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ABSTRACT

For systems of nonlinear equations £=0 with singular Jacobian
VE(x*) at some solution x* € f_l(O) the behaviour of Newton's method
is analysed. Under a certain regularity condition Q@Q-linear convergence
is shown to be almost sure from all initial points that are sufficiently
close to x* . The possibility of significantly better performance by
other nonlinear equation solvers is ruled out. Instead convergence
acceleration is achieved by variation of the stepsize or Richardson
extrapolation. If the Jacobian Vf of a possibly underdetermined system
is known to have a nullspace of a certain dimension at a solution of
interest, an overdetermined system based on the QR or LU decomposition of

VE 1is used to obtain superlinear convergence.
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INTRODUCTION

. . n .
Whenever the Jacobian Vf(x) of a vector function £ : R® > R is

explicitly available, the Newton iteration

-1
. = x., - Vf x.)f(x. 1
xJ+1 5 ( j) ( ]) (1)
is the natural approach to the numerical solution of the system of nonlinear

equations f£(x) = 0 .

If the Jacobian is continuous and nonsingular at some solution point
x* € f—l(O) , the Newton iteration converges to x* from any initial
point X, in a sufficiently small ball centred at x* . The radius of
such a ball can only be given explicitly if the Jacobian satisfies a
known Lipschitz condition, in which case the rate of convergence is not

only superlinear but quadratic.

Locally, the generally good performance of Newton's method can be
impaired by either discontinuity or singularity of the Jacobian at x* .
In this thesis we study the latter contingency under the assumption that

f is at least twice Lipschitz continuously differentiable.

Tf systems of simultaneous equations were generatea at random singularity
would be an extremely unlikely occurrence. However in practice they are
derived from models of some uéually more complex problem in for instance,
science or economics. In this context singularity of some solution x*

(i.e. its Jacobian Vf(x*)) is a distinct possibility and may be quite
instructive With‘respect to the model or the underlying problem. For
instance some of the mﬁdel variables may have been chosen badly or a
relevant functional relation could have been overlooked. Otherwise the
underlying physical or social.system may actually be in some transition

state or at a bifurcation point.



(ii)

Therefore our first aim is to study the behaviour of Newton‘s method
in the neighbourhood of singularities such that their existence and kind
can be inferred from the properties of the iteration sequences generated
by (1). Secondly we attempt to accelerate the generally slow, linear

convergence of Newton's method to singularities by suitable modifications.

Throughout the thesis the emphasis is on the theoretical analysis of
singular problems and prospective techniques for their solution rather than

the development of an efficient and reliable computer routine.

As often in numerical analysis, we expect from the study of the exactly
singular case to gain insight into the properties of systems f=0 which
are nearly singular, in.that the computed values of f are barely
distinguishable from those of some funcfion f for which f£=0 has
singular solutions. Methods which converge fast to exactly.singular solutions
could be used during the intermediate stages of iterative schemes for the
location of nearly singular solutions. Unfortunately this approach has
severe limitations because the currently available classification of
algorithms and the ﬁathematical tools for their analysis are asymptotic in

nature and cannot be applied to the intermediate stage of some iteration.

Except for the scalar case n=1, which has been examined in
considerable detail (for instance in Traub [1]), there are only a few,
comparatively recent results on singular simultaneous equations. It is
mentioned on page 119 in [ 2 ] that a solution =x* , whose existence is
guaranteed if the famous Newton-Kantorovich Theorem applies at some point

X, » may be singular. However this is only possible under the most

extreme conditions. If the theorem applies at x with respect to the

0

Euclidean norm of vectors and spectral norm of matrices, it can be seen

-x*

that singularity of Vf{x*) requires with s = Xg



(iii)

£(x*+Xs) = £(x ) (V/[sh?

Furthermore f£(x;) and s must be at the same time left and right

singular vectors associated with the smallest singular wvalue
-1-1 .
“Vfo " (A/llsll) of the Jacobians

{VE (x*+)Xs) }A»e[ o, sl

and the largest singular values HVf;lH—l(l—K/HsH) of the difference

matrices

{Vf (X*+)\S) - Vf(xo)})\étf) , ”S”]

For all its importance in the nonsingular case we can therefore conclude
that the Newton Kantorovich Theorem is practically never applicable in the

neighbourhood of singular solutions.

Rall [ 3] and Cavanagh [ 4 ] considered the case in which the Jacobian
is singular at the solution x* itself but nonsingular in some neighbour-
hood of x* . 1In this rather special situation Newton's method converges
under suitable assumptions from within some ball centred at x* , as
shown in Theorem 2.4 (iv) of this thesis. In general we must expect,
‘according to Lemma 1.1, that x* is not isolated in the set of points at

which the Jacokian is singular.

The first result under these more realistic conditions is due to
Reddien [ 5 ], who showed the convergence éf (1) from within the intersection
.of some cone with some ball, provided x* is a regular first order
singularity as defined in Section 2.1 and Theorem 1.6. Actually Reddien's
assumptions were considerably stronger in the finite dimensional case, but
his result applies also to differentiable operators between Banach spaces.
In this thesis we will always assume that the number of equations and

variables equals some fixed integer n
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(iv)

An important aspect of Reddien's result is the departure from the idea
that convergence must be established from within some ball about the

solution x* , which is in general impossible in the singular case.

In Section 1.2 we introduce the concept of a starlike domain centred at

x* , which includes balls, cones and the interior of polytopes in the sense of
Householder [ 6 ] as special cases. The density of such a starlike

domain A aﬁ x* is givén by a real number T*(A) ¢ [0,1] , which can

be thought of as the probability that a point, which is "very" close to

x* , belongs to A .

In Chapter 1 we examine the general properties of the determinant
function det(V£f(x)) and the Newtonian iteration function x-Vf—l(x)f(x)
on the starlike domain R' in which the Jacobian is nonsingular. This
analysis leads to the definition of the order k € N and the degree
26 {1,0,-1,...} of a singularity. Depending on the degree we obtain
bounds on the density of domains of convergence, domains of bounded
convergence, and domains of contraction, respectively (Section 1.4). The
analysis of Chapter 1 indicates that only singularities of first degree

can be located by Newton's method in a reasonably stable fashion.

In the firs£ Section of Chapter 2 we introduce the concept of balanced
and regular singularities, which are necessarily of first degree but may
have any order k ¢ W . As a dgeneralisation of results by Reddien in
[5,7] and Decker and Kelley in [8,9], we establish in Segtion 2.2 O-linear
convergence to any regular singularity from within some starlike domain
W c R' . Then we show in Section 2.3 that the first step from within some
starlike domain R c R' with density 1 leads into ( and thus to
convergence to 'x* . Parallel to these developments we establish, under

the assumption of strong regularity, Q-linear convergence of approximate

Newton sequences.
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Before discussing modifications of Newton's method, we observe in

Section 3.1 that any nonlinear equation solver, that is Lipschitz continuous

in the vélues of £ , converges at best R-sublinearly to x* from all
initial points within some starlike domain with density "1 at x* . In
view of this result the performance of Newton's method in the regular case
seems quite acceptable and its convergence can be considerably accelerated
by variatioﬁs of stepsize (Section 3.3) or extrapolation (Section 4.1).
In the final Section 4.2 we consider the case where, the_Jacobian of some
possibly underdetermined nonlinear system

+ L]
£(x) =0 with fe® " -»>®"

’ -1
has a nullspace of known dimension at a solution x* ¢ £ (0) of interest.
This kind of problem can be solved quite efficiently by bordering based

on the QR or LU decomposition of the Jacobian.

Test calculations with all discussed methods on a family of singular

problems in three variables are reported in the Appendix.
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NOTATION AND TERMINOLOGY

With the exception of the integers W and the reals IR sets are
denoted by script capitals. The characters 1i,j...q represent integers.
ix
m} . denotes the set of real iXx{% mat:ices, which are represented by

Roman capitals. Vectors are denoted by small Roman letters and scalars

usually by small Greek characters but sometimes also by small Roman letters.

The sequence of iterates generated by some iterative scheme is usually

n

denoted by {xj} ¢ R The components of x e R® occur almost

j=20
exclusively in the examples and are written as x==(£,C,n)T if n=3 and

x==(€1.52...£n)T otherwise.

.' Q,
For any two open subsets U g]Rl and V cmr the linear space of
all functions, that have a continuous g-th Frechet-derivative in x € u

is denoted by

ctw,vy.
We will usually assume that the Frechet derivatives are locally Lipschitz
continuous (i.e. Lipschitz continuous in some neighbourhood of each xe )

and denote the corresponding subspace of C3*(U,V) by

¢, v
In order to avoid ambiguity of superscripts we use the symbol v9h to
denote the g-th derivative tensor of h ¢ Cq(U,U) . Repeated multiplication
of V9n from the right by some column vector v eimi is defined such that
for fixed x eIRi and gq =2 Ag e W
aha

——--Vq_Aqh(x+Av) = th(x)qu = th(x)v V...V .
dqu A=0 —
. hg

In particular we consider the expressions

2

Vhvd e ' ana v3h(x)vd! e RV
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as a column vector and a £Xi matrix respectively.

Unless otherwise specified ||*|| will always denote the Euclidean
. . n
norm for vectors and the spectral norm for matrices. For fixed x* € IR
the elements of R" are frequently written as x=x*+pt , where

p=|x-x*|| and t is an element of the unit sphere
S = {ter" | |tf=1} .

Given a particular converging sequence xj = x*+pjtj -+ x* and some real

valued function h on a domain that includes {Xj}j>0 we abbreviate

h=0(pY) if 1lim sup lh(x.)lpTz <
3 Sorco 3773
and
h = o(p?) if lim sup |h(xj)|pgl =0

je
The same notation is used for vectors, matrices or tensors, whose entries

are real valued functions which satisfy either condition for the same & .
A real valued function h on some domain of the form
D 5‘{26351| z=0 or z/|zlleT} with T ¢S
is said to be homogeneous with tbe degree of homogeneity i e N if
h(Az) = Aih(z) for all z e D and XA > 0.

Each homogeneous function has a unique degree of homogeneity except for the
trivial function which is homogeneous of any degree. A real bolynomial in
n variables is homogeneous if and only if each nontrivial term in its
expansion has the same degreé i . Vector- , matrix- and tensor valued
functions are said to be homogeneous if all their entries are homogeneous

with the same degree of homogeneity.
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Rates of convergence are described in the framework of Ortega and

Reinbold [10] and matrix related terms are used in agreement with Stewart

[11].

Within each of the four chapters the equations are numbered
consecutively from 1 to ca.60 and referred to accordingly. For cross
references between chapters the equation number is prefixed by the chapter

number, e.g. (3.4) refers to the fourth equation in chapter 3.

Frequently used symbols and expressions are listed in the Index.



CHAPTER 1

GENERAL RESULTS ON NEWTON'S METHOD

AT SINGULARITIES

1. The Determinant Function in the Neighbourhood of a Singularity

As a polynomial in the entries of the Jacobian Vf the determinant
function det(Vf(x)) is one time less differentiable than f itself.
The determinant function has no particular structure and could be any
scalar function that is as often diffexentiable as the Jacobian is known

to be. To see this we define for any scalar function
1,.n
8(x) = 8(E,,E,,--E) € CH@®™

and arbitrary x* , f£(x*) ¢ R" the vector function

,

€ ] -
J* G(E,Ez,..ﬁn)dﬁ
&1
£(x) = £(x*) + £, - & ' (1)
L En - En
so that
fé(x) ngimga £ )aE Jg‘—a—m& £ )dE
E;‘ag 2 n E:; agn 2 n
VE(x) =

\ J

which implies

det(VE(x)) = 6(x) for all x ¢ R" .



Consequently the singular set
§1(0) = {xeR" | §(x) = 0}

in the neighbourhood of a singular solution or singularity
x* ¢ £(0) n 81(0)

can have a rather complicated structure,even if £ is highly differentiable

and x* 1is an isolated solution.

k+1

Consider for instance with some k 2 1 the function f e C GRnJRn)
as defined by (1) with
£(x*) = 0 and §(E E) = £ (E5 sin )2 . (2)
1777 ""n 1" 3

1

It can easily be seen that the singular set consists of (n-1)-dimensional
hyperplanes,K of which countably many intersect with any neighbourhood of
the unique soclution x* . This peculiarity cannot occur if the

determinant function has an expansion of the form

§(x) =y (x=x*) + o(flx-x*[[P") (3)

OO0
where T, € C GRn) is a nontrivial homogeneous polynomial of degree p 2 1.
The unique polynomial T, is simply the leading term in the Taylor
expansion of § at x* if § is nontrivially differentiable in that

not all its existing Lipschitz continuous derivatives vanish at x*, as

they do in the example defined by (2).

LEMMA 1.1 Arbitrariness of Determinant Function
If § € ClﬂRn) .has an expansion of the form (35 at x* ¢ R then
there is a.vector—function f e ClGRnJRn) such that x* 1is an isolated,

singular solution of f and



det(VE(x)) = 8(x) for all x e R .

Proof. since T, 1is by assumption nontrivial there is a vector v e R
such that ND(V) #0 . Assuming without loss of generality that v is

the first Cartesian base vector we see that the assertion is true for £

as defined by (1) with £(x*) =0 . ‘ /4

In general we do not impose the condition that & is nontrivially
differentiable,as this need not be the case when rank(VEf(x*)) < n-1 even

though the singular problem may be otherwise well defined.

From now on we consider a given (k+1) > 2 times Lipschitz

k+1,1aRnﬂRp) whose

continuously differentiable vectorfunction £ ¢ C
Jacobian Vf has a nullspace N of dimension m > 0 at a solution point

-1 k,1
x* ¢ £ (0) and the determinant function & = det(Vf) ¢ Ck' aRn) .

Newton's method has the important and well known property that it is
essentially invariant not only with respect to nonsingular linear
transformations on the range of £ [12], but also with respect to
nonsingular affine ones on the domain of £ . With A , B nonsingular

nXn matrices: and y a vector in R we find that the transformed

system
£(y) = Af(y+B(y-y)) = 0
generates from some y, eR" a Newton sequence {yj}jZD with
= vE T (v ) E(va)
Vi1~ ¥y 33
which is parallel to the Newton sequence {Xj}j>0 with



in that for all j 2 0
X. =y + B(y.-y
5 Yy Y] Y)
provided this is true for j = 0 .

Wwith VE(x*) =u L v, UTU =I=vVvv, I =diag(0,0,..,0 .0)

m+1’ " " Tn
the singular value decomposition [11] of the Jacobian at the singularity

T
x* we may choose A = U and

so that

P _ _ 10,0
VE(y*) = AVE(x*)B = 0.1

14
"“n-m

-1

where y* =y + B (x* - y) .

Provided the ratio on/cm between the largest and smallest

+1
nonvanishing singular values is of moderate magnitude as we will assume,
the conditioning of the problem is essentially unchanged. Furthermore

T
the Euclidean norm of f 1is preserved as A = U is orthogonal, so that

statements about the reduction of residual norms during line searches

apply equivalently to f and £ .

Throughout the thesis we can therefore assume without loss of

generality that f itself is in normal form at x* in that

Vf(x*) =I -P and N =" x {0}"™, (4)



where P 1is the orthogonal projection from R" onto the nullspace of
the transposed VfT(x*) . In some proofs we set x* = 0 +to simplify the
notation even further. However all major results are stated in general

terms such that they apply directly to nonnormalised cases as well.

With Vle and Vlel the restrictions of Vf to the nullspace N

and its orthogonal complement respectively we can partition the Jacobian

as follows:

T
B, C PVE| PVf]Nl
VE = = ,
D, E (I-P)Vle , (I—P)Vlel
where at the singularity
B(x*) = C(x*) = D(x*) =0 and E(x*) = I . (5)

Loosely speaking,we may consider the first m equations to be the
singular equations as their Jacobian (B,C7) vanishes identically at
>x* and the first m variables to be the singular variables since none
of them enters linearly into any of the n equations so that the
corresponding components of x* are in some sense weakly determined;
Applying the implicit function theorem to the n-m remaining
nonsingular equations, we can theoretically eliminate the iast n-m
nonsingular variables to obtain a new system of m equations in the first

m variables with the reduced Jacobian
- T -1 ,
G(x) = B(x) - C (X)E (x)D(x) . (6)

Since E(x*) = I, the reduced Jacobian is well defined and. k times

. Lipschitz continuous differentiable in some ball Brb of radius Ty > 0

about x* . ‘Because of the elementary identity



S(x) = det(G(x))def(E(x)) _ (7)

G determines when the full Jacobian is singular,which leads to the follow-

ing result.

LEMMA 1.2 Polynomial Expansion of Determinant Function
Let f ¢ Ck+1'laRnJRn) have a singularity at x* ¢ f—l(O) n 6—1(0)

and be such that

k+m
) .

§(x) # o(|lx-x*| (8)

Then

(i) There are maximal indices p ¢ [m,k+m-1]1 and Ap € [k+m-p,k]

such that

Ap-1
6(x) = ) Ty (x=x%) + O (||x-x*]]
i=0

pHip, (9)

where the w;, are homogeneous polynomials of degree p+i and T, is

nontrivial.
(ii) The discrepancy Am = p-m 2 0 is zero iff +the linear operator
’PVZf(X*)Y!N : N> p@")

is nonsingular for some y e R" , which implies that for some constant

a#0 and all y e R
T (y) = o det (BVAE(x*)y|,)

where the determinant on the RHS 1is calculated with respect to two

orthonormal bases of the domain N and the range PGRn)



Proof. Since Vf has a k-th Lipschitz continuous derivative and

E(x*) = I, there are Taylor expansions
k k+1
E(x) = I + X E (x-x*) + O(Hx x*|
i=1
and
E k+1
G(x) =G, + z G (x-x*) + O(]|x~x*|| ,
i=1

where the entries of the matrices E, and Gi are homogeneous polynomials
i .

of degree i in (x-x*) ¢ R® . The constant G, is zero by (5) so that
k k+1
det(E(x)) = det(I+ ) E, (x-x*)) + O(”x—x*”
i=1
and
k m+k |
det(G(x)) = det( ] G, (x-x*)) + o([lx-x*| (10)
i=1

o ([lx=x*[™

Here we have used the fact that det(G(x)) is a sum over products of m

entries which are all at least linear in (x-x*) . By assumption (8) the
polynomial
k k k+m
det (I+ ] E,(x-x*))det( ] G, (x-x*)) = 8(x) + O([lx-x*]|
i=1 i=1

must involve terms of order less than m+k which can be ordered to form

the expansion (9).

(ii) Using again the Taylor expansions of E and G, we derive that

S (x)

[det (G, (x-x*)) + O(Hx—x*”m+1)][1+O(Hx—x*”)]

det (G (x-x%)) + o(fx-x*|™") ,

which implies p =m iff Gl(y) is nonsingular for some vy € R .



Sinceboth C(x) and D(x) vanish at x* we have G(x) = B(x) + O(||x-x*||?)

so that the linear term in the Taylor expansion of G is given by
G, (x=x*) = VB(x*) (x-x*) = PV2£(x*) (x=x*) |

which completes the proof with O # 0 allowing for the initial

transformation of the problem if it was not in normal form originally. //

From now on we will always assume that (8) is satisfied so that (9)
has at least one meaningful term. This may be of order k+m-1 and is
thus not necessarily giVen by the Taylor expansion of the only k times

differentiable determinant function § .

2. The Starlike Domain of Invertibility R’

In the one dimensional case n =1 we have §(x) = df(x)/dx so that-

whenever f is nontrivially Lipschitz continuously differentiable

) ,
£(x) = J ﬁTJl)yp + oty® ) ay

x*

m, (1)

+
(x-x*) P71 4 O(lx—x*|p+2) ,

p+l

which means that x* 1is an isolated point in both the solution set frl(O)
and the singular set 87'(0) . Furthermore by Theorem 7.2 in [1 ] for
s = 1 there is an open neighbourhood of x* from where Newton's method

converges linearly with Q-factor p/(p+l) to x*

In the more interesting cases with n > 1 it follows from the mean
value theorem that x* is isolated in 6—1(0) iff § attains an isolated
extremum at x* . This strong assumption was used in earlier work by
Rall [ 3 ] and Cavanagh [4], but as we have seen in Lemma 1.1 there is in

general no reason why it should be satisfied. Whenever the singularity



x* is not a priori known to be an isolated point in 6_1(0) we may ask
for which points in its neighbourhood we can guarantee that they do not

belong to the singular set.
From now on we will frequently write the elements of R" in the form
X = x* + pt ,
where p = [[x-x*|| and t belongs to the unit sphere

S = {teR" | [tf=1}

of  directions in R . Because of (9) there are constants r, <0 and w>0
such that for all x e¢ R with p < ry
P p+1
|60 - pom ()] < wpm , (a1

which implies that the Jacobian is nonsingular at all points in the open

set
R' = {x*+pt | teS,0<p<r(t)} , (12)
whgre r is the nonnegative continuous function
r(t) = min{rb ,%-lﬂo(t)|/w} ' (13)
from. S to R.
Any open set A g:mﬁ which like R' has the property
xe A= (l—A)x‘+ Ax* ¢ A for A e (0,1) (14)

will be called a starlike domain centred at x* . It should be noted
that in contrast to the usual definition of star-shaped domains in complex

analysis, the central point x* does not in general belong to A . The
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concept of a starlike domain is clearly invariant with respect to affine
transformations,but not necessarily with respect to nonlinear ones. This
seems appropriate as the same is true for the concept of a singularity of

a system of equations.’

As an immediate consequence of the defining condition (14), we note
that finite intersections and finite or infinite unions of starlike domains
with the same central point are starliké too, so that there'areAmaximal
starlike domains with respect to certain properties of their points. 1In
order to characterise the maximal starlike domain contained in some open

set we use the notion of tangential directions or tangents.

, . . . n
An element s ¢ S is said to be tangential to a given set A c TR
at some point x* if there is a sequence {yj}j>D c A - {x*} such that

ya-x*

. > x¥ and = > S
Y3 =g

It can be easily seen that s ¢ S is not tangential to A iff there

are constants 0 > 0 and p > O such that
{x*+pt l teS,cos_l(th)<6,0<p<5} nA=4g.

Consequently the set of tangents of A at x* is closed in S for any
A g;mp . Now we can give the following convenient characterisation of

starlike domains and subdomains.

THEOREM 1.3 Starlike Domains and Subdomains

Let A be an open set and x* a point in IR . Then

(i) The nonnegative boundary function

~

0 if t is tangential to ®R™-A at x*
a(t) = (15)

sup {p | {x*+pt} A}  otherwise

- C
0<p<p
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from the unit sphere S to TR U {*} is lower semicontinuous, and the set

A = {x*+pt | teS,0<p<a(t)} | (16)

"N

is the maximal starlike domain centred at x* and contained in A .
(ii) The set of ‘excluded directions
a”t(0) = {teS | An{#*+pt}p>o = ¢} (17)
equals the set of tangents of IBP—K at x* and is closed in S .

(iii) Any starlike domain contains a starlike subdomain with

continuous boundary function and thevsame set of excluded directions.
Proof. Firstly we show (ii) with a defined by (15) and A by (16).
(ii) The identity (17) follows immediately from (16). Since

sup{p | {x*+pt}o<p<5cz} =0

implies the existence of a sequence pj > 0 with x*+pjt £ K, any direction
in a-l(O) must be tangential to R -A . The converse holds by
definition of @ . The fact that a"l(o) is closed follows either from

it being a set of tangents or the lower semicontinuity of a which will

be established next.

(1) Suppose a ié not lower semicontinuous at some t e S .
According to the equivalent definitions of lower semicontinuity given on
page‘éd in [13] there must be a sequence of directions tj + t with
a(tj) - a‘< att) . Since a is by definition nonnegative this can only
be the case if a(t) > 0, and consequently t itself and all but finitely

many of the tj are not tangential to ,RP-K at x* . Then there must
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be a sequence of positive numbers ej =+ 0 'such that at most finitely many

points of the converging sequence
X. = x* + (a(t.) + e.)t. > x* + gt
] (a J) J) J

~

belong to K . This contradicts the openess of A since o must be

positive so that x* + ot e K, as otherwise t would be tangential to

n 4 . . .
R -A . Thus a is lower semicontinuous.

Any set of the form (16) does obviously satisfy (14), so ﬁhat only the
openess and maximality of A remains to be shown. For any converging

sequence
X, = X* + p.t, > x* + pt e A
j 3% e
the semicontinuity of @ ensures

P, > p < a(t) < lim inf a(t.) .,
] 300 ]

so’ that all but finitely many of the Xj must belong to A  which is
therefore open.

Now consider any other starlike domain A ¢ A  with the boundary

function
aee) = sup{p.l x*+pteA) .

For'any t that is not tangential to r" - K we derive from (15) that

~d(t) <a(t) . For any other t € S there exists a sequence
{x*+p:t.}._ c®® - A
p] J 3207

with pj - 0 and tj + t, so that by the lower semicontinuity of &
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a(t) € lim inf d(t.) < lim inf p, = 0 .
oo ’ oo

Consequently the directions tangential to Rr°-A are excluded from all

. A
starlike domains contained in A and A is maximal.

(iii) Since the intersection of a starlike domain with any open ball
about the central point is starlike too,we may consider without loss of
generality a starlike domain A of the form (16) with a4 < 1 . With the

convention min(g) = 180° the angle

- -1
L min{cos™ (tTs) | seSna Tt (o)} < 90°

o(8) = 3

. ' . . s . -l -1
is a nonnegative continuous function from S to R® with $ (0) =a (0)

The starlike domain defined by the boundary function

a(s)
1-cos™ ' (s t) /4 ()

a(t)y = inf{ seS,cos_I(th)<¢(t)}¢(t)/90°

is obviously contained in A and it can be shown tﬁat a4 1is continuous
aé required. However the proof is rather tedious and we prefer a less
constructive approach based on partitions of unity as described in (14].
According to Reﬁark 2.1.4 in that book the C  submanifold S-a"'(0) of

S is paracompact -and has therefore,by proposition 1.2.1, a locally finite

cbvering {Ui}ieI such that
S -a’t(o) = UV, | iel} ,

closure(Vi) cS - a-I(O) for all iel, (18)

<<
i

and each t has a neighbourhood in S-—a—l(O) that is disjoint from all

but finitely many of the Vi .  Furthermore there exists by Theorem 2.2.14

a family of functions called a partition of unity

o -1
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such that
n,; 20, n(t) =0 if téV,,
and

2 n.(t) =1 for all te S -a (Of
iel *

Since lower semicontinuous functions attain by proposition 2.10 in [15]

minima on compact subsets of their domain we have by (18) for all i e J
a, = minfa(t) | tell,} > 0 .
i i

Now it can be easily checked that

a(e) = J an(t) saly) <1
ied
-1 A
is a continuous positive function on S -da4 (0) . Since a is bounded

the boundary function

0 if tea (0

@(t)¢(t)/90° otherwise

is continuous on S and defines a subdomain of A with the same set of

excluded directions a-I(O)

By construction R' is a starlike domain of invertibility, i.e.
a subset of B{‘—S—I(O) . We know from Theorem 1.3 (ii) that the full
domain of invertibility B{}—G—I(O) contains a maximal starlike subdoméin
at k* with corresponding minimal set of excluded directions which equals
the set of tangents of 6—1(0) at x* . In constructing starlike domains
with some particular property our main aim is to keep the set of excluded
directions as small as possible. The actual values of the boundary function
at included, (i.e. not excluded) directions depend on the magnitude of

higher derivatives as well as technicalities of the mathematical derivation
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and therefore are considered to be of lesser importance.

To justify this approach we define for an atbitrary set A gimp its
upper outer density at x* as
* =13 * - - '
T*(A) = lim sup Ln (Aan)/Ln(Bp) e [0,1] . (19)
00
Here L; denotes the outer measure induced by the n-dimensionél Lebesgue

measure Ln such that for any subset C EJRn
L;(C) = inf{Ln(a) l ¢ is measurable and'contains ct .

Thé concept of upper outer density was taken from [16] where hypercubes
arevused instead of the balls BB . Since we are only interested in the
upper outer density of sets at the singular solution point, the explicit
reference to x* will sometimes be omitted. Without using the correspond-
ing concept of lower outer density,we refer to T*(A) as the outer
density of A if the limit superior in (19) is in fact a limit. This
must always be the case if 7T*(A) = 0 . If A is measurable the outer
measure of A n 35 reduces to tﬁe proper Lebesgue measure and T*(A) will
be referred to as the upper density or density of A respectively.

In the latter case T*(A) can be interpreted, loosely speaking, as the
probability that a given point,which is very close to x* belongs to A .
Starlike domains are measurable as they are open and have a well defined
density at their central point which is completely determined by the set of

excluded directions.

LEMMA 1.4 Density of Starlike Domains at x*

(i) The density of a starlike domain A with boundary function

a : SR is given by

=1 - -1
™A =1 -L @ o)/ _ (S .



16

(ii) If A has a density at x*, then

R -A has the density 1-T1*(A) ,
AnC=g=1+xC) < 1-1*(A)

where C may be any subset of Rr" .

Proof. By Fubini's theorem [16] we can obtain the measure of A085
by inteqrating over the intersections of A with spheres of radius < 5

so that

p
-y = * >
Ln(Aan) L) Lo {x*+ot | teS,alt)>p}ap .

Changing the integration variable from p to U = p/p and expanding the
spheres by a factor of 1/p, we find

L (AnB-) = pn J L {x*+ut | teS,alt)>upldau .

n o] 0 n-1
With Ln(BE) = EnLn(Bl), we derive from the Lebesgue Dominated Convergence

Theorem applied to the characteristic functions of the sets in the

integrand
1l
T*(A) = J lim [ {x*+ut | teS, a(t)>UD}du/L (8))
‘ p>o
1 i .
_ J WV lan L G | eeS-a7H(0) )/L(B))
0
=1l @-L @ron| /LB
" n n-1 n-1 / n 177
v
which completes the proof of (i) as we must obviously have T*(A) =1 if
a o) =g .

(ii) The complement r" - A is also measurable so that

* n — _ - -
LECCRA) nBo) /L, (Bp) = 1 = L (AnB2)/L (Bo)
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which gives for p =+ 0 the limit T*(R -A) = 1 - T*(A) . The second

assertion is an immediate consequence as by definition of the outer measure

n
L;(CHBE)/Ln(Ba) < Ln(GR —A)nBB)/Ln(Bﬁ) . /4

By definition of r in (13), the set ¥ '(0) of directions that are
exclﬁded from R' is the solution set of the restriction‘of the nontrivial
homogeneous PolYnomial T, to S which is a nbntrivial analytic function
on the smooth manifold S . As stated on page 240 in [17] the solution
sets of nontrivial analytic functions have zero Lebesgue measure so that

1 .
Ln_l(f (0)) = 0 . Now we compile the properties of R' in the following

lemma.

LEMMA 1.5 The Starlike Domain of Invertibility R'
Under the assumptions of Lemma 1.2 let r and R' be defined by (12)
and (13) respectively. Then

(i) The starlike domain of invertibility R' includes the set of

=1
0

regular directions S' = § - m_'(0) and excludes the set of irregular

directions

- -1

£ (0) = {teS | R'n{x*+pt}p>0=¢} =Snm (0

which has Lebesgue measure zero in S

(ii) R' 'has density 1 at x* and any set in its complement

. -1 '
R -R' , in particular the singular set & (0) , has outer density zero.

(iii) At any irregular direction t ¢ ﬂgl(O), that is not tangential

to the singular set 8_1(0), the polynomial L attains a local extremum.

