(x ,U(I+Aa )) . = 0 A = 0 , (55)dX A=o

which requires in particular rank(U) = m as otherwise UA = 0 for some 

A ^ 0 . For any N of the form

N(x,U) = M(x)U
we have

—  N(x,U(I+AA) ) = M (x)UA = A ,

so that (55) is automatically satisfied. This applies for the examples 
(52) and (54).

In the case of N as defined by (53) the nondegeneracy condition
T(55) is satisfied if and only if all "diagonal" elements {e_ u.}.P i  l i = i . .m

Tare nonzero. If some diagonal element ê  u . is zero we can choose APi i
as a rotation in the plane spanned by the n-vectors u^ and ui+1 without 
disturbing the orthogonality nor the (permuted) lower trapezoidal structure. 

Thus N(x ,U(I+Aa )) is constant and the normalisation condition must be 
degenerate. Conversely the LHS of (55) requires that U(I+Aa ) be permuted 

lower trapezoidal for all A , which implies because all diagonal elements 

are nonzero,that A is lower triangular as can be easily checked by

contradiction. Differentiating the orthogonality condition in (53) we find
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—  ̂ (i +Aa T )u Tu (i +Aa ) A= o A + A'

which implies A = 0 as no nontrivial matrix can be triangular and 

antisymmetric. Nondegeneracy of N ensures uniqueness and differentiability 

of U as shown in the following lemma.

LEMMA 4.4 Uniqueness and differentiability of u and E
In some open set Ü  £  3Rn+n1 let

1,1... ^  nxm mxm. , _ l , l ,,, ̂  (n+n ') x (m+n ')N e C (lixiR ,3R ) and W e C (LIJR )

be defined such that (46) holds at all x e U . If N is nondegenerate

at (x ,U ) e N 1(I ) with F(x )U = 0  then there are unique o o m o o
differentiable matrix functions

e C 1'1(U’,KnXm) and e 'ar,iR(m+n')xm)

defined on some neighbourhood U' c U of x such that U(x ) = U and- o o o
for all x e U'

VfT (x)U(x) = W(x)Z(x) , N (x ,U (x)) = I , (56)

and

defect(Vf(x)) = n-rank(Vf(x)) = m-rank(Z(x)) = defect(E(x)) . (57)

Proof.
The two matrix equations in (56) have (n+n’)m + m 2 = nm + (n'+m)m

entries which equals the number of elements in U and E . At x q the
t Tsystem (56) has the solution pair U 0 and E Q = W (xQ)Vf (x q)Uo . Now

. _nxm . „ , (n'+m)xm , .let U e IR and E e IR be any matrix pair such that

X=Q = Vf(x0)U'-W(x0)E' = 0

and

_d_
dA Vf(xQ)(U0 Au') - w(x0)(Z0+AZ')
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,uo+Au') A = o 0 .

Because of the first condition the columns of U' belong to the nullspace

M(x ) which is spanned by the columns of UQ so that U' = UQA for some

A e ]RmXn . It follows immediately from the nondegeneracy assumption (55)

that U' = 0  and consequently Z' = 0 so that the Jacobian of the full

system (56) has no nonzero null "vector". Thus the implicit function

theorem ensures the existence of unique solutions U(x) and Z (x) whose

derivatives can be explicitly given in terms of the derivatives of Vf , W

and N and are therefore locally Lipschitz continuous. To show (57) we

note that Vf(x) must have an n' +m' dimensional nullspace if

defect(Vf (x)) = m' < m . Multiplying the first equation (56) from the
Tleft by any (n'+m') x (n+n') matrix A (x) whose rows span the

Tnullspace of Vf(x) we find A (x)W(x)Z(x) = 0 . Since each row of
T tA (x) is orthogonal to the columns of Vf (x) no linear combination
T T n 1+m1y A (x) with y e ÜR can by (46) be orthogonal to the linearly

Tindependent columns of W(x). Consequently the nullspace of Z (x) must
Tcontain the n' + m' dimensional range of W (x)A(x) so that

m" = defect(Z(x)) > m' . Conversely multiplication of (56) from the

right, by any mxm" matrix A(x), whose columns form a basis of the m"
Tdimensional nullspace of Z(x) , yields Vf (x)U(x)A(x) = 0 , so that the 

m" dimensional range of U(x)A(x) must be contained in the nullspace of 

VfT (x) which implies m' = m" and thus (57). ////

According to (57) the matrix Z(x) indicates to what extent the 
TJacobian Vf (x) is still nontrivial on the subspace M(x) where it is 

comparatively weak. We may view the columns of U(x) as generalised 

left singular vectors of Vf(x) and the entries of Z (x) as generalised 

singular values. If the columns of W(x) form a differentiable basis of
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the invariant subspace spanned by the right singular vectors associated 

with the smallest m singular values of Vf(x) , then the columns of 

U(x) are linear combinations of the corresponding left singular vectors 

which are in general not differentiable as noted before. Besides being 

differentiable the columns of U and the entries of I have the distinct 

advantage that they can be calculated in finitely many arithmetic operations, 

provided this is true for the matrix W and N(x,U) = I can be satsified 

by a finite transformation.

Now we return to the original problem of locating a solution 

x* e U n f !(0) where rank(Vf) = n-m . Provided W and N satisfy the 

assumption of Lemma 4.4 we can apply the Gauss-Newton method to the 

overdetermined system

f (x) = 0 , Z(x) = 0 . (58)

In order to determine the conditions under which the Jacobian of this 

system is nonsingular at x* , we consider a prospective nullvector 

y € 3Rn+n , which must clearly belong to the nullspace W of Vf(x*) . 

Denoting directional differentiation with respect to y by a subscript 

"y" we obtain from (56) with Z(x*) = 0

VfT (x*)U(x*) + VfT (x*)U (x*) = W(x*)Z (x*) . (59)y y y

Let P and P be the orthogonal projections onto the nullspaces of Vf(x*) 

and its transpose respectively. Because of (46) the matrix PW(x*) has 

full column rank so that

Zy (x*) = 0 <=> PVr(x*)U(x*) = 0 .

TSince U(x*) spans the nullspace of Vf (x*) we find by transposing the 

RHS with Vf = V2f • yy y
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E (x*) = 0 <=> P(V2f(x*)y)P = 0 .y

Thus we conclude that the Jacobian of (58) has full column rank n+n' iff

PV2 f(x*)y W ̂  0 for all y e M - {0} . (60)

This condition is independent of the particular choice of W and 

certainly not very strong. If n' =l = m the nullspaces of Vf(x*) and 

its transposed are spanned by vectors u* e IRn and v* , v* e IR 

respectively. Then (60) reduces to the condition that the symmetric 

2 X 2  matrix

r

u*TV2 f(x*)v*v* u*TV2 f(x*)v*v*l l 2 1
A  =

u*TV2 f(x*)v*v* u*TV2 f(x*)v*v*
1 2 2 2 J

be nonsingular. If det(A) < 0 (the Crandall-Rabinowitz or transversality 

condition I 41])there are two smooth solution curves that intersect 

at x* . If det(A) > 0 , x* is isolated in f 1(0) and if det(A) = 0 

it is most likely to be a cusp point, but f 1(0) may have an even more 

complicated structure in the neighbourhood of x* .

The numerical solution of (58) by the exact Gauss-Newton method 

would involve the exact derivatives of E which depend by (59) on the 

second derivative tensor V2f and U . Even though the entries of Vf 

may have a simple mathematical structure, e.g. if Vf is essentially a 

discretisation matrix, the explicit evaluation of their derivatives 

would require a lot of additional coding if not computing time. Therefore 

it is much more practical to approximate the gradients of the (m+n')m 

entries in E by successive updates according to Broyden's method [ ].