(iv) The smallest singular value 0o(x) of Vf(x) satisfies
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o (x*40t) = 0(p™’™ for all t e S

p/m ' -1
O(x*+pt) = o(p"’' ) for all t e T, (0)
gix*+pt) = o(pAm+l) implies t e WZI(O)

Proof.
(i) has already been established. (ii) follows from (i) by Lemma

1.4. For the proof‘of (iii) assume x* = 0 .

-(iii) Suppose T, (t) = 0 is not a local extremum. Then there must be

. - + .
sequences {tj}j21 and {tj}j21 in S such that

- N _ +
lim t, = lim t, = t and Wo(t.) < 0 < wD(t,) for all j .
j-oo J ]—m J ] ]

Because of (9) there must be a sequence of multipliers {pj}j>1 < IR 'such

that
§(p.t7) <0< 8(p.th
3 i3
which implies by the meanvalue theorem the existence of wvectors

- +
.= pLlo.t.+(1-a.)t. , O 0,1
Yj D] 5%5 ( 3) ]) 3 e ( )

with 6(yj) =0 for all j = 1 . Since the yj/pj are convex combinations
of the t; and t;, we must have
Lim yo/llysll = &
Joeo
-1 - '
so that t 1is tangential to § (0) . Consequently any t ¢ ﬂol(o)v that

is not tangential must be a minimiser or maximiser of m, .

(iv) Since all but the smallest m singular values of Vf are non-

zero at x*, we derive from (9)
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0(0®™  for teS

/m

O (x*+pt) = O(S (x*+pt) /™) =

o(pp/m) for toe W;l(O)

Applying Lemma 1.2 (i) to the minors of the Jacobian Vf which are the

entries of the adjugate adj(VfT), we find that

adj (VE(x*+pt)) = o(p™ )

L4

since the nullspace of any minor at x* must have a dimension greater

than or equal to m-1 . Now we obtain by Cramer's rule for regular t e S’
-1 -1 .
O (x*+pt) = [[VE " (x*+pt) |
. -Am-
= |la@jVE (x*+pt) || / |8 (x*+pt)| = o(p ™}
. . Am+1
so that any t € § must be irreqular if O(x*+pt) = o(p

) . -

Since nontrivial homogeneous polynomials are unbounded and all their
stationary points have zero value,it is quite likely that they have no
extrema besides possibly the origin. In this case the set of directions
excluded from R' is minimal, so that the boundary function of the maximal
starlike domain of invertibility differs from r only in size but not in sign.
I1f there are irregular directions t at which T, attains an extremum, we
could theoretically enlarge R' by including either t or -t, provided
m exists and ﬂl(t) # 0 . However such extensions seem of little use and

would complicate the analysis of Newton's method significantly. When p=m

or m=1, Lemma 1.5 (iv) implies

p/m)

-1
o(x*+pt) = ofp e tem (0),

so-thét the irregular directions are exactly those along which the Jacobian

is particularly illconditioned unless m=n in which case it wvanishes
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completely at x* . Thus we can conclude that we do not lose much by
confining our analysis of Newton iterations in the neighbourhood of x*

to the starlike domain R'

3. Rational Expansion of the Newtonian Iteration Function

The convergence of some iteration xj+1 = g(xj) to a fixed point x¥*
is frequently demonstrated by showing that the <iteration function g has -
in the neighbourhood of x* a Jacobian with spectral radius less than 1.

In our singular case such a contracting linear approximation to the

Newtontan iteration function
g(x) = x - VE 1 (x) E(x) (20)

does not in general exist,since g is undefined in the singular set 6_1(0)
and usually unbounded on its domain R - 6_1(0) . Using again the adjugate

adj(VE(x)) , we can write

fl

[§(x) (x-x*) - adj (VE (x)T£(x)) /6 (x)

g(x) - x*

adj (VET (x)) [VE(x) (x-x*) - £(x)1/8(x) .

Under the assumptions of Lemma 1.2, the matrices and vectors in the
numerator as well as the scalar ¢&{(x) in the denominator have Taylor like
expansions in terms of (x-x*) . Hence we can approximate g(x) - x* in
R' , where it is well defined, by some form of rational expansion as

developed below.

THEOREM 1.6 Rational Expansion of Newtonian Iteration Function

Under the assumptions of Lemma 1.2 let g be defined by (20). Then

(i) There are Ap =2 1 vector functions
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u € C®@RY)  for i=1-fm, , Ap-im

whose components are polynomials such that the rational vector functions

= /ﬂi+Am
9; = 43/M,

oo -1
e C @, (0) ")
are homogeneous of degree i, and for all x*+pt € R'
Ap-Am Ap-Am+1

lgtx*+pt) - x* = )  plg.(v) <y
1

(21)
i=1-Am |, (€)

|Ap+1"

where 7Y 1is a suitable positive constant.

(ii) There is an index k e [1,k] such that

pV¥*le(x*) # 0 and PVIE(x*) =0 for qe [1,k],

which will be called the order of the singularity.

(iii) The degree of the singularity, i.e. the lowest index i for
which u, and consequently gs are nontrivial, cannot be greater than 1,
1 i ’

and gi(t) belongs to N for all t e S'

(iv) For any regular t the vectors 9, = gi(t) solve the block

triangular Toeplitz system

. ’ f
A, 0L Lo L L 0) 9 Am ) o )
A, A . . ‘ :
2 1 . . g2—Am .
A,A,A . . :
3 2 1 . .
. g 0
. . . 0 = v (22)
. .- . . 9, 0
: 1
- . gz 2A2t
. . .. 0 . :
A A Al 2-1
| 2ap r By By By L 9 ) A

where £ = Ap-Am vaﬁd Ai = Ai(t) = Vif(x*)ti-l/(i—l)!
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v T T T __neq :
(v) If the vector (yl—Am'Yz—Am”"'yq-Am) e R solves the first

g € Ap "rows" of the linear block system (22) for some regular t ¢ S’

then its first gq-Am-1 component vectors must be correct in that
y; = gi(t) for i=1-Mm,...,g-20m-1 .

Proof.
(i) Note that Ap > 1 by Lemma 1.2 (i). Deviding (9f by oP, we
obtain for x = x*+pt # x*
bp-l A
s(xr+pt)/oF = | p'm (t) + 0(p"D) . (23)
i=0
Because of (11) and the definition of r in (13) we have for x = x*+pteR"

the lower bound
|stxrrot) /0P > 2 |mp (o] (24)

There is a unique polynomial of the form

Ap-1 ﬂ
vix*+pt) =} pjvj(t)
J=0
such that for any reqular t
Ap-1 |
v (x*+pt) Z pjﬂj(t) =1+ o<pAP) ' - (25)
3=0

where the remainder on the RHS is usually not uniform in t € S8' . Since
the ﬂj are homogeneous polynomials of degree (p+j), we can show by
induction that the vj are of the form Ej/ﬂg+1, where €. is a
homogeneous polynomial of degree j(p+l) . This is true for j=0 as
obviously Vg, = 1/1T0 . Now suppose the assertion holds for all qe {0,3]

with j 2 0 . Identifying terms in (25), we find the recurrence
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vj+1 o (qu J+1'qvq)/n°
j .
~ q+2
o qzo "341-q% e
3

1]

I
—
o~

J-qy - 3+2
g=0 JTj+1—q€qﬂo )/ﬂo

Each term in the sum has the same degree

(3+1-gq+p) + ql(p+l) + p(j-q) = (p+l) (§+1) ,

so that they add up to a homogeneous polynomial €,

341 of degree

(p+1) (3j+1) as asserted. Since Tr is continuous on the compact domain S
it must be bounded,and there is a constant Y, 2 0 such that for all

x*+pt € R*
Ap
[vixr+ot) | < v, /|my(0) ]
Multiplying (23) by V(x*+pt) we obtain for some Y, > 0
P 1 Ap
[vix*+0t) 8 (x*+pt) /0P-1] < 5 v, (/T (£N)7F .

After division by 6(x*+pt)/pP we obtain by (24) for p < r(t)

A

|0F/8 (x*+pt) = v(x*4pt) | < (v, /7 (£)) (o/m (EN)F | (26)
Applying Lemma 1.2 (i) to the entries of the k times Lipschitz
continuously differentiable adjugate, we derive the expansion

T m-1 kol k
adj (VE (x*+pt)) /p" = ] pIF,(t) + 0(p"). | (27)
j=o

where the entries of the matrices Fj are homogeneous polynomials of
degree j+m-1 in t € S . As a consequence of (ii) at most the first Am

can vanish identically. However this fact is

matrices F.i.
‘{ j}]=0,...,Am-1
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not needed in this proof; With Aj as defined in (iv), we find the Taylor

expansion

J k+1 -
OVE(x*+pt) t - £(x*+pt) = ) pj(lw%)Aj(t)t + 0(p%* (28)
so that
k-1 %
VE(x*+pt)t/p - £(x*+pt)/p? = ) p3vj(t) +0(p") ,
3=0

where the components of the vector function

= 3+l
Vj(t) = 312 Aj+2(t)t
are homogeneous polynomials of degree 3j+2 in te S . Multiplication of

(28) from the left by (27) gives for x = x* +pt # x*

k-1

[0 8 (x)-aa3 (V€7 ) €01 /0™ = ] pw (o) + 0005, (29
j=0 '
where the vector functions
3
wy () = ) F (B3 g ()

g=0
are homogeneous polynomials of degree j+m+l in t ¢ § . Since by
definition (20) for x = x*+ t € R'

m+1
g(x*+pt) - x* =

o1~0m 06 (x) t-adj (VET (x)) £(x)1/p
8 (x) /pP

equation (21) follows from (26) and (29) with

(h
——

q
X V.w .]ﬁq+1

uq+1—-Am 0

for g=0,...,Ap-1

1
——

q .

Y oead Iy |

= 0 q-]
Since each term in the sum has the degree

j(p+l) + (g-3)p + (g-j+m+l) = q(p+l) +m+1,
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their sum is a homogeneous polynomial of degree g(p+l)+m+l, so that with

i = g+1-Am the rational vector function ‘gi = ui/ﬂ§+Am is homogeneous
of degree
(i+Am-1) (p+1)+m+l - p(i+Am) = i
(ii) We have to exclude the possibility
Pqukx*) =0 for gq=1,..k+¢1 (30) -

which would imply G(x) = o(pk+1), so that by (7) &(x) = 0(pm(k+‘z))

which

contradicts assumption (8).

(iii) The hypothesis that the {gi}. Qanish identically in

ie[1-Am,1]
t € S' will be shown by induétion to imply (30), which hes been ruled out
in (ii). If (30), which is obviously true for g = 1, holds for all

g €£i=21 we obtain,multiplying the (Am+l+i)-th "row" of the linear

system (22) from the left by P,

i .
1 .
o= 1 PAq(t)gz+i--q = 11 PRint
g=1
i i+1 i+1
= e— *
nTey fxnt

Since this identity holds for all t € S' which is open in § we must

have PV T E(x*) = 0 .

The second assertion in (iii) is a consequence of the linear system

(22) whose (€+Am)—th "row" reads simply A1gi =0 .

(iv) Based on the expansions (21), (28) and

k
VE(x*+pt) =
3

1. -
pj-lAj(t) + o(p"

I o~ 4+

1
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the linear system can be obtained by identifying terms in the equation
VE(x*+pt) (g(x*+pt) -x*) = PVE(x*+pt)t - £(x*+pt) .

(v) Obviously we must have

‘ qhm -Am+1
Vf(x*+pt)(g(x*+pt)-—x* - Z ¢] yi)’= O(Dq )
i=1-Am

so that by Lemma 1.5 (iv) for regular t with (21)

g-Am .
g-Am+1

p (g -y + 0T

i=1-Am :

g-24m

) = 0¥,

which implies g, = y; for i=1-Am,...,q-2Am-1 . Y//4

The order ‘k of the singularity,as defined in Theorem 1.6 (iix gives
the order of the first nonvanishing term in the Taylor expansion of the
Jacobian (B,CT) of the singular equations. In the scalar case k+1 is
commonly called the multiplicity of the root x* . The degree i of the
singularity in the sense of Theorem 1.6 (iii) has apparently not been
discussed in the literature before. At least iﬁ the context of numerical
methods thebdegree seems to give a more fundamental classification than
the order. 1In the nonsingular case T is a constant and (21) reduces
to a Taylor expansion with leading term of oxder f =2 . Thus we can
think of a nonsingular solution as a second degree singularity,wﬁich
suggests some correspondence between the order of the Newton process at. a
singularity and its degree. This link is certainly tenuous as we can
see from the following family of examples which illustrate the results

of the Theorem 1.6.

For some integer Am > 0 1let £ Dbe defined as

=z
£(E,0) = 1 L +Am (31)

& - 1+Am 2
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so that the Jacobian and its determinant are given by

Am

Vf(E;C) = .
. _g R l

and

§(E,0) = g™ .

The unique solution x* = (5*,§*)T = 0 belongs to the singular set 6—1(0),
which consists of the £-axis and the r-axis if Am > 0 . Since § 1is

of order p = Am+l in p = ||x|| = JEEIZ?, and m = rank(Vf(x*)) = 1, the

use of Am = p-m ‘is consistent with its definition in Lemma 1.2. An

elementary calculation yields the Newtonian iteration function as

l .
g(€,0) = (Fa-e+ 3o 307, (32)

which can be rewritten with (g,g)T = pt = p(u,k)T as

1-A
9(E,D) = p gy (£) + pg (8],
where
_ .1 Am T
9N = G AATT,0)
and
_ (_Am 1 T
g, = (T vz M-
Since gl—Am is nontrivial the degree is given by i=1-Am . For any

Newton sequence {xj==(gj,§j)T}j>O we obtain from (32) the recurrences

Am 1 ~Am
&5+ 2 5585

C. = %—C. and £

j+1 3 j+1 © 1+Am (33)

We analyze only the case whefe (EO,CO)T, and consequently all subsequent

iterates belong to the first quadrant

0z {w&,n’|Eg>0<z)

which is a starlike domain. To this end we consider the ratio
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-1/ (1+Am)
j

v
o

a, = &

3 jr’

for j

which satisfies the recurrence

Am 1 ~Amy_1/(1+Am)
(1+Am %53 % J2

1

dj+1 = h(aj)

The iteration function h has the derivative

’

h'(a) = Am(iﬁ%ﬁ‘_ %-Q_Am'l)zl/(l+Am)

which vanishes at the minimizer

& = [ (1+bm) s27}/ (1+O0

and increases monotonically in 0o > 0 towards the limit

Am) |
o 1y (14Amj 1Y/ OF 2y 1/ (1+Am)
Lim h'(0) = E(l-——-mln) 1 ] <@

(X—)(x)

e-1/(1+Am)

Here we have used the Taylor expansion of to obtain the

inequality on the right.

Provided a, >0 we have for j 2 1

oy = hla,_) 2 0@ = (am O G

so that for j 2 2 with some mean values ej e (h(a),»

1/(1+Am)]

’

(aj+1-aj)/(uj-aj_l) = h (ej) e L0,(2/e)

which ensures that the sequence converges at least Q-linearly to the

unique fixed point

1+Am
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T .
For the Newton iterates {(Ej.Cj) }j>o themselves this has the following

consequences. After the first step we have

1+Am

(1+Am) Ej "

1+Am 1
.= /0, <
CJ <£j/ J) :

so that by (33)

. (%+Am)
gj+1 < (1+Am) gj )

Since C 1is halved at each step, the Newton iteration is contracting in

the domain

1

1+Am
(1+Am) 2 }

’

0= onTeq]z<

in that g(Q) c Q and

v
[

1 .
pj+1 < pj(iukAm)/(l+Am) for j

Consequently Newton's method converges from all points in 0 and the

asymptotic rate of convergence is linear with the Q~factor

g

j1 _ aj+1 Cj+1 1/ (1+Am) 1

E. o C. 7 21/(1+Am)

J J J

4. General Results on Domains of Convergence and Contraction

Let X, g:mp - {x*} be the set of all initial points from which
Newton's method converges to a given solution x* - in a finite or infinite
number of steps. Formally Xo may be written as

(o] <o (e o]

o .
X3 = U g7G0 v n U n g’B 0, (34)
j=1 g=1 2=1 =4 q
where B denotes again the unit ball with radius 1/q about x*, and

1/q

the inverse image g_](D). contains all those points from which Jj Newton

steps are well defined and lead to a point in the set D gjm? . This rather
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unwieldy expression for XO will be used below to show that it is:

measurable and has therefore an upper density at x¥*

Since the iteration (0.1) is only defined as long as
6(xj) = det(Vf(xj)) # 0, the set X, is disjoint from 5%1(0), so that
all its subsets which will be called domains of comvergence (to x*) must
primarily be doméins of invertibility. Iterative methods of any kind are
usually expected to have spherical domains of convergence in the neighbour--
Hood of an isolated solution x* , which implies that the.full set of
points from which the method converges to x* is open, provided the
iteration function is continuocus. Whereas Newton's method has spherical
domains of convergence in the nonsingular case,this requirement is in
general not satisfied at a singularity x*, as we know from Lemma 1.1 that
x* is only in special circumstances an isolated point of the singular set.

Thus we obtain in general the following result.

LEMMA 1.7 The Full Domain of Convergence X,

For f ¢ CIGRnJRn) and x* ¢ £ 1(0) 1let g and Xo be defined by

(20) and (34) respectively. Then

(1) X0 is a Borel set but need not be open.

.. 0 0
(ii) g(Xo—Xo) < X0 - Xo ’

where Xg denotes the interior of Xo .

Proof.

(i} By continuity of g in its domain R - 6—1(0), the sets

g—j(Bl/q) are open so that the countable unions and intersections on the
far right of (34) must define a Borel set. Thus we are left with the éet

of points from which Newton's method converges in finitely many steps.
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By induction over 3j 20 we can show that

-3 -1 -2, n -1
g (x*) =C.n N g "M®-§ (0) (35)
J =
2=0 :
where the sets Cj are closed in ®R' . For j=0 we set ¢, = {x*} ,

as g° is the identity mapping on R

Now suppose (35) holds for some j = 0 . Since the inverse image
of intersections equals the intersection of the corresponding inverse
images, we have

. B j ) |
g N x*) =g 1(Cj) n Nt (36)
9=1

Let x; > X be a sequence of points in g-l(Cj) . If x ¢ 6_1(0), the
point g(x) is well defined and must be the limit of the q(xi) e_Cj by

continuity of g . As Cj is closed, we have either x ¢ g-l(Cj) or

X € 6—1(0), so that the set

- =1 o1
Cj+1 =g (Cj) u's (0)

-1 -1 : . .
is closed. Since by definition g (Cj) c R’ -6 (0), we obtain finally

n -1 _ -1
Cj+1 n -5 (0)) =g (Cj) '

which substituted into (36) gives (35) for j+1 . Clearly each g_J(x*)
is a Borel set so that the same is true for their countable union and

consequently Xo itself.

To show that X0 need not be open we construct the following example.

o, . n_n .
At some point X, # x* we can define f € C>(R,IR') such that the matrices

Vf(xo) and F, = sz(xo)(xo—x*) are nonsingular and furthermore
f(xo) = Vf(xo)(xo—x*) which is always possible since £ and its

derivative at x, are independent. Now we can easily calculate that
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g(xo) = x* and det(Vg(xo)) = det(Fo)/det(Vf(XOD #0 .

Assuming that x* is not isolated in 6‘1(0), we find that x0 is a

LsT (o) -{x*}) g:mp - X, since g is because of its

clusterpoint of gh
nonsingular Jacobian at x0 locally 1-1 . Thus X0 cannot be open as

it contains the point X, which does not belong to its interior Xg /4

The inclusion (ii) in Lemma 1.7 means that each point in soﬁe NeWtonv
sequence {xi}jZo with X, € Xo - Xg belongs to the closure of the
complement R - Xo' which consists of all those initial points from which
Newton's method does not converge to x* . Clearly such a theoreticaily
converging iteration would be numerically highly unstable and could hardly
‘be reaiised on a digital computer in finite precision arithmetic. Therefore
we restrict our attention to the interior Xg which could theoretically be
empty even if X0 has positive measure and upper density at x* . Moreo&et‘

we contend that (14) is quite a natural condition on the domain of

convergence nominated in a local result.
If the line segment
{ax*+ (1-0x | Ae(0,1)}

does not fully belong to the interior Xg, then the statement that X, is
an element of X should be cbnsidered a global rather than a local
convergence result. By Theorem 1.3 (ii) X0 contains no nonempty starlike
subdomains if and only if all directions in § are tangents of its
complement R - Xg . As we will see later, this may be the case even
though the interior Xg is nonempty and has x* as an accumulation point.
Nevertheless our main interest lies with starlike domains of convergerce

to a central point x* for which a certain degree of numerical stability
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can be expected. Particular examples of such starlike domains of
convergence are balls, cones and their intersections which were used by
Reddien [5,7] and Decker and Kelley [8 ] in their work on singular

problems.

To gi&e a simple example of a starlike domain of convergence,: .we
consider f as defined by (31) with Am=0 . The one dimensionalnullspace
N of VE(x*) is spanned by (l,l)T, so that f 4is not in normal form.

The recurrence (33) gives directly for j 2 1

so that the Newton iteration converges from any initial point in
{(grE)T | C#O}, which is a starlike domain with the excluded directions
i(l,O)T . In the presence of higher order terms a starlike domain of

convergence R has to be bounded and may typically take the form
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The actual construction of such a set R will be given in Chapter 2 for
the class of regular problems which includes the example considered here.
Since obviously Ll{i(l,o)} = 0 the starlike domain R and consequently

by Lemma 1.4 (ii), the domain of convergence Xo have density- 1 at x* .

For Aﬁ > 0 the family of examples (31) shows that the degree of a
singularity x* can be arbitrarily high negative and we méy still have
convergence from within a nonempty starlike domain so that X0 has positiQe
upper density at x* . However this case is rather special in that it is
known that all but the first 1+Am derivatives of f vanish identically
in ]Rn, which enables us to calculate the Newton iteration exactly even for
points that are arbitrarily far away from the singular solution x* . 1In
contrast a truly local convergence result has to be based on the values of
finitely many derivatives of f at x* and a nonzero Lipschitz coﬁstant‘
of the highest one alone. Under these more realistic conditions nbthing
can be said about the values of f and its derivatives outside a certain
ballbso that convergence can only be guaranteed from within domains Drgimp
for which the set of intermediate points

o
U gi(D)v
i=0
is bounded. Any such 0 must be bounded itself and will be called a

domain of bounded convergence.

In particular the first step from any point x = x*+pt € U n R' must

be bounded by some radius B > 0 . Since p < r and T, are bounded

on S, there is a constant Yg > 0 such that by (21)

T+Am+y

RAALNOY : (37)

lg (x*+ot)-x*-p g2 (&) || s y4p

which implies by definition of 92
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"

3
Ulug (0 [f-py3/|my (£ Do

llg (x*+pt) —x*|| [no(t)|i+Am | (38)

I

IA
-5

(lug (0) l+py3 / |y (83 Do
Now it follows for 1=1 that the condition
llg (x*+pt) -x*|| < B (39)

is met at all points in the starlike domain

m, (€) B]ﬂo(t)|1+Am

. (-
{x +pt | teS.0<p<mln{r(t)' Y, = @] }} '

which has the same set of excluded directions as R' itself and thus density‘

1 at x* for any B > O .

For 1 =0 we find that the condition (39) is violated at all points

in the starlike domain

Ty = {xrept | teS,O<p<(Huo(t)H—Blﬁo(t)|Am)|ﬂ°(t)|/Yo}

Il
H

where Am > i+l

Unless g, = uo/ﬂ%m is bounded all T with B8 > 0 are nonempty so

B
that by Lemma 1.4 (ii) for any domain ) of bounded convergence:

T*(P) < 1 - T*(TB) < 1. To illustrate this situation we consider the
function £ defined by (31) with Am=1 . Outside the ball Bl we can
modify £ such that it equals the linear function x - (3,3)T for

lIx| > 2 and is smooth in between. Since the first step from any x ~ with

HxOH > 2 leads to the separate solution (3,3)°, any domain of convergence

to x*=0 must be contained in the set P, as defined by

Pg = {(E,c)T | g€l =2 VePerag?/eear < B} ,



which is a starlike domain with the set of excluded directions

{anTes | A = 28]} .

We know from the analyses of the unmodified problem fundtion that t
Newton iteration is contracting after the first step from any x;
the first quadrant @ so that the set Q n P, must still be a sta

domain of convergence in the modified case. 0 n P, has the set of

included directions

L) Tes | 0o <X <2p},

so that we have the following situation:

36

he
within

rlike

x* + N

v
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In the fourth guadrant the situation is exacfly the same as in the first
since the recurrence (33) is'for Am=1 wunaffected by a sign change of

£ . It does nbt really matter what exactly happens in the second and third
quadrant as our main intention is to demonstrate that there are cases in
which stariike domains of convergence do exist but some open sets of

directions are necessarily excluded. This kind of situation seems to be

typical for the case i=0 Jjust studied.

If finally i <0 the condition (39) implies with some wB >0

lagel Imy (0] < 8ol 0 [F497 4 oo < pug

which means that any domain of bounded convergence D is disjoint from

some starlike domain

Ty = {x*+pt | teS, 0<p<min{[lu (t) | ino(t)[/wB,E(t)}} . (40)

Since ||u'i~(t)||2|Tr0(t)|2 is an analytic function from S to IR , which
does not vanish identically we derive from Lemma 1.4 (ii) and (i) that
™>(D) < l-—T*(TB) = 0 which means that any domain of bounded convergence

has outer density zero.

To illustrate this possibility we consider again the vector function
(31), this time with Am=2, and modify it outside the unit ball as described
in the case i=0 . It can be easily checked that the Newton step from any

point in the starlike domain
. N ,
T={¢&,0" | 1>8&2< ||}

is either not defined (£=0) or leads outside the ball with radius 2
about x*=0 . Consequently any domain of convergence to x* must be

disjoint from T which has density 1, since there are only two excluded
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directions, namely +(0,1) . However we know from the analysis of the

unmodified problem that the Newton iteration is contracting in the domain

A

Q , so that

~

0

e | o<z g®, gheg2cn)

must still be a domain of convergence for the modified function. ' Thus we

have the following picture.

The situation is essentially the same for all Am 2 2, so that whenever
the degree is negative there may be a domain of bounded convergence whose
closure contains the singularity =x*, but it must always be disjoint from
some starlike domain T with density 1 . Since any infinite Newton
sequence xj - x* must approach x* through the narrowing channels
excluded from T, it seems intuitively clear that this type of convergence
would be numerically rather unstable. This notion can be made more precise

in the following way.



39

THEOREM 1.8  Imstability of Comvergence to Singularity with Degree i < 1

Under the assumptions of Lemma 1.2 let xj > x* be any infinite

Newton sequence with

lim sup”xj+ —x*”/“xj-x*” =w<1 . ‘ | (41)

N 1
]-+OO

~

Then we have if i < 0

fIx., -yl |
%mnﬁn1hE¥#;jrl6W)¢0,Jhwo-xwzsx}=o , (42)
] ‘

J+¥1 3]

and if i =0

lim [%in {ﬂflil:z!~ | 8(v) #0 , llgty) - x*|| 2 B“Y‘X*H}] o,

joo

where £ and B are arbitrarily large positive constants.
Proof. Firstly we note that because of (41) for all but finitely many j

1

gl 2 fhegmxrll = g, et 2 ps (Q-w) /(4w

j+1 +1

so that the assertions must be true if they hold with the ratio

ey v U705, x5 replaced by lxy, -vl/e,,

By construction of T_, as defined in (40) for 1 < 0, we have

B

lgty)-x*|| = B for all vy e TB . Since the sphere § is compact,the

sequence {xj==x*+pjtj}j>0 has a nonempty set of tangents which must all

be excluded from T as none of the iterates can belong to T. . Now

B B
consider any subseguence {ji}i>0 with ty, >t €S . Since the directions
: 2 i
excluded from TB are nowhere dense there is a sequence of included
directions sq + t . BAgain we select an index sequence .{qi}i>0 where some

of the q's may be repeated such that y; = x*i;pj. sqi € TB for all but
i .

finitely many i . Then we obtain by the triangular inequality.

lim Hin—yiH/pi < lim Htji-tH4-11m Ht—squ =0 . (44)

jc0 jooo jreo
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As any subsequence of {xj}j> has a subsequence with a unique tangent,

0
the assumption fhat (42) does not hold must lead to a contradiction to (44).
For 1=0 we derive from (38) that [g(y)-x*| 2 Blly-x*[] for all y in

the sta:like domain

1+Am) }

{x*+pt | teS, 0<p<flu, (t) || [no(t)|/(Y0+§|Wo(t)l (45)

whose set of excluded directions has zero measure in $S, so that (43) can

be shown in the same way as (42). ' . Y/

Each Newton correction g(xj) - xj is the solution of a linear system‘
in the Jacobian Vf(xj) whose cbnditioning is deteriorating as we approach
the singularity x* . The best one can possibly hope for is that each =
step can be calcuiated with a relative error bounded by some constant

€ ¢ (0,1), so that the numerically evaluated new point xj+i satisfies
ij+1-g(xj)ﬂ/nxj+1-xjH <e . (46)

Unless the rate of convergence even of the exact Newton sequence is
already less than linear, we know from (42) for i <0 and from (43) for

i = 0 that this accuracy is not enough to prevent intermittent steps away
from the solution which are arbitrarily large either in absolute terms or
at least relative to the previous distance from the solution. Thus even
the existence of a domain of bounded convergence with positive upper outer

density is not sufficient to ensure that there are Newton sequences which

converge in a reasonably robust fashion.

Therefore we introduce the stronger concept of a domain of contraction

to describe a subset E gjmp - 6—1(0) that satisfies

g(E) ¢ E  and R(F) = sup{llg (x) -x*|l/llx-x*] | xeE} < 1 .
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If 2 = 0 any domain of contraction E is disjoint from the corresponding
starlike domain (45) with é = B(E) so that all of them have outer density

zero. For i =1 we derive from (38) that any E must be disjoint from

the starlike domain
+
Gerept | teS,0<0<(lha, (0) [-8]m (o) |72 o) [y, 3,

where again é = E(E) . Unless

supllg, (0) | = supHul(t)H/ITTo(tH1+Am <1

all these starlike domains are nonempty so that no domain of contraction
can have upper outer density 1 . Thus we can compile the following
bounds on the upper outer density of .a domain of bounded convergence D

~

and a domain of contraction E at a singularity of degree i .

i<o i=o0 i=1 i=2
(D) 0 <1 <1 =1
T* (E) 0 0 <1 =1

where 1 = 2 represents the nonsingular case. We can usually expect that
(D) <1 for 1=0 and T*(E) <1 for 1 =1 , and it will be shown in

Chapter 2 that 7T*(D) =1 for the wide class of regular first degree singularities.

5. General Results on Rates of Convergence

It might be thought that the numerical difficulties of Newton's method
if applied to the vector function (31) with Am=1-3 > 2, are somehow

related to the fact that x* is poorly isolated as a solution in that

lgxrre p | = oMM
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Clearly x* € f-l(O) is a nonsingular solution iff for all =z €n{1

£ (xx+2) |71 = oz ™y

so that linear growth of the residual |[|f|| along aﬁy smooth path emanating
from x* ensures quadratic convergence of Newton's method, provided the‘
initial point is sufficiently close to x* and the Jacobian is Lipschifz
continuous. In the singular case however there is in general no direct
correspondence between the degree of isolation of x¥* } i.e. the growthb
order of the residual in its neighbourhood, and the pefformance of Newtoﬁ?sb

method.

To see this we append f = (f1'fz)T as defined in (31) by a third

component function
= 1.2 1 2
fa(&;’(:’n)_ 2 E_-, + 2 n r

where n 1is a new variable in which f1 and f2 are considered to be

constant. A simple calculation gives
1
ELE 0> 5 ]+ g ]+ (€] 2 3 IETmI®

so that x*=0 is as strongly isolated as possible for a singular solution
with Lipschitz continuous Jacobian. However since the Jacobian of the
extended system is (permuted) triangular, the recurrences (33) are

unaffected and the speed of convergence of Newton's method is therefore at

best urnichanged.

Nevertheless there is a relation between the behaviour of Newton's

method and a certain sufficiency condition for isolation as given in the

following theorem.
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THEOREM 1.9  Isolation Condition and Rates of Convergence
Under the assumption of Lemma 1.2 with k 2 k+Am let xj +.x* be

any converging Newton sequence. Then

(i) 1f

k 1

PV +1f(x*)tk+ #0 forall teNnS . (47)

then x* is an isolated solution of £ , i.e. an isolated point in f'l(O).