Even though the theory of quasi-Newton methods has apparently not yet been 

extended to overdetermined systemsfthere seems little doubt that the
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analytical tools provided by Powell [43], Dennis and More [44] 

others can be used to establish superlinear convergence of quasi-Gauss- 

Newton methods based on the Broyden update of the rectangular Jacobian 

or parts of it. The test calculations reported in Tables 3, 7 with 
n=3 , n' =0 and m=l or m=2 show clear evidence of superlinear 

convergence,which is more reliable than that of any other method 

discussed in this thesis. One routine employed for these calculations 

is based on the QR decomposition by elementary reflectors .

Firstly the Jacobian is reduced by an orthogonal transformation, which 

simultaneously transforms the residual f to f , to some column permutation 

of the form

m+n'

At the initial point this process is carried out with full column pivoting 
such that the first n-m diagonal elements in (61) have the largest 
possible moduli in nonincreasing order. From then on the same pivoting 

pattern must be applied as long as the modulus of the (n-m)-th diagonal 
element is clearly larger than the Euclidean norm of any column in the 
remaining rectangular matrix E . Otherwise the method must be restarted 

with a different pivoting pattern. It is important that none of the n-m 
diagonal elements changes its sign, which would cause discontinuities in 

E . This may happen in Stewarts Algorithm 3.6 fill, which does however 

suit our requirements if the sign of the diagonal element ö is determined 

by the sign of the column component v^ with the largest modulus rather 

than Vj . Provided these precautions are taken E(x) , whose elements
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are rational functions in the entries of f(x) , is clearly differentiable 

in some neighbourhood U of x* . Now let O' e C 1 ' 1 (U,3Rm m̂+n be a 

vector function whose components are the elements of £ in some fixed 

ordering.

Before the first step the (m+n')mx(n+n') matrix G %  Vö is 

initialised as

Go
0

0

In+m
0

such that the (n+(m+n')m)x (n+n') matrix

(62)

has full column rank n+n' for G = G . After each step from x - s  to x

the previous version G of G is updated to G according to the "good" 

Broyden formula

~T
G = G + [0(x)-0(x-s) - Gsl ----  .

The next correction s is determined as the solution of the linear 

least squares problem

ff| I2Js - __ I . (63)
se IR

Min 
n+n' OJ

/s TTo compute s we use n+n' elementary reflectors (I-2u^u_^) to bring J

into upper triangular form and apply them simultaneously to the RHS
__ rji a

(f ,0 ) . From the resulting triangular system s can be obtained by



148

back substitution, provided J has full column rank which can be expected 

if the condition (60) is satisfied and x Q is sufficiently close to x* .

Since J is already in the form (62) the first n-m vectors
_n+m(m+n') , , , ,,u^ e JR have only 1 + (m+n )m nonzero elements.

It can be easily seen that, provided (1+n')(m+1) is small compared 

to n , the computational expense at each step, including the Broyden update 

of G , is dominated by the orthogonal transformation of Vf into the form
2 3(61), which requires approximately —  n arithmetic operations. This 

number can be halved if Vf is brought into the form (61) by Gaussian 

elimination with complete pivoting. This simplication, which will be 

referred to as LU-bordering, hardly affects the speed of convergence 

[Table 3.J even though the solutions of (63) minimise the residual

c j£n+m (m+n ') (64)

no longer with respect to the Euclidean norm, but some other ellipsoidal 

norm which varies differentiably in x e LI . Here U is a neighbourhood 

of x* in which Gaussian elimination with some fixed pivoting pattern 

yields n-m pivots, that are clearly separated from the elements of the 

remaining rectangular matrix E .

The bordering approach developed in the final sections appears to be 

the most reliable and accurate way to solve systems that are known to be 

singular. If one cannot be sure that the solution is exactly singular or 

does not know the dimension of the nullspace m+n' , the components of 

the residual (64) can be weighted by varying multipliers which may either 

emphasise the reduction of |!f|| or enforce the singularity of Vf with a 

nullspace of a certain dimension. In view of Theorem 3.1 it seems doubtful 

whether a weighting strategy can be designed that automatically ensures 

local superlinear convergence to any nonsingular or singular solution for

which (60) is satisfied.
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D I S C U S S I O N  AND CONCLUSION

In a theoretical sense the variety of structurally different 

singularities seems vast and is probably beyond a comprehensive 

mathematical description.

In practice we can expect that most singularities are of first order 

(k=l) with one-dimensional nullspace (m=l) in which case the conditions of 

isolation (1.47), regularity (2.16) and strong regularity (2.45), are 

equivalent to the assumption (4.60). If these are satisfied the slow 

linear convergence of Newton's method can be considerably accelerated at 

little cost either by the three-point method [Table 1 ] or extrapolation 

[Table 2 ]. Whenever the solution is required with high accuracy bordering 

based on the QR or LU decomposition of the Jacobian should be employed 
during the final stages of the computation. Since after some initial steps, 
the iterates are essentially confined to the one-dimensional nullspace W 
of Vf(x*), it can be conjectured that the quasi-Gauss-Newton method with 

Broyden update of the gradient 7g ~ Vdet(Vf) has the Q-order (1+/5) of 
the secant method in one variable. As is well known [44] quasi-Newton 

updates yield usually poor approximations of the Jacobian if consecutive 

steps are essentially confined to a subspace of IRn . Nevertheless it 
seems just possible that the case of a regular first order singularity 

with m=l could still be treated successfully when Vf itself is not 
explicitly available. Any such scheme would necessarily involve two 
levels of differencing along the direction t that spans W , which 

amounts to quadratic interpolation and is therefore somewhat risky [4-5].

At first order singularities with m > 1, the condition (4.60) is 

considerably weaker than the regularity assumption (2.16) which in turn
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is implied by the rather restrictive condition (2.45) of strong regularity.

Even if the latter is not satisfied we can expect on the basis of numerical

experience that the Newton method itself and the three-point method

converge in a reasonably stable fashion. On our test problem the three-point

method [Table 5] is considerably faster than the bordering scheme [Table 7]

which makes initially little progress towards x* until the derivatives of

Z have been approximated to some accuracy. This may have been caused

by the fact that the four additional equations £ = 0 dominated the

condition f = 0 which effectively represents only one equation as

rank(Vf(x*)) = 1 . Instead the singularity condition Z = 0 should

probably be phased in gradually as its approximated Jacobian becomes more

accurate and ||f|| sufficiently small. As in the other three cases

extrapolation [Table 6 ] works surprisingly well and the best extrapolants

are consistently closer to x* than the iterates of the three-point method.

It is remarkable that in all four extrapolation Tables 2, 6, 9 and 10
/ \

the extrapolants |!x̂ 4 |! which are closest to x* in the Euclidean norm 

are mostly identical to those that have the minimal residual f in t îe

same norm. Therefore we can generally expect that the extrapolant x (q)

with the smallest residual If (q) in the last computed row is the best

approximation to x* .

At higher order singularities the condition (4.60) cannot 

be satisfied so that the Jacobian of the overdetermined system f = 0 ,

Z = 0 has at x* linearly dependent columns. Then one might attempt a 

second level of bordering, but this approach seems only feasible if second 

derivatives of f can be explicitly calculated. Otherwise we are left 

with extrapolation I Tables 9,10] and the partially corrected two-point 

method [Table 8 ]. Whereas extrapolation requires only the choice of k ,
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the selection of suitable multipliers X. for the steps (3.68) is a 

difficult question which requires further investigation.

Singularities that are irregular and do not satisfy condition (4.60) 

cannot be treated by any of the methods discussed in this thesis. As shown 
in [24] such cases can arise in the context of minimisation problems and 

lead to very irregular behaviour of the Newton iteration even if the 

singularity is balanced and thus of first degree.

Apart from computational considerations there are many unresolved 

theoretical questions arising from the analyses in Chapter 1. In the 

unbalanced case the linear system (1.22) cannot be solved explicitly in 

the block triangular form ( 2.6 ). Then we have no way to determine the
/svector functions g^ and the crucial degree i explicitly. This may of 

course be possible by some other method, which would be of great benefit 

for the classification of singularities.

The analysis of regular singularities in Chapter 2 seems quite 

satisfactory and yields the important result that convergence of Newton's 
method is almost sure if the initial point is sufficiently close to the 
solution. The concepts of starlike domains and their density together 

with the rational expansions developed in Sections 1.3 and 4-.1 may 

be useful for the analysis of other iterative methods that do not 

necessarily have spherical domains of convergence at certain solution
points.
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APPENDIX

TEST CALCULATIONS

All calculations were carried out on the following system of three
T 3equations in the variables x = (£,C,r|) e TR

f (x) E

(2-k)(-.4£2-1.5C2+.3n2+.5^C-2Cn) 

- .8£3-3C3 + .6n3+.5^2(;-2cn2

(2-m)£ + -5C3 + .4l2Z, - Cn4
+ [l-(m-l)(k-1)] (.35£2+C2+.75n2+.4£C+2£n-Cn)

0

n + .4^2 + .5g2 - 2^^ - 2.5^n + 2^n

The parameters k=l,2 and m=l,2 enter into f such that k gives the 

order of the singularity x * = 0 e f 1 (0) and m the dimension of the 

nullspace W of Vf(x*). In all four cases f is in normal form at x*, 

and we have

B(x) = - . * £ +  . 5£ if k=l=m ,

B(x) = - 2.4C2 + if k=2 , m=

B (x)
- . * £ + .  5C , -3C + . 5C - 2H 

.7£ + .4C + 2n , 2C + .4£ - n
if k=l , m=2

and

B (x) =
- 2.4£2 + CC , - 9^2 + .5£2 - 2p2 

•8^C , 1.5C2 + -4£2 - n2
if k=2=m .
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With e and e1 2 the first two Cartesian base 3vectors in 1R we find

det (B (e j) ) = if k=l=m ,

det (B (e ̂ ) ) = -2.4 if k=2 , m=l

det(B(e )) = l -.6? and det (B (e 2 ) ) = 2.2 if k=l , m=2 ,

det (B (e ) ) = -.96 and det (B (e ) ) = 0  2 if k=2=m .

Since e or el l and e2 span the nullspace of Vf(x*) if m=l or

respectively, the singularity x* = 0 is regular in all four cases. Whereas 

for m=l regularity implies strong regularity, the singularity x* is not 

strongly regular in the two cases with m=2 as tt = det(B) vanishes for

some t e N n S •

The calculation reported in Table 4 was performed on the nearly singular 

system

f(x) + £*10 6 = 0  with k=l=m .

In all calculations, except for those based on bordering (Table 3 and 7),

the Jacobian was reduced to triangular form by Gaussian elimination with

complete pivoting. The smallest pivot is listed as O . The factor by

which the Newton correction is multiplied for the step from the current

point is listed as X . At each step in the bordering calculations the

residual of the linear least squares solution of (4.63) is listed as p .
TAll iterations were started at the initial point xQ = (.l,.l,.l) , from

which an unmodified Newton step was taken to the first point listed in the 

Tables.

The calculations were performed on a UNIVAC 1110 in double precision 

(i.e. 16 digit) floating point arithmetic.
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Table 1 , k = 1 = m
Newton three-point two-point

.10+01 -.44-01 
-.23-01 .49-01
.64-01 -.31-01

.10+01 .35-01

.36-01 .89-02

.96-02 .74-03

.10+01 .16-01 

.14-01 .21-03

.39-03 -.33-03

.10+01 .84-02

.69-02 -.67-05 

.45-04 .22-06

.10+01 .42-02

.34-02 -.20-06 

.12-04 -.17-06

. 10+01 . 21-02 

.17-02 -.27-07 

.30-05 -.29-07

. 10+01 . 11-02 

.86-03 -.34-08 

.76-06 -.37-08

.10+01 .53-03

.43-03 -.43-09 

.19-06 -.48-09

.10+01 .27-03

.21-03 -.54-10 

.48-07 -.61-10

.10+01 .13-03

.11-03 -.67-11 

.12-07 -.76-11

.10+01 .67-04

.54-04 -.84-12 

.30-08 -.96-12

.10+01 .33-04

.27-04 -.10-12 

.74-09 -.12-12

.10+01 -.44-01 
-.23-01 .49-01
.64-01 -.31-01

.20+01 .35-01

.36-01 .89-02

.96-02 .74-03

.10+01 -.22-02 
-.61-02 -.85-02 
.85-02 -.14-02

. 10+01 . 20-01 

.17-01 .23-03

.45-03 -.39-03

.20+01 .10-01 

.82-02 -.97-05 

.63-04 .25-06

.10+01 .92-04

.78-04 .91-05

.91-05 -.83-06

.10+01 .47-04

.38-04 .96-10

.13-08 -.83-09

.20+01 .24-04

.19-04 -.76-13 

.37-09 .10-14

.10+01 .56-09

.45-09 .67-13

.68-13 -.12-13

.10+01 .28-09

.22-09 -.71-23 

.52-19 -.39-22

.20+01 .14-09

.11-09 -.76-29 

.13-19 -.87-29

.10+01 .19-19

.16-19 .57-29

.86-29 .65-29

.20+01 -.44-01 
-.23-01 .49-01
.64-01 -.31-01

. 10+01 . 11+00 

.85-01 -.31-01 

.39-01 .32-01

.20+01 .62-01 

.62-01 .61-02 

.77-02 -.27-02

.10+01 .56-02

.12-02 -.63-02 

.65-02 .20-02

.20+01 -.33-01 
-.24-01 .24-03
.12-02 .44-03

.10+01 .14-02

.98-03 -.24-03 

.43-03 -.36-03

.20+01 .38-03

.30-03 -.44-06 

.20-05 .19-05

.10+01 -.12-06 

.13-06 .45-06

.20-05 -.19-05

.20+01 .20-04

.16-04 .79-10

.28-09 -.76-10

.10+01 .44-09

.31-09 -.79-10 

.11-09 .76-10

.20+01 .21-09

.17-09 .49-19

.66-19 -.12-19

.10+01 .73-19

.34-19 -.49-19 

.50-19 .12-19

first, third and 
fifth column

X = step multiplier 
: ö = smallest pivot

||f|| = residual norm

second, fourth and 
sixth column

f £ (singular)
: S C (nonsingular) 
[ H (nonsingular)
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0
.30+00
.16+00

1
.23-01

.10+00 

.10+00 

.10+00

- . 44-01
.49-01

1
~4

- . 19+00
- . 28-02

First column: 

Top of (2

.64-01 - . 31-01 - . 16+00 r
8 (2h

2 .35-01 .11+00 .21+00
.36-01 .89-02 - . 31-01 - . 40-01
.96-02 .74-03 .32-01 .97-01 i

16

3 .16-01 - . 22-02 - . 41-01 - . 77-01
.14-01 .21-03 - . 85-02 - . 11-02 .45-02
.39-03 - . 33-03 - . 14-02 - . 13-01 - . 28-01

4 .84-02 .41-03 .13-02 .73-02
.69-02 - . 67-05 - . 23-03 .25-02 .30-02
.45-04 .22-06 .33-03 .91-03 .28-02

5 .42-02 .65-04 - . 49-04 - . 24-03
.34-02 - . 20-06 .63-05 .84-04 - . 27-03
.12-04 - . 17-06 - . 56-06 - . 11-03 - . 26-03

6 .21-02 .18-04 .18-05 .91-05
.17-02 - . 27-07 .14-06 - . 19-05 - . 14-04
.30-05 - . 29-07 .12-06 .34-06 .16-04

7 .11-02 .45-05 .10-06 - . 15-06
.86-03 - . 34-08 .20-07 - . 21-07 .25-06
.76-06 - . 37-08 .21-07 - . 10-07 - . 60-07