(ii) If {Xj}j>o converges Q-quadratically all its regular tangents

belong to

T = {teS | pV?£(x*) tt=0} .
(iii) 1If {xj}j>o converges Q-subquadratically in that

L. 2 _
ll@ inf pj/pj+1 =0
]—)00

then it has at least one tangent in N n S

(iv) If x* 1is a first order singularity of degree 1 and the
isolation condition (47) is satisfied then {xj}j>o provided it has no
tangent in N n S n ngl(o) converges either Q-quadratically or

11@ inf pj+1/pj < 0
J-)OO

which means at best Q-linear convergence.

Proof.

(i) Suppose there is a sequence of solution points
-1
{x.=x*+p.t.} c £ (0) with
] p] J
. >0 and t.>teS.
pJ ]

Using the Taylor expansion of £ at x* we derive

= - * - .
o [f(xj) £(x )]/pj Vf(x*)tj + o(pj)
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and similariy
o= p[f(xj)—f(x*)]/p]j‘+1 - PVk+lf(x*)t§+1/(k+l)! + o(pj)A,
so that in the limit as pj tends to zero
CVE(x*)t =0 = ka+lf(x*)tk+?

(ii) Since {xj=x*+pjtj}j>o converges Q-quadratically we have

. 2 _ .. oy 2 . »
lim sup p,,,/py = lim sup Hg(xj) x*ll/pj <o,

Jreo J+m

For any subsequence {tji}iZO‘c {tj}j>0 that converges to a regular

direction t € S' we find

}1m ﬂo(tj
1->00

;) = Tt) #0  and x; € Rt

for all but finitely many i, so that by (21)

1 42
lim sup “ Z iy gz‘tj-) < o
i+ 2=1-Am .

Since P5. -+ 0 this can only be the case if
1

gl(t) = }1m gg(tji) =0 for f=1-Am,...1 .
j-o0

Then the first Am "rows" of the linear system (22) are trivially satisfied,

and we obtain multiplying the (2+Am)-th "row" from the left by P
PA.g. (t) = 0 = = PA_ (£)t = = PV2E(x*)tt
172 2 2 2
which proves assertion (ii).

(iii) ret {x. }. be a subsequence for which
. Ji“1ixo0

’ 2
lim pji/pji+1 =0 and lim tji =teS.
1> i-s00
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By assumption f is twice differentiable so that

Vf(xj)(xj+l—x*) = —(f(xj)-Vf(xj)(xj-x*))b= 0(03) .
Dividing by pj__'_1 we find for the subsequence {ji}i
: i
Lim V£(x; )ty ,, = Lin o(pé./pj.+1) =0,
170 1 1 1 1 1
so that all clusterpoints pf the subsequence .{tj.+1}i20’5 S must belong
to N . As S‘ is compact {xj} must have a tan;ept in N .

(iv) Since {xj}j>o has no tangent in N n S n W;l(O) ‘there is a

lower bound ¢0 > 0 such that for all but finitely many 3

1t

. -1,.T -1
9y < O(ES) min{cos™ (s £5) | seSnNnno (0} .

The. function ¢(t) gives the minimal angle between some direction t and
the set of irregular directions in N . Similarly we define
0(t) = min{cos ' (s't) | seSoN} < ¢(x) . (48)

(o]

With 80 such that 60 £ 45  and

D
A
N

min{cos” (t s) | seNnS , teT or teﬂ (0) and ¢(t)>-—¢ 1,
the set of directions
U= {teS | B(£)<B, , d(£)>,}

and its clbsure are disjoint from T and ﬂ (0) n S, so that

™
th

= min{‘ﬂo(t)‘l tel} > 0,

©
1l

= inf {r(t) | teU} >0 ,
and similarly

€z = min {”gl(t)n ‘ tell} > 0 .
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The positiveness of €2 follows from the fact that, because i=1, the
first nontrivial coefficient vector gl(t) can only vanish at a reqular

direction if t € T, as shown in the proof of (i).
Whenever tj e U and pj < 50 we have by (37)
2, 2+Am '
- < L
Hojﬂtj+1 P59, (el = v, pi/e] ' _ (49)
which implies because gl(tj) e N

R . - T
sin G(tj+1) < 31n[%os 1(_thgl(tj)/”gl(tj)“)]

: Ylpj/(€2€?+Am) :

= min
AeR

Ixtj+l—ql<tj>/ngl<tj>n

Thus we find that for sufficiently large J

. = 2+Am -1,
tj e U and pj <p = mln{po,€1€2 Y, sin 80}

ensures tj+1 € U . Unless {xj}j>0 converges quadratically it has by

(iii) a tangent in N which must be regular by assumption. Since

furthermore 1lim pj==0 <p all but finitely many iterates must belong to
00

the set
{x*+pt | tel, p<p} .

Finally we derive from (49) that

L L 2+Am
lim inf pj+1/pj 2 11@+;nf [ﬁgl(tj)u-ylpj/gl :12 €,

Jree J

which completes the proof. , V///4

Even though it could not be shown conclusively, it seems likely that
Newton sequences always have integer order unless £ involves
fractional powers. At singularities quadratic convergence from certain

initial points is theoretically possible but numerically unstable,as
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rounding errors will prevent the minimal angles between the ‘tj and

directions in T from becoming arbitrarily small. Without analyzing the
nature of such domains of quadratic convergence in any detail,we note that
for all Q-superlinearly converging Newton sequences {xj=x*+pjtj}j>o with

Lim pj+1/.pj >0
J—)Q)

‘ —w¥
llg(x.) -x*|| Ps4e/Py
m Sup 7T

lim
j e P5417P3

sup Ty o £ 14
e TR e

[
o

. | (50)

Even under the optimistic assumption that each Newton étep can be calculated
with a uniformly bounded relative error € , the numerically evaluated new

iterate could be any point in the ball
{xeR" | [lx-x*|| < ellgx,) =%l - llg Gy =i},

which is by'(50) nonempty for sufficiently large>‘j . . We have noted.thatv
in general any neighbourhood of the singularity x*>_contains points

X =Vx*+pt where the Newton step is either undefined (8(x)=0) or leads.
further away from the solution (Hgl(t)H>1) . Thus superlinear convérgence
of the unmodified Newton method on a singular problem seems unlikely'to

occur in practice and is not even desirable.
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CHAPTER 2

STARLIKE DOMAINS OF CONVERGENCE

‘AT REGULAR SINGULARITIES

1. Balanced and Regular Singularities

An apparent shortcoming of the theory developed so far is that the
crucial degree i € [1-Mm,1] is only defined implicitly through Theorem 1.6
and we have no rule to compute it at any given singularity. qlearly i=1

if Am=0 which is by Lemma 1.2 equivalent to the condition that with

k=1 the linear operator

1
k!

1

B (y) A L A R e T W

is nonsingular for some vy e R" . As will be seen later x* is still a
first degree singularity if it is of order k>1 as defined in Theorem 1.6
and det(B(y)) does not vanish identically. Such singularities will be
called balanced because the lack of determinacy caused by the singularity
of the Jacobian VE(x*) 1is essentially compensated at the level of the
(1+k) -th derivative. Assuming again that £ 1is in normal form at x* we

have the Taylor expansions

B(x) = Blx-x*) + o(p""") = o5B(e) + o(p™*h) ,
C(x) = Clx-x*) + o(p™™h) = oXC(e) + o(p™™y (2)
D(x) = 0(p) and E(x) = I + 0(p) .

so that the reduced Jacobian (1.6) satisfies

k+3

G(x) = pkﬁ(t) + 0(p ) . (3)
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Since the leading terms on the RHS are of order k

in p we obtain

instead of (1.10)

det (G (x)) pk(m—1)+k+1]

k
det [ ) Gi(x—x*)) + o[
i=k

et (B(t)) + o™ty

which implies because of (1.7) by comparison with (1.9)

p=kmn , Apelk-k+1,k] (4)

and

M, (y) =adet(By)) , 5y

where 0o #0 allows again for linear transformations into normal form.

At balanced singularities the linear system (1.22) can be solved

explicitly provided £ 1is sufficiently often differentiable. Multiplying

for i=1-Am,...,%-k the (i+k)-th "row" by P and adding the result to

the i-th "row" we obtain the block triangular Toeplitz system

3 r W , ¢ 3\

. . . .. A g;—Am 0]
Byr B0 - I2-Am
A, A, R ) )
3 2 1
. . . . . 9y 0
° * = k (6)
- : . 9 K+l TPpa b |
: : : : : 1 k+1 ‘
3 .. ... g, SRt 5PA .t
. . .0 ’
A A A" A : Q,-k—l 2,_.1
+ 2 =
L AAp_k ! Byr By A}J | 99-x | 2-k Bkt 7 PAQB
where 2 = Ap-Am = k - (m+l) (k-1) , Ai = Ai(t) = Vlf(x*)tl—l/(i—l)! as

before and

(Ai(t)+PAi+k(t))

for

i=1-Am,.

<o f-k .
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The square matrix 21 in the diagonal has by (5) the determinant
A k+1 k
S det(A (1)) = det[VE(x*) + PV f(x*)t7/k!] =7 (t) /0

so that for all reqular t € S' the system (6) can be solved by back

substitution which yields in particular

g, =0 for i<1 and gl(t)-=

A=l '
. A ea, (0t . (D

.S
k+1
Thus all balanced singularities are of first degfee. Unfortunately we
have to assume within the framework of Theorem 1.6 that f is

k+1l 2 2+ (m+2) (k-1) times differentiabie,to obtain a first oxrder appfoxi—
mation to g . by gl; whereas the form of the latter suggests that k 2 k.
should be sufficient. This is indeed the case as shown below. Since ”'”
denotes the specfral norm of a matrix,the smallest singular value of B(t)

is given by the continuous function

0 if E(t) is singular

v(t) = (8)

=1 -1
1B (& otherwise

on the compact domain S . Combining results from Lemma 1.5 and Theorem

1.6 we obtain the following lemma for the balanced case.

LEMMA 2.1  Properties of R' and g, at Balanced Singularities

k+1,1

Let f e C m{HEP) be in normal form at a k-th order balanced

singularity =x* ¢ f_l(O) . Then

(i) At all points x = x*+pt ¢ R' the inverse Jacobian takes the

form

-1 -1
. G o, ¢ 'cTg -
VE = (9)
- - - - ~1 .
-E 'pG , B!+ e 'og eTE .

with
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¢ ) = 0 X5 ey + vimo'™ = v ™ . (10)

(ii) The smallest singular value 0O(x) of V£(x) satisfies

o5V () (140 (p)) if toe S
o{x*+pt) =

o(pk) . otherwise
(iii) There is a constant d such that for all x = x*+pt € R!

lgtx) - x* - g (x-x*) || < Alp/V(B)2 , (11).
1

CIA

where the homogeneous vector function
-1
g, : (R"-7(0) > N c®"

is given by
-1 -7
I , B (t)C (t)

k
gl(x—x*) = pg,(t) = T , (x-x*) , (12)

with C(t) as defined implicitly in (2).

Proof.

(i) By definition of r in (1.13) the matrices Vf,E and therefore
by (1.7) also G are nonsingula; at all points in R', so that the inverse
Jacobian must take the given form. Equation (10) follows from (3)‘by the

Perturbation Lemma 2.3.2 in [10].
(ii) Using (2) we derive from (i) for t e S'
¢ (x) , o(p"h B (t) , O

o(p ), oY 0 , 0
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Hence we find for the spectral norm | ¢||

o Hixrept) = V£ (xrpt) || = 0 RV (k) (140(p))

: ' . . -1 .
which proves assertion (ii) for regular t . For t e S n T (0) the

assertion follows from Lemma 1.5 (iv) with p = km

(iii) In order to obtain an approximate expression for £(x) we use

the obvious identity

p :
f(x) = [ J VE(x*+ut)dult .

(13)
0

It follows from (2) and (3) that

. k+1 .
J Blxttut)du = G B(e) + o(p"*?) = L
o

Y

and similarly J Cx*+ut)duy = E%i—c(x) + 0(pk+2)
0

’

p o
J D(x*+ut)dy = %—D(x) + 0(p?) and J

E(x*+pt)dpy = pE(x) + 0(p?) .
0 0

Substituting these expansions into (13) we find

1

k+1 1
E:I'G(X) + O(p )

T k+1
' ;;1'C (x) + 0(p )
£(x) = (x-x*)

2 D(x) + 0(p?) ,  E(x) + 0(p)

Multiplying from the left by (9) we obtain

Ve (%) E(x) = F(x) (x-x*)

where F(x) =

1

- k+1 1 - - k
Sy I lleT e lloe™™ 56 o to+HleT mllote™
%-k}d]E"l (x)D(x)+0(p2) +[|G™ () o (P**?) , T+ 0(p) + 6™ (%) I|O(pk+1)

(14)
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In general the bottom left submatrix is O0(p), whereas for k=1 it is

o(pz) » a fact that will be used in Chapter 3 but is as yet unimportant.

Because of (2), (10) and the boundedness of Vv we have

-1 -1 - -1
¢ xcT(x) = B (£)TT(r) + v (t)o(p)
which completes the proof as we may use again (10) to bound HG—I(x)H. Y///4

- That balanced singularities are not the only ones of first degree

can be seen from the following example. The function
1,31 2T
£€,0) = (58,5 ¢%)

has a second order singularity at x*=0 with m=2=n . The Newtonian

iteration function is easily calculated as

2 1 T
g(€,8) =g, (E,0) = (£ E518) .
so that i=1, whereas the matrix

0,0 7
B{u,\) = for (u,Ay ¢ S,

0, A
which represents the leading, linear terms of the Jacobian is always
singular. Consequently the singularity is not balanced. Nevertheless the
Newton itefation converges linearly from all points that do nbt belbng to
either axis. The reason for this is that 6 even though the lack of definition‘
caused by the vanishing Jacobian at x* 1is compensated at the level of the
second_derivative with respect to T and the third with respect to £ , the
resulting different speeds of convergence are mutually independent. By'
adding higher order terms to either component df f, e.qg. C3 to the

first, this independence can be destroyed which usually makes i negative

and leads to less regular behaviour of the Newton iteration.
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Whereas in the example given above
g;(t) = ot for some 0« 613 iff ﬂo(t) =0
we have by Lemma 2.1 (iii) at a balanced singularity
g,(t) = t k/(k+1) for all teS' o N L | (15) 

This equation suggests that g may be contracting in some domain
including all regular directions in N . An arbitrary set is said to
inelude a direction t € 8 at a certain point, if it contains a starlike -
domain that include t . ‘Clearly the statement t15)'is void if all
directions in N are irregular. Excluding such degeneracy we introduce

the following concept of a regular singularity.

A singularity x* of order k is said to be vregular if the linear
operator B(t) as defined by (1) is nonsingular for some t e¢ N n S so

that x* 1is balanced and

m, (N) # {o} . . (16)

In those cases where the nullspace of the Jacobian Vf(x*) is spanned by

a single vector t € S we find

B = 1
B(t) 1is nonsingular <= B(t)t = pvk+ f(x*)tk+1 £0 .

Thus the reqularity condition on the LHS isbequivalent to the isolation
condition introduced in Theorem 1.9 (i). For m>1 neither condition

implies the other as we can see from the following examples.

Firstly consider the function

= (X p2,-2y L4 T
f(E;;) = > (7427, 781
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. 1 ‘
with m=2=m , k=1 and f (0) = {x*=0} . The linear terms in the

Jacobian form the matrix

_ uo,A -
B(U,A) = , - for (u,A)" €S
0,0

which is obviously always singular, whereas

B0 T = w2z, = q,07

can never vanish. Hence the isolation condition but not the regularity

condition is satisfied.

Secondly consider the function
1 T
£(£,0) = (58%.£0)

with m=2=n , and k=1 . Since all points on the {-axis are solutions
of f +the isolation condition cannot be satisfied at x*=0 but the

matrix

v, 0

B(UIX) =
A,

is nonsingular for all (U,X)T € S except t(O,l)T so that the problem is
regular. By adding higher order terms one can easily make - x* an isolated

 solution without changing B

In what follows we will consider the case of a regular first order
singularity as the most important and likely possibility. Even though
isolation of x* as a solution is implied by regularity if m=1 we will

. . . . L . -1
otherwise not make the assumption that the singularity is isolated in £ (0) .

As a consequence of Lemma 2.1 (ii) the condition number of V£ (x*+pt)
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is of order p~k or larger unless the singularity is pure in that the
Jacobian vaniéhes completely at x* (i.e. m=n). In the well researched
scalar case n=1 every singularity must obviously be pure,and correspond-
ingly the conditioning of the 1X1 matrix formed by the derivative of f
poses no numerical problem. For n21 a pure singularity of order k is

balanced iff it is reqular iff

- 1
B(t) = 5 v

k+

Ve (xxy X

is nonsingular for some and consequently almost all t e S . As will be
shown in Lemma 2.2 most Newton sequences {xj=x*+pjtj}j>0 that converge
to a regular singularity x* do so along a regular direction ¢t = lim‘tj

so that by (3) and (10) in the pure case

-1 - L |
lin VEx )1 IVE  (x)] = Bo)ll 1B (&) . (17)
jre0 3 3
Here we have used the fact that Vf=G if m=n . Hence the conditioning

of the Jacobian as such is unlikely to cause numerical difficulties at a
pure, regular singularity. However due to cancellation the relative error
. : k+1 k

in the computed values of f(xj) = O(pj ) and Vf(xj) = o(pj) may grow

rapidly as pj tends to zero.

N

For the general, nonpure case the regularity assumption (16) implies

that the pure, reduced system discussed in Section 1.1 is regular too as

its Jacobian G is according to (3) dominated by B . The converse. is not

true as we can see from the family of examples (1.31) with Am>0 . Using
, L. -1,.1+Am .

the second component of f to eliminate [ = (1+Am) £ we obtain the,

reduced system of one equation

£, (et £ - L g P20 g

~with the derivative
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-1_1+Am

G(E,(1+Am) £ ) = (1+Am)"1€l+2Am

Since the isolation condition (1.47) is clearly satisfied the reduced system
must be regular whereas the full system has degree 1-Am < 1 and is
therefore not even balanced. This situation occurs because the 1eading

terms in both components of £ are powers of the nonsingular variable [

so that B does not dominate G .

The regularity assumption amounts to the condition that»for the
singuiar equations, the leading terms in the singular variables are ét most
of the same order as the leading terms in the nonsingular ones and form a
system of m homogeneous equations in m variables whose Jacobian is not

everywhere singular.

2. Domains of Contraction at Regular Singularities

Firstly we derive from Lemma 2.1 (iii) some useful relations between

the iterates of a Newton sequence {xj=x*+pjtj}j>0 with x,

341 = g(xj) and

A%

3 V(tj)

Provided the ratio (po/vo) is small enough the first step from

X, x*+pot0 e R' is essentially a projection like mapping to the vector
pogx(to) in the nullspace N . Whenever gl(to) # 0 we derive from (11)

that the angle wl(to) between gl(to) and the exact t1 is bounded by

gl(to) ,(k+l)dp0 _
sin Y (t ) = min At - ” < . ’ (18)
170 1
AR llg, (el k\)ﬁllgl(to)”
Similarly we obtain for the angles ej+1 between the subsequent iterates
tj+1 and the subspace N
. s _ 2
sin ej+l = min ”tj+1 vl < d(pj/vj) /Dj+1 . (19)

yeN
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Using the uniform bound
c = max{/Cte) +v(t) | teS}
we derive from (11) with (12)
ey, ‘-ilj—l (x-x0) || < [ﬁ)V_J sin 0+ \% pj] 0, (20)

which implies by the inverse triangular inequality

p. ' '
j+1 _ _k < kc . 4a
S I < [(k+l)\). sin 05+ = Py 5 (21)
j j V3
and furthermore
sin AY, = min Ilt.—)\t.+.lfs[\)—c— sin 0, +(k—+12)—dp,J (22)
I der 7 I j I SV ,

where ij is the angle between two consecutive directions t. and t.+1.

According to Theorem 1.9 (iii) any subgquadratically converging Newton
sequence has a tangent in N . Now we can show that the Newton iteration
from somé initial point x, = x*+p1t1 must converge tc a regulai
singularity x* if p, and the angle between tl and some regular
s € S' n N are sufficiently small. This result was obtained by Decker and
Kelley [ 9 ] under the assumption that x* is strongly regular as will be
defined after fhe next lemma and by Reddien [ 7 ] under the assumption that
' det(Vk+1f(x*)sk) # 0 for some s ¢ N . This is never satisfied if any
linear combination of the component functions of f is linear in x .
Excluding only those directions in N along which the smallest singular

value of V£ is o(pk) we obtain the following result.

LEMMA 2.2 Linear Convergence near N at Regular Singularity

k+1,1

Let £ e C aRn;Rp) have a regular singularity of order k21 at

x* . Then there are two nonnegative continuous functions
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¢ : NnS-m and p: NnS->mr

such that for any regular direction s € S' n N the starlike domain

f(s) = {x*+pt | teS,cOsdl(th) <$(s) , 0<p<p(s) }

is nonempty and any Newton sequence {xj=x*+pjyj}j>1

onverges to x* with
ij+1/pj - k/(k+1) | < [4(k+D)] for all 3§ 21
and in the limit

ij/Oj > k/(k+1) , tj >teNnsS

Proof. With the convention min(@) =90° the angle

N

d(s) = min{cos™' (¢t s) | teSnﬂ;l(O)} < 45

is obviously a nonnegative continuous function in s ¢ N n-S with

-1 - .
d (0) =S nNnmT 1(0) . Consequently the two minima

min{v(t) | teS ,COS-](tTS)S(b(S)} ,

J(s)

r(s) = min{r(t) | teS ,cos_l(th)S}ﬁ(s)}

exist and are both nonnegative and continuous on ‘S n N with

-1

3_1(0) = 2—1(0) = ¢ “(0) . Abbreviating ¥x(s) = %-sin ¢(s) < %— we can

"now define recursively

sin $(s) = min{. . X(s) , (k+1)d%éf) } ’
ke/v(s) +k-x (s) (k=X (s))V° (s)
_ 52 N
p(s) = Ue=x(s)) V" () sin ¢(s) ,

(k+1)d

59

, o
from some X, € W(s)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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A ~ -—
which ensures p(s) < r(s) < r(s) . Both functions are nonnegative and

continuous on N n S with $_1(0) = 6—1(0) = ¢-1(0) so that for s e Sn N

W(s) =@ iff T (s) =0 .

Keeping s ¢ N n S§' fixed we show by induction that the seqﬁence of

Newton iterates {xj=x*+pjtj}j>1 from any initial point x € (J = ((s)

maintains the properﬁies

i

p. < p = pls) , B, < $E$(s)’,wj<¢

3 ‘$(s) »(30)

where wj is the angle between s and tj ;, whose boundedness by ¢
~ implies vy 2 G = G(s) which will be used'fréquently. For the first
iterate X, the three conditions must hold by definition of @ an§
because of the inequality

sin 6 = :iﬂntldz“ < ”tl-ssTtIH < sin ¢ . (31)

Assuming that (30) holds for all i < j we obtain with (28)

ke . 4 | sin ¢ ao X . X(s)
(+1ivg sin 6, + Vi Pi < ke D) (kc/vt+k=x(s)) < ,

(k+1) ~ (k+1)

which implies by (21)

- p'+ '
koXo o Tt kX i=1...5, (32)
k+1 P k+1

so that

i
k+X A . .
Pivy <Py [m] <P ford=ded 633

Using the left inequality in (32) we obtain from (19) and (29)

dp. (k+1) R
<57 <sin ¢ . (34)
+1 52 (x-Y)

sin 6.
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In order to obtain an upper bound on wj+1 we consider the sums

. k+1) . 92 (k-x) . 32 .
iil Oi <P, [l_x) S. 3 sin ¢ (35)
and
j'l j-l
; d(k+1) (k+1) . =~
Losin 0 % STen ;< oy sin ¢ . (36)
i=1 it VX)) 2y 1 () | o

Recalling the definition of .Awi in (22) we note

j
wj+1 <Y izl A(pi

-1, T ~
which implies because of VY, = cos (st ) < ¢
sin ¢j+1 sin ¢ + Ly sin Awi

Using (35) and (36) we derive from (22)

3 : x - A
2 sin Awi < %-[%in 61 + [%;l} sin %] + (k+1) (k=X) sin ¢ .
i=1 v X K (1-X)

~

Adding to this sum sin ¢ and applying the first inequality implicit

in (28) we find

sin §, < -X [(2+k-X)c/\)+(k +2k-2kx—x)/k:l .
a0 e Ok

It can be checked easily that the fraction in brackets is always <3 so

that by definition of Yy < 2
. < <i

sin ¢j+1 sin ¢ .

Thus we have shown that all iterates stay in the set

@(s) é {x*+pt [ te$ ,cos—l(th) < ¢(s) ,O<p<5(s), B(t) < $(s)}

which is by definition of p(s) a subset of R' . Since (33) and (34)

hold for all 3 2 1 we see from (21) that
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Lim p, /py = ¥/(k+1)

Jo

so that we must have linear convergence at the asserted rate.

Furthermore the Q-linear decline of pj and ej implies by (22)

~
.

for any = j = J

~

j-1

I 8 =olpy) . | (37)

-1 '
cos (t?te) <
J 3 3

i
Hence the {tj} form a Cauchy sequence in S whose limiting directions
t satisfies
-1, T .
cos (t's) < ¢(s) and g(t) = 1lim 6. = 0 ,
: . 00 J

so that t ¢ N n S' by definition of ¢ in (25) and 6 in (1.48)
As an immediate consequence of Lemma 2.2 we note that the union -
W=U{W(s) | seNnS'}

is a starlike domain of convergence too. Moreover the set of intermediate
points
o »
D= U 7w
j=o

is by (23) a domain of contraction with

sup {|jg(x)-x*||/|x-x*|| | %D} < E%%'< -

The domain 7T 1is not necessarily open but it contains the starlike domain

0 , which includes all regular directions in N n S

According to (24) the limiting direction and unique tangent teN
of any Newton sequence from within W(s) 1is regular too so,that all but
finitely many iterates must belong to the starlike domain of convergence

W(t) < W . This suggests a certain numerical stability of the iteration
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as an occasional numerical error in the calculation of the next point is
unlikely to lead immediately outside the domain of coﬁvergence' W,
However if ﬁhe errors rotate the directions tj persistently towards an
irregular direction in N the convergence pattern méy break down. This
can be the case even if the relative error in calculating the steps is

uniformly bounded by some arbitrarily small € > 0 .

A sequence {xj}j>1 cR" will be called an approximate Newton sequence

of relative accuracy € if
- - < >
ij+1 g(xj)H/ij+1 xjH <eg <1 forall j=21.

Using the triangular inequality we obtain from (11)

: ke —xk - 2
ij+1 X gl(xj x*) || < Eij+1 Xj“ + d(pj/vj) 4
2 (38)
< EP. + (e +4dp./V. .
Dj+1 ( PJ/ J)pJ
Now we can replace (20) by
k d ke
ke —x K&
ij+1 x*= 5 (xj x*) | < epj+1 + [%'+G?'pj'+(k+l)vj sin Si] pj (39)
3 .
which implies
k a kc . ’
) £ | =~ tE+t—5 P, . 0.
pj+1(l £) ) € 2 p]+'(k+l)vj sin 63:]pj (40)
J
and fufthermore
sin AP, < kil 8(14w81il) 4 & 4 ke sin 8- (41)
j Tk 0, v2 Py (1), 1

where ij is again the angle between tj and tj+
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Whenever , ,
< 2p,tit. (42)
J o
we have
1.
so that by (38)

fl=.

2
-x¥*- 't * < €+d VAR <’
417X gl(xj x*) || ( pj/ 3)p3

which implies
.. 2 .
sin 9j+1 S,(€+dpj/vj)pj/pj+1 ' : : (43)
k d ke
-k e —— -k —— ———— 3
||xj+1 x* - (xj x*) || s.[%-Fvg pj.+(k+l)vj sin Gé}pj
and finally

lpj+1 k
Tkl
f5

d kc .
< E:+\)2. pj+ (k+1)\)j sin G;I . (44)
J

Whereas‘(43) suggests that the angles ej between the directions tj
and N can be uniformly bounded we see from (41) that the tj's may‘
rotate at each step through an anéle greater than sin-l(s) within the
nullspace ‘N . Therefore we have to make the assumption that x* is a

strongly regular singularity in that it is balanced and all directions in

N are regular, i.e.
Nnm o) = {0} . | (45)

In the case m=dim(N) =1 this equation is equivalent to the regularity
condition ﬂo(N)# {0} . For m>1 strong regularity is a rather restrictive
condition which can only be satisfied if p=km is even. By its definition

T, 1is homogeneous of degree p so that for any t ¢ S n N

_ P
T, (-£) = (1) ()
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If m>1 and p is odd there is a continuous path of directions in

S n N connecting -t and t along which “o must vanish by thé mean-—
value theorem at some s € S n N . The condition (45) is equivalent

to the assumption that B(z) is ﬁonsingular for all nonzero zeN which
was originally used by Decker and Kelley in Lol. Under the assumption
of strong regularity we can obtain a version of Lemma 2.2 which applies to

approximate rather than exact Newton sequences.

LEMMA 2.3  Linear Convergence of Approximate Newton Sequence

k+1,1

Let f e C URnJRn) have a strongly regqular singularity of order

~

1(O). Then there are positive constants 6 and 6 such that

k at x* e f
any approximate Newton sequence {xj==x*+pjtj}j>1 of relative accuracy
A~ _ sinB

€ < € T =——— that starts at some x in the starlike domain
4 (k+1) 1

V = {x*+pt | teS , 6(£)<B , 0<p<p}

stays inside V and converges linearly to x* with

lim sup sin ej < 4¢

J—)w
< e|:1+ ( (k+1) sin 6)—1] )

and

pj+1 k

. k+1
p]

lim sup
j—)oo

Proof.

' -1
By assumption of strong regularity we have S n N qn Ty (0) =g, so

(]

that with the convention min(@g) = 90

D
th

min {8(t) | teSnm, (0)} € (0,45°]

N

and because v_l(O) =S n WEI(O) =1 (0)

B>
1

= min {r(t) | teS, 6(t) <8} >0,

<>
1l

= min {v(t) | teS,0(t)<B} >0 .
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Now we define recursively

sin 6 = min {sin ) ,G/(4kc)} < %
and
VIR (oS T S G
e = Torozaen S  8(k+Dd
so that
~ _ sin 6 1
€ = <
4 (k+1) 8(k+1)

Firstly we show for arbitrary x. € U that any x. satisfying

Jj+1

gy mg g < Ellg oy

belongs also to V .

By definition of 3 ’ 6 and 6 we have for all xj==x*+pjtj e VU with

V. = v(t.)
j j
d ke . 3
- o—_— L L —=
Vg P 1)V sin 0, < 905D
so that with (40) by definition of €
%+1 k+ k+%
< < <1. (46)

P T (k+1) (1-e) T k+7/8

Thus we obtain from (41) for the angle between tj and tj+

K+l 3 5 _5
i < 2e+—— | <2< 2,
sin Bvy =7 [:E 8(k+l):l 8k 8

which implies for ij e [0°,90°]

T
t.t. = cos AY. =
J H w]

’

W

so that the condition (42) is satisfied.  Hence we can apply (44) to derive

P.
k-1 < 3+ o k+k
k+1 pj k+1

' (47)

so that by (43)
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sin 0 < k+1 siné - sin@
j+1 k=% 2(k+1) 2k-1

Therefore all iterates {xj} must belong to V and since by (47)

k+%)3 A{k+k)3
pj+1 < pl[k+1] < p[k+1]

the approximate Newton sequence converges linearly to x* . Applying
again (43) we have with (47)

lim sup sin 0. £ € 1lim sup (P./P.. .) < 4¢
and similarly by (44)

p

. St k| 4kc
- —— < + ——
ll@ sup ) ) e[l 1 0)
J? 3
which is equivalent to the last assertion by aefinition of 8 . V/&

Lemma 2.3 establishes a remarkable numerical stability of the Newton
iteration in the neighbourhood of strongly regular singularities evén though .
the assumptién that a sequence of Newton steps can be calculated with
uniformly bounded relative error is certainly optimistic. However we can
realistically expect that the error occurring in the calculation of thé
steps has a comparatively small component orthogonal to the nullspace N
of the Jacobian at x* and a main component parallel to it. Even if the
latter is rather large (e.g. 25% of total step length) the iteratesywouid.
remain inside U since the bound (43) on the anqlg between the tj's

and N is largely unaffected.