8 .53-03 .11-05 .13-07 .74-09
.43-03 - . 43-09 .26-08 - . 33-08 - . 69-09
.19-06 - . 48-09 .28-08 - . 34-08 - . 25-08

9 .27-03 .29-06 .17-08 .30-10
.21-03 - . 54-10 .32-09 - . 43-09 - . 15-10
.48-07 - . 61-10 .36-09 - . 45-09 - . 27-10

10 .13-03 .71-07 .21-09 .15-11
.11-03 - . 67-11 .40-10 - . 53-10 - . 35-12
.12-07 - . 76-11 .45-10 - . 59-10 - . 28-11

11 .67-04 .18-07 .26-10 .94-13
.54-04 - . 84-12 .50-11 - . 67-11 - . 20-13
.30-08 - . 96-12 .57-11 - . 75-11 - . 18-12

12 .33-04 .45-08 .33-11 .58-14
.27-04 - . 10-12 .63-12 - . 84-12 - . 11-14
.74-09 - . 12-12 .72-12 - . 95-12 - . 12-13

13 .17-04 .11-08 .41-12 .36-15
.13-04 - . 13-13 .79-13 - . 10-12 - . 68-16
.19-09 - . 15-13 .90-13 - . 12-12 - . 73-15

14 .84-05 .28-09 .52-13 .23-16
.67-05 - . 16-14 .98-14 - . 13-13 - . 41-17
.47-10 - . 19-14 . 11-13 - . 15-13 - . 46-16

15 .42-05 .70-10 .65-14 .14-17
.33-05 - . 20-15 .12-14 - . 16-14 - . 25-18
.12-10 - . 23-15 .14-14 - . ] 9-14 - . 29-17

number of steps 
smallest pivot 
residual norm

1/2q+l

(2+q)-th column: i

f (q)

32

£ ̂  (singular)
(nonsingular)
(nonsingular)

0
.(q)
: < q >

for q > 0

13-01
29-02
49-02

74-03 
. 49-03 
,46-03

.26-04

.26-05

.34-04

64
12-02
60-03
64-03

50-04
18-04
50-04

best extrapolant 
in each row

(q)

128
70-04
28-04
61-04 256

.12-05 .12-05 .89-06 .68-06

11-07
17-  07 
14-08

18-  10 
30-10 
14-09

36-07
57-07
38-07

36-09
,59-09
,94-10

,18-12
,30-12
,55-11

.12-13

.19-13

.28-13

62-07
76-07
76-07

,93-09
,15-08
,52-09

,59-11
,97-11
.71-11

.90-14

.14-13

.12-12

.23-15

.38-15

.49-15

20-17
43-17
94-17

65-19
14-18
30-18

,20-20
45-20
,94-20

60-18
97-18
39-18

81-07
84-07
10-06

14-08
21-08
,11-08

,13-10
,22-10
.31-11

.37-13

.62-13

.17-12

.31-15

.49-15

.14-14

.25-17

.39-17

.43-17

.52-20

.84-20

.24-20

30-23
77-22
61-22

.49-22
- . 34-23
- . 61-23
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Table 3 , k = 1 = m
QR-Bordering LU-Bordering

.15-02 -.44-01 .10+01 .16-02 -.44-01 .11+01
-.23-01 .49-01 .37+00 -.23-01 .49-01 .41+00
.64-01 -.31-01 .94+00 .64-01 -.31-01 .10+01
.14-03 -.32-01 . 95+00 .87-04 -.34-01 .11+01

-.22-01 .41-02 .71+00 -.23-01 .38-02 .77+00
.49-02 -.22-02 .73+00 .48-02 -.24-02 .81+00
.29-04 -.79-02 .71+00 .59-04 -.11-01 .70+00

-.60-02 .30-03 .75+00 -.86-02 .25-03 .83+00
.41-03 .22-03 .70+00 .36-03 .14-03 .77+00
.43-06 .11-02 .81+00 .76-06 .14-02 .79+00
.88-03 .23-04 .74+00 .12-02 .53-04 .83+00
.48-04 .41-04 .70+00 .89-04 .71-04 .77+00
.11-08 .51-04 .77+00 .21-08 .68-04 .75+00
.41-04 .46-06 .74+00 .55-04 .86-06 .82+00
.54-06 .27-06 .70+00 .93-06 .36-06 .77+00
.11-11 -.17-05 .79+00 .57-11 -.37-05 .79+00

-.13-05 .10-08 .74+00 -.30-05 .19-08 .83+00
.14-08 .10-08 .70+00 .26-08 .18-08 .77+00
.67-16 .13-07 .80+00 .59-15 .39-07 .80+00
.10-07 .98-12 .74+00 .31-07 .50-11 .83+00
.15-11 .11-11 .70+00 .76-11 .57-11 .77+00
.45-22 .11-10 .80+00 .43-21 .33-10 .80+00
.84-11 .58-16 .74+00 .26-10 .52-15 .83+00
.89-16 .67-16 .70+00 .79-15 .59-15 .77+00
.38-30 -.97-15 .80+00 .13-28 -.57-14 . 80+-00

-.78-15 .39-22 .74+00 -.45-14 .38-21 .83+00
.59-22 .45-22 .70+00 .58-21 .43-21 .77+00
.12-37 .71-20 .80+00 .19-36 .13-18 .80+00
.56-20 .33-30 .74+00 .11-18 .11-28 .83+00
.50-30 .38-30 . 70+00 .17-28 .13-28 .77+00
.00 .37-27 .80+00 .00 .14-25 .80+00
.30-27 -.10-37 .74+00 .11-25 -.23-37 .83+00
.15-37 -.10-37 .70+00 .39-37 -.31-37 .77+00

f y = least squares residual 
: < a = only element of E 

(Jjf|| = residual norm
f £ (singular)

: K £ (nonsingular)
[ r\ (nonsingular)
f % 9a/9£

: I ~ 9ö/9C 
( ~ 9o/9n

first and 
fourth column

second and 
fifth column

third and 
sixth column
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Table 4 , nearly singular problem with k = 1 =  m . 