As a consequence of Lemma 2.3 we note that V is a domain of
contraction not only with respect to g but to any approximate iteration

’ ~ -1
function g :Eglfﬁ (0) »R" that satisfies

lg(y) ~g() |I/9(y) -yl <€ forall yelV .
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The ratio of contraction is bounded by (47) so that

sup {[Ig(y) - x*[|/lly - x*|| | yeV} < (k+%)’/(k+l)' X

3. First Step Analysis and Main Result

1f N=1r", i.e. in the case of pure, regular singularities, the two
lemmas of Section 2 are quite strong since then the stariike-domain of
convergence W has density 1 at #*, and the ddmain of contraction
contains a deleted spherical neighbourhood of x*.. However the assumptions
of vLemma 2.3 are unlikely to be satisfied if m=n>1 since we have
alread& noted that strong singularity is a rather restrictive condition
whenever m>1 . In general we can expect that m=dim(N) is small
compared to n‘ so that the directions included in W or V represent
only a small fraction of the full unit sphere S in :mp.. Fortunately
we can show that for most directions ty € S the first step ffom some
point x =x*+p,t, € R' leads into W or V provided p, is
sufficiently small and the calculation of the step is sufficiently

accurate.

THEOREM 2.4 Starlike Domain of Convergence R at Regular Singularity

k+1,1

Let f e C ORnJRn) have a regular singularity of order k at

x* . Then

(i) There is a nonnegative continuous function r : S + IR such that
the Newton iteration converges linearly to x* with Q-factor k/(k+1)

from any initial point in the starlike domain

~
1

= {x=x*+pt | teS, 0<p<r(v)} .

(ii) The domain R has density 1 at x* since the closed set of

excluded directions
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r (0 = {teS | Rnlxx +ot} | = 9)

is given by the intersection of § with the solution set W_I(O) of the

" nontrivial homogeneous polynomial
m(z) = no(wo(z)gl(z))‘no(z) .

-1 . .
(iii) For any t e r (0) that is not necessarily excluded from all
starlike domains of convergence to x* : either of the following conditions

must be satisfied

- T, (2} or m(z) = T (M (2)g,(2)) attains a local extremum at t .

d,Q,+1

d

- g,(t) =0 and

* =
uSZ,+1 Elx +Ut)‘u=o 0

2+

where & e [1l,k] is the smallest index for which V 1f(x*) is nontrivial.

(iv) For Newton's method to have a spherical domain of convergence
about x* it is sufficient that ﬁgl(O) = {0} and necessary that T, is

. : . PO n .
either nonnegative or nonpositive on IR (assuming n>1).

Proof. Without loss of generality we assume x*

(i) Since 8(5) and sin $(s) are bounded the function

_ v2(£) (g, (8)/]lg, () ) |lg, () [[v2(t) sind (g, () /[lg, (B) D
r(t) = min{r(t) ’ - p }
drb+cv(t)+v2(t) 24
is well defined and continuous on S . Now we derive from (18) and (21)

that for any X, = x*‘-i-pot0 e R

sin ¥, (£)) < sin‘$(gl(to)/Hgl(to)H) and p, < 5(91(to>/H91(to>H) '

so that x ¢ @(gl(to)/”gl(to)”) which implies the assertion by Lemma 2.2.

(ii) Inspecting the individual terms in the definition of =r(t) we

see that r(t) = 0 iff
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=1

te E-I(O) =V (0) ¢ w;l(O) or otherwise g, (t) e ﬂgl(O) .

It follows_directly from the expression for ‘gl(z) in (12) that the mv

nontrivial components of Ty (2)g;(z) are homogeneous polynomials of

degree p+1 in =z so that w(z) is a homogeneous polynomial of degree
n

. ’ . -1
(p+2)p in 2z ¢ IR° . Clearly t € S belongs to the solution set T " (0)

of m iff
mT,(t) = 0 or otherwise ﬂo(gl(t)) =0

which shows that r_l(O) = W_I(O) NS . For any z € N we have

v p+1, P .
gl(z)ﬂo(z) = zﬂo(z)k/(k+1) and consequently T(z) = Lt (zY[k/ (k+1) ] so
that neither ﬂo(z) nor T(z) can vanish identically as by assumption

™ (s) = det(B(s)) # 0 for some s e N .

(iii) We know from Lemma 1.5 (iii) that t € ﬂ;](o) must be tangential
to 6—1(0) -and therefore by (1.15) necessarily>excluded from any sfarlike
domain of invertibility unless T, attains an extremum at t . _Ndw
suppose T(z) does not attain a local extremum at some
teSn %_1(0) - W;l(O) , that 1is included in a starlike domain of
convérgence A with boundary function a . Since A is open and T has

the same sign in a sufficiently small neighbourhood of t in §, there must

‘ - +
be sequences tj -+ t and tj -+ t of included directions such that

Tt ) . T
- = To(g(tl)) < 0 < m(g(th)) = —2— .
Tro(tj)km J 0 ] _ “o(t;)km

‘Since a is lower semicontinuous and positive at t = the Newton steps

v + + = + ’

from ., = p.t. and . = u.t. to 2z, and z. respectively are well
Y5 7 W55 Y5 = W55y 3 j resP Y

defined for “j smaller than some ﬁj with ﬁj + a{t) . Combining

(1.11) with (11) we obtain
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o= km - km
6(zj) = Uj Wo(gl(tj)) + o(].lj )

so that ui < ﬁj may be chosen sufficiently small such that
- +..
8§(z,) <0< &(z,) .
J 3

. -1 ‘ . . . .
Since Vf (x)£f(x) is continuous on a domain of invertibility there must

be multipliers aj e (0,1) such that the Newton step from each
= (oLt 4 (I-a) ) € A
Yy = H30%5% 37

leads to a point zy € st o) . By assumption A is a domain of

convergence to x* = 0, so that we must have zj = 0 for all j . Since
: ) - +

the yj/uj are convex combinations of the tj and tj we find -

sy = yj/HyjH > t, so that t is tangential to the set of points from

which Newton's method converges in one step. Writing yj = Tjsj we

derive from- zj =0

T,
. ]

0 = VE(y.ly. - £(y.) = Vi(t.,s.,) - .} d .
\Y (yj)yJ (yj) [TJV (T]sj) Jo Vf(usj) 1]5]
sz+l

R B o 5 D A2 Lt2,
TSR Vv f(x )sj + O(Tj ) .

Here we have uséd the fact that Vlf(x*) =0 for i=2..%2 . After

+
division by Tg ! e obtain in the limit
L+1
1
d2+1 £(x*+ut) | _ = lim Vg'ﬂf(x*)sg'+ =0 .
ay 0 e ]

Because of (1.47)  a similar argument applied to the identity
PVf(yj)yj = Pf(yj) shows that
| 8t) , &b
+1 ’
K1yt e () 5T 2 t=0
0 y 0

which implies 'g (t) = 0 as B(t) is nonsingular.
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-1 -] - .
(iv) TIf m, (0) = {0} the set V7 (0) =7, '(0) n S is empty, so that

V = min {v(t) | teS} > 0 and furthermore

.

4 ~2
~ V
- , > S
¥ = min {ETE:ETE , min{r(t) | teS ,”gl(t)“ l}} 0
Now consider any point xj = pjtj with pj <r . If Hgl(tj)” 2 1 then

]

we obtain from (11)

p. <% < r(tj) so that convergence is guaranteed by (i) . If 'Hgl(tj)H‘S 1

ap.
0. < i S ] 0. < 2k+1 0.
j+1 k+1 \)g 3T 2k+2 73

Thus we must have in any case at least Q-linear convergence to x* .

If T, attains positive and negative values there must be a
-1 . . . . .
teSn Mg (0) that is neither minimiser nor maximiser and therefore

necessarily excluded by Lemma 1.5 (iii). ‘ V//

The fact that R and consequently the full domain of convergence X0
discussed in Section 1.5 have density 1 at a regular singularity is
probably the most important result of this thesis. Whenever the

equivalent regularity conditions
- -1 ' -k
det(B(t)) # 0 < V£ "(x*+pt)|| = o(p )

are satisfied for at least one t e€ N n S then the probability that Newton's
method converges linearly to =x* from a given point X, in the ball B

o
is 1-o(pH

Since nontrivial homogeneous polynomials are unbounded and all their
stationary points must have zero value it is quite likely that they have:

no local extreme besides the origin. If this is the case and the set

2+

—
i

= {teS' | gl(t)==0 , v 1f(x*)t'QH::o} c S
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is empty then the set of directions excluded from R is minimal so that
the boundary function of the maximal starlike domain of convergence to x*
differs from r(t) only in size but not sign. In the case of pure

singularities we have m=n and P=I so that T reduces to

k+1

Tz {teS' | ¥ exn ! = 0) s

which must be empty if the isolation condition (1.47) is satisfied. For
any t € r '(0) that satisfies either of the two conditions in Theorem
6.1 (iii) the question whether it is necessarily excluded can only be

decided on the basis of (2+k)-th and higher derivative information.

To illustrate the result we consider the following examples in two
dimensions. After suitable nonsingular affine transformations any function'
f ¢ C3(R?,R?) with a Jacobian of rank 1 at a first order singularity

can be written in the form

T -2 € 2

& +35¢
f(é) = : M O(HEH% ,

L+ SE2+BED + Lt
so that
. T§ ' e

£, _ €2
Vf(c) + O(”EH )

ag + B, 1+ BE+ YT

If T =0 the problem is irregular as B vanishes identically. Otherwise
we can use linear transformations to obtain T =1, o =20 énd

€ ¢ {~1,0,+1} . Thus we find

Mo (E,D) = £, g, (E,0) = $EMEL)/E,07 , T(E,D) =2 (E24eg?) .

Consequently the set of excluded directions is given by
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{¢<o,1)T}' if e e {0,1}
{+0,17T, 1,212} if e =-1 .

Since T, attains positive and negative values in the neighbourhood of
(O,l)T-the C—axis.is necessarily excluded from any starlike domain of.
invertibility,so that S n ﬂ_l(O) is minimal if € 20 . If € = -1 the
two straight lines {&=+r} are mapped by glbinto the origin but T
attains poéitive and negative valuesvin their neighbourhood.  Since p¥=k==1-

we have with T=1 and 0=0

o 11l P R | WY
a? f[u p=o © (2gwy) ¢ an? Bl lu=o = |24y

so that by Theorem 2.4 (iii) the directions {(+1,*1)/V2} are necessarily

excluded whenever |y| # |28] .

Secondly we consider the case where the Jacobian of f ¢ C30R2,E3)
vanishes at a regular first order singularity. After suitable affine

transformations we have with € ¢ {-l,O,l}

SE2+ S
g Ens
f(C) = + O(”C” )
B .2
OLEC'F;C
so that
£ €L
Ev - &2
£ =
VE() + O(HCH ) .

ot ’ G-E + BC

We need only consider

M, (£,0) = ak? + BEC - aeg? = (E,T) (g)
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Depending on whether the determinant det(V2T,) = —(a2€-+%-82) is positive,
negative or zero there is a sphérical domain of convergence, a minimal set
of two necessarily excluded straight lines or one not necessarily excluded

. straight line respectively. The last case is particularly interesting as

‘we have for 0=1 and B=0=¢€

. .% g2
£ Ena
£ = + o(HCH ),
EC -
with
g , O
Vf(g) = + o(HEHZ)

t ., &

This example has already been considered briefly in Section 2.1. If the
higher ordér terms are zero all points on the U{-axis are solutions of £
and Newton's method converges from all other points linearly to the
particular solution k*==0 . Even though x* is not an’isolated solution
we obtain from Theorem 2.4 a starlike domain of convergence to x* with
only the (C-axis excluded. 1In contrast the result is not applicable to
the other solution points which are first order singularities of degree

zero with m=1 .

If the higher order terms are of the form (- %-C“ ,0)T then both
1 1
g ‘2_ 52 - Z gl\\
f(C) =
£C

and the determinant of the Jacobian

g ’ ‘Cs :

det(Vf) = det =%+ gt

T E '

vaniéh only at the origin x* = 0 . The Newton iteration is given by
) 4
2 4

2.4
Ci41 C; z, £j+£j
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which yields linear Convergence to x* from all points on the C-axis with

ratio %- and from all others with ratio %—. Consequently £ has a

spherical domain of convergence, which does not follow from Theorem 2.4 (iv)

-1 . -
as the condition m ~(0) = {0} is not met. If on the other hand f is of

the form

1.2
= +
2 g.

1

y
n g

€
g5 =
o £

then the determinant. det(§) = £ - % vanishes on the parabolas {£=1+z%}

so that the UU-axis must be necessarily excluded.

At strongly regular singularities we can obtain a version of Theorem
2.4 that applies to approximate Newton sequences but restricts the initial
points to starlike domains,which have in general a density less than 1

at x* .

THEOREM 2.5 Domains of Convergence for Approximate Newton Sequences
1,1
Let f ¢ Ck ! GRnJRn) have strongly regular singularity of order k

A

at x* . Then we have with E and sin 8 as in Lemma 2.3.

- ~ ’
(i) There is a constant € < € and a family of nonnegative continuous

functions {r } from S to IR such that any approximate Newton

g cel0,€]
sequence of relative accuracy € ¢ [0,€] converges Q-linearly to x* if

the initial point belongs to the nonempty starlike domain
R, = {x*+pt | teS, 0<p<r (£)} .
(ii) The closed set of excluded directions is given by

- A _-1
rsl(O) = {teS' | llg, (&) < el(1-€)sin 8-¢] l} ur (0) .
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(iii) If the set

1

'=oleg'(® uT (0 (49)

C = {teS | o7t g () £F

is empty there is an € e (0,€) such that for all € ¢ [0,£)

-1

r (0 =S amio =1 (0

4

which implies that RE includes all fegular directions and has therefore

density 1 at x*

Proof. starting from some x, = x*+p t, € R' we derive from (38) for any

approximate first iterate X, = x*+p1t1

(1-e)p, < (llg, (t) [He+dp V2 (£ ))p, - (50)

Provided g,(t,) is nonzero the minimal angle 6, between t1 and N is

not greater than the angle wl between t1 and gl(to) e N so that by (38)

in

sin 6, sin Y, =

min \Atl- g, (tg) /llg, (e I “
Ae R .
e+dp,/v? ()
< ____E____.pl +
191 (£o) [l 19: (£g) ]

o Fp 2], @
T I3 W 7 g, e v e 4

‘where the last inequality follows by (50).

Whereas the condition p, < B can be met by sufficiently small p, whenever
t, 1is regular we see from (51) that the condition sin Bl < sin é can only

be satisfied if
3 sin 6

<
1- . =1
€ 1tllg el

which is for € ¢ (0,1l) equivalent to
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. a . 6
1 1
e < sSin sSin

A -1 A
1+sin B+(g, (t)]| 1+sin ©

Taking the supremum over the initial directions we obtain the upper'bound

== s ~ | sin 6
€ = min {El,' " _1}
1+sin f+min{llg, (£l [t eS'}

which is well defined and positive as g, cannot vanish identically by

Theorem 1.6.

Abbreviating

i,

n (&) = (1-e)flg, (O]sin § - e +llg, (O]

we can now define the boundary function

re(t) = max{o,min{f(t) ,%—aHgl(t)H_l ,ns(t)vz(t)/d}}
which implies (ii) as

re(t) =0 iff m,(t) =0 or otherwise ng(t) <0.

It follows from (51) with the fourth inequality implied in the definition

of r. that sin 0, < sin 6 whenever x ¢ RE c R . Furthermore we

derive from the same inequality

lag (E) | + € + Apg/V2 (k) < 3 (1-8) [lg, (£g) ]|

so that by (50) and the third inequality implied in the definition of «r
also p, < B .  Thug the first step of any approximate Newton sequence of
‘relative accuracy € ¢ [0,£) from within Re leads into U which was
constructed as a domain of linear convefgence in Lemma 2.3. The inclusion

(49) holds by the second part of (7). Multiplying the same equation from

the left by Al(t) we find that for all s ¢ S'
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lgy (=)l 2 @ = min { e 1BV ey €, (0] | teS} ,

where the minimum on the RHS exists since the ratio of the two norms is
continuous on the compact domain S . 1If the set C in (49) is empty

0 1is positive and we can define

-~

- € = min{g , 8in @/(l+sin 6+0L_1)} '
so that for all € ev[O,E) and t e‘S'
g, )1l > Eb[(l—f»:)sin 6-¢17"
which impiies (iii) by (ii). ’ | o /4

Considering Theorem 2.5 we note that the regular directions that
are excluded from a given starlike domain Re are those for which gl(to)
is comparatively‘small. This means for an approximate Newton step from
Xo= x*+pot0 ‘to X, = x*+plt1 ‘that the ratio pl/p0 is rather small
but the minimal angie Gi between N and t, may be greater than 6 .
Even though. x, can belong to the singular set or be otherwise unfavourable
there is a fgir chance that the next step leads into ‘V. and then to
convergence. In tﬁe case of pure singularities we have q;l(O) =T as
defined in (48) so that (iii) applies if the isolation condition (1.47) is
satisfied. In general we can expect a comparatively stable numerical
éonvergence of Newton's method at strongly regﬁlar’singularities, including

in particular all those with m=1 that satisfy the isolation condition.
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CHAPTER 3

MODIFICATION OF NEWTON’S METHOD
AT SINGULARITIES

1. The Numerical Difficulty of Singular Problems

At first glance it might be thought that the singularity of the
Jacobian at a solution point represenﬁs a merely technical difficulty for
Newtqn's method, which could be overcome by suitably chosen alternative
methods. In fact singular problems are inherently more difficult to solve .
thah nonsingular ones, and even Q-linear convergencé in a reasonably staﬁle
fashion is quite an achievement. To see this we consider an arbitrary

iteration of the form

Xip1 = h(xj,f(xj)) ’ ' (1?

n . e . .
where h : R*" > R" satisfies the identity

h(x,0) = x for all x € R" , (2)

and has a Jacobian th with respect to £ such that
H(x) = —th(x,o) is continuous in x at x* , 4 (3)

The iteration function h may involve values of arbitrarily high
derivatives of f at x and several intermediate or previous points and

could even be designed or selected in view of the particular problem

function f at hand.

The two conditions (2) and (3) hold in particular for iterations of

the form
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xj+1 = xj - H(xj)f(xj) ' ' (4)

provided H(x) is continuous in x . In order to enhance the global
convergence properties of Newton's method a bounded matrix H is often
used as a substitute for the inverse Jacobian whenevei VEf is singular or
nearly singular. Usually such modifications are only meant to apply at é
finite number of intermediate points before the unmodified Newton iteration
converges superlinearly to a nonsingular solution. For examples of‘such'
modified Newton methods see [181], [19] and [20]. D. Gay advocated in [21]
to treat singular or nearly singular problems by defining H on the basis
of the singular value decomposition of Vf as a continuous approximation
to the inverse Jacobian. Like any method of the form (l) for which (2)

and (3) are satisfied this approach is not viable in the exactly singular

case.

Expanding h(xj,f(xj)) at (xj,O) and f € Clmfhnfﬁ at a singular

. -1 .
solution x* € f “(0) we obtain from (1)

Xipr = h(xj,O) - H(xj)f(xj) + O(Hf(xj)H)
=xy - H(x*)Vf(x*)(xj-x*) + O(Dj) '
“so that
Xip1 T x* = A (xj—x*) + o(pj) , ‘5)
where pj = ”xj-x*H as before and

A = I-H(x*)VE(x*) .

Thus we have a perturbed linear difference equation and according to a
remark on page 193 on [10] it is "essentially" necessary for linear
convergence that the spectral radius of A , i.e. the modulus of its

largest eigenvalue is less than 1 . Apparently most results have been
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developed under this condition which is clearly violated in our case since
Aw=w for all w in the nullspace N of VE(x*) . With M cR® the
range of H(x*)VE(x*) and Q the orthogonal projection onto the

orthogonal complement M we derive from (5)

- = —-—xk
0 (xj+l x*) 0 (xj x*) + o(pj) , (6)

which implies that h has at x* no spherical domain of contraction in
the sense of Section 1.5. This does not precludé the existence of a

Q-linearly converging sequence {xj}j>0 c R" - {x*} with

ij/pj <y e [0,1) for sufficiently large j .

Dividing (6) by pj we obtain for the angle ej = G(tj) between

tj = (xj—x*)/pj and Ml..

llot

-1 0
= ‘ >
j+1” cos 6j+1 >y “cos Gj + o(pj)

so that in the limit

Y lim sup cos 6,+I > 1lim sup cos 6. ,
300 ’ joe ?

which requires because vy < 1

lim 6, = 90° .

jooo
This means that»the component of xj-x* orthogonal to M must become
infinitely small compared to the main component parallel to M . 1In
praqtice rounding errors will prevent ' cos ej from becoming arbitrarily»
small, which destroys the Q-linear rate of convergence in a theoretical
sense. However, unless A has eigenvalﬁes of modulus larger than 1 ,
these errors need not be magnified and the main component parallel to M
may still be reduced Q-linearly until the solution has been approximated

with satisfactory accuracy. Nevertheless it seems obvious that Q-linear
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convergence will only occur from a comparatively small set of initial
points X namely those for which 90 vis close to 90°.. If A is
symmetric with HAH =1 anda M= Nv=.PGRn) it can be easily seen that
timal =g=19p,
oo
which is always the case for the iteration (4) with H Dbased on the
singular value decomposition of the Jacobian. Then it can Se expected'
that all initial points, for which cos 80 is not negligible,are projected-
into the affine set x* + N during the first few steps. 'Subsequeﬁtiy the
steps are of o(pj) and may converge sublinearly to x* or lead out of:">
the ball B. in which the expansion (5) is valid. In the case n=2 .and

rank(A) =1= rank(Vf(x*)) we have the following situation:

! Sublinearly
converging \\\
sequence

x*+M

/ linearly converging
sequence

T
Slowly *
diverging R ///
sequence .
~~

—

; Boundary of ball B




84

Depending on the higher order terms,iteration sequences from within T

can theoretically inch along x*+N out of the ball B , then skirt
around its boundary and finally converge through C 1linearly to x*‘.

Since a large number of intefmediéte steps must be expected,the overall
convergence of such iterations would probably be unacceptably slow. More-
over if such essentially circular iteration sequences did exist from points
arbitrarily close to x* the whole method (1) would be highly unstable, as

rounding errors could lead to repeated return trips to the boundary of B .

The situation shown in the figure is indeed typical for the general
case,and according to the following result we can even rule out R-linear

convergence from most initial points.that are close to x* .

THEOREM 3.1  Sublinear Convergence of Continuous Methods

Leﬁ the iteration function h satisf? (2), (3) and be x* a
singular solution of f € ClaRnJRn) with rank(VE(x*)) = n-m < n-1
Then théfe exist a ball B abéut x* , a starlike domain T centred at

x* and a subspace M of dimension n-m' < n-m such that

(i) Any iteration sequence {Xj}j>0 from some x, ¢ T that converges

“to ’x* without ever leaving B does so R-sublinearly in that

/3 _

lim sup ||x.-x*||
oo

(ii) The starlike domain T has the set of excluded directions S n M

and therefore density 1 at x*

Proof.

Firstly we reduce A by real similarity transformations to a suitable
block diagonal form. Let M be the subspace of vectors W ¢ R® for

which
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lim A]w =0 .
jo0

Since w € M implies Aw ¢ M' and M n N= g, we find that M is an
n-m' £ n-m dimensional invariant subspace with respect to A . After a

suitable orthogonal transformation we can assume without loss of generality
\J - ! .
M= {o}" x= " , (7)

so that A takes the block triangular form

By definition of M the (n-m') X (n-m') matrix MF must satisfy lim Mj==0
which is according to Theorem 4 in Chapter 1 of [2 ] equivalent té the
condition that the spectral radius of M is less than 1 . On thé
other hand we can show by contradiction that all eigenvalues of T havé

modulus greater or equal to 1 .

. Suppose T has a pair of complex conjugate eigenvalues A, A of

L
modulus IKI < 1 with corresponding normalized eigenvectors u,u ¢ .

Considering the sequence

I wd
z. S , M 0

we find for some norm with vy =|M||<l , which exists by 2.2.8 in [10].

Iy = DIas X5 < sl

and consequently

Iz, I < Tassl] s (2] + ylizs < flavall Jsll/ -v)

N

j+1

This gives in the limit
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A

lim sup ”sz” Y lim sup [z I < ,

j=e i

which implies because Y < 1

Il

lim szH 0 = lim HyjH .

j—)OO J—)OO
T -T T n L
Thus the real vector (u +u ,0)  €R should belong to M which

contradicts (7). Consequently the spectral radius of the inverse ' T is

less than or equal to 1 .

The matrix equation

UT - MU = S o (8)

represents a square linear system in the (n-m')m' entries of the matrix

U . According to Theorem 2.3.15 in [22] each eigenvalue of the homogeneous
part on the LHS is the difference between one eigenvalue of T and one of
M so that none of them can vanish. Hence (8) has a unique solution U

for arbitrary S and we obtain a similarity traﬁsformation of A to the

block diagonal form

T, O I,0 T, O I,0
0O, M -u , I S , M v, I

As stated on page 183 in [ 6 ] there are positive constants o , 8 such that
- L | -m'-1 .
279 < ag™ and IInY < gy%" T, (9)

where the exponents of q allow for the worst possibility that each T

and M have only one Jordan block.

Now let

T T, T . m' n-m'
=¥k
{xj x +(y0,zj) }jZO with {yj} c R and {zj} c R

be the sequence of iterates generated by (1) from some initial point



87

T T.T

X, = x* + (yo'zo) . It can be easily verified by induction that for all

qg>0

q
X, - x* = A% (x.-x*) + o(lix.-x*|) .
j+q 5 I 5 Il

Hence there is for each g a sequence of constants Eéq) > 0 such that

'(”Yj”+”zj”) < 27! implies

V. - Tqy. ) :

+

¥ . J se,qu) Uy.I+lz.])  for all q=1 . (10)
z . - M7z, J ] . ‘

j+q j

Now we find with (9) for the angle 95 between xj - x* and ML ..

U e e'D o e Nellz I
n 6. - llzj,qll ) M sz € (Hyjll llzj,H)
T Wyagl Ty el ey iz, )
j y
(11)
By ™ “ean 6. + e D (14 tan 6.)
< J % J
B -1 1-m' (a)
- l+tan O,
o g 62 ( an j)

- -— — - 1
Here we have used the fact that ||T 3! 2 q 'q'™  is the smallest

singular value of ™ . For each integer i =2 1 we can choose firstly

q; and then 2i such that

q. - (q.) V. } .
iaBY lqi“ z < % and  (i+l)e, thz_(_‘ ' e %— ) (12)
. 1

Let B be the ball with radius 2;1 about x*, and consider for all

i > 0 the starlike domains
_' T T.T . -
T, = Geory®ZD T | lzl/lvl < i, 0 < izl + vl < 277} . )

For x, € Ti we derive from (11) with (12) that tan Bq < 1 so that the
' i
q;-th iterate x lies either inside T1 or outside B

. Provided the
g9;

full iteration sequence {xj} from X, € Ti remains inside B and

j=zo

converges to x* , the subsequence
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~ ~T ~T T
{x.=x*+( . 12.)
§ T WyrEy

X .. 1
q,+3*q, 320

~

must remain in Tl and there is an index sequence Qj -+ o such that

0. = |x.-x*|| < 2. for all 3

by I p I ’ 3

and
1im ¥ = 0 for a1l q . (14)
e A3

~

q, and = (12) for the angle Gj between

i

Now we derive from (11) with q

tj = (§j5x*)/5j and Mt

~

lim sup tan 6.+1 < %—lim sup tan 0, < %-,
joe ’ 30 )

which requires

It

Lim 2. /9.0 = 1im tan 6. = 0 .
P L D 3

With a any integer and q = §°q1 we obtain from (10), (9) and (14)

P, s ¥~ . H2(1+tan25~. REE
lim inf _a G+ 1im inf g (3+1) ~q (§+1)
7 By j>o0 §~ .lI% (1+tan?8-
J P55 3 ¥z, 41 55
¥~ oyl %~ .l .
= 1im inf —S 0D s gyp gpp | 20 (@) (L+tand, )
Jree Hyi,jH Jroo 17, 51 9543

-1 1-m’ -1 . -m'

> a q m = q (q.ql)l m .

It can be easily shown by contradiction that the linear root factor R

must satisfy

~

. _ _/aq
R1{§j} = lim sup (53-)1/J > [% 1(&°q1)1 m:] .

Je
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Since _& may be chosen arbitrarily large we find for the full sequence

{x.}
]

j2o0

. -1 m1/a
~ . -1 1- =
Rl{xj} 2 lim sup [D.](J 1) 2 lim [% ql m:] t .
joo I e

Thus we have shown that any iteration sequence from within the union
. [e o]
T= U Tl ’
i=1
that remains inside the ball B, can only converge R—sublinearly to x* .

Inspecting (13) we note that T has the set of excluded directions
T
SaM={0,zH" | llzl=1} .

If we transform A Dback into its original general form,the ball B is
mapped into an ellipsoid B , M into a subspace M of the same

dimension <n and T into a starlike domain T with the set of excluded

~ ~

directions S n M . By Lemma 1.4 (i) T has the density T*(T) =1 at
x* . Since R-factors are norm invariant all statements apply to the

original problem with B replaced by some ball BcB. : /4

In view of Theorem 3.1 it is clear that either condition (2) or (3)
must be violated if linear convergence is to be restored. Even if H is
merely bounded or does not exist at all the dilemma is essentially
unchanged as long as h is Lipschitz continuous in f . This is so
becéuse any "sensible" scheme will use the linear information provided by
the Jacobian to drive the iterates into the proximity of x*+N so that
subsequent steps are of of(p) = O(|lfll) . which allows only sublinear
convergence. If Vf is Lipschitz continuous and x belongs exactly to
x* +N- then a step which is not o(p) can only be achieved if
HH(x)H_1 = 0(p), which is by Lemma 1.5 (iv) the case for Newton's method

-1
with H = Vf . Thus we can conclude that unless (2) is violated the
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numerical difficulties observed for Newton's method are essentially’
inevitable and cannot be overcome by multipoint methods or the use of

higher derivatives.

Given the difficulties discussed above the performance of Newton's
method at regular singularities is surprisingly good. On the basis of a
detailed examination of the unmodified iteration carried out in Section 3.2
we develop methods to accelerate the convergenée by vafiation of the.

stepsize or by extrapolation, in Sections 3.3 and 4.1 respectively.

The condition (2) means that any point at which £ vaniéheS'is
acceptable as a fixed point of the iteration which seems a natural
property of any nonlinear equation solver. However in certain applications
it may be known in advance that the solution is singular in'which case we
can border the system by additional cbnditions e.g. det(Vf) =0 . On
the basis of LU and OR decompositions of the Jacobian, this approach
is developed in Section 4.2 for singular and unde;determined systems of
nonlinear equations. Test calculations with all discussed methods on a

family of problems in three variables are reported in the Tables 1-10 of

the Appendix.

2. Asymptotic Behaviour of Newton's Method at Regular Singu]aritieé

In Lemma 2.2 and Theorem 2.4 we were mainly concerned with the proof
of’conve:gence from within R as such. Analyzing the final convergence

behaviour of the unmodified method at regular singularities more closely,

we obtain the following result.

LEMMA 3.2  Convergence Behaviour of Regular Newton Sequences

k+1,1

Let £ e C GRnJRn) have a regular singularity of order k at x*,

Then any Newton sequence {xj=x*+pjtj}j>0 that is regular in that it is
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not disjoint from the starlike domain R, as defined in Theorem 2.4,

~ exhibits the following asymptotic properties

. >0, t.>teS aN - 15
pJ 5 € (15)
. o= k/(k+1) + O(p. i 16
OJH/DJ / ( ) (DJ) (16)
2 .
o(p?) if m=1=k
-1, T J -
cos (t;tj) = (17)
O(pj) other&ise
2 .
. O(pj) if k=1
sin‘ej = (18)
'O(pj) otherwise
%, -%.]
= Jj+1 3 .
K., = - = + 0(p.) (19)
3 ||xj Xj—l“ k+1 3
2
T o(p.) if m=1=k
(%, -x.) (x.,-x. ) ] '
w. = cos ! bL . ) _J-! (20)
57 Pyl Ty T
] J : O(oj) otherwise
2 _ 12 2,2 ' o
f(xj)/pj =3 VE(x*)t°/k° + o(pj) (2})
o(x. ) k
N L - |k i1 ‘
0 (x;) +oley) = [k+l] € [e . 2] (22)
Sk, ) /8(x) = [k/x+1) T¥™ + 0(p.) (23)
Jj+1 3 o J

Proof.
The two limits in (15) were already established in Lemma 2.2 and all
other assertions can be derived from its proof as follows. Equation (2.34)

gives the lower part of (18) and implies with (2.21) assertion (16) . The
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lower part of (17) is an immediate conseqguence of (2.37), Since

sin ej-l = O(pj41) we observe in (2.14) for the case k=1 that the
component of xj-x* orthogonal to N is O(p;_l), which imglies with
(16) the upper part of (18). If k=l=m the limiting‘tangent t must span
N so that (17) is equivalent to (18) as cosnl(ﬁth) ='6j . As a

consequence of (17) we have

T 2
t.t, =1-0 . ’
3%5-1 (OJ)
so»thét
‘ —K -k i, = -
ij I )-H/pj Htj tj_loj,l/ojﬂ
T ek o, %
= -2t t. . . . L) = {(1-p. . O(p.
[% 2tjtj_1pj_l/oj+(oj_1/oj):] [E ‘p]_l/pj) + (oj{]
= 1-0p. /p.+0(p7) ==+ 0(p.) o | (24)
- sRPUAS TS LA T L |

where we have used (16) to obtain the last equality. Applying the above

result for j and j+1 we find

pj+1

2
ey = _ /roles, ) + oo
s =% | pj/k+0(p§) k+1 s M

which proves (19).

Applying the triangular inequality in Sv twice we find

T T T
(x., -x.)t. (x.-x, ) t, :
-1 -1 - - -1
w, £ cos - ]x+1 T + cos - J”xj_; ﬁ L4 cos (t?tj_l) . (25)
y Peyeamsll | 3751 I |

2
By (17) we have t?tj_ =1 - O(sz) with 2£=1 or £=2 . Then we find

1

T o, 28+
- (x.-X. t. .. —p.+O(p
(3] xj_l) -1 _ s 1Py (Dj ) ) 1-—o(p2£),
P55 3
B g VAN 10(022*?
0 ¥P3_, 720405+

which can be applied for j and j+l1 to obtain with (17) from (25) the

upper and lower part of (20) for £=2 and %=1 respectively.
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For future reference we prove the more general result

2

' (O 2 - ’ ' ‘
£(x.(\)) = 7} A + 2 §1V2f(x*)t2 £ 0(00) , (26)

where

xj(k) xj + X(xj+1—xj)

* 4 .
X A(xj

X (l—A)(xj—x*)

' 2 3
x* + pj(Xgl(tj) + (1-A)tj) + pjkgz(tj) + O(pj) . (27)-:

The last equality holds by Theorem 1.6 (i). From the Taylor expansion of

f at x* we derive with 9, € N
. 2
. = p.(1- f(x*)t, + p. f(x* t.
f(xj(l)) p]( A)VE(x*) j pJ).V (x*) g, ( ])
1 2 2 2 3
+ = p. £ (x* t£.) + (1-\)t, + 0{p.) .
5 p:l V £(x )(Aql( ]) ( ) ]) (pj)
Substituting

Lt . . . t. + o(p?
373 =171 731 3-192( J—l) (pJ)

. “ 3
. t Op, =t = t,. i Op.)

J-1

we obtain with (16) and gl(t) = t k/(k+1)
£y (D) = pl (A (1-0) (k+1) */K*) VE(x¥) g, (£)
1 2 202 2 3
+ 5—pj(l—k/(k+1)) VEE(x*)t° + o(pj) .
The (2+Am)-th "row" of the linear system (1.22) reads

sz(x*)tgl(t) + VE(x*) g, (t) = V2E(x*)t? , (28)

N

which allows the elimination of Vf(x*)gz(t) and gives after some elementary

manipulations (26). With the elementary inequality e > (l+1/k)k assertion
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(22) follows directly from Lemma 21(ii). The last equétion (23) is - a

consequence of (1.9) and (2.4). - ' : /4

Lemma 3.2 shows that the regular Newton sequences converge to a
regular singularity in a very structured way. We notice in particular
‘that the residual f(xj) becomes colinear to V2Zf(x*)t? and its length
declines linearly with a ratié of k/(k+l), so that any given vector norm
of f is reduced at each step unless sz(x*)t vanishes completely.

Excluding the latter possibility we derive from (26) that the ratio between

the actual gain ”f(xj)” - ”f(xj+1)H and the linearly expected reduction
3 .
- + - =
™ Hf(xj )\(xj_!_l xj))H A=0 Hf(xj)”

is given by

2k+1

- . £(x, =
e A ey

+ O(Dj),

where

may be any elliptic norm. Consequently the usual line search
conditions of stabilised Newton methods (e.g. Goldstein test [23]) will
always be met by the full Newton step during the final approach to a

regular singularity. However it was found in [24] that such modifications
can slow down the iteration considerably before the final pattern has been

established.

If a Newton sequence does not converge superlinearly as usually
expeéted the first noticeable sign is obviously that the ratio Kj between
consecutive stepsizes fails to become arbitrarily small. Provided the
sequence converges at all the limiting point x* must be a singular
solution of x* . Nafurally it is important to determine the type of
singularity by interpreting the unmodified Newton iterations before any

convergence accelerating procedures may be applied.
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Whereas by (19) at regular singularities
K./(l-k.) =+ k
]/( 3 '

this is not necessarily true in other cases. For instance we find for the

system £ = (%Ez, %—C3)T whose unique unbalanced singularity x*=0 is of

ordef k=1, that all Newton sequences satisfy asymptotically

Kj/(l—Kj) > 2 ‘ | (29)
and
1 3. T 3 : '
’ . = r S P2 . I3 . 30
wy > 0 f(x]) (0 303) + o(pj) : ! ( )
c(xj41)/c(xj) + 4/9 , 6(xj+1)/6(xj) + 2/9 . (31)

Whereas by (29) and (30) the singularity could be of second order and
regular,the two limits in (31) cannot be matched with (22) and (23) for

any k and m as 2/9 is not an integral power of 4/9 .

Even though a proper determination of numerical rank [25] requires
the singular value decomposition of the Jacobian,one can get some indication
as to the dimension of the nullspace N froﬁ the LU 'decompositién and
may use the smallest diagonal element in U as an estimate for o . If
the small elements in the diagonal of U decline at different rates or
oscillate, the proﬁlem has most likely an irregular singularity to which
the analysis of this thesis doés not apply,even though extrapolation of
‘the kind described in Section 3.4 would work for the unbalanced problem
mentioned above. If oﬁ the other hand wj tends to zero, Kj/(l—Kj)
comes cldse to an integer k and ¢ and § decline with rates that are
compatible in the sense of (22), (23), then we can be reasonably sure to
deal with a reqular singularity for which the modifications developed in

Sections 3.3 and 4.1 are designed.
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3. Variation of the Stepsize at Regular Singu]arities

According to Lemma 3.2 regular Newton sequences approach  x* along

a unique tangent t € S' n N roughly reducing the distance to x* by a

~ factor of k/(k+l) at each step. Now it seems promiéing to accelerate the

“cohvergence by taking a step (k+1) times the Newton correction or its

projection into some approximation ﬁ to the nul;space N . For the"
scalar case where necessarily m=n=1 this idea is rather old and has been
shown to restore the quadratic rate of convergence of the unmodified method
at nonsingulér solutions by Schroeder [26] and several other authors.
Unfdrtunately this situation is very atypical for the genersl multi-
dimensional case in which Rall [ 3 ] and more recently Reddien [ 7 ] have
discussed the properties of suéh correéted Newton steps. Rall's paper
suggested that thé multidimensional case could be treated successfully in
essentially the same way as the scalar case. Unfortunately his ahalysis
contains a flaw which amounts to the omission of certain cross terms and
was first detected by Cavanagh. Reddien found in test calculations [ 7 ]
that the §orrected Newton step from some point xj = g(xj_l) leads usually
(1)

to a point Xj+1 much closer to the solution x* than X
(1) ‘

that the subsequent Newton step from xj‘ tended to be disadvantageous.

+1
(1)

J+1

541 f g(xj)- bu§

In our framework this means that x can lie outside W and may even

-1 .
belong to the singular set & “(0) . If x;il is an element of R the

next normal Newton step leads back into W, but it may be large enough to

offset the original gain in the step from x. to . Whereas this

*341
situation seems typical in the general case,we find that at strongly

1

reqgular first order singularities convergence of order 2’@

can be obtained
by taking two normal Newtbn steps after each corrected Newton step of

double length. This result holds only if certain cubic terms do not wvanish
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and does therefore not apply to Reddien's test function which involves no

cubic terms at all.

Considering a corrected Newton step from some point xj = x*+p5tj e W
in the neighbourhood of a regular singularity with arbitrary k and m ,

we obtain from (27) with A = k+1

) 2 3
X, = x* + p, | (k+l t.) -kt.| + (k+1l)p.g, (t.) + O(p.) . 32)
341 pj[} )9, (& ;] )pjgz( 3 P ;‘ 2
Now we look for conditions under which

”x;ii-x*” = o(p;j and .xgii e W, : -~ (33)

so that the next Newton step whether normal or corrected is well defined

and does not increase the distance to x* . We know from (2.12) that'
(k+1)g1(E) -kt=0 for teNnS,

but gl(t) can be rather large if the minimal angle 8&(t) = cosil(t?E)
between- t and some t ¢ N is not small. Imposing the condition
sin ej = sin e(tj) = O(pj) we find that the first requirement in (33) is

satisfied and that the term

2 : 2 - 3 -
k+1l)p, £.) = (k+1)p. t.) + 0(p)) , t, N
( )pjgz( j) ( )pjgz( J) (pj) ; €

(1)
1

is now leading in (32). 1In order to show that x.

' 1
have to bound the angle between x;+1 - x* and some regular direction in

belongs to W we

N, which seems only péssible if
me(t) #0 and 0#g () e N forall telNnS. (34)

In other words the singularity must be strongly regular and the then well
defined vector gz(E) must be a nonzero element of N for all te Nn S-.

By (28) and (2.15) we have for t ¢ N n &
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1__k.,

VE(xN g, (B) = (557 VEENE, (35)

so that the condition (34) can only be met at a regular first order
singularity{except for rather special cases where U2£(x*)t? vanishes

for all t e Nn S . Excluding the latter possibility we must have £=1
and Am=0 so that with (2.15) accordiﬁg to the sécond "row" of fhé linear

system (2;6) for t e NnS'
(VE+PV2£ (x*) t) g, () = %-PV3f(x*)t3 ) (36)

Consequently we have to assume that the RHS does not vanish for any

t € N n S in order to ensure (34),which leads to the following result.

' THEOREM 3.3  Second Order Three-Point Method
Let f € Cs'laRnJRn) have a strongly regular first order singularity

at x* . If
PV3ft? # 0 for all te Nn S (37)
then there exists a constant p such that the three point iteration
... = 29(g(g(y.))) - glgly, 38
Y54 9lglgly, glgly ) (‘)

converges Q-quadratically to x* with

Y., —X*
9[——1i1————} = o(]ly.-x*[) (39)
Y54, ] | _

from all initial points in the starlike domain
V = {x*+pt | teS,8(t)<B, 0<p<p} c V ,

where V , 0(t) and 6 are defined as in Lemma 2.3.
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Proof.

By definition of 6 in Lemma 2.3 we have
min {7 (£)] | teS,0(t)<B} > 0

so that there are constants c c, = c/G and 'c3 such that by Theorem

17 72

1.6 for all x = x*+pt ¢ V

llg (x) =x*-pg, (£)-p%g, ()]| < c p° ,
| (40)
ll2g, (£) -t < c, sin 6(t) 4

and

lg, (£)-g, (D) ]| < ¢, sin o(t) ,

where t e N with cos 6(t) = tTE .

Because of the assumption (37) it follows from (36) that gz(E) cannot‘

vanish for any t € N n S, so that there are constants c, and c, such

that

0<c, <llg, () sc, forall TeNns. (41
Abbreviating
_ ~ 2 . ~ A
c = (c2+2pcs)(c351n6+3c1+pc301).

we can now define

_ R c“sine 1 » B
p min {p , , } . ' (42)
l6c6 605

According to equation (2.47) in the proof of Lemma 2.3 V is a domain of

contraction so that for any

o

R
W
i

X*+pot0 e Vel

for i=0,1 .

I
[te]
»
I
%
%
+
je)
t—l-
o
H.
m
<>
I
IA
ke)
~
©
IA
B

i+1”" i
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According to Theorem 1.6 (iii) and equation (35) the vectors gi(t) and

gz(E) always belong to N so that by (39)

IA

. 2 A 3
sin +
P, 81 P,C, sin @ PeC, 7

IA

: 2 ; 3
sin 8 c sin + c
pz 2 p1 3 e1 pl 1

IA

2 A
3 .
c. sinf+p c c, +
po( , sin® ’po ¢, te))

Now we obtain from (40) for the corrected step from x, to
X, =y = Zg(xz) - X2 that

I Tiwm

- —-— 2 ¥
I, ~sx*-20%q (E,) |

IA

p

. 2 . 3
,C, sin 8, + 2pjc, sin O, + 2p,c, o (43)

3 2 i B 3 < A3~
po(c2+200c3)(c3 51n6~+p0c3c1-+c1) + 0,C; S PyCq v

IA

where we have used c, 2 1 to obtain the last inequality. Hence we find

by (41) for p, = ”x3-x*H
2 3 2
Cupo/B = PpCe S Py < 2csp0 + PyCe -

- 8ince p, < 5 as defined by (42) we have

PpCe = cu/16 < c5/16 '
so that
16 < <3 <L
DOCH/ < 03/00 < Docs‘_ >
and furthermore by (43) with gz(Eo) e N
-1 R '
sin 63 < pgcs(pﬁcq/l6) < sin O . (44)

Consequently yj+1 = x, belongs to U with

2 1 '
-k -k — —-x%
1y =x*ll s 3e llyg=x*1" < 5 llys==*)
so that the sequence {yj} converges Q-quadratically to x* . Equation

(39) follows from the first inequality in (44). Y7/
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It was found in practical calculations thaf the three—péint method may
still converge quite rapidly even if a regular first order singularity ié
not strongly regular. As we can éee in Table 5 each fully corrected Newton
step causes a shift of direction within N which»can_theoretically lead to
a point :x* + pt with t dirregular. However since by assumption of
regularity almost all directions in N are regular this is unlikely to
: occur, and as gltt) = tk/(k+l) for all te Nn S’ »the next step‘can'be

favourable even if t is nearly irregular, i.e. ]ﬂo(t)l small.

The assumption that the singularity,be of first order is essential
because otherwise any fully corrected Newton step is likely to lead‘to a
point outside (W . This can be observed in Table 8 where oniy every fifth
Newton step is corrected, which nevertheless destroys any prospect of

convergence.
As we can see in Table 1 and Table 5 the two point method

.= 29( ) - . ,
yJ+l g(g(yj)) g(yj) (45)

converges like the three point method quite rapidly to regﬁlar first

order singularities. This observation could not be supported theoretically_
because the ratio between consecutive angles Bj = 6((yj—x*)/”yj—x*”) is
bounded but not in general less than '1 . However it can be shown on the
basis of (39) that any combination of one three-point step (38) with ‘q-l
two-point steps (45), or equivalently one normal Newton step with a two~
point steps,yields a (2g+l)-point method which converges from within SOmg

starlike domain Rq c R with density 1 . If the solution x* 1is in fact

nonsingular we have for each two-point step (45)

-k = _ek | - -k
Y410 7 % 2[g(q(yj)) x*] (g(yj) x*)

2 ollgty ) -x**) + o<Hyj-x*H2) = o<Hyj—x*H2> ,
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so that the (2g+l)-point iteration does still converge provided it comes
sufficiently close to x* . The efficiency of the (2g+l)-point method in
the sense of Brent [27] is given by

,

l1+g i *Y )
o log 2 if det(VE(x*)) #0

log(R-order) - v . (46)
evaluations of f and Vf ﬁ ' .

-—q—q— log 2 if det(VE(x*)) =0 ,

where x* 1is assumed to be a strongly regular first order'singularity in
the second case. Here we have relaxed the usual definition of the R-order
of an iterative process at a solution point x* [10] to mean the minimal

R-order of all iterations from within some starlike domain of density 1 .

Now it would theoretically be the best strategy to start with the
unmodified Newton ite;ation (g=0) until the convergence pattern described
in Lemma 3.2 is observable, then to increase gq gradually by taking more
and more two-point steps and finally to revert to the unmodified method
when the rounding errors become significant or the solution turns out to be
only nearly singular. Unfortunately there is no simple criterion to
decide whether any of the domains ﬁp has been reached and the workiné
hypothesis that the singularity is strongly regular can never be verified.
At each iteration point §j we can calculate the angle mj between the
Newton correction g(yj) - yj and the previous step yj - yj_l . If wj
is sufficiently small we may select a two-point step of the form {(45) and

otherwise a normal Newton step must be taken. The challenge to implement

this kind of "line search" in a computer routine could not be met in this

thesis.

On our test problem the three-point method (g=1) and the two-point
method (g=«) converge with similar speeds to a first order singularify with

one or two dimensional nullspace [Tables 1,5] and a nearly singular solution
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[Table 4J]. 1In allbthree cases the three-point method exhibits a more

regular convergence behaviour, with Sj > 0 as ensured by (39), than the
two-point method, which takes intermittently steps away from the solution.
Even though this problem might be overcome by a judicious choice of g < « ,

‘it seems doubtful whether q should ever be raised above 1.

In the nearly singular case both multipoint methods afe faster than
‘Newton's method during the initial phase of the iteration, which is lisﬁed
in Table 4. Once the residual |||l is of the same magnitude as the smallest
singular value of the Jacobian at the solution, Newton's method is natﬁrally
superior, so that a final switch back to g=0 would be advantageous ip

both singular and nearly singular cases.

Whenever the assumption of Theorem 3.3 are not satisfied we face the
dilemma that any fully corrected Newton step may lead to a point outside
W, which was observediin Table 8 for'a five point method at a strongly
regular third order singularity. Several authors, e.g. Reddien [ 7 ] and
Keller [28], suggested to determine from the singular value, eigenvalue, or
simply some trianguiar decomposition of Vf(xj) an approximation N(x)

"to N and then to project the Newton correction g(xj) - X,

into N(x)

before multiplying it by k+1 . This idea is based on the observation that

after several normal Newton steps xj - x* Dbelongs essentially to N ,
i.e. ej = 6(tj) is small. If this is so we can assume that
x. = glg(x. )) with X, e N,
3 79l j-2
so that Xj—i = g(xj_z) belongs to W(s) for some s e S' ' n N . Then we
have by (2.34) G(tj) = O(pj) and because of (2.14) with (2.32)
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2
gi(x — o(pj) if k=1
f|—3— | = for i=1,2

i -k
llg (xj) x| O(pj) otherwise ,

Using again (2.32) one can easily show that this implies

g(Xj)"X- . .

—_— o(p.) (47)

ll9 (x50 =] R o
and furthermore if k=1

(x.,. )-x, '

P i 2 i 31 0(p2) ' (48)
”g(xj+1)-xj+1” ]

where xj+1 =‘g(xj) as usual.

Hence the angle between the Newton correction evaluated at xj and‘the
nullspace N is O(pj) and the corresponding angle at the next iterate

. 2 . _
Xj+1 is only O(pj) if k=1.

As will be shown in Section 4.2 the approximate nullspaces N(x)
derived from matrix decompositions of Vf are spanned by vectors
{vj(X)}j=1..m which are Lipschitz continuously differentiable on some
neighbourhood U of x* provided this is true for Vf . The ranges of
the Jacobians {ij(x*)}jzl“m are in general not contained in N = N(x*)

. . n
so that for some j ¢ [1,m] and a suitably scaled vector =z e IR

s = Vvy(x¥)z ¢ S-N. - (49)
Without loss of generality we can assume that vj is nOrmalised such that
vj(x) = Vj(x)/”Vj(X)” e S for all xe U .
Since the columns of the matrix
m

VE S (v (x%) v, (x%) ...V (x2) € r

span N we find for the minimal angle BA between vj(x*+lz) and N
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sin Gx miqn‘”V*y—vj(x*+Az)H

y€R

min ”V*y-vj(x*)—XsH - 0()\?%)
veR

A sin O(s) - O(Xz),

]

where 8(s) is the minimal angle between s and N which is by (49)

nonzero. Hence we conclude that the angle

e(x)ii max B(t) = max min cos—l(th)
teSnN (x) 7 teSnN(x) seSnN

is by differentiability of the {Vj}j=1 o ©f 0(p) but in general not

smaller.

Consequently the projection of the Newton correction g(xj)—xj into
N(xj) is by comparison with (47) unlikely to reduce the angle with N
significantly ‘if the singularity is regular. If it is furthermore of
first order the angle between N and the Newton correction at the next
iterate xj+1 is by (48) much smaller than what we can possibly ensure
by any kind of projection. Rather than expending any computing time for
the approximation of N by N(x) we prefer to take one or more normal
Newton steps between any two corrected ﬁewton steps,which was already
shown to be succéssful in the case of regular singularities with k=1
The unmodified Newton iteration functions approximately as a power‘method
for the calculation of the eigenvectors of the homogeneous vector function

g, :® -7 (0) >N . since by (2.15)

g, (t) =At forteS' , A eR<=>teNnS'", A =k/(k+tl) ,

this process which is based on values of Vf and f generates Newton
corrections which are at least as “close" to N as any approximation

N(x) that is based on the current Jacobian alone.
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In the case of higher order singularities we have already noted that a
fully corrected Newton step can never be taken even after arbitrarily many

normal steps. Thus we consider partially corrected Newton steps of the

form
Xip 7Ky C ijf’l(xj)f(xj)
(1- k+l) I, - B (tj)'c (tj) | )
= x* 4+ pj , | | tj + O(Dj)‘
o, -ApI

with Xj ¢ (1,k+1), so that the leading term on the RHS has a nonzero

component in N provided this is true for tj . AbbreViating

AL
ij = (1- Ei%ﬁ € (o’k+l) | (50)‘
we derive from Lemma 2.1 (iii) the inequalities
d
sin O, < |{(A.-1) sin O, + — p.{p./D. 51
in 6,,, l:] ) si 3+ 2 p;‘pj/pJ+1 | (51)
and
kkjc ' 3
—r K —_r % < = ——— 3 —
||xj+1 x Akj(xj x*) || < NPy = [}k+l)vj sin 8j + ® pé]pj o (52)
J
where Vj = v(tj) as before and d=dlk+i)
As immediate consequences of (52) we obtain
. , = A ] S . : 53
lp]+1/oj 51 n; (53)
and for the angle ij between tj and tj_H
in Ay, < n./AX. . 54
s wj nj/ 3 (54)

Now suppose we want to choose ‘kj = A for some constant A > 1 . Then it

follows from (51) and (53) that the size of the ej can only be controlled

if
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[A-1] a1
B T To/0eh) e | B9

This condition is sufficient for the existence of starlike domains of

convergence as constructed in the following theorem.

THEOREM 3.4 - Partially Corrected One Point Method

Ck+1,1

‘Let f € GRnJRn) have a regular singularity of order k at

-1 .
x* ¢ £ (0) . Then there exist for any fixed X € (1,1+k/(k+2)) and

all regular directions s € N n 8’ two positive constants ¢X(s) and

‘DA(S) such that the partially corrected Newton iteration

_ _ -1
xj+1 = xjv AVE (xj)f(xj)

converges to x* from all initial points in the starlike domain
wx(s) = {x*+pt | teS ,cos—l(th)< ax(s), O<p<6x(s)}

and satisfies asymptoticélly

Oso.
j+1 A k
—_ - — S —— . v
pj > (1 k+l) e and tj >teS" nN .

Proof.

The proof of this result is omitted because it is based on the same

idea as the proofs of Lemma 2.2 and the next Theorem 3.5. ' V///4

It seems doubtful whether the partially corrected one-point method
considered in Theorem 3.4 represents a real improvement over the unmodified
iteration. The simplicity and structure of the latter is.lost and the
reduction of the linear Q—factor from k/k+1 to AX > k/(k+2) is only .a
small gain especially for k > 3 . It was found in practical calculations
[Tables 5,8] that the partially corrected one-point method, though faster

than Newton's method, was not competitive with other modifications.
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Instead of imposing the condition (55) we can cdntrol tﬁe size of the
ej by taking a normal Newton step after each partially corrected step,

which leads to the following result.

THEOREM 3.5  Partially Corrected Two-Point Method

1

+1 , '
Let f ¢ Ck ! GRnJRn) have a regular singularity of order k at

x* ¢ f-l(O) .. Then there are,for any fixed multiplier X ¢ (1,k+l) and
all regular directions s in N, two positive constants EA(S) and BA(S)

such that the tw0—point iteration

y = X g(g(y;)) - (A-Dalyy)

i+l
converges to x* from all initial points in the starlike domain

@ (s) = {x*+pt | teS ,cos_l(sTt)<:$A(s) ’ O<D<BA(S)}.'

A
with -
”yi+1'x*” A
—ﬂ§;:;;W—'S 3(1-—EII) for all i >0 (56)
and in the limit
lyg, ==+l |
- i+1 k A oy
”yi_x*” > (k1) (l-—k+l) ’ (57)
Yi—x*
ﬂ?T:ETW ~teNnS'. (58)
1

_ Proof.

Including the intermediate points g(yj) we obtain the sequence

{xj}j>0 with

X

y. . and

= 1 > .
21 1 X2i+1 - g(yi) fgr 120

Let Vs and the constants ¢,V and r be defined for fixed s e N n S

as in Lemma 2.2. Our aim is to choose ak < ¢ and 5K < ¢ such that
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for all 3j
< <
¢X and { 3 ¢ | ‘ (59)
-1 T ~
whenever p, < py and wl = cos (s to) < ¢A .

To this end we impose several conditions on ¢A and 'px the first of

which is the inequality

ke . % a - ALl 1 , iy
?7 sin ¢k + 63-px <n =3 mln{ el AX} , _ (60)

where AM - is given by (50) .

It follows from (53) for the normal Newton step (A2i==l) from some point

xj~='x2i satisfying (59) that by definition of ﬁ' in (60)

(O o
1 k _~ 2i+1 k A~ . Jktk k 1
2 < Py n < —E—T— < E:E-+ n < mln{*—— , —— + Ax} , (61)

and consequently by (51)

i < 443 v2 . 2)
sin 62i+1 44 pzi/v (62)
. S g < 3 ]
Provided 62i+1 ¢A and ¢2i+1 ¢ which will be ensured later, we
obtain from (53) for the partially corrected Newton step to X, 142
1 A Poig ~ k+ 3 v
AN S A -n<s ———<n+ A <min{T—, = AN} , (63)
2 0. k+l ' 2
2i+1 ‘
so that by (51) with Azi+1 = X and (62)
. d 2 1okd
: < = + = < .
sin ezi+2 32 (4kp2i pzi+1) AX T D2ZAN pzi (64)
Imposing the condition
a2 ~
~ VAL,
<
Pr < Toxa 5" (65)
we can ensure that 62i+1 and 62i+2 are less than ¢A provided (59)

holds for 3j=2i . 1In order to bound wj we note that by (54) with nj
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as implicitly defined in (52).

2i i ’ : '
jzo sin M, < QEO (M, g M, 04, /BN) (66)

As long as (59) holds we know from (62), (63) and (64) that for some
constant ¢ > 0
Nogto * 2+1/A>‘ = P s } o (67)

which gives by (61), (63) and (54)

sin wj < sin wo + sin Awo-+ 2;00(k41)2

iA

(1-+%§) sin 5* +.f§%4—25(k+1))5x.

By a suitable choice of first ¢A < ¢ and then px < r we can ensure
that the RHS is less than sin ¢ and that the conditions (60) and (65) are
simul taneously satisfied. Then (59) must hold for all Jj = 0 so that by

(61) and (63)

2i+2 Cfkts k1 k+s 3,
™ < mln{k+l ) + 5 AR} {k+l '3 AK}

21
[ (x+%) 2 Lk
mln{ [m‘) , 3AA [k+l + = A)\)}

which implies (56) as A\ < 1 . Therefore the pj and consequently by'

(62) and (64) the Ny decline Q-linearly so that by (53) with Azi =1

and Azi+1 = A

p

2i+2 - ( k

_ kA
> Sy, ) (B rolp, )] = 557 + oo, )

2i k+1

which proves (57). The tj € S form by (66) and (67) a Cauchy sequence

whose limit t is because of (59), (62) and (64) a regular direction in

¢

N . ' /4
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As an immediate consequence of Theorem 3.5 we obtain the following

corollary.

COROLLARY 3.6  9-Superlinearly Converging Tteration

Let f ¢ Ck+1’1

meEJH have a regular singularity of order k at x*
Then there exists for every initial point Yo in R as defined in Theorem

2.4, a nondecreasing sequence of multipliers
A, > k+1
J

such that the iteration

Yy

.= AL ; - (A.- .
41 Jg(g(yj)) ( j 1)g(y3) (68)

converges Q-superlinearly to x* in that

Iy 54,41/l 51l > 0

Proof.

Initially we may choose constantly Aj = 1 . According to (58) the
effectively unmodified Newton iteration approaches x* along a unique,
regulaf tangent, say 21 e N . After finitely many steps the process must
rgach a point in @k+%(gl) as defined in Theorem 3.5. Then we can change
over to the two point iteration with Aj = k-F%—. iThe new sequence has
again by (58) a regular tangent, say €2 and must reach after finitely

~

many steps the domain W, 3 (t. ) . Then we may reset A. to kivi and
k+%, 2 Jj 4

repeat the readjustments such that in the limit Aj + k+1 and consequently

Akj >0 ,whiéh ensures Q-superlinear converdence by (56). /4
If the solution x* is in fact nonsingular we have
oy T XY = A(glgly))-x*) - (-1 ) =x*) = o(|ly.,-x*|
Yy jlatalyy ) 571 (g(y)=x%) = odlly-x*[1*)

so that the iteration converges for any multiplier sequence
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{Aj}j>0 c (1,k+l) O-quadratically to x*, provided it comes sufficiently

close to x*

As in the case of the (2g+l)-point method discussed at the beginning
of this section, we again face the problem that no simple criterion is

~

available to decide whether any of the starlike domains wx(s) has been
reached. 1If Aj is increased too rapidly the iteration may not converge
at all and if it is increased too conservatively the convergence will be
initially slow and when Aj comes finally closé to k+1 the theoretical
benefit might be completely foiled by rounding errors. As we can see in
Table 8 for the case k=2 and m=1 the partially corrected two-point
method with fixed A =2.8 converges quite nicely with Q-factor =0.044,
once the convergence pattern has been established. Since none of the
other methods discussed in this thesis except extrapolation, is applicable.
at higher order singularities, the deveiopment of practical criteria for
the choice of the Xj in a two-point iteration of the form (68) would be

a considerable achievement.