Newton three-point two-point

10+01 -.44-01 .10+01 -.44-01 .20+01 -.44-01
23-01 .49-01 -.23-01 .49-01 -.23-01 .49-01
64-01 -.31-01 .64-01 -.31-01 .64-01 -.31-01
10+01 .35-01 .20+01 .35-01 .10+01 .11+00
36-01 .89-02 .36-01 .89-02 .85-01 -.31-01
96-02 .74-03 .96-02 .74-03 .39-01 .32-01
10+01 .16-01 .10+01 -.22-02 .20+01 .62-01
14-01 .21-03 -.61-02 -.85-02 .62-01 .61-02
39-03 -.33-03 .85-02 -.14-02 .77-02 -.27-02
10+01 .84-02 .10+01 .20-01 .10+01 .56-02
69-02 -.67-05 .17-01 .23-03 .12-02 -.63-02
45-04 .23-06 .45-03 -.39-03 .65-02 .20-02
10+01 .42-02 .20+01 .10-01 .20+01 -.33-01
34-02 -.20-06 .82-02 -.97-05 -.24-01 .24-03
12-04 -.17-06 .63-04 .26-06 .12-02 .44-03
10+01 .21-02 .10+01 .91-04 .10+01 .14-02
17-02 -.25-07 .78-04 .91-05 .98-03 -.24-03
30-05 -.27-07 .91-05 -.83-06 .43-03 -.36-03
10+01 .11-02 .10+01 .46-04 .20+01 .38-03
86-03 -.25-08 .38-04 .14-09 .30-03 -.44-06
76-06 -.27-08 .13-08 -.78-09 .20-05 .19-05
10+01 .53-03 .20+01 .22-04 .10+01 -.14-05
43-03 .38-10 .19-04 .20-10 .13-06 .45-06
19-06 .54-10 .37-09 .22-10 .20-05 -.19-05
10+01 .27-03 .10+01 -.12-05 .20+01 .23-04
21-03 .18-09 .53-07 -.97-12 .19-04 .12-09
48-07 .21-09 .10-11 -.12-11 .40-09 -.69-10
10+01 .13-03 .10+01 .11-04 .10+01 -.12-05
11-03 .11-09 .94-05 .92-11 .52-07 -.96-10
12-07 .12-09 .91-10 .11-10 .13-09 .91-10
10+01 .66-04 .20+01 .47-05 .20+01 .11-04
54-04 .57-10 .48-05 .41-11 .96-05 .94-11
30-08 .65-10 .22-10 .47-11 .94-10 .11-10
10+01 .32-04 .10+01 -.99-06 .10+01 -.11-05
27-04 .28-10 .21-06 -.86-12 .10-06 -.98-12
, 74-09 .32-10 .99-12 -.99-12 .10-11 -.11-11
10+01 .16-04 .10+01 .19-05 .20+01 .48-05
13-04 .14-10 .25-05 .16-11 .48-05 .42-11
,19-09 .15-10 .54-11 .19-11 .23-10 .48-11
,10+01 .72-05 .20+01 .55-06 .10+01 -.99-06
67-05 .63-11 .14-05 .48-12 .21-06 -.87-12
,46-10 .72-11 .11-11 .55-12 .10-11 -.99-12
,10+01 .31-05 .10+01 -.38-06 .20+01 .19-05
,34-05 .27-11 .69-06 -.34-12 .25-05 .17-11
,11-10 .31-11 .54-12 -.38-12 .56-11 .19-11

Entries as in Table 1.
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Table 5 , k =1 , m =2
three-point two-point one-point

.10+01 .70-01 .20+01 .70-01 .13+01 .70-01
1 .17+00 .70-01 .17+00 .70-01 .17+00 .70-01

.11-01 .93-02 .11-01 .93-02 .11-01 .93-02

.20+01 .34-01 .10+01 -.16-02 .13+01 .23-01
2 .80-01 .39-01 -.13-02 .70-02 .54-01 .29-01

.34-02 .23-03 .89-02 -.88-02 .39-02 -.25-02

.10+01 -.73-03 .20+01 -.83-01 .13+01 .90-02
3 -.67-03 .89-03 -.12+00 -.51-01 .22-01 .98-02

.21-03 -.21-03 .90-02 -.27-03 .64-03 .76-03

.10+01 -.97-03 .10+01 .30-02 .13+01 .30-02
4 -.67-03 .40-03 .18-02 -.35-03 .71-02 .38-02

.43-06 -.14-05 .20-03 .20-03 .25-03 -.23-03

.20+01 -.49-03 .20+01 .19-02 .13+01 .11-02
5 -.33-03 .20-03 .12-02 -.48-03 .28-02 .12-02

.30-06 -.80-08 .12-05 -.34-05 .65-04 .68-04

.10+01 -.31-07 .10+01 -.13-04 .13+01 .38-03
6 .59-07 .12-06 -.27-07 .72-05 .92-03 .46-03

.79-08 .79-08 .35-05 .35-05 .21-04 -.20-04

.10+01 -.35-07 .20+01 .19-02 .13+01 .14-03
7 -.42-09 .59-07 .11-02 -.35-03 .35-03 .16-03

.66-14 -.43-14 .32-05 .75-07 .61-05 .61-05

.20+01 -.18-07 .10+01 -.35-06 .13+01 .48-04
8 -.21-09 .30-07 .14-05 .27-05 .12-03 .57-04

.20-14 -.11-18 .64-07 -.64-07 .18-05 -.18-05

.10+01 .12-12 .20+01 -.16-07 .13+01 .18-04
9 .28-14 .16-14 .97-06 .14-05 .43-04 .19-04

.12-18 .12-18 .34-11 .69-12 .55-06 .55-06

.10+01 .59-13 .10+01 -.61-11 .13+01 .60-05
10 .14-14 .78-15 -.58-11 .13-11 .15-04 .69-05

.23-26 .13-29 .69-12 -.69-12 .16-06 -.16-06

.20+01 .29-13 .20+01 -.39-11 .13+01 .22-05
11 .72-15 .39-15 -.26-11 .11-11 .52-05 .24-05

.56-27 -.69-31 .55-23 -.16-22 .49-07 .49-07

.10+01 .11-19 .10+01 .13-18 .13+01 .75-06
12 -.17-22 -.19-19 .68-19 -.64-19 .18-05 .85-06

.68-31 .68-31 .16-22 .16-22 .15-07 -.15-07

.10+01 .18-16 .20+01 .32-19 .13+01 .27-06
13 -.23-18 .23-18 .14-19 -.22-19 .64-06 .29-06

.21-33 -.81-36 .13-37 .11-37 .44-08 .44-08

as in Table 1 with C now a singular variable.
The one-point method is partially corrected with A =1.3 < l + k/(k+2).
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0

43+00
95-01

1
17+00
11-01

2
80-01
34- 02

3
40-01
89-03

4
20-01
23-03

5
10-01
57-04

6
50-02
14-04

7
25-02
36-05

8
13- 02 
89-06

9
63-03
22-06

10
31-03
56-07

11
16-03
14- 07

12
78-04
35- 08

13
39-04
87-09

14
20-04
22-09

15
98-05
54-10

10+00
10+00
10+00 First column:

70-01 .39-01
.70-01 .41-01 Top of (2+q)-
.93-02 -.81-01 1

8
.34-01 -.16-02 -.15-01
.39-01 .70-02 -.43-02 1

16
(2+q)-th

.23-03 -.88-02 .15-01

.17-01 -.73-03 -.44-03 .17-02

.20-01 .89-03 -.12-02 -.71-03

.11-04 -.21-03 .27-02 .86-03 i
32

.82-02 -.21-03 -.41-04 .17-04 -.94-04

.10-01 .22-03 .38-06 .17-03 .22-03

.89-06 -.89-05 .58-04 -.31-03 -.39-03

.41-02 -.59-04 -.79-05 -.32-05 -.46-05

.50-02 .58-04 .31-05 .35-05 -.74-05

.78-07 -.73-06 .20-05 -.60-05 .15-04

.20-02 -.16-04 -.11-05 -.16-06 .46-07

.25-02 .15-04 .47-06 .95-07 -.13-06

.72-08 -.63-07 .16-06 -.10-06 .29-06

.10-02 -.40-05 -.15-06 -.12-07 -.26-08

.13-02 .38-05 .65-07 .70-08 .11-08

.74-09 -.58-08 .13-07 -.77-08 -.14-08

.51-03 -.10-05 -.20-07 -.90-09 -.14-09

.63-03 .94-06 .85-08 .50-09 .71-10

.82-10 -.58-09 .12-08 -.59-09 -.11-09

.25-03 -.26-06 -.25-08 -.61-10 -.52-11

.32-03 .24-06 .11-08 .34-10 .27-11

.95-11 -.63-10 .11-09 -.41-10 -.43-11

.13-03 -.64-07 -.32-09 -.40-11 -.18-12

.16-03 .59-07 .14-09 .22-11 .92-13

.11-11 -.72-11 .11-10 -.27-11 -.15-12

.63-04 -.16-07 -.40-10 -.26-12 -.59-14

.79-04 .15-07 .17-10 .14-12 .30-14

.14-12 -.86-12 .13-11 -.17-12 -.50-14

.32-04 -.40-08 -.50-11 -.16-13 -.19-15

.40-04 .37-08 .22-11 .89-14 .97-16

.17-13 -.11-12 .15-12 -.11-13 -.16-15

.16-04 -.10-08 -.63-12 -.10-14 -.67-17

.20-04 .93-09 .27-12 .56-15 .28-17

.22-14 -.13-13 .18-13 -.69-15 -.51-17

.79-05 -.25-09 -.79-13 -.64-16 -.10-17

.99-05 .23-09 .34-13 .35-16 -.26-18

.27-15 -.16-14 .22-14 -.43-16 -.16-18

.40-05 -.63-10 -.99-14 -.59-17 -.20-17

.50-05 .58-10 .43-14 .14-17 -.85-18

.34-16 -.20-15 .27-15 -.27-17 -.50-20

number of steps 
smallest pivot 
residual norm

)lumn Q-factor = 1/2q+l

£ ̂  (singular)
C (singular)
(q)r| (nonsingular)

f(<ä> «

64
17-05
15-04
28-04

19-06
10-06
17-06

42-08
53-08
11-07

19

0
(q)

for q > 0

best extrapolant 
in each row

128
22-06
34-06
61-06

73-08
38-08
85-08

87-11
47-10
10-09

(q)