Unless the singularity x* is pure (n=m) fast convergence of a
sequence yj - x* implies by Lemma 2.1 (ii) rapid deterioration of the
conditioning of the Jacobians {Vf(yj)} . The partially or fully corrected
Newton steps are only advantageous as long as they can be calculated with
a high relative ‘accurace since otherwise they may lead to a point outside
W . Therefore the variations of stepsize discussed in this Section should
mainly be applied during the intermediate stages of an iteration

especially if the singularity is not strongly regular.
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CHAPTER 4

EXTRAPOLATION AND BORDERING

1. Extrapolation at Regular Singularities

According to equation (3.22) in Leﬁma 3.2 the conditioning of the
Jacobian at a regular Newﬁon sequence deteriorates by a factor between
é- and %- at each step no matter how high £he order of the singularity.
This "cautious" approach to the singularity should enable thé unmodified
method to '"squeeze" the maximal §ccuracy out of the'routines‘for the
evaluation of £ , the jacobian V£ and the subsequent solution of a
linear system in Vf . We know from Lemma 2.3 and Lemma 3.2 that the
convergence of regular Newton sequences is reasonably robust and véry

structured, so that it seems promising to extrapolate the location of x*

without abandoning the unmodified Newton iteration.

For the scalar case n=1 several authors, e.g.Ostrowski [29] and King
[ 30] have developed extrapolation procedures to speed up the convergence
of Newton's method to both singular and nonsingular solutions. Like most
accelerétion techniques for slowly converging scalar sequences [31] (e.g.
Bitken's 62—proce§s [ 1] or the e-algorithm [32]) these methods involve
divisions by function value differences or derivatives.‘.Therefore.they
are not directly applicable to vector sequences and could be computationally
expensive if division by derivatives would generalise to multiplication by
inverse Jacobians. Another feature of these methods is that the éxtrapolated
point serves as initial point fof a new cycle of the respective scheme, as
for instance in King's fourth order three-point method. In contrast we will
never actually "take" the step to the extrapolated point which, though

probably a good estimate for x* , is of dubious value as a starting
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point for subsequent steps.

Now let {xj}j>o be a regular Mewton sequence in the sense of Lemma
3.2. Abbreviating «k = k/(k+l) we obtain in agreement with (3.32) ‘as

first stage of the extrapolation the sequence

X., =KX, .
(1) _ _J*+1 I s 2 L
xj+1 o =% + O(pi) forv 320 (1)
Substituting Kk by the approximation
T
(xj+1 xj)’(xj-x._l)
K. COS @, = =K + O(p.)
3 J J

“Xj"xj_lﬂz

with Kj and wj as defined in Lemma 3.2 we obtain the formula

(0 _ ij—xj_l
j+1

2 - e VT
L T P U W B e B8

2 T
X.—X. -(x,, -x.) (x.-x., .)
I J 3'1” j+r ] ] -t
which reduces in the scalar case n=1 to Aitken's &%-process. 1In what
follows the form (1) will be preferred as it allows the interpretation as

Richardson's deferred approach to the limit appliéd to an assumed

expansion

. 94
X, = xX* + v KJ + v K ]
3 1 2

v
o

+ ..., for 3 (2)

Since K is always positive we can write Kj = h; " sa that (2) looks
exactly like the h?-error eXpansionvof a central difference scheme for
the solution of differential equations [33]. It should be noted that in
contrast to this classical case the expansion (1), if it exists at all,
aepends not only on the problem as such but also on the particular Newton
sequence, so that the vectors VR are in fact functions of the initial

point Xo - Truncating (2) after g terms, we define the extrapolants

' x;q> as unique solutions of the linear system
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x50 = x;q)'+ v Kq_l + Y KZ(q-R)...G Kq(q—ﬂ)

) ) a for 2=0,...q ,

. ,
which implies in particular xf . x. for all j 20

. Eliminating the

unknowns Vo s we derive from Lagrange's extrapolation formula

@ _ § (-p* Bl
X. = Xi_ 0 "7 ) (3).
J 2=0 i, @ i
| noawh Toawh .

i=1 i=1

"The xgq) can be calculated recursively by linear iterative extrapolation

of the form

(@) _gt+1_(q)
X, =K X, -

which is a special case of a formula given by Bulirsch [34] and

effectively eliminates the leading K(q+])j term in the expansion of xgq)}
As we will see later this is only true if x;q) is considered asla function
of Xj—zq rather than xj—q , S0 that we have the extrapolation trianglé

first column : regﬁlar Newton sequence

x
1

. x(1) ' (1+g)-th column : g-th stage extrapolants
2 ! 2

x(1)

X3 1 3 ¢

X . x(%), x(%) ,...x(q) (5)
29 27 273 273

The extrapolants have been indexed such that the subscripts indicate the
number of function and Jacobian evaluations required for their calculation.
In practice the extrapolation should only be started when the unmodified

Newton iteration exhibits the convergence pattern described in Lemma 3.2.

Without deciding the question whether (2) exists or not we show that



116

2D gx = o[p?+1 ] = O(Kj(l+q)] ,
J J-2q

provided f is sufficiently often differentiable.

In order to establish this result we consider for some fixed reguiar

direction s e S'n N  the starlike domains @ = W(s) and @ = @(s) c W
as defined in Lemma 2.2. Let

U= {teS | cos '(tTs) <d(s) , B(t) < d(s)}
and

U= {tesS I cos—l(th)'<$(s)} S|

be the sets of those directions that are included in ([ and W respectively

" For any t € (] we derive from (2.12) with (2.28)

A

”gl(t)—Kt” <K c G-lsin ¢ < x/(k+1)

so that

lg, ()] 2 (k=x)/ (k+1)

and

sin[cos—l(tTgl(t)/Hgl(t)H)] <x = %—sin )
Thus we have by the triangular inequality in S
cos™ (sTg, (0 /llg, () ) <5 ¢/a,
which implies by definition of ¢ in (2.25) that -
a = inf{lm(ty| | tel} > 0, , (6)

where T 1is the homogeneous polynomial of degree p(p+2) defined in
Theorem 2.4 (ii). Abbreviating k= Ap-Am we obtain from (1.21) for all

X = xX* + pt = x*+ 2z e (¥
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~ i+Am
ko ug(2)0m (m(2)g, (2))]

i+Am

g(x) = x* +

i o~

i=1 m(z)
where the remainder on the RHS is by (6) uniform in t ¢ El . By (2.5)
and (2.12) the components of the vector function Wo(z)gl(z) are

homogeneous polynomials in 2z, so that the components of each term in the

expansion (7) are homogeneous rational functions of the form
'3 n -1, . :
n/m” :IR ~m (0) >R . ‘ (8)

For each integer i let Hi be the set of all scalar functions of the
form (8) with 2 e¢eN and n € cmaRn) a homogeneous polyriomial of degree

i + p(p+2)2 . Then we have for any nonzero y e R" and ) ¢ R - {0}

now) ot = Ah@ /me

so that all elements of Hi have the degree of homogeneity i . It can

be easily seen that

h,heH , AeR = h+AheH . (9

h € Hi  he HI = h =+ he Hi+{ (10)
and

i#i & HE n Hi = {0} .

Therefore the sets Hi form linear subspaces of caﬁmﬁ—w'l(O)) and their

direct sum

H

1

{H.+H ....+H +...H _+H}

-i 1-1i 0 i-1 b
i=1

o _ .
is a subalgebra of C GRn—W 1(O)) , i.e. H contains all sums and products

of its elements. H consists of all rational functions of the form
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h = 'r/'rrl LR - 1) R,

[oo]
where £ e N and T € C GRn) any polynomial. Ordering the terms in T

according to their degree we obtain the unique decomposition

'3
h = (n0+n1+...nq)/n

io+q ) .

- : 11
‘Z' hy »hy e M., h #0#h, vq (11)
lzlo 0 0

where the {n.}. are homogeneous polynomials of degree .
3" jelo,ql

i0 + (p+2)p + j . We are mainly interested in vector functions

heH' = HxHx...xH

—

~—

n

for which the decomposition (11) exists with hi € H? . The smallest
index i, for which h, # 0 will be called the order ord(h) of h .
0

: . . n
For our purposes the following properties of the elements in H are

important.

LEMMA 4.1  Polynomials over Powers of
- - n n ) n
Let U , W, {Hi } and H be the sets defined above and g, € Hl
the leading term in the expansion (7) of the Newtonian iteration function

g . Then

(i) For any h ¢ Hi and j € N the entries of the derivative

tensor VJh belong to Hi—j

(ii) The restriction of any h ¢ H to U is bounded so that for

all x* + z = x*+pt € @

h(z) = o(pCFd(M)y

(iii)- For any h € Hi the composition h o g, belongs also to Hi .
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(iv) For any vector function h € H? with i, = ord(h) > 0 there is
: 0

a vector function h € H'  with
ord(h) 2 ord(h) + 1

such that for all x*+pt = x*+z ¢ W

~

h(g(x)-x*) = h, (g,(z)) +h(z) + o(p"") , (12)

0

where the remainder on the RHS is uniform in t e U .

Proof.
. . . . 2 . v - .
(i) The partial derivative of h = n/% with respect to some variable

£ is given by

Each term in the denominator polynomial has the same degree

o _ am | _ _
deg(ﬂ 3E W 8&] deg(n) + deg(m) 1

so. that 3h/3& 1is homogeneous of degree
deg(n) - % deg(m) - 1 = deg(h) - 1

Thus each component of the gradient Vh belongs to Hi—l and we can
obtain assertions (i) by induction on j
(ii) Without loss of generality we. can assume h==n/ﬁge Hi so that

0
by_(6)

I

i
|h(z) | |n(z)/-n(z)"| =p °[n<t)/n(t)’ﬂ

i -9 -
o %a max{|n(t)|-| teU} .

IA



120

(iii) For all =z e:m? we have with h = n/ﬂ2
h o g,(2) = h(g (2) = h(m (2)g (2))/T (2)"

n(my(z)g, (2))

= " /Q' . (13)
ﬂo(z)¥n(wo(z)gl(z))
Furthermore by definition of T
Ty (Mo (2) g, (2)) = W(z)/T (z) (14
and because of (2.15)
g, (m,(2)g, (2)) = kT (2)g (2) ,
so that
m(my(2) g, (2)) = (m(z) /7 (2))T ((1(2) /T (2)) KT (2)g, (2))
= Kpn(z)p+lno(gl(z))/ﬂo(z)
= Pr) P (g (2)9, (2)) /1y (2P
= kPlm(z)/m () 77
Thus we can rewrite (13) as
N, (2)g, (2)) <P
h(g,(z)) = —
1 W(Z)Q,(p-!-z)ﬁo(z)l 2 (p+2)
If 1 < 2(p+2) then h o g; 1is already in the form (8). Otherwise we
multiply both denominator and numerator by ﬂo(ﬂo(z)gl(z))l—Z(pr) which
makes the denominator by (14) a power of T . ‘Hence h ° g, belongs to

H and since for all nonzero z ¢ R and A ¢ R - {0}
h(g,(Az)) = h(Ag,(z)) = A h(g,(2)

the composition h o g, must be an element of Hi .
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(iv) Because of (2.32) we have g(x) - x* = O(p) which allows us to

ignore the higher order terms of h, so that without loss of generality

1 1 1

K |
h= ] n, , hoeH' , n #0.
i=i 0

0

For each i ¢ [io,k] we have the Taylor expansion

k-i .
1
h,(g(x)=x*) = h (g (2)) + jgl 5;-thi(gl(z))(g(x)—x*—gl(z))J
+ 1 Vk—i+1hi(yi)(g(x)—x*—gl(z))kni+1 )

(k-i+1) !

where for some mean value ai e (0,1)

v, = ai(g(x)—x*) + (l—ai)gl(z)

Because of (i), (iii), (10) and gq € H; the vector functions

i

w, . (z)
1]

o~ /D>

thi(gl(Z))[ g (z)]J
q=2 d

n
belong to H and have the order
d .. > 1i-3429 = 1+ 7
or (wlj) i-3j+2) =1i+7]

Because of (7) and (ii) the lowest order term in the discrepanCy

between w..(z) and
1]
j J
\ hi(gl(Z))(g(X)-X*fgl(Z))

is given by

~

vh, (g, (2)) (g(x) -x*-g_ (2)) I o(p*™)

A A
k+1 k+1

= 'Oy (g (0)) (g, (01 +0(0) T N0 (") = 0(p™H)

since i

\%

=

IN
(]

(15)
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Thus (12) holds with

A

k-1
+1 1 i=i j=1

A K K
h = I n eg + ]
iO i .0

31
wij/j. ,

. : ; . . k+1
provided it can be shown that the remainder in (15) is O(p ) for each

~

ice [io,k]. Since x € [ we derive from Lemma 2.1 (iii)

n

ly;70 = xell = llo, (g(x)-x*)/p + (1-a,)g,(t) - ktll

IA

afltgxy-x*) /0 - g ()] + llg, (&) - «tf

IA

ap/v? + Kk ¢ vV 'sin ¢ < [4(k+1)] sin ¢ ,

~

where the last inequality follows from the definition of ¢ and 8 in

(2.28) and (2.29) respectively.
Therefore we have
k-k vl k+k
< < , (16)
k+1 0 k+1
and the angle Ay between y; and t satisfies

sin Ay

min Ht—kyiH < %-sin o,
Ae R

so that with $,s ¢/4

-1, T -1, T ‘ -1, T ' 1
cos (s yi/HyiH) < cos (s't) + cos (t yi/Hyi”) <50 .
Consequently s; = yi/”YiH belongs to B and we obtain from (i) and (ii)
with (16)
k-i+1 k-i+1

v hi(yi)(g(x)—x*-gl(z))

_ 2i-k=-1_2 (k-i+1) vﬁ—i+i

= lly; i P h, (s;) (g, (£)+0(p))

k+1
= 0(p ),

which completes the proof. ' /4
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After these preparations we can now prove the main extrapolation

result.

THEOREM 4.2 - Extrapolation at Regular-Singularities

Let f ¢ CE+1’1GRnJRn) have a regular singdia:ity of ordef k at
x* € f—l(O) with rank (Vf(x*))=n-m<n . Supposé the Newton sequence -
{xj=x§0) jéo converges regularly to x* with the unique tangent
s € NnS' . Then there exist % > k- (m+1) (k-1) fﬁﬁctiéns

{h(q)}qe[o 241] c HY with ord(h(q)) 2. g+1 such that the sequences of
. 4 R ) B

extrapolants {x;q)}j>q defined by (3) satisfy for Jj 2 2gq

(@) (q) | k+1
X, = x* + h (x, ~x*) + O(||x, _ -x* ) 17
3 J-29 I Jf?q | ( v),
+1 + :
= x* + p3"! h(q).(s) + o(pd ) ' (18)
J-2q gh1 J-29g
where héfl € H;+1 is the "leading term" in the representation (11) of’
h(q) N Consequently eachbsequence {xgq)}j>q with q € [O,ﬁ—l] converges -
linearly to x* such that
ol e |
1i —%)——— = [ﬁ] if hjl(s) #0 (19)
oo [lx Y x| d
J
and
s g+1
lim ngq)-x*”l/J < [—E—J otherwise. (20)
. | k+1
j—)OO
Proof.
According to (3.15) all but finitely many of the iterates {xj} belong
to the set
[0.0] . .
D =N gy , gD ecDcl
j=0 ' . '

of all points from which Newton's method converges to x* withoﬁt ever

leaving W . By (2.32) we have for any x = x*+pt ¢ D and all j > 1
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[5:§)3 < lg? () x> < [k+5}3 <1. (21)
k+1 P k+l

On the domain 7 we define recursively the vector functions

g(q+1) = g(q)°9°g-Kq+lg(q)°9

g+1

for g =20 - (22)
1-k

with
(0)
g

(x) = x for all ‘x e D .

Because of (4) it can be easily checked by induction on g 2 0 that

(@ _ (@ g , S
Xj =g (Xj—zq) for all j 2 ?q . R (23)

On the basis of Lemma 3.7 (iv) we show by induction on q° that there are

h(q) e H" with ord(h(q)) > g+1 such that for all x = x*+z = x*+pt ¢ D
k+
P ) = xr + ' Pzy + 00" | (24)
o . _ . (o) _ (o)
which is true for g = 0 with h =g € H1 . Suppose (24) holds for
some q > 0 . By Lemma 4.1 (iv) there is a function ﬁ(q) e H' with

ord(ﬁ(q))zzq+2 such that for all x = x*+pt = x*+z ¢ @

(q) 1

h D (g = 0D g, ) + 5P @)+ 0

Applying the same result again we obtain a function h(q? e H' with

ord(h(q)) 2 g+ 2 such that for all x = x*+pt = x*+z € @

~(Q)

(q)(g (g(x)-x*)) + h ¥ (g(x)-x*)

b (@) ~(q) v k+1
q+1(g (g (z))) + h (z) + O(p )

(q)

gt and (2.15)

Since by homogeneity of h

(q) _ .gt1. (q) '
hq+1(gl(gl(z))) = K hq+1(gl(z)),
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we derive from the definition (22) with (21) for all x = x*+pt = x*+z € D

1T g 1 = gD (g - « g P (g

x* + h(q)(g(g(x))-x*) - Kq+1[x*+h(q)(g(x)-x*)] + o(pk+1)‘

(q)

(1-kTH ) x4 hé§i<gl<g<x>—x*>) + 1 Y (g(x)-x*)

g+1.-, (q) ~q) ‘ £+1
- K [hq+1(g1(z)) + h (z) ] f o(p )

-« + 1Yz - TR @)+ 0"

i

Thus (24) holds for g+l with

~(q) agtis(g)
-h "=« h e H™ , oraf

h(q+1) =
l-—Kq

R LB

Therefore (24) holds for all q 2 0 which implies (17) by (23)

Since each héii € H:+1 is differentiable in some neighbourhood of

s ¢ U it must be locally Lipschitz continuous so that by (3.17) and Lemma-

s . (@) _, (q)
4.1 (ii) with ord(h hq+1) > q-+2

(a) . q+1 (@) ,, }
. - = P, h t. + O(p.
" * pj-zq{ q+1( J‘Zq) LRy

1]

g+l (q)
pj-zq[hq+1(s’ ' O(pj—zq?}

For any fixed gq € (0,k-1] this implies (18) and (3.16) if hézi(s) # 0 .

Otherwise there must be a constant Tq such that

g+2

(@ __ a1 <
”xj ‘X ” - quj_zq

for all j 2 2q ,

which implies

. . —1gt2 p. - q+2 ) g+2
. (q) 1/3 , 1/3 . j=2g+1 k
! - . = |—
%1m hxj x* || ¢ | lim 0LT B }1m_ h- = ka1 '
7 J>oo J-29



where the last inequality holds by

As we can see in Table 2 the leading terms
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9.3.1 in [40]. /4

hégi- are in general

nontrivial, since the first four extrapolation columns (g=1,2,3,4) converge

linearly with Q-factors % , %,
With the notable exceptions of the

singular and nonsingular variables

535 and 5@2 as predicted by (19).

column g=1 and of course g=0 ‘the

converge with the same Q-factor, so that

the ranges of the vector functions h;ii are in general not contained in
N . Since by (18)
el 2 Yy 2 e (P xr) 4 o()fx D k)2
J 3 ] J
= pq+1 Vf(x*)ﬁ(q)(s) + O(QL i
j-2q g+1 J-2q |’

the residuals {f?q)}.
J J=229

as the discrepancies {xgq)—x*}.

each column towards x¥*

Jj229

by evaluating‘the residual fj

decline essentially colinearly at the same rate

Hence we can gauge the progress of

{q) even though it

provides no reliable measure of the distance to x*, since the angle

between héii(s) and N can be large or small and may even be zero.

By (3.26) we have with A =1

2

P

3
£ - £(x;(1) = —2— V2£(x*) s + 0(p,)
J 2 (k+1) 2 J
and with XA = k+1
(1) p%(k—l) ) , 3
= = - *
fj+1 f(xj(k+l)) K Vef(x*)s® + O(pj) ,
so that
. (1) (o) _ 3,1,.2_1,_ '
Lim £, /05, 0 = G 4k-k-1) 7k (25)
J 00
: 3
At first order singularities fgii is O(pj) = O(p;;l) which implies that

(1)

the leading term h2 (s)

must be an element of N .

This is indeed the

case as we can see in Table 2 that the nonsingular components of both
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(0) (1)

xj and xJ converge with Q-factor 3@ . Whereas for k=1 the
first extrapolation column achieves a considerable reduction of the

residual, this is not the case at higher order singularities as
(k3+k2-k-1) /k > k° for k>1 .

. : ,
Nevertheless we see in Table 9 that the extrapolants xg ) are from the

(0)

third step onwards consistently closer to x* than the xj which must

r

hold in the limit by (19).

Especially in cases where the main objective is the reduction of the
residual, the fact that the quality of thé extrapolants can be tested by
evaluation of £ is éertainly a great advantage compared tb most other
applications of extrapolation processes. Another important_difference is
that the cost of obtaining xj+1 from xj is constant in ‘j, whereas
.for instance in the case of differential equations each refinement of the
discretization increases the computational requirements considerably.
Finally we note that in contrast to most other applications the errors of
subsequent iterates xj are not mutually independent. Strictly speaking
any error that occurs in the step from xj to xj+1 moves the iﬁeratipn
onto another Newton sequence with a different expansion (2) should that

exist at all.

}

) have been calculated in

finite precision arithmetic from Xj—zq . Neglecting the error that

Suppose the Newton iterates .
pp . {X] R€[0/2QJ

occurs in the extrapolation process itself we obtain from (3) by the

triangular inequality

(q) (@ (q) 3
; ij g (Xj—zq)” < gzo ej_gag(k,q), (26)

where
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- _ A% | |
€j-2 = ij_g (Xj—zq)” for & e [0,2q]
and
K%(2+1)2 .
G'Q,(k’q) = ) - q'QJ . for- '3 € Eolq] .
T (-«h T (1-xh)
i=1 i=1

As will be shown later we can assume that the errors €. grow geometrically

in 3 such that for some Y ¢ (0,1] and Ej >0

50 < Y&Ej for . % ¢ [0,q] . : ' Co(27)y

€

Substitutihg this inequality into (26) we find that

1

g : S
@2 <a Yo, (x 28
€y /ej < uY( /q) R o, (k,q) - (28)

2=0

L

R (1% (1T LT /// q
=0 (1-k) (1-k2?) + (1-k")

By Theorem 348 in [35] the &Y have the product form

(14+7K) (1+yk?) ... (1#ykD

) q < a, (k,q) (29) =
(l-x) {(1-k“)...... (1-x)

& (x,q)
Gyted

which can be checked by induction on g . Since «k = k/(k+l) tbe &Y(k,q)

are strictly increasing in k,yY and g . According to a much-mofe

general result by Laurent [36] the &l(k,q) "are bounded in q for fixed

k so that there are limits

o (k) = lim 0_(k,q) < ® . ' (30)
g Y .

The &Y(k) grow exponentially in k as shown in the following Lemma.
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LEMMA 4.3  Growth of Error with Order of Singularity
The bounds &Y(k) defined by (18) and (29) satisfy with
T = 3.1415..., for all k € N
lon k|0 & (0 + (k#4170 < lim k 2 G, (k) = YT_(y) + 72/6, (31)
. Y K00 Y 0 . :
where
1

T, = J

(l+Yw)—1lQn wldw e [m2/12 ,l~—Y(l—ﬂ2/12)] . _‘(32)
0 ‘ v ‘

Proof.
Since the ratio (1+YKY)/(1—Ky) is strictly decreasing in y > 0 wé

can bracket n &Y(k) by the following integrals

g y
Qn[i+YKJ + I ln[liJE;J dy
2

v 1-«7
< fn(d_(k)) = ) |en(l+ycd) - Rn(l—Kq{] (33)
Y - .
g=1
y
< [Lﬁ} . J ,L,,[l_+yr<_] dy
1-x 1 1-kY

For B e [-1,1] and i > 0 we derive with w = s
i

0 ) K
J 2n(l+BKy)dy = i%n K|_1 J w—lﬁn(l+8w)dw
i 0 '

i i

K K 1 _
+ B'J (1+Bw) ‘2nw|d€] (34)
0 ) ' :

If

lln Kl—l [%n w An(1+Rw)

I

- i fn(1+Bch) + Bln Kl—lTi(B),
where

Ti(B)

i
A————
© 5

[en w] (1+8w) " ldw < T (B) < T (-1)
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Substituting (34) for B=Y,-1 and i =1,2 into (33) we find

after multiplication by lQn KI

(1+yk) (1-k%) 2
(1 -k) (L+y?) 2

|#n k| &n YT () + Iz(—1)
(35)
< |an k| Qn(ay(k)) < YTI(Y) +'T1(-l) < YTO(Y) + To('l)"
Whereas T, (y) = 1 (Y) - 0(]1-k|?), we find with |[%n w| > 1-w
1

T,(-1) = 14(-1) - J |2n w|(1-w) " 'aw < T,(-1) = (1~
’ .

It can be easily seen that TD(Y) is decreasing and convex in Yy € [0,1]

so that
Tn(l) < Toy) < (1=-7)7,(0) + yTo(1)
which implies (32) and the first part of (31) since
T,(0) =1, 1,(1) =7?/12 and T (-1) = 7’/6 ,

as stated on page 352 in [37] .

Since obviously

- we have

lim Ti(B) = TO(B) for i=1,2 and R Yo=1

koo

and furthermore

. _L2y2
lim |fn k| &n {14y (1-k)
k-0 (1+yk?2) 2 (1-k)

= 1lim % n [i%— (l—KZ{] = lim %-Rn {—zki}—i =0 .
Y (k+1) 2

koo
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Substituting these limits into (35) we obtain the equality in (31) which

completes the proof. ‘ ‘ ‘ _ /4

-1 '
since |fn k|7 A k we must expect by (31)

2 i -1
a0 ~ A L - (36)

and in particular for 7y=1 by (32)

‘ 2, -1 . .
&1(k) ~ oKLT/u—(k+1) T . (37) -

These approximations are quite good even for small k which are of course

the only ones of any practical interest. Before listing some exact values

of &Y(k,q) and &Y(k) we have to choose a suitable constant Y € (O,Ij‘.

Since for m<n the condition number of the Jacobian Vf(xj_z) is by

Lemma 2.1 (ii) proportional to DS%Q, and the stepsize ij-g+1-xj_2”

according-Ua(3.24)approximately pj_z/(k+l), we can expect that for some

constant n

= - ~ 1=K ~
Aej—z,” ij—£+1 g(xj_g)” npj_2 Aej K (38)

where we have used(3.16) to obtain the last "equality". Assuming that the
inverse image g_q(xj_q) contains some element ij—zq € W(s) with

%, _, —x*II = Py

j-2q we may consider the iterate x._ to be exact.

2q
Differentiating (1.21) we find with (2.12) and Lemma 4.1 (i) for

)
X = xX*+pt = x*+z € W

=1

I , B (t)Cl(t)

Vg(x) = Vgl(z) + 0(p) = E%T + 0(p)
o , O

All eigenvalues of the matrix on the RHS are zero or K so that we can

expect that the errors satisfy approximately the recurrence relation

. Nye.  + Ae. .
Ej—z+1 KEJ_R Aej_g
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which leads by. (38) to the estimate

1-K

i-% 31K

k(g-2) L (k=1) (241)

k-1
AEjK K(k—l)% .

l-Kk

By comparison with (27) and (38) we conclude that with

Y = Kk € (1/e,1]
k-1
: Ae .k k-1 : ,
~ ~ ~ K ~ l_k .
qu) “’—-———jz— GY(k,q) ~ 1 ” aY(qu)p. (39)
) 1-k 1k I -

In our context this estimate is certainly more appropriate than the

assumption that all vectors {x, ,} are computed with errors of
felo,ql

j-2
the same magnitude,which is usually made in the case of differential

equations. The uY(k,q) are always smaller than the al(k,q) and we

have according to (36) and (37 ) in the limit gq > ©

- - -2 k
5,00 /3, () & FOTT/1E) ~ 63

since K ¥ 1/e for sufficiently large k . The values of

o (k,q) , @ (k,q) and their bounds &Y<k) and G, (k) are listed in the

following table for k € [1,4] and q e [1,7]

k=1 kK =2 k =3 k =4
&Y(k,l)/&l(k,l) 3.0/3.0 4.3/5.0 5.7/7.0 7.1/9.0
&Y<k,2)/&1(k,2) 5.0/5.0 10./13. 17.1/25. 26./41.
6, (k,3) /8y (x,3) 6.4/6.4 17./24. 37./62. 67./127.
&Y(k,4)/&1(k,4) 7.3/7.3 24./36. 63./118. 138./303.
aY(k,S)/&l(k,5)A 7.8/7.8 30./47. 94./192. 239./599
&Y(k,6)/&1(k,6) 8.0/8.0 35./56. 126./275. 368./1020.
o (6, 7) /ey (X, 7) 8.1/8.1 39./62. 156./360. 515./1750.
o, (k) /a, (k) 8.3/8.3 47./79. 294./803. 1890. /8450.
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As with all extrapolation‘procedures‘we face the difficﬁlt qﬁestion
up to whiéh stage the extrapolation shouldlbe carried out. Since‘the
smallest singular value of Vf declines by (3.22) with a Q-factor df Kk
it would seem desirable to choose i 2 k such thét the (eﬁact) extrapolants
x;a) convergé faster than the conditibning of the qacobian deteribratés. 
According ﬁo‘the table above the diagonal elements &Y(k,k) equal roughly
tﬁe arithmetic mean of ‘&Y(k'l) and ayﬁk) so that the error Qf x;k)'ﬁéy

still be acceptable if extrapolation works at all. For any q 2 0 we héve

by (38) and (39) with (3.16)

(q)/E(q) ~ 17K

ej+1 j K !

so that the error of all extrapolants including the Newton iterates {xj}
grows unbounded whenever the order k of the singularity x*  is gréater

than 1 .

Combining (18) with (39) we obtain for the computed extrapolants 'xéq)

(q)
k-1
@ e o0 T ek T
. . + . ~r ’
j ' 3 Kz(q 1)q b 1ok Y
where we have used (3.16) to replace pj—zq by ij—zq .. The constant n
was introduced in (38) and can be expected to be of order lOft_ if the

calculation is performed in t-digit floating point arithmetic. The
leading coefficients hé$1 depend on thé‘terms 9 in the expansion (1.21)
of g and thus by (1.22) on the higher derivatives of £ . Therefore we
can make no general statemen£'about their magnitude which could grow very
rapidly with g . If this is so the extrapolants may not ever come closer to
x* than the Newton iterates {xj} themselves before the structure of the
iteration is destroyed by rounding errors. On the other hand some

extrapolants can approximate the solution up to the desired accuracy long

before the conditioning of the Jacobian becomes critical. This can be
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observed in Table 2 where the best extrapolants of the 8-th row approximate
the solution with single precision accuracy while the smallest pivot in the
LU dgcomposition of V£ is .004. Since the Jacobian has for x=x* a spectral
norm close to 1 its conditioning at that stage of the iteration does still
allow a fairly accurate‘calculation of the Newton steps. Five steps later
the solution is already approximated with double precision- accuracy, but fhe‘

conditioning of the Jacobian has only deteriorated by a factor of 32.

The best extrapolants x;q) in each row of the Tables 2, 6, 9 and 10.

satisfy approximately

qz—;—j if k=1 and q =

W | =

3 if k=2

Whereas the first observation can be interpreted as a direct consequence of
Theorem 4.2, the second one seems to indicate some underlying influence of k
on the structure of the extrapolation table, which is not apparent from our
analysis. Under the somewhat ideal conditions of our test calculations,

extrapolation up to at least the sixth stage is quite successful in all four cases.

Compared to the factofisathmmoftheJacobianwhichrequires n3/3+cﬂn2)
arithmetic operations at each step,the computational effort for the update'v
of the extrabolation table (5) according to (6) is almost negligible. even
for a large number of columns g < n . Since we only have to keep the
current row of extrapolants the storage requirement is gn words.'Thusii:seems
worthwhile to set up an extrapolation table whenever the Newton iteration
looks like converging to a regular singularity and then to test.the quality

of ‘the extrapolants by periodic evaluation of the residuals f;q)==f(x;q))

2. Bordering of Underdetermined or Singular Systems

In this final section we consider the numerical treatment of problems

for which the Jacobian is known to have a nontrivial nullspace at a
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solution of interest. Therefore we allow the nonlinear systém to be

underdetermined so that for some n' 2 0
1 +n'
£e C(RV",RY).