256
.92-08
.11-08
.37-08
.66-10
.77-10
.17-09
. 12-12
.24-12
.51-12

51-17
30-17
50-17

74-18
24-18
82-19

82-18
36-18
13-20

20-17
87-18
43-22

67-18
29-18
39-20

82-18
36-18
15-22

20-17
88-18
23-22

68-18
30-18
60-21

82-18
36-18
15-22

20-17
88-18
23-22
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T a b le  7 , k = 1 , m =: 2 , Q R -B ordering

.24+00 .7 0 -0 1 - .8 4 + 0 0 .18+00 - . 2 9 - 0 2 - .9 0 + 0 0
1 .34+00 .7 0 -0 1 - .8 2 + 0 0 .17+00 - .2 8 - 0 2 - .8 8 + 0 0

.1 1 -0 1 .9 3 -0 2 - .2 5 + 0 1 .53+00 - .8 6 - 0 2 - .2 7 + 0 1

.7 8 -0 1 - .2 4 - 0 1 - .5 2 + 0 0 .85+00 - .1 3 + 0 1 - .7 2 + 0 0
2 .9 8 -0 1 .2 6 -0 1 - .6 6 + 0 0 .50+00 - .6 0 + 0 0 - .7 9 + 0 0

.9 7 -0 2 - .1 0 - 0 1 - .2 4 + 0 1 .67+00 - .2 7 + 0 0 - .2 7 + 0 1

.1 0 -0 1 - . 4 3 - 0 1 - .4 6 + 0 0 .80+00 - .1 7 + 0 1 - .1 4 + 0 1
3 .6 0 -0 1 - .9 9 - 0 2 - .5 5 + 0 0 .40+00 - .1 5 + 0 1 - .2 1 + 0 1

.2 8 -0 2 - . 2 2 - 0 2 - .2 5 + 0 1 .69+00 - .6 7 - 0 1 - .2 4 + 0 1

.1 1 -0 1 .1 4 -0 1 - .4 4 + 0 0 .47+00 - .7 8 + 0 0 .7 3 -0 2
4 .18+00 - .5 9 - 0 1 - .5 7 + 0 0 .69+00 - .2 3 + 0 1 - .3 3 + 0 1

.1 3 -0 1 .1 2 -0 1 - .2 5 + 0 1 .61+00 .17+00 - .2 0 + 0 1

.4 0 -0 2 .4 0 -0 2 - .4 0 + 0 0 .45+00 - .9 2 + 0 0 - .9 5 - 0 1
5 .3 8 -0 1 - .1 2 - 0 1 - .7 4 + 0 0 .78+00 - .1 7 + 0 1 - .2 8 + 0 1

.6 1 -0 2 .6 2 -0 2 - .2 4 + 0 1 .60+00 .9 4 -0 1 - .2 1 + 0 1

.1 4 -0 2 .3 4 -0 2 - .4 1 + 0 0 .44+00 - .8 9 + 0 0 - .8 8 - 0 1
6 .1 2 -0 1 .3 2 -0 2 - .6 9 + 0 0 .85+00 - .2 3 + 0 1 - .3 0 + 0 1

.2 4 -0 2 - .2 3 - 0 2 - .2 5 + 0 1 .56+00 .43+00 - .2 0 + 0 1

.3 1 -0 3 - .2 1 - 0 2 - .6 7 + 0 0 .77+00 - .5 7 + 0 0 .36+00
7 .4 3 -0 2 .1 0 -0 2 - .7 9 + 0 0 .98+00 - .2 2 + 0 1 - .2 8 + 0 1

.5 0 -0 3 - .5 0 - 0 3 - .2 4 + 0 1 .45+00 .32+00 - .2 1 + 0 1

.1 6 -0 5 .4 2 -0 3 - .7 8 + 0 0 .90+00 - .3 7 + 0 0 .56+00
8 .1 0 -0 2 - .2 6 - 0 3 - .7 4 + 0 0 .91+00 - .2 3 + 0 1 - .2 9 + 0 1

.1 2 -0 3 .1 2 -0 3 - .2 4 + 0 1 .48+00 .36+00 - .2 1 + 0 1

.5 6 -0 6 - . 1 1 - 0 4 - .7 9 + 0 0 .91+00 - .3 9 + 0 0 .57+00
9 .1 5 -0 4 - .1 4 - 0 5 - .7 3 + 0 0 .90+00 - .2 3 + 0 1 - .2 9 + 0 1

.1 5 -0 5 .1 5 -0 5 - .2 4 + 0 1 .48+00 .36+00 - .2 1 + 0 1

.3 7 -0 7 - .1 0 - 0 5 - .7 2 + 0 0 .82+00 - .4 6 + 0 0 .48+00
10 .1 7 -0 5 .3 4 -0 6 - .7 2 + 0 0 .89+00 - .2 3 + 0 1 - .2 9 + 0 1

.1 8 -0 6 - . 1 8 - 0 6 - .2 4 + 0 1 .50+00 .37+00 - .2 1 + 0 1

.6 8 -0 9 .2 0 -0 7 - .7 3 + 0 0 .84+00 - .3 9 + 0 0 .53+00
11 .9 7 -0 7 - .2 8 - 0 7 - .7 2 + 0 0 .88+00 - .2 3 + 0 1 - .3 0 + 0 1

.1 3 -0 7 .1 3 -0 7 - .2 4 + 0 1 .50+00 .38+00 - .2 1 + 0 1

.6 5 -1 0 - .3 4 - 0 8 - .7 7 + 0 0 .89+00 - .4 0 + 0 0 .55+00
12 .4 3 -0 8 .9 2 -1 0 - .6 7 + 0 0 .82+00 - .2 3 + 0 1 - .3 0 + 0 1

.2 0 -0 9 - . 2 0 - 0 9 - .2 5 + 0 1 .53+00 .38+00 - .2 1 + 0 1

.1 7 -1 2 - .3 8 - 0 9 - .6 8 + 0 0 .78+00 - .3 7 + 0 0 . 50+00
13 .4 7 -0 9 .2 1 -1 1 - .6 7 + 0 0 .82+00 - .2 3 + 0 1 - .3 0 + 0 1

.1 9 -1 0 - .1 9 - 1 0 - .2 4 + 0 1 .52+00 .38+00 - .2 1 + 0 1

.5 3 -1 6 - .1 0 - 1 1 - .6 8 + 0 0 .78+00 - .3 7 + 0 0 .50+00
14 .1 3 -1 1 .1 9 -1 4 - .6 7 + 0 0 .82+00 - .2 3 + 0 1 - .3 0 + 0 1

.4 9 -1 3 - .4 9 - 1 3 - .2 4 + 0 1 .52+00 .38+00 - .2 1 + 0 1

.6 4 -1 8 - . 6 0 - 1 5 - .6 8 + 0 0 .78+00 - .3 7 + 0 0 .50+00
15 .7 6 -1 5 - . 4 0 - 1 6 - .6 7 + 0 0 .82+00 - .2 3 + 0 1 - .3 0 + 0 1