In many applications the n' additional variables are control parametefs
whose physical interpretation is different_from that of the remaining n
state variables. Typically the dependence of f on the contfol parameters
Ais rather straightforward SO that the corresponding partial derivatives of
£ have a simple mathematical form and some may be constant or even zero.
Since there is otherwise no intrinsic mathematical difference between the
control parameters and state variables we will avoid the distinction for

the sake of notationél simplicity.

In the neighbourhéod of any point at which the Jacobian Vf has full
row rank. n , the solution set f_l(O) Ciﬁp+n' forms according to the
implicit function theorem a differentiable n'- dimensional manifold. Of'
particular importance is the case n'=1, in which the solutions form
smooth curves as long as the condition rank (VEf) = n is satisfied.
Numerical methods for tracing such curves have been developed by several
authors, e.g. [38] and [(39] and there is no real difficulty until the
procedure approaches a singular point; i.e. a solution at wﬁich the
Jacobian has rank (n-1) or iess. Such points are of particular interest
because in their neighbourhood f—l(O) ‘no longer forms a manifold but may
have a rather involved structure. In the case n' =1 solution curves

may end, branch or intersect with one or several other curves.

-1
Now suppose we want to locate numerically a solution x* € £ (0) at
which rank (Vf£(x*)) = n-m, where the number of variables n+n' may or may

not exceed the number of equations n . As a consequence of Theorem 3.1
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linear or faster convergence without discontinuities in the iteration
function'éan only be obtained if we find at least m+n' equations in
addition to the obvious condition. £f= O' such that the Jacobian of the
resulting overdetermined systeﬁ has full column rank n+n' . Since V£
has rank (n-m) iff its m smallest singular values Qanish it may seem

natural to impose the condition

Except for the case n'=0 , m=1 this approach is not feasible because
singular values are only differentiable when theybére properly separated.
Otherwise the individual elements of a singﬁlar value cluster can hardly

be identified and the associated singular vectors may rotate very rapidly
in the corresponding invariant subspace [40]. 1In any case we need (m+ﬁ')m
rather ﬁhan m equafions to ensure that rank (Vf) =n-m . To see this‘we
assume that the leading (n-m) X (n-m) submatrix B(x) is nonsingular in

some neighbourhood U of x* so that

VE = : .= (40)

where the m X (m+n') matrix ZT is given by

sT(x) = E(x) - D(x)B_ (x)CT(x) .

Clearly we have for all x ¢ U
rank(V£(x)) = n-m < I(x) = 0 ,

so that in particular I(x*) = 0 . The entries of the matrix det(B(x))ZI(x)
represent the determinants of all (n-m+1) X% (n-m*+1l) submatrices of VE(x)
that include B(x) . Each one of them involves an element of E(x) that

does not enter into any other determinant,so that the overdetermined system
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f(x) =0 , I(x) =0

consists of n+m(m+n') equations which are independent in that any

subsystem may have a solution in - U that does not solve the full system.

.Provided all leading principal submatrices of B(x) are nonsingular

it has an LU factorization [11] and we can rewrite (40) as
vE = | . (4D

which represents a partly completed LU decomposition of Vf without
» pivoting. In the immediate neighbourhood of x*  all entries of I(x) will
be rather small,so that any attempt to complete the factorization would

lead to large rounding errors.

Since we intend to solve an overdetermined system of some form it

seems natural to consider a corresponding partly completed QR factorization

0 ,Q} R. , R
Ve = 11 12 1 A;V (42)
Q21 ’ sz o .2 !

(n-m) x (n-m) | .
where R1 € R is upper triangular and 0

=22
together with Q12 , Q and Qll an orthogonal nxn matrix. Whereas

. mxm
e IR forms -

21

Q11 and le are uniquely determined as

Q11 R

Q21 o] !

the matrices ’le and Q,, depend on the particular triangularisation
method employed. Because of the required orthogonality we derive from

(42)
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: Q
-T T{*12{ T T _
R (In—m'O)Vf | Q119,, %91 05, = 0
' Q22
. T T )
so that the m column vectors of k(le,sz) must form an orthonormal

basis of the nullspace M of the (n-m) xn matrix (In._m,O)VfT . In
fact it can be easily seen that any orthonormal basis of M can be used
to form (Q?Z,sz) such that (42) holds for a sﬁitable ¥ with every-

thing else unchanged.

In order to develop a more general framework which allows for arbitrary

pivoting in the LU and QR decomposition we derive from (41) and (42) the

equations
-
T—BTD 0 ,
VE = T (43)
Im Im+n‘ ' ,
and
Q 0 ~
vet | 12| < 5 . (44)
sz Im+n'

The special structure of the matrix (0,I )T on both right hand sides

m+n'

is related to our assumption that B(x) is nonsingular for x e U, so that

T
the m+n' columns of (O'Im+n')T together with the n columns of V£
' n+n'
span the full space IR

Now consider any matrix function

W €;CI(UJR(n+n')><(m+n')) . (45)

such that for all x 1in the neighbourhood U of x*

rank(W(x)) = mtn' and  rank(VE (x),W(x)) = n+n' . (46)

Replacing (0,T T ‘by W we obtain instead of (43) and (44) the more

m+n

')

general matrix equation
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VT (x)U(x) = W(X)T(x) , 47

where the "unknowns" U(x) and I(x) are nXm and (m+n') xm matrices
respectively. Multiplying from the right by the generalised inverse Wf

of W we find

W OVE (0 U(x) = T(x) e (48)

and

F(x)U(x) = (In+n,—W(x)W+(x))VfT(x)U(x) =0 . (49)
Hence U(x) can be any matrix whose range is contained in the nullspace

n+n') Xxn
e]R( )

M(x) of F(x) and the corresponding Z(x) is then determined

by (48)

To show that the dimension of M(x) is m for all x ¢ U we note

T n'
1 —w+

: +
that all nonzero vectors of the form (I (x)WT(x))y with vy € R

n+n
are orthogonal to the columns of W .and therefore by (46) cannot be
orthogonal to the columns of VfT(x) . Consequently the nullspace of the
T .. . v e . v T
transpose F (x) 1is identical to the m+n'-dimensional range of W ~ (x)
so that dim(M(x)) = m for all x e U . In order to obtain for all
x ¢ U an essentially unique solution U(x) of (49) with full column
rank m we impose m additional conditions in the form
N(x,U) = (N, (x,U)),_ =1, - (50)
ij j=1..m
i=1..m

where

N e ¢! (uxr TR . , (51)
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For instance we can require that some mXm submatrix of U equals the

identity by setting
N(x,U) = MU , _ (52)

where the constant mxn matrix M is é column permutation of _(O,Im)

This includes the case (43) but allows for arbitrary row exchanges in theb
Jacobian Vf during the LU decomposition. Another natural condition.
would be. UT(x)U(x) =1 which represents because of its symmetry only'
m(m+l) /2 equations. In additionvwe can require that some row permutation
of U(x) is looer trapezoidal (i.e. has no nonzero elements above the

» diagonal) so that

T
ep.u; if 1<j
N,.(x,U0) = 1] (53)
ij . Lo
u.u. if i>3.,
1]
where e, 1is the i-th Cartesian vector in R and {pi}i—i n 2 subset
of 'm indices in [l1,n] . 1In the case of the QR decomposition of V£, by
a sequence of elementary reflectors
_ -2 7 .
Q; = (1 ZHqi” qiqi) for i=l..n-m
with
(L. ._ ( ) Il:{nx(n—m) 1  dal
sl = Ay ) € ower trapezoida
, - 4~ T T AP -
the matrix U = (le,sz) satisfies the condition
~-t
N(x,U) = (-S(xX)L "(x),I)U = Im ’ v (54)

where S(x) and L(x) denote the matrices S and £ computed from the
Jacobian Vf(x) . The identity (54) can be derived from the fact that, for

. ~ T
all 'y in the nullspace of (LT,S ) which is spanned by the rows of

(-sL”',1) , we must have
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Equation (54) 1is only important in so far as it allows us to treat the
QR decomposition (42) in. the general framework and has otherwise no

apparent value.

The normalisation condition (50) will be called nondegenerate at

1

(x,U) € N (1) if for any A€ R m
a ~ '
< = = , . (55
o N(x,U(I+xA)) =0 0« A=0 , (55)

which requires in particular rank(U) = m as otherwise UA = 0 for some

A # 0 . For any N of the form

N(x,U0) = M(x)U

we have
4 N(x U(1+xAj) = M(x)uA =
d)\ l‘ r

so that (55) is automatically satisfied. This applies for the examples

(52) and (54).

In the case of N -as defined by .(53) the nondegeneracy.condition

}

(55) 1is satisfied if and only if all "diagonal" elements {epTu i=1..m

i i
. - , T . ;
are nonzero. If some diagonal element ep u; 1s zero we can choose A
i

as a rotation in the plane spanned by the n-vectors uy and - uy without

+1
disturbing the orthogonality nor the (permuted) lower trapezoidal structure.
Thus N(x,U(I+XA)) is constant and the normalisation condition must be
degeneraté. Conversely the LHS of (55) requireé_that U(I+AA) be permuted
lower trapezoidal for all A, which implies because all diagonal elements

are nonzero,that A is lower triangular as can be easily checked by

contradiction. Differentiating the orthogonality condition in (53) we find
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4

LT T K
a (I+AA7)U U(I+AR) Neo = A+A° =0

which implies A = 0 as no nontrivial matrix can be triangular and
antisymmetric. Nondegeneracy of N ensures uniqueness and differentiability

of U as shown in the following lemma.

LEMMA 4.4 Uniqueness and Differentiability of U and T

. ) . 1
In some open set U E]Rn+n let

’ nxXm __mXm 1,1

D Uxr ™, ®™™) and We C (uﬂm(n+n')X(m+n‘)

1
NecC )

be defined such that (4¢6) holds at all xel. If N is nondegenerate
at  (x ,U) e N—I(Im) with F(x )U =0 then there are unique

differentiable matrix functions
Ty x
U e Cl'l(U'JRnxm) and T e CI'I(U'JR(m+n ) ™

defined on some neighbourhood U' < U of X such that U(xo),= U0 and

for all x e U

VE (x)U(x) = W(X)E(x) , N(x,U(x)) = I , (56)

and

defect (VI(x)) = n-rank(VE(x)) = m-rank(I(x)) = defect(L(x)) . (57)

Proof.
The two matrix equations in (56) have. (n+n')m+m2 = nm+ (n'+m)m

entries which equals the number of elements in U and I . At X, the

system (56) has the solution pair U, and Zo = W+(xo)VfT(x0)U0 . Now

n'+m) xm
c nz( )

let U' e R ‘and I° be any matrix pair such that

g% {%f(xo)(uo + AUY) - w(xo)(20+xz'{] = VE(x,)U'-W(x,)I' = 0

A=0

and
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a ' -
a‘)‘\‘N(Xo,UO+>\U ) Yoo T o .

Because of the first condition the columns of U' belong to the nullspaée
M(xo) which is spanned by the columns of U, so thaf u' = U,A ‘for soﬁe
A e RV™ . It follows immediately from the nondegeneracy assumption (55)
thét ‘U' =0 and consequently L' = 0 so that the Jécobian of thevfull
system (56) has no nonzero null "vector". Thus the implicit function
theorem ensures the‘existence of unique>solutions U(x) and I(x) whoéé
derivatives can be explicitly given in terms 6f the derivatives of Vf , W
and N and are therefore locally Lipschitz continuous. To show (57) we
note thét V£(x) must have an n'+m' dimenéional nullspace if
defect(VfT(x)) =m' £m . Multiplying the first equation (56) from the
left by any (n'4m') X (n+n') matrix AT(x) whose rows span the |
nullspace of Vf(x) we find AT(x)W(x)Z£x) = 0 . Since each réw of:
AT(x) is orthogonal to the columns of VfT(x) no linear combination

yTAT(x) with vy e R® m can by (46) be orthogonal té the linearly
independent columns of W(x). Consequently the nullspace of ZT(x) must
contain the n'+m' dimensional range of WT(X)A(x) so that

m" = defect(Z(x)) 2 m' . Conversely multiplication of (56) from the
right, by any mxm" matrix A(x), whose columns form a basis of the m"
dimensional nullspace of X(x) , vyields VfT(x)U(x)A(x) = 0, so that the

m" dimensional range of U(x)A(xX) must be contained in the nullspace of

VET(x) which implies m'=m" and thus (57). W

According to (57) the matrix Z2(x) indicates to what extent the
Jacobian VfT(x) is still nontrivial on the subspace M(x) where it is
comparatively weék.i We may view the columns of U(x) as generalised
left singular vectors of Vf(x) and the entries of L(x) as generalised

'singular values. If the columns of W(x) form a differentiable basis of
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the invariant subspacé spanned by the right singular vectors associated

with the smallest m singular values of Vf(x) , then_the'columné of
U(x) are linear combinations of the corrésponding 1eftvsingu1ar vectors
which ére in general not differentiable as noted before. Besides being
differentiablé»the columns of U and the entries of I héve the diétindt
advantage that they can be calculated in finitely many arithmetic operations,
provided this is true for the matrix W and N(x,U) = I can be satsified

by a finite transformation.

Now we return to the original problem of locating a solution
. -1 : : ' : ; o
x* ¢ Un £ (0) where rank(Vf) = n-m . Provided W and N satisfy the
assumption of Lemma 4.4 we can apply the Gauss-Newton method to the

overdetermined system

f(x) =0, L(x) =0 . (58)
In order to determine the conditions under which the Jacobian of this

system is nonsingular at =x*, we consider a prospective nullvector

nl

. 7 _
y € r" , which must clearly belong to the nullspace N of Vf(x*)
Denoting directional differentiation with respect to y by a subscript

"y" we obtain from (56) with ZI(x*) =0
T ’ T i
ny(x*)U(x*) + V£ (x*)Uy(x*) = W(x*)Zy(x*) . (59)

Let P and P be the orthogonal projections onto the nullspaces of Vf(x*)
and its transpose respectively. Because of (46) the matrix PW(x*) has

full column rank so that
L (x*) = 0 & §Vf§(x*)U(x*) =0 .

Since U{x*) spans the nullspace of VfT(x*); we find by transposing the

RHS with VE = V2E .y
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Zy(x*) =0 <> P(VE(x*)y)P = O

Thus we conclude that the Jacobian of (58) has full column rank n+n' iff

PV E (x*)y N7 O for all y ¢ N - {o} . (60)

This condition is independent of the particular choice of W and
certainly not very strong. If n'=1=m the nullspaces of Vf(x*) and
+1

. n n
its transposed are spanned by vectors u* € R and vf ,vv; € IR

respéctively. Then (60) reduces to the condition that the symmetric

2X2 matrix

u*TVZf(x*)vtvt , u*TVZf(x*)v;v:

>
]

u*TVZf(x*)vtv; , u*TVZE(x*)v;v;

be nonsingular. If det(A) < 0 (the Crandall-Rabinowitz or transversality
condition [41])there are two smooth solution curves that intersect

at x* . If. def(A) >0, x* 1is isolated in f_l(O) and if det(A).= 0
it is most likely to be a cusp point, but f_l(O) may have an even more

complicated structure in the neighbourhood of x*

The numerical solution of (58) by the exact Gauss-Newton method
would involve the exact derivatives of I which depend by (59) on the
second derivative tensor V2?f and U . Even though the entries of V£
may.have a simple mathematical structure, e.g. 1if Vf is essentially a
discretisation matrix, the explicit evaluation of their derivatives
would.require a lot of additional coding if not computing time. Therefore
it is much more practical to approximate the gradients of the (m+n')ﬁ
entries in I by successive updates according to Broydeh‘s method [ 1.
Even though the theory of quasi-Newton methods has apparently not yet been

extended to overdetermined systems there seems little doubt that the
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analytical tools provided by Powell [43], Dennis aﬁd Moré [44]

others can be used to establish superlinear convergence of quasi—Gauss-
Newton methods bééed on the Broyden update of the rectangular Jacobian
or parts of it. The test calculations_reported‘in'Tableé 3, 7 with
n=3 , n'=0 and m==1 or m=2 ishow clear evidence of superlinear
con&ergence,which is more reliable than that of any othe£ methéd
discussed in this thesis. One routine employed for these célculations

is based on the QR decomposition by elementary reflectors.

Firstly the Jacobian is reduced by an orthogonal transformation, which
simultaneously transforms the residual £ to £ ,  to some column permutation

of the form

n+n'

(61)

X m

m+n'
At the initial point this process is carried out with full columnkpivoting
such that the first n-m diagdnal elements in (61) have the largest
p§ssible moduli in nonincreasing order. From then on the same pivoting
pattern must be applied as long as the modulus of the (n-m)-th diagonal
element is clearly larger than the Euclidean norm of any colﬁmn in the
rehaining rectangular matrix I . Otherwise the method must be restarted
with a different pivoting pattern. It is important tﬁat none of the n-m
diagonal elements changes its sigﬁ, which would cause discontinﬁities in
L . 'This may happen in Stewarts Algorithm 3.6 [11], which does however
suit our requirements if the sign of the diagonal element 0 1is determined
by the sign of the column component A with the largest modulus rather

than vy - Provided these precautions are taken L(x) , whose elements
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are rational functions in the entries of f(x) , 1is clearly differentiable

. . 1,1 v . '
in some neighbourhood U of x* . Now let O ¢ C ' ULE§Nm+n )) be a
vector function whose components are the elements of X in some fixed

ordering.

Before the first step the (m+n')mx(n+n') matrix G = Vo is

initialised as

(9]
1

such that the (n+(m+n')m)X(n+n') matrix

I
|
| .
J =10 (62) .
| :
|

has full column rank n+n' for G = G0 . After each step from x-S to X

~

the previous version G of G 1is updated to G according to the "good"

Broyden formula

~T
G =0+ [0(x)-0(x-8) - Ggs] = )

I5)1?

The next correction § is determined as the solution of the linear

least squares problem

. :(63)

A

T .
To compute s we use n+n' elementary reflectors .(I—2uiui) to bring J

into upper triangular form and apply them simultaneously to the RHS

(fT,OT)T . From the resulting triangular system s can be obtained by
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back. substitution, provided J hés full column rank which can be expected
if the condition (60) is satisfied and X, is sufficiently close to x* .

Since J 1is already in the form (62) the first n-m vectors

+m(m+n'
e R® m(mtn®) have only 1 + (m#n')m nonzero elements.

It can be easily seen that, provided (l+n')(ﬁ+l) is small comparéd
to n , the computational expense at each step, including the Broyden update
of G, 1is dominated by the orthogonal trénsformation of Vf into the form
(61) , which requires approximately %—ns arithmetic operations. This
number can be halved if Vf is brought info the form (€6l1) by Gaussian
elimination with complete pivoting. This simplication, which will be
referred to as LU-bordering, hardly affects the speed of cohyergence
[Table 3] even though the solutions of (63) minimise the residual»

[Vf}s _ {f] €mn+m(m+n') (64)
G g

no longer with respect to the Euclidean norm, but some other ellipsoidal
norm which varies differentiably in x € U . Here U is a neighbourhood
of x* in which Gaussian elimination with some fixed pivoting pattern
yields n-m pivots, that are clearly separated from the elements of tﬁe

remaining rectangular matrix £

The bordering approach developed in the final sections appears to be
the most reliable and éccurate way to solve systems that are known to be
singular. If one cannot be sure that the solution is exactly singular or
does not know the dimension of the nullspace m+n' , the components of
the residual (64) cén be weighted by varying multipliers which may either
emphasise the reduction of |[|f|| or enforce the singularity of Vf with a
nullspace of a certain dimension. In view of Theorem 3.1 it seems doubtful
whether a weighting strategy can be designed that automatically ensures

local superlinear convergence to any nonsingular or singular solution for

which (60) is satisfied.
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DISCUSSION AND CONCLUSION

In a theoretical sense the variety of structurally different
singularities seems vast and is probably beyond a comprehensive

mathematical description.

In practice we can expect that most singularities are of first order
(k=1) with one-dimensional nullspace (m=1) in which case the conditions‘of
‘isolation (1.47), regularity (2.16) and strong régularity (2.45),‘are
»equivalent to the assumption (4.60). ‘If these are»satisfied the slow
linear‘édnvergence of Newton's method can be»cqnsiderably accelerated at
little cost either by the three-point method [Table 1 ] or extrapolation
[Table 2 ]. Whenever the solutién is required with high aﬁcuracy bordéring
based on the QR or LU decomposition of the Jacobian should be employed
during the final stages of the computation. Since after some initial steps,
the iterates‘are essentially confined to thé one-dimensional nullspace ‘N
of Vf(x*), it can be conjectured that the quasi-Gauss-Newton method with
Broyden update of the gradient Vo = Vdet(Vf) has the Q-order %-(1+/§) of
the gsecant method in one variable. As is well known [44] quasi-Newton
updates yield usually poor approximations of the Jacobian if conéecutive'
steps are essentially confined to. a subspace of R" . Nevertheless it
seems just possible that the case of a regular first order singularity
with. m=1 could still be treated successfully when Vf itself is not
explicitly available. BAny such scheme wquld necessarily involve two
levels of differencing along the direction t that spans N , which

amounts to quadratic interpolation and is therefore somewhat risky [¢5].

At first order singularities with m > 1, the condition (4.60) is

considerably weaker than the regularity assumption (2.16) which in turn
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is implied by the rather restrictive condition (2.45) of strong regularify..
Even if the latter is not satisfied we can expect on the basis of‘numericai'
experience that the Newton method itself and thevthree—point méthod

converge in a reasonably stable fashion. On our test problem the three-éoint
method [Table 5] is considerably faster than the bordering scheme [Table 7]
which makes initially little progress towards  x* until the derivatives of

% have Been approximated to some accuracy. This may have béen caused

by the fact that the four additional equations I = 0 dominated the

condition f = 0 which effectively represents only one equation as

rank (V£ (x*)) 1 . 1Instead the singularity condition I = 0 vshouid
probébl? be phased in gradually as its approximated Jacobian becomes more .
accurate and | f sufficientiy small. As in the other three cases‘
extrapolation {Table 6 ] worké surprisingly well and the best extrapolants
are consistently closer to x* than the iterates of the.three-point method.
It is remarkable thaf in all four extrapolation Tablesb2, 6, 9 and 10

the extrapolants Hx;q)ﬂ which are closest to x* in the Euclidean norm

are mostly identical to those that have the minimal residual f?q) ‘in the
same norm. Therefore we can generally expect that the extrapolant x;q)

with the smallest residual Hf;q)H in the last computed row is the best

approximation to x¥*

At higher order singularities the condition (4.60) cannot
be satisfied so that the Jacobian of the overdetermined system f=0 ,
L=0 has at x* lineariy dependent columns. Then one might attempt a
second level of bordefing, but this approach seems only feasible if second
derivatives of f can be explicitly calculated; ‘Otherwise we are left
with extrapolation [Tables 9}10] and the partially‘corrected two-point

method [Table 8 J. Whereas extrapolation requires only the choice of k ,
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the seléctibn‘of suitable multipliers kj for the steps (3.68) is a

difficult question which requires further investigation.

Singularities that are irreqular and do not satisfy condi£ion (4.60)
cannot be treated by any of the methods discuséed'in this thesis. As shbwn
in [24] such cases can arise in the context of minimisation problems and
lead to very irregular behaviour of the Newton iteration even if the

singularity is balanced and thus of first degreé.

Apart from computational considerations there are many unresolved
theoretical questions arising frqm the analyses in Chapter 1. 1In the
unbalénced case the linear systeﬁ (1.22) cannot be solved explicitly in .
the block triangular form (2.6). Then we have no way to dgtermine the
vector functions 9; and the cruciai‘degree E “explicitly. This may of

course be poésible by some other method, which would be of great benefit

for the classification of singularities.

The analysis of regular singularities in Chapter 2 seems quite
satisfactory and yields the important result that convergencevof Newton's
method’is almost sure if the initial point is sufficiently close to the
solution. The concepts of starliké domains and their density together
with the rational expansions developed in Sections 1.3 and 4.1 may
' be useful for the anaiysis of other iterative methods that do not
necessarily have spherical domains of convergence at certaiﬁ‘solution

points.
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APPENDIX

TEST CALCULATIONS

All calculations were carried out on the following.system of ‘three

equations in the variables’ x = (E,C:H)T e R

(2-k) (=.4£2-1.5z%+.3n2+.5EC-2Cn)

- .8E3-37% + .6n3+.5E2¢-2zn?

£(x) = (2-m)E + .52°% + .48%C - gt ~ = 0

+ [1-(m-1) (k-1) ] (. 356245 %+.75n"+. 4EL+2En-LN)

n+ .48% + .sn% - 2zE - 2.5En + 2Zn

The parameters k=1,2 and m=1l,2 enter into £ such that k gives the
order of the singularity x*=0¢ £71(0) and m the dimension of the
nullspace N of Vf(x*). 1In all four cases f is in normal form at =x¥*,

and we have

B(x) = - .9E + .5C if k=l=m ,
B(x) = - 2.48% + & if k=2, m=1 ,
- .9&+.5C  , -30+ .55 -2n ‘
B(x) = if k=1, m=2
75+ .40+ 20, 20+ .48 -n
and
-~ 2,482+ £ , - 9%+ .582 - 2n?
B(x) = if k=2=m .

.8EC , 1.572 + .4E% - n?
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With e1 and e2 the first two Cartesian base vectors in R® we find

det(ﬁ(el))A . if k=l=m ,

= -.8

det(g(el)) = -2.4 if k=2, m=1
det(B(e )) = -.67 and Qet(B(e,)) = 2.2 if k=l,m=2 ,
det(é(eli) = -.96 and det(Ble)) =0 if k=2=m .

Since e or e and e, span the nullspace of Vf(x*) if m=1 or m=2
respectively, the singularity x*>= 0 is regular in all four cases. Whereas
for m=1 regularity implies strong regularity, the singularity x* is not

strbngly regular in the two cases with m=2 as L det (B) .vanishes‘for ,

some te NnS.

The calculation reported in Table 4 was performed on the nearly singular

system

£(x) + £410°° = 0 with k=l=nm .

In ail calculations, except for those based on borderiné (Table 3 and 7),
the Jacobiaﬁ was reduced to triangular form by Gaussian eliminatidn with
complete pivoting. The smallest pivot is listed as O . The factor by
which the Newton correction is multiplied for the step from the current
point is listed as A . At each step in the bordering calculations the
residual of the linear least squares solution of (4.63) is listed as M
All iterations were started at the initial point x, = (.lr,.l,.l)T , from

0

which an unmodified Newton étep was taken to the first point listed in the

Tables.

The calculations were performed on a UNIVAC 1110 in double precision

(i.e. 16 digit) floating point arithmetic.



10

11

12

Table 1 , k=1=m

Newton three-point

10401 -.44-01  .10401

-.23-01 .49-91 -.23-91

.64-01 -.31-01 .64-01

<19+01  .35-91  .20+401
.36-01 .89-02 .36-01
.96-02 .74-03  .96-02

.10+91 .16-01  .10+401
.14-01 .21-03 -.61-82
.39-03 -.33-03  .85-02

10401 .84-02  .10+01
.69-02 -.67-85 .17-01
.45-04 .22-86  .45-03

10401 .42-02  .20401
.34-02 -.20-06  .82-02
.12-64 -.17-06  .63-04

J10+91  .21-02 .10+01
.17-02
. 30-05

.29-07  .91-05

J18+91  .11-92 .18+401
.86-03 -.34-08  .38-0D4
.76-06 -.37-8  .13-08

{

.10+01 .53-03  .20+401
.43-03 -.43-09  .19-04
.19-06 -.48-09  .37-09

10401 .27-03 .10401
.21-03 -.54-10  .45-09
.48-07 -.61-10  .68-13

104061 .13-03 .10+01
.11-03 -.67-11  .22-09
.12-67 -.76-11  .52-19

10491 .67-04  .20+01
.54-04 -.84-12  .11-09
.30-88 -.%-12  .13-19

10401 .33-04  .10+01
.27-04 -.19-12  .16-19
.74-09 -.12-12  .86-29

first, third and
fifth column

I

second, fourth and
sixth column

.{”
|

.27-97  .78-04

two-point

J44-01 20401 -.44-01

.31-01  .64-01

.35-01 .19+01

.89-02  .85-01
.74-03 .39-01

.22-02 .20+01
.85-02  .62-01
.14-02  .77-02

.20-01 .10+01
.23-83 .12-82
.39-93  .65-02

.10-01  .20+01
.97-05 -.24-01
.25-06  .12-02

.92-04  .10+01
.91-85  .98-03
.83-06  .43-083

.47-04  .20401
.96-10  .30-03
.83-09  .20-085

. 24-04 .10+81

I

.76-13  .13-06
.10-14  .20-85

.56-09  .20+01
.67-13  .16-04
.12-13  .28-09

.28-09  .10+91
.71-23  .31-89
.39-22  .11-09

.14-09  .20401
.76-29  .17-09
.87-29  .66-19

.19-19  .10+01
.57-29  .34-19
.65-29  .50-19

A
0}
£l

L

¢ (singular)
C (nonsingular)
n (nonsingular)

.31-01

.11+00
.31-01

.32-01

.62-01
.61-02
.27-82

.56-02

.63-02

.20-02
.33-01
.24-03
.44-03

.14-02

.24-03

.36-03

.38-083
.44-06

.19-05

.12-06
.45-06
.19-05

.20-04
.79-10
.76-10

.44-09
.79-19
.76-10

.21-99
.49-19
.12-19

.73-19
.49-19
.12-19

step multiplier
smallest pivot
residual norm
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2
.30+00
.16+00

1
.23-01
.64-01

2
.36-01

3
.14-01
.39-03

4
.45-04

5
.34-02
.12-04

6
.17-02
.30-85

7
.86-03
.76-06

8
.43-93
.19-06

9
.21-03
.48-07

19
.11-03
.12-07

11 -
.54-04
.30-08

12
.27-04
. 74-09

13
.13-04
.19-09

14
.67-05
.47-10

15
.33-05
.12-10

. 10409
.10+499
.10+00

-.44-01
.49-01
-.31-01

.35-01

.16-01
.21-03
-.33-03

.84-02
.22-06

.42-02
-.20-06
-.17-06

.21-02
-.27-07
-.29-07

.11-02
.34-08
.37-08

.53-03
.43-09
.48-09

.27-03
.54-10
-.61-10

.13-03
.67-11
.76-11

.67-04
.84-12

.33-04
.10-12
.12-12

.17-04
.13-13
.15-13

.84-05
-.16-14
-.19-14

.42-05
~-.20-15
-.23-15

Table 2 , k=1=m , Extrapolation

First column: {

3

o
€l

oo
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number of steps
smallest pivot
residual norm