.1 2 -1 6 - . 1 2 - 1 6 - .2 4 + 0 1 .52+00 .38+00 - .2 1 + 0 1
F i r s t  two columns a s  in  T ab le  3 w i th seco n d  e le m e n t in  f i r s t  column now
F ro b e n iu s norm o f £ . O th e r  f o u r  colum ns = a p p ro x im a te  g r a d i e n t s  o f
th e  f o u r e le m e n ts o f  Z .
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Table 8 , k = 2 , m = 1
two-point one--point five-point

.28+01 -.48-01 .14+01 -.48-01 .10+01 -.48-01
1 .17-02 .50-01 .17-02 .50-01 .17-02 .50-01

.67-01 -.32-01 .67-01 -.32-01 .67-01 -.32-01

.10+01 -.14+01 .14+01 -.72+00 .10+01 -.53+00
2 .28+01 -.19+00 .14+01 -.69-01 .74+00 -.35-01

.24+01 -.14-01 .35+00 -.23-01 .15+00 -.26-01

.28+01 -.92+00 .14+01 -.38+00 .10+01 -.35+00
3 .17+01 -.19+00 .38+00 -.68-01 .32+00 -.37-01

.69+00 .24-01 .48-01 .73-03 .40-01 -.94-02

.10+01 -.61-01 .14+01 -.20+00 .30+01 -.23+00
4 .99-02 -.21-01 .11+00 -.70-02 .14+00 -.19-01

.26-01 -.17-01 .17-01 -.14-01 .12-01 -.79-02

.28+01 -.35-01 .14+01 -.11+00 .10+01 -.25-02
5 .30-02 .10-02 .29-01 -.41-02 -.14-04 .14-01

.19-02 -.15-02 .31-02 -.70-03 .14-01 .22-03

.10+01 -.19-02 .14+01 -.58-01 .10+01 .12+01
6 .13-04 -.22-02 .83-02 -.63-03 .10+01 -.41-02

.31-02 .22-02 .88-03 -.15-02 .15+01 .35-01

.28+01 .75-02 .14+01 -.31-01 .10+01 .72+00
7 .14-03 -.97-05 .23-02 -.30-03 -.19+00 .31+00

.42-04 .18-04 .35-03 -.19-04 .54+00 -.29+00

.10+01 .50-03 .14+01 -.17-01 .10+01 .40+00
8 .61-06 -.62-06 .67-03 -.49-04 -.24+00 .98-01

.54-04 -.54-04 .79-04 -.16-03 .12+00 -.14+00

.28+01 .34-03 .14+01 -.89-02 .30+01 .25+00
9 .27-06 -.45-07 .19-03 -.25-04 .16+00 .84-02

.36-07 -.91-08 .43-04 .12-04 .18-01 -.46-01

.10+01 .22-04 .14+01 -.47-02 .10+01 .44-02
10 .12-08 .45-07 .54-04 -.32-05 .29-02 -.36-01

.52-07 -.25-07 .11-04 -.19-04 .59-01 .53-01

.28+01 .15-04 .14+01 -.25-02 .10+01 .36+00
11 .53-09 -.58-10 .15-04 -.23-05 .32+00 -.36-01

.29-10 -.67-10 .60-05 .34-05 .89-01 .23-01

.10+01 .99-06 .14+01 -.13-02 .10+01 .23+00
12 .24-11 .33-10 .43-05 -.12-06 .13+00 .19-01

.50-10 .37-10 .19-05 -.25-05 .27-01 -.37-01

.28+01 .66-06 .14+01 -.72-03 .10+01 .16+00
13 .11-11 -.11-12 .12-05 -.25-06 .59-01 -.32-02

.58-13 -.13-12 .89-06 .68-06 .41-02 -.14-01

.10+01 .44-07 .14+01 -.38-03 .30+01 .11+00
14 .47-14 .64-13 .35-06 .14-07 .26-01 -.31-02

.98-13 .73-13 .31-06 -.37-06 .28-02 -.34-02
Entries as in Table 1. Two-point method partially corrected with X=2.8<k+1. 
One-point method partially corrected with A = 1.4 < l+k/(k+2) . Five-point 
method fully corrected with X = k+1 .
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0

.63-01

.16+00
1

.17-02

.67-01
2

.74+00

.15+00
3

.32+00

.40-01
4

.14+00

.12-01
5

.62-01

.42-02
6

.27-01

.16-02
7

. 12-01

.65-03
8

.53-02

.28-03
9

.24-02

.12-03
10

.10-02

.55-04
11

.46-03

.25-04
12

.21-03

.11-04
13

.91-04

.50-05
14

.41-04

.22-05
15

.18-04

.99-06

10+00
10+00
10+00
48-01
50-01
.32-01
,53+00
,35-01
,26-01

4
9

35+00
50-01
30+00
15+01
21+00
12-01

First column
number of steps 
smallest pivot 
residual norm

Top of (2+q)-th column Q-factor= (2/3) q+l
_8_
27

24+01
33+00
22+00

(2+q)-th column: <
16
81

£ ^  (singular)
(nonsingular) 

r|^ (nonsingular)

35+00
37-01
94-02

.75-02
-.40-01
.23-01

.12+01

.92-01

.51-01
.27+01
.27+00

-.18-01 32
243

f(q

23+00 -.27-02 -.11-01 -.52+00 -.13+01
19-01 .17-01 .63-01 .51-01 -.35-02 (3479-02 -.49-02 -.27-01 -.60-01 -.71-01 729
16+00 -.25-02 -.23-02 .13-02 .13+00 .35+00
79-02 .14-01 .12-01 -.94-02 -.24-01 -.27-01
52-02 .22-03 .43-02 .18-01 .37-01 .53-01
10+00 -.12-02 -.86-04 .86-03 .76-03 -.19-01
33-02 .60-02 -.52-03 -.58-02 -.49-02 -.20-02
27-02 .22-02 .38-02 .36-02 .11-03 -.55-02
70-01 -.47-03 .74-04 .14-03 -.35-04 -.16-03
14-02 .24-02 -.56-03 -.58-03 .70-03 .15-02
13-02 .15-02 .96-03 -.24-03 -.12-02 -.14-02
47-01 -.20-03 .21-04 -.10-05 -.36-04 -.36-04
60-03 .97-03 -.14-03 .40-04 .19-03 .11-03
61-03 .79-03 .21-03 -.11-03 -.80-04 .86-04
31-01 -.86-04 .52-05 -.16-05 -.17-05 .35-05
26-03 .41-03 -.32-04 .13-04 .62-05 -.22-04
28-03 .38-03 .54-04 -.10-04 .14-04 .29-04
21-01 -.37-04 .15-05 -.88-07 .29-06 .59-06
12-03 .18-03 -.85-05 .12-05 -.16-05 -.28-05
13-03 .18-03 .16-04 -.40-06 .20-05 .18-06
14-01 -.16-04 .44-06 .11-08 .23-07 -.17-07
51-04 .78-04 -.24-05 .14-06 -.13-06 .98-07
56-04 .82-04 .46-05 -.63-07 .19-07 -.29-06
93-02 -.72-05 .13-06 .69-10 -.19-09 -.37-08
23-04 .34-04 -.70-06 .26-07 -.12-08 .19-07
25-04 .37-04 .14-05 -.19-07 -.81-08 -.12-07
62-02 -.32-05 .38-07 -.31-10 -.56-10 -.35-10
10-04 .15-04 -.21-06 .51-08 .10-10 .20-09
11-04 .17-04 .40-06 -.43-08 -.63-09 .51-09
41-02 -.14-05 .11-07 -.70-11 -.11-11 .72-11
45-05 .67-05 -.60-07 .98-09 -.27-10 -.33-10
50-05 .75-05 .12-06 -.88-09 -.47-10 .41-10
27-02 -.62-06 .34-08 -.12-11 .21-12 .41-12
20-05 .30-05 -.18-07 .19-09 -.51-11 -.18-11
22-05 .33-05 .35-07 -.18-09 -.49-11 .16-11

0
(q)
(q)

for q > 0

best extrapolant 
in each row

128
2187

.54-01

.49-03

.11-01

.16-02

.19-02

25- 04 
23-04 
23-03
73-05
35-04
23-04
32-06
98-06
26- 05
,76-07
,38-06
,33-06
,24-08
,11-07
,14-07
,32-09
,16-08
.17-08
.11-10
.55-10
.38-11
.25-12
.12-11
.22-11

(q)

256
6561

.51-02

. 20-02

-.13-03
-.14-03
.30-03
.93-05
-.36-04
.11-04
-.12-06
.11-05
-.42-05
-.10-06
.46-06
-.19-06
.21-08
-.12-07
.36-07
.49-09
-.23-08
.96-09
-.78-11
.40-10
-.11-09
-.96-12
.47-11

- .21-11
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0 .10+00 
.32-02 .10+00
.84-01 .10+00

[ j = number of steps 
First column: •( G = smallest pivot 

(J!f|l = residual norm
1

28-01
-.33+00
-.21-01

-.12+01
-.26+00 8

27

Top of (2+q)-th column
20+00 -.13+00 -.60+00
2 -.23+00 -.17-01 .93+00

20-01 .41-04 .42-01 .29+00 (2+q)-th column:
20-01 -.25-01 .19+00 .82+00 16

81
3 -.15+00 -.25-03 .13-01 -.37+00

91-02 .26-04 -.29-05 -.34-01 -.17+00 32
24329-02 -.73-02 .28-01 -.10+00 -.49+00 f (q)

4 -.10+00 -.10-04 .18-03 -.52-02 .85-01
41-02 .17-04 -.25-06 .19-05 .14-01 .59-01
95-03 -.29-02 .60-02 -.11-01 .27-01 .15+00 64

729
5 -.67-01 -.12-05 .62-05 -.67-04 .12-02 -.12-01

18-02 .12-04 -.48-07 .12-06 -.61-06 -.35-02 -.13-01
40-03 -.13-02 .19-02 -.13-02 .30-02 -.29-02 -.27-01
6 -.45-01 -.23-06 .55-06 -.18-05 .14-04 -.17-03

81-03 .77-05 -.14-07 .14-07 -.29-07 .11-06 .53-03
18-03 -.58-03 .82-03 -.65-04 .45-03 -.17-03 .24-03
7 -.30-01 -.47-07 .95-07 -.96-07 .33-06 -.18-05

36-03 .51-05 -.42-08 .33-08 -.12-08 .57-08 -.11-07 -
81-04 -.26-03 .38-03 .16-04 .50-04 -.49-04 -.31-04 -
8 -.20-01 -.10-07 .20-07 -.11-07 .94-08 -.40-07

16-03 .34-05 -.13-08 .10-08 .62-10 .37-09 -.43-09
37-04 -.12-03 .17-03 .74-05 .37-05 -.78-05 -.15-05
9 -.13-01 -.21-08 .43-08 -.24-08 -.16-09 -.16-08

71-04 .23-05 -.39-09 .32-09 .28-10 .20-10 -.33-10
17-04 -.53-04 .77-04 .23-05 .15-06 -.73-06 .34-06
10 -.89-02 -.42-09 .89-09 -.53-09 -.76-10 -.62-10
32-04 .15-05 -.12-09 .10-09 .62-11 .72-12 -.22-11
76-05 -.23-04 .35-04 .68-06 -.48-08 -.43-07 .61-07
11 -.59-02 -.86-10 .18-09 -.11-09 -.12-10 -.18-11
14-04 .10-05 -.35-10 .31-10 .12-11 .16-13 -.91-13
34-05 -.10-04 .16-04 .20-06 -.22-08 -.15-08 .47-08
12 -.39-02 -.18-10 .37-10 -.24-10 -.16-11 -.47-13
62-05 .67-06 -.10-10 .92-11 .24-12 .73-16 -.23-14
15-05 -.47-05 .69-05 .59-07 -.45-09 -.25-10 .21-09
13 -.26-02 -.36-11 .75-11 -.49-11 -.21-12 -.21-14
28-05 .45-06 -.31-11 .28-11 .48-13 -.14-16 -.28-16
68-06 -.21-05 .31-05 .17-07 -.89-10 .14-11 .54-11
14 -.18-02 -.76-12 .15-11 -.99-12 -.27-13 -.16-15
12-05 .30-06 -.93-12 .83-12 .95-14 -.12-17 .74-18
31-06 -.92-06 .14-05 .51-08 -.17-10 .25-12 .74-13
15 -.12-02 -.16-12 .32-12 -.20-12 -.36-14 -.14-16

.55-06 .20-06 -.28-12 .25-12 .19-14 -.79-19 .97-19

.14-06 -.41-06 .61-06 .15-08 -.34-11 .32-13 -.92-15

Q-factor = 2/3q+1

C vq)(singular)
6 ̂ (singular)

(nonsingular)

for q > 0

best extrapolant 
in each row

128
2187
.93-03
.18-02
.28-02 256

6561
.14-04 -.43-04 
.51-04 -.17-03 
.57-04 -.24-03
.13-06 -.74-06 
.57-09 .32-05 
.13-05 .49-05
.21-08 -.57-08 
.48-11 -.31-10 
.52-06 .47-06
.86-10 -.38-10 
.82-12 .57-12 
.35-07 .49-08
.40-11 -.11-11 
.11-12 .67-13
.74-09 -.29-08
.12-12 -.12-12 
.62-14 -.31-15 
.23-09 -.20-09
.22-14 -.51-14 
.19-15 -.18-15 
.14-10 -.62-12
.24-16 -.11-15 
.35-17 -.82-17 
.44-12 .39-12
.59-19 -.15-17 
.35-19 -.18-18 
.82-14 .19-13
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INDEX
of frequently used symbols and expressions some of which may have a 

different meaning within certain sections.

Integers
n = number of variables and equations 3

m = dimension of nullspace N of Vf(x*) 3

p = order of determinant function 6

k = order of singularity 21
A

i = degree of singularity 21

Scalar and Vector Functions
6 = determinant function 3
7T = leading term in expansion of 6 6

r = boundary function of R' 9
T*(A) = upper outer density of set A at x* 15
G(x) = smallest singular value of Vf(x) 18
g = Newtonian iteration function 20

gj = leading term in expansion of g 21

0(t) = minimal angle between t and W 45
V(t) = smallest singular value of B(t) 50

<f> (t) = -D minimal angle between t and S n (0) 59
r = boundary function of R 68
tt = homogeneous polynomial 69

Matrices and Matrix Functions
TP = orthogonal projection onto nullspace of Vf (x*) 5

B
C >■ = submatrices of Jacobian in normal form 5
E

G = reduced Jacobian 5
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B = leading term in expansion of B 48

C = leading term in expansion of C 48

Sets and Spaces
-1o (0) = singular set 2

M = nullspace of Vf(x*) 3

B- = ball with radius p1 about x★ 5

R' : starlike domain of invertibility 9

XQ = full domain of convergence 29

W c XQ : starlike domain of convergence 62

R  c X0 : starlike domain of convergence 68

Variables Equations

- singular 5 - singular 5

- nonsingular 5 - nonsingular 5

Directions Domains

- tangential 10 - starlike 10

- excluded 11 - of invertibility 14

- included 14 - of convergence 30

- irregular 17 - of bounded conv. 34
- regular 17 - of contraction 40

Singularities Newton sequences

- balanced 48 - approximate 63

- regular 54 - regular 90

- strongly regular 64
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