1
4 Top of (2+q)-th column Q-factor = 1/2q+1
-.19+00 ~
-.28-02 (q) , . -
— 16400 %_ 5( )(51ngular)A
(2+g)-th column: ' (nonsingular)
J11400  .21+00 1@ (honsingular)
-.31-91 -.40-01 L g
.32-01  .97-01 < 0 )
-.22-02|-.41-01 -.77-01 £~ D] gor gv0
-.85-02|-.11-02 .45-02 . (q)
-.14-02|-.13-01 -.28-01 5 n
.41-03( .13-02 .73-92 .13-01 best extrapolant
-.23-03| .25-02 .30-02 .29-02 L in each row
.33-03| .91-93 .28-92 .49-02 =
64 (@
.65-04|-.49-04 -.24-03 -.74-03 -.12-02
.63-05| .84-04 -.27-03 -.49-03 -.60-03 L
-.56-06|-.11-03 -.26-03 -.46-03 -.64-03 55
.18-04| .18-85| .91-05 .26-04 .50-04 .70-04 |
.14-06|-.19-95|-.14-04 .26-95 .18-04 .28-04 N
.12-06| .34-06| .16-04 .34-84 .50-04 .61-04 o
.45-05| .10-06|-.15-06 -.76-06 -.16-05 ~.24-05 -.30-05
.20-07|-.21-07| .25-06 .12-85 .12-05 .89-06 .68-06.
.21-97|-.10-97| -.60-87 -.11-95 -.23-85 -.31-05 -.36-05
J11-95  .13-97| .74-99| .11-07 .36-07 .62-07 .81-07
.26-08 -.33-08|-.69-089|-.17-87 -.57-07 -.76-07 -.84-07
.28-08 -.34-08|-.25-¢8| .14-88 .38-07 .76-07 .10-06
.29-06 .17-08| .30-10|-.18-10 -.36-09 -.93-09 -.14-98
.32-09 -.43-09|-.15-1¢| .30-1¢ .59-09 .15-08 .21-08
.36-09 -.45-09|-.27-10| .14-§9 .94-19 -.52-09 -.11-08
.71-67 .21-89 .15-11|-.37-12| .18-12 .59-11 .13-10
.49-10 -.53-10 -.35-12| .64-12|-.30-12 -.97-11 -.22-10
.45-1¢ -.59-1¢ -.28-11}-.11-11| -.55-11 -.71-11 -.31-11
.18-07 .26-18 .94-13|-.39-15 .12-13 .99-14 -.37-13
.50-11 -.67-11 -.20-13| .18-14|-.19-13 -.14-13 .62-13
.57-11 -.75-11 -.18-12| -.80-14| .28-13 .12-12 .17-12
.45-08 .33-11 .58-14 -.59-16| ~.48-16| -.23-15 -.31-15
.63-12 -.84-12 -.11-14 .13-15| .77-16| .38-15 .49-15
.72-12 -.95-12 -.12-13 -.29-15| -.43-16| -.49-15 -.14-14
.11-08 .41-12 .36-15 -.20-17| -.16-18| .60-18 .25-17
.79-13 -.10-12 -.68-16 .43-17| .26-18|-.97-18 -.39-17
.99-13 -.12-12 -.73-15 -.94-17| -.29-18] .39-18 .43-17
.28-09 .52-13 .23-16 -.65-19 -.30-20| -.50-21| -.52-20
.98-14 -,13-13 -.41-17 .14-18 .47-20| .76-21| .84-20
.11-13 -.15-13 -.46-16 -.30-18 -.39-20{ .70-21|-.24-20
.70-10  .65-14 .14-17 -.20-20 -.30-23| .45-22| .49-22
.12-14 -.16-14 -.25-18 .45-20 .77-22| .26-23|-.34-23
.14-14 -.19-14 -.29-17 -.94-20 -.61-22| -.54-24| -.61-23




10

11

Table 3 , k

=1=m

QR-Bordering

.15-02 -.44-01
-.23-01 .49-01
.64-01 -.31-01

.14-03 -.32-01
-.22-01 .41-082

.49-02 -.22-02
.29-04 —.79-02
-.60-02 .30-83
.41-03  .22-03
.43-06 .11-02
.88-03 .23-04
.48-04  .41-04
.11-g8  .51-04
.41-04  .46-06
.54-06 .27-06
.11-11 -.17-05
-.13-05 .10-88
.14-g8  .10-08
.67-16 .13-07
.10-07 .98-12
.15-11 .11-11
.45-22  .11-10
.84-11 .58-16
.89-16 .67-16
.38-30 -.97-15
-.78-15 .39-22
.59-22  .45-22
.12-37  .71-20
.56-20 .33-30
.50-30 .38-30
.00 .37-27
.30-27 -.10-37

«15-37 -.18-37

first and
fourth column

second and
fifth column

third and
sixth column

10491
. 37408
. 94409

. 95400
C.71+09
. 73+00

.71+00
. 75400
. 70408

.81+00
. 74400
. 70+00

. 77+09
. 74+00
.70+00

. 79+20
. 74400
. 70+09

. 80+00
. 74400
. 70400

.80+00
. 74400

. 70400

. 80+00
. 74400
. 70400

.80+00
. 74400
. 704+00

.80+00
. 74+00
.78+20

LU~-Bordering

.16-02 -.44-01

-.23-01 .49-91
.64-01 -.31-01
.87-04 -.34-91
.23-01  .38-02
.48-02 -.24-02
.59-04 -.11-01
.86-02 .25-03
.36-93 .14-03
.76-06 .14-02
.12-02 .53-94
.89-04 .71-04
.55-04 .86-06
.93-06 .36-06
.57-11 -.37-085
.30-05 .19-08
.26-08 .18-08
.59-15 .39-97
.31-07 .50-11
.76-11 .57-11
.43-21 .33-10
.26-18 .52-15
.79-15 .59-15
.13-28 -.57-14
.45-14  .38-21
.58-21 .43-21
.19-36 .13-18
.11-18 ~ .11-28
.17-28 .13-28
.00 .14-25
.11-25 -,23-37

— "

—r—

R X 3w

—t—

.39-37 -.31-37

Hh QT

singular)

nonsingular)

11481

.41+30

.10+81

11491
. 77400

-81+00

. 70+00
.83+00
. 77400

. 79+00
.83+00
L 77+08

.75+00
.82+00
.77+00

. 79+80
.83+40
. 77400

.80400

.83+00
. 77+00

.80+00
.83+00
.77+00

.80+80
.83+29
. 77400

. 80+00
.83+00
. 77400

.80+00
.83+09
. 77400

least squares residual
only element of ¥
residual norm

nonsingular) -
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19

11

12

13

14

15

Table 4 , nearly singular problem with k=1=m.

Newton

10491 -.44-01  .10+01 -

-.23-01
.64-01

- .10+401

.36-01

.10+491
.14-01
.39-03

.10+31
.69-02
.45-04

.10+91

- .34-02
.12-04

.10+01
.17-82
.30-05

L19+01
.86-03
.76-06

.10+01
.43-03
.19-06

.10+01
.21-83
.48-07

. 10+01
.11-03
.12-97

.10+01
.54-04
.30-08

.19+01
.27-04
.74-09

.10+91
.13-04
+19-09

. 10401
.67-05
.46-10

.10+91
.34-085

.11-19

.49-01 -.23-01
.31-81 .64-01 -

.35-01 20401

|

i

|

.89-02  .36-01
.74-83  .96-02

<16-01  .10+31 -
.21-83 -.61-02 -
.33-03  .85-02 -

.84-02  .10+01
.67-85  .17-01
.23-06  .45-03 -

.42-02 .20+01
.20-06  .82-02 -
.17-86  .63-04

.21-92 .10+81
.25-07  .78-04

11-92 .10+01
.25-08  .38-04
.27-98  .13-08 -

.53-03  .20+01
.38-10 .19-04
.54-190  .37-09

«27-83 .10401 -.

.18-¢9  .53-07 -
.21-99  .10-11 -

.13-63 .10+401
.11-869  .94-05
.12-09  .91-19

.66-04  .20+01
.57-18  .48-085
.65-10  .22-10

.32-04  .10+01 -.

.28-19  .21-06 -
.32-10 .99-12 -

.16-04  .10+01
.14-10  .25-05
.15-18 .54-11
C72-05  .20+401
.63-11  .14-05
.72-11  .11-11
.31-05  .10+401 -

.31-11  .54-12 -

three-point

.44-p1
.49-01
.31-01

.35-01
.89-02
.74-03

$22-02
.14-02

.20-01
.23-03
.39-03

.10-01
.97-05
.26-06

.91-04
.91-05
.27-67  .91-85 -.

83-06

.46-04
.14-09
. 78-09

.22-04
.20-10
.22-10

12-05

.97-12
.12-11

.11-p4
.92-11
.11-19

.47-05
.41-11
.47-11

99-06

.86-12
.99-12

.19-05
.16-11
.19-11

.55-06
.48-12
.55-12

. 38-06
.27-11  .69-06 -.

34-12

.38-12

. .52-07

two-point

.20+01 -.44-01

-.23-01 .49-01

.10401  .11+00

.39-01 .32-01

20401 .62-01
.62-01 .61-02
.77-82 -.27-02

10421  .56-02
.12-92 -.63-02

.65-02 .20-02

.20+01 -.33-01
-.24-01 .24-03

.12-02  .44-03
10401 .14-02
.98-03 -.24-03

.43-33 -

.20+01 .38-03
.30-03
.20-85 .19-985

.10+01 -.14-05
.13-06 .45-06
«20-05 -.19-05

.20+01  .23-04
.19-04  .12-09
.69-10

.40-09
.10+91 -.12-05
.96-10
.13-09 .91-10

.20+01 .11-04
<96-05 .94-11
.94-190 .11-10

.16+01
.10-96
.18-11

.11-85

.11-11

.20+31 .48-05
.48-05 .42-11
.23-10 .48-11

.10+31
.21-06"
.18-11

.99-06
.87-12
.99-12

L20+01  .19-85
.25-05 .17-11
.56-11 .19-11

Entries as in Table 1.

.36~83

.44-06

.98-12

157



158

Table 5 , k=1 , m=2
three-point two-point . one-point

Je+1  .76-01  .20+01 .70-01 @ .13+91 .70-01
1 .17+#8 .76-01 .17+00 .70-01 .17+80 .70-01
.11-91 .93-82 .11-91 .93-92 .11-91 .93-02

20401 .34-01  .10+91 -.16-02  .13+91 .23-01
2 .80-91 .39-91 -.13-02 .70-92 .54-01 .29-01
-34-02  .23-03  .89-02 -.88-02  .39-02 -.25-02

_ 10401 -.73-03  .20+91 -.83-01  .13+01 - .90-02
3 -.67-03 .89-03 -.12+00 -.51-01 .22-@1 .98-02
.21-83 -.21-03  .90-02 -.27-83  .64-03 .76-03

10401 -.97-03  .10+01 .30-02 .13+01 .30-02
4 -.67-083 .40-63 .18-02 -.35-83 .71-02 .38-02
: .43-06 -.14-05 .20-03 .20-@3  .25-@3 -.23-03

.20+91 -.49-93  .20401 .19-02 .13+31 .11-@2
5 -.33-03 .20-03 .12-92 -.48-93 .28-02 .12-02
.30-06 -.80-08  .12-05 -.34-05 .65-04 .68-04

.10+61 -.31-67  .10+01 -.13-64  .13+01 .38-03
6 .59-87 .12-06 -.27-07 .72-05 .92-03 .46-03
- .79-08 .79-98  .35-@5 .35-05 .21-04 -.20-04

.10+401 -.35-07  .20+31 .19-92 .13+@1 .14-03
7 -.42-99 .59-97 .11-02 -.35-83 .35-83 .16-03
.66-14 -.43-14  .32-05 .75-87 .61-05 .61-85

.20491 -.18-07  .10+491 -.35-06  .13+01 .48-04
8  -.21-09 .30-97 .14-905 .27-05 .12-03 .57-04
.20-14 -.11-18  .64-07 -.64-07 .18-05 -.18-05

L10+91  .12-12  .20+401 -.16-87  .13+01 .18-04
9 .28-14 .16-14 .97-06 .14-05 .43-04 .19-04
.12-18  .12-18  .34-11 .69-12 .55-06 .55-06

.18+01 .59-13 .10+91 -.61-11 .13H01 .60-05
19  .14-14 .78-15 -.58-11 .13-11 .15-04 .69-05
.23-26  .13-29 .69-12 -.69-12 .16-06 —-.16-06

20401 .29-13  .20+01 -.39-11  .13+81 .22-05
11 .72-15 .39-15 -.26-11 .11-11 .52-05 .24-@5
.56-27 -.69-31  .55-23 -.16-22  .49-07 .49-07

L1041 .11-19  .19401 .13-18  .13+01 .75-06
12 -.17-22 -.19-19  .68-19 —-.64-19  .18-05 .85-06
.68-31 .68-31 .16-22 .16-22  .15-87 -.15-07

L10+31  .18-16  .20+41 .32-19 .13+91 .27-06
13 -.23-18 .23-18 .14-19 -.22-19 .64-06 .29-06
.21-33 -.81-36  .13-37 .11-37 .44-08 .44-08

Entries as in Table 1 with f now a singular variable.
The one-point method is partially corrected with A=1.3 < 1+k/(k+2).



Table 6 , k=1, m=2 , Extrapolation - 159
g .10+00 ' '
. 43400 .10+08
.95-01 .10+90

3

o
€]}

number of steps
smallest pivot
residual norm

N

First column:. {

1 .70-01 .39-91 .
17400 .70-01 .41-01 Top of (2+q)-th column Q-factor = 1/2%

.11-91. .93-@2 -.81-@1 %
(q) , .
2 .34-01|-.16-02|-.15-01 | | g(q)(Sl“g“la?’
.80-01  .39-91| .70-82|-.43-02 , (Zr@-th column: § &% (singular)
3 .17-01(-.73-03|-.44-03 .17-02 o
.40-91  .20-01| .89-93|-.12-92 -.71-83 . @ | B
.89-03  .11-04|-.21-03| .27-02 .86-03 - £ ~ |0 for g>0
' (q) :
4 .82-02 -.21-03 |-.41-p4| .17-04 -.94-g4 n
.20-61  .10-81 .22-03| .38-06| .17-63 .22-03 - |
.23-03 .89fﬂ6 -.89-05| .58-04|-.31-03 ~.39-03 o best extrapolant
5 .41-02 -.59-04 —.79-05 |~.32-85 |-.46-05 —-.17-85 in each row
.10-01  .50-92 .58-@4 .31-B85| .35-05 |-.74-05 -.15-84 e
.57-84  .78-87 -.73-06 .20-05|-.60-05| .15-04 .28-04 %

6 .20-02 -.16-04 -.11-05|-.16-06 | .46-07 .19-06 .22-06
.50-02  .25-82 .15-04 .47-06| .95-07 [-.13-06 .10-06 .34-06
.14-04  .72-08 -.63-07 .16-06|-.10-06 | .29-06 ~.17-06 -.61-06 . E%E

7 .10-02 -.40-05 -.15-06 —.12-07 |-.26-08 |-.42-08 -.73-08 ~-.92-08

.25-g2  .13-02 .38-@5 .65-07 .70-08| .11-@8| .53-88 .38-@8 .11-88

.36-05  .74-09 -.58-08 .13-07 -.77-08 |-.14-08 |-.11-07 -.85-08 -.37-08

1
|
t

1
|
[

8 | .51-¢3 -.18-05 -.20-07 -.90-09 -.14-09 |-.57-10 | .87-11 .66-10
.13-82  .63-03 .94-06 .85-08 .50-@9 .71-10| .37-10 |-.47-10 -.77-10
.89-66  .82-10 -.58-¢9 .12-08 -.59-09 -.11-09 |-.70-16 | .10-09 .17-09

1
1
1
|
1

i
1
1
|
I

9 .25-93 -.26-06 -.25-08 -.61-10 -.52-11 -.94-12 |-.55-13 |-.12-12
.63-03  .32-83 .24-06 .11-98 .34-10 .27-11 .46-12|-.13-12| .24-12
.22-p6  .95-11 -.63-10 .11-89 -.41-10 -.43-11 -.81-12} .29~-12 |-.51-12

10 .13-03 -.64-07 -.32-09 -.49-11 -.18-12 -,18-13 |-.37-14 |-.33-14
.31-83 .16-03 .59-07  .14-909 .22-11 .92-13 .90-14| .18-14} .29-14

.56-¢7  .11-11 -.72-11 .11-18 -.27-11 -.15-12 -.16-13 |-.34-14 [-.57-14

11 .63-04 -.16-07 -.40-10 -.26-12 -.59-14 -.33-15 -.46-16 |-.17-16
.16-03  .79-04 .15-907 .17-10 .14-12 .30-14 -.l6-15 .23-16| .84-17
.14-07  .14-12 -.86-12 .13-11 -.17-12 -.50-14 -.29-15 -.45-16|-.18-16

12 .32-04 -.4p-08 -.50-11 -.16-13 -.19-15 -.51-17 .52-19| .41-18
.78-04  .40-904 .37-08 .22-11 .89-14 .97-16 .30-17 .43-18} .25-18
.35-8 .17-13 -.11-12 .15-12 -.11-13 -.16-15 -.50-17 -.43-18 |-.79~-19

13 .16-¢4 -.10-08 -.63-12 -.10-14 -.67-17 -.74-18 ~.67-18 -.68-18
.39-04  .20-04 .93-09 .27-12 .56-15 .28-17 -.24-18 -.29-18 -.30-18"
.87-09  .22-14 -.13-13 .18-13 -.69-15 -.51-17 -.82-19 -.39-20 -.60-21
- 14 .79-05 -.25-09 -.79-13 -.64-16 ~-.10-17 -.82-18 -.82~-18 -.82-18
.20-04  .99-05 .23-09 .34-13 .35-16 -.26-18 -.36-18 -.36-18 -.36-18
.22-09  .27-15 -.16-14 .22-14 -.43-16 -.16-18 -.13-2¢ -.15-22 .15-22

15 .40-05 -.63-10 -.99-14 -.59-17 -.20-17 -.20-17 -.20-17 -.20-17
.98-05 .50-95 .58-19 .43-14 .14-17 -.85-18 -.87-18 -.88-18 -.88-18
.54-18  .34-16 -.20-15 .27-15 -.27-17 -.50-20 -.43-22 -.23-22 -.23-22
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11

12

13

14

15

. 24+00
.« 34+00

.78-01
.98-01
.97-02

.10-01
.60-01
.28-02

.11-01
.18+00

.40-02

.38-01

.61-02

.14-02
.12-01
. 24-02

.43-02
.50-03

.16-05
.10-02
.12-03

.56-06
.15-04
.15-05

.37-87
.17-85
.18-06

.68-09
.97-07

.65-10
.43-08
.20-09

.17-12
.47-69
.19-19

.53-16
.13-11
+49-13

.64-18
.76-15
.12-16

First two columns
Frobenius norm of
the four elements

Table 7 , k=1 , m=2 , OR-Bordering

.70-01
.70-91
.93-02

-.24-01
.26-01

-.43-01
-.22-02

.14-01
.12-91

.40-02
-.12-81
.62-02

f

!

.34-02
.32-02
-.23-02

-.21-02
.10-02
-.50-03

|

.42-03
.26-03
.12-03

.11-04
.14-05
.15-85

.10-05
.34-06
.18-06

.20-97
.28-07
.13-87

.34-08
.92-19
.20-09

-.38-09
.21-11

-.10-11
.19-14
.49-13

.60-15
.40-16
.12-16

as in Table
Y .  Other
of ¥ .

.84+00 .18+00 -.29-02 -.90+30

.82+H00  .17+00
.25+31 .53+00

.52+00 .85+00
.66+00 .50+00
24431 .67+00

.46+00  .80+09
.55+00 .40+00
.25H1 .69+00

.44+00  .47+00
57408 .69+00
.25+01 .61+00

LADHO0 . 45400
L7440 .78+00
24401 . 60+00

L41400  .44+00
.69+00 .85+00
.25+01  .56+00

67+08  .77+00
.79+00 .98+00
.24+01 .45+00

.78+00 .90+00
<74+00 .91+00
.24+01 .48+00

79400  .91+00
73400 .90+20
.24+01 .48+00

72400 82400
. 72+00  .89+00
.24401 .50+00

73400  .84+00
.72+00 .88+00
<2441  .50+00

L7730 .89+00
.67+00 .82+00
.25+01 .53+09

.68+090 .78+00
.67+00 .82+00
.24401 .52+00

.68+00 .78+00
.67+00 .82+00
.24401  .52+00

.68+00 .78+00
.67+00 .82+00
.24+01 .52+00

-.28-02
-.86-02

<1341
.60+00
.27+00

.17+01
.15+H1

. 78+00
. 23401
.17+80

-.17+01
.94-01

T 89+®g
-.23401
.43+00

-.22+01
.32+39

-.37+00
-.23+31
.36+00

-.39+00
-.23+01
.36+00

. 46400
.23+01
.37+00

.39+09
.23+01
. 38400

.40+00
.23+01
.38+00

.37+09
. 23401
.38+00

.37+00

.23401
. 38+00

.37+00
<2341
.38+00

. 88+00
.27+01

. 72400
. 79+00
.274+01

.67-01

-.24401

«73-92
.33+41
.20+91

.95-01
.28+01
. 21401

|

.88-21
.30+81
.20+21

.36+20
.28+01
21401

. 56+30
. 29+01
.21H01

.57+00
.29+01
21401

.48+09
.29+01
.21+01

.53+80
. 30421
21491

.55+00
.30+01
.21401

.50+20
. 30431
.21+01

.50+29
.30+81
21431

. 50+30
-.30+1
-.2141

160

3 with second element in first column now

four columns

approximate gradients of
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Table 8 , k=2 , m=1

two-point one-point five-point
.28+01 -.48-91 .14+31 -.48-01 .10+01 -.48-01
1 L17-92  .50-01 JA7-82  .50-01 s17-82  .58-01

.67-01 -.32~1 .67-91 -.32-91 .67-01 -.32-91
10401 -.14+01  .14401 -.72400  .10481 -.53400
2 .28+01 -.19+00  .14+401 -.69-01 .74+00 -.35-01
.24401 -.14-01  .35+00 -.23-01  .15+00 -.26-01
L28401 -.92+00  .14+01 -.38+00  .10+01 -.35+00
3 .17401 -.19400  .38+00 -.68-01  .32+00 -.37-01
.69+08 .24-01  .48-081 .73-03  .40-81 -.94-02
10401 —.61-01  .14401 -.20400  .30+01 -.23+00
4  .99-02 -.21-91 .11400 -.70-02 .14+00 -.19-01
.26-01 -.17-01  .17-01 -.14-01 ..12-01 -.79-02
.28401 -.35-01  .14+01 -.11+00  .10+01 -.25-02

5 .30-92 .10-02 .29-01

.41-02 -.14-04 .14-01

.19-¢2 -.15-82  .31-02 -.70-03 .14-81 .22-03
.10+91 -.19-902  .14+01 -.58-01 .1ﬂ+@1 12401
6 .13-94 -.22-92 .83-02 -.63-03 .10+01 -.41-02

.31-02 .22-92  .88-@3 -.15-92  .15+P1 .35-01

.31-01 . 10401 . 72+00
.30-03 -.19+00 .31+00
.19-04  .54400 -.29+00

28401 .75-02  .14+01
7 .14-63 -.97-05  .23-02
.42-04 .18-04  .35-03

!

|

.10401  .50-03 .14401
8 .61-06 —.62-06 .67-03
.54-04 -.54-04  .79-04

17-81  .10+31 .40+00
.49-04 -.24+00 .98-01
.16-03  .12+00 -.14+00

1
1

I
!
]

.89-02  .3@+01 .25+00
.25-04  .16+00 .84-02
.91-08  .43-04 .12-04  .18-91 -.46-01

. -28+01 .34-03  .14+441
9 .27-06 -.45-97 = .19-03
.36-07

18+401  .22-94  .14H01
10 .12-08 .45-07  .54-04
.52-07 -.25-07 .11-p4

.47-02  .10+01 .44-02
.32-05  .29-02 -.36-01
.19-04 .59-g1 .53-01

.28+01 .15-04  .14401 -.25-92 .10481 .36+00
11 .53-09 -.58-1¢  .15-04 -.23-05 .32490 -.36-01
‘ .29-10 -.67-10  .60-05 .34-05 = .89-01 .23-@1

L18+31  .99-96 14401
12 .24-11 .33-1@  .43-85
.58-19 .37-10  .19-05

.13-02 .10401 .23+90
.12-06  .13+00 .19-01
.25-05  .27-01 -.37-01

.28+01 .66-06  .14+401 -.72-03 .10+31 .16+00
13 .11-11 -.11-12  .12-@5 -.25-@6  .59-01 -.32-02
.58-13 -.13-12  .89-06 .68-06 .41-02 -.14-01

.10+01  .44-07  .14+01 -.38-03  .30+01 .11+00
14 .47-14 .64-13  .35-06 .14-07 .26-01 -.31-02
.98-13 .73-13  .31-06 -.37-06  .28-02 -.34-P2

Entries as in Table 1. Two-point method partially corrected with A=2.8<k+1l.

One-point method partially corrected with A =1.4<1+k/(k+2). Five-point
method fully corrected with A =k+1 .



Table 9 , k=2 , m=1 , Extrapolation 162

63ﬂg1 .ig+gg : j = number of steps
- + . :
b : 4 First column: 0 = smallest pivot
.16+30 .10+09 3 ”f” = residual norm
1 -.48-01 -.35+00 a+1

. : 2 -th 1 -fact = (2/3)
17-02  .50-91 -.50-g1 oP OF (2fa)~ch colum D-factor (2/

67-01 -.32-01 -.30400 = |
. 27 : E(q)(singular)
2 =.53+00 -.15+01 -.24+01 (2+q) -th column: q(q)(nohsinQular)
74400 -.35-01 -.21400 -.33408 |, | @ R
15400 -.26-01 -.12-01 .22+00 T n"* (nonsingular)
3 -.35400| .75-02| .12+01 .27+01 0
.32400 -.37-01|-.40-1| .92-61 .27+08 ., @ @
(40-01 -.94-02| .23-01| .51-61 -.18-01 iy £ ~ c( | for q> 0
: g
4 -.23400 |-.27-02|-.11-81 -.52+80 -.13+01 i
14400 -.19-01| .17-61| .63-01 .51-01 -.35-82 N o
12-01 -.79-02|-.49-02 |-.27-01 -.66-01 -.71-01 555 D°St extrapolant
: in each row
5 -.16400 -.25-02|-.23-02| .13-02 .13+00 .35+00 T
.62-01 -.79-82 .14-01| .12-01 |-.94-02 -.24-01 -.27-01  |,q x\a
42-02 -.52-02 .22-03| .43-82| .18-61 .37-01 .53-01 3i57
6  -.10+00 -.12-02|-.86-04 | .86-83 .76-83 -.19-01 —.54-01
.27-01 -.33-02 .60-02|-.52-83 |-.58-02 —.49-02 —.20-02 .49-83 .
.16-02 -.27-02 .22-92| .38-§2 | .36-02 .11-83 -.55-02 -.11-81  Tiel
7 -.70-01 -.47-03 .74-04 | .14-03 |-.35-04 -.16-03 .16-02 .51-02
12-61 -.14-02 .24-B2 -.56-03 |-.58-03 | .70-83 .15-02 .19-02 .20-02
.65-03 ~.13-§2 .15-02 .96-83 |-.24-03 |-.12-82 -.14-02 -.97-83 -.34-03
8  —.47-01 -.20-03 .21-04 |-.10-05 |-.36-04 —.36-04 -.25-04 -.13-03
.53-02 ~-.60-83 .97-03 —-.14-03 | .40-04 | .19-83 .11-83 -.23-04 —.14-03
.28-03 -.61-63 .79-03 .21~03 |-.11-03 |-.80-04 .86-84 .23-83 .30-03
9  -.31-01 -.86-04 .52-05 |-.16-05 |-.17-65 .35-85 .73-05 .93-05
.24-02 -.26-03 .41-03 -.32-04 | .13-04 | .62-05 -.22-04 -.35-04 -.36-04
.12-03 -.28-03 .38-03 .54-B4 |-.10-04 | .14-04 .29-94 .23-34 .11-04
10 -.21-01 -.37-04 .15-05 -.88-07 | .29-06| .59-06 .32-06 —.12-06
1002 ~-.12-83 .18-03 —-.85-05 .12-05 |-.16-05 |-.28-05 —.98-06 .11-05
.55-04 -.13-03 .18-03 .16-04 -.40-06 | .20-05| .18-06 —.26-05 —.42-05
11 -.14-p1 -.16-04 .44-06 .11-88 | .23-67|-.17-07 -.76-87 -.10-06
.46-03 -.51-04 .78-04 -.24-05 .14-06 |-.13-06| .98-07 .38-06 .46-6
.25-04 -.56-@4 .82-B4 .46-05 -.63-07 | .19-07 |-.29-06 -.33-86 -.19-06
12 -.93-02 -.72-05 .13-06 .69-10 -.19-09 |-.37-08 -.24-08 .21-08
.21-03 -.23-B4 .34-04 -.70-06 .26-87 |.12-08] .19-07 .11-87 -.12-07 .
J1-64 -.25-04 .37-04 .14-05 -.19-07 |-.81-08 |-.12-07 .14-87 .36-07
13 —.62-02 -.32-05 .38-07 -.31-10 -.56-10 |~.35-18| .32-89 .49-09
.91-04 -.10-B4 .15-04 -.21-06 .51-08 .10-10| .20-89 |~.16-08 -.23-08
.50-05 -.11-84 .17-B4 .40-06 -.43-08 —.63-89| .51-69| .17-08 .96-89
14 -.41-02 -.14-65 .11-67 -.76-11 -.11-11]| .72-11| .11-18 -.78-11
.41-04 -.45-05 .67-05 -.60-07 .98-D9 —.27-10 |-.33-10 |-.55-10 .40-10
.22-05 ~-.50-@5 .75-05 .12-06 -.88-89 —.47-18| .41-10 |-.38-11 -.11-09
15 -.27-02 -.62-06 .34-08 -.12-11 .21-12| .41-12|-.25-12 -.96-12
.18-04 ~-.20-05 .30-05 -.18-07 .19-89 —.51-11 |-.18-11| .12-11 .47-11.
.99-06 -.22-85 .33-B5 .35-07 —.18-09 —.49-11| .16-11|-.22-11 —.21-11




Table 10 , k=2=m , Extrapolation 163

0 .10+00
.32-02  .10+00
.84-01  .10+00 %

1 ~.33400 -.12+01
.28-01 -.21-01 -.26+00
20400 -.13+00 -.60+00 8

j
First column: { g

II£]

Top of (2+q)-th column Q-factor=2/3

number of steps
smallest pivot
residual norm

g+1

27 f C(q)(singular)
2 -.23+08|~-.17-01| .93+00 e .
.20-01  .41-04| .42-01| .29+00 L (2+q) -th column: { &' (singular)
.20-01 -.25-01| .19+00| .82+00  1° . 1D (nonsingular)
3 —.15+00|-.25-93| .13-01 -.37+00 -
.91-02  .26-04|-.29-085|-.34-01 -.17+00 1 , 0 |
:29-62 -.73-02| .28-01|-.10+00 -.49+00 = £ x| o | for >0
4  -.10+00|-.10-04| .18-03 -.52-02 .85-01 pl@ |
(41-62  .17-84|-.25-06| .19-05 .14-61 .59-p1
.95-03 -.29-02| .60-02|-.11-01 .27-01 .15480 -2 best extrapolan
5  -.67-01 -.12-05| .62-05(-.67-04 .12-02 -.12-01 in each row
.18-02  .12-94 -.48-97| .12-06|-.61-06 —-.35-02 -.13-01 (@
.40-03 -.13-82 .19-02|-.13-02| .30-82 -.29-02 -.27-01 f%%%" X
6 -.45-31 -.23-06| .55-06|-.18-85 .14-04 -.17-03 .93-03
.81-03  .77-05 -.14-07| .14-07|-.29-07 .11-06 .53-63 .18-02
.18-03 -.58-03 .82-03|-.65-04| .45-03 -.17-03 .24-63 .28-02 oo
7 -.30-01 -.47-07| .95-07|-.96-07 .33-06 -.18-05 .14-04 —.43-04
.36-83  .51-@5 -.42-08| .33-08|-.12-68 .57-08 -.11-07 -.51-04 —.17-03
.81-04 -.26-03 .38-03| .16-04| .50-04 -.49-04 -.31-04 -.57-04 -.24-03
8  -.20-01 -.10-87 .20-07|-.11-07| .94-08 -.40-07 .13-06 -.74-06
.16-03  .34-05 -.13-08 .10-08| .62-10| .37-09 -.43-89 .57-09 .32-85
.37-04 -.12-93 .17-83 .74-05| .37-85|-.78-85 -.15-85 .13-05 .49-05
9  -.13-01 -.21-08 .43-08|-.24-08|-.16-09 -.16-08 .21-08 -.57-08
.71-4  .23-05 ~-.39-89 .32-09| .28-10| .20-10 -.33-18 .48-11 -.31-10
.17-4 -.53-84 .77-84 .23-05| .15-06|-.73-06 .34-06 .52-06 .47-06
10 -.89-@2 -.42-09 .89-@9|-.53-09|-.76-10 -.62-10 .86-10 —.38-10
.32-04  .15-05 -.12-9 .10-99| .62-11| .72-12 -.22-11 .82-12 .57-12
.76-85 -.23-04 .35-04 .68-06|-.48-08|-.43-07 .61-07 .35-07 .49-08
11  -.59-92 -.86-10 .18-89 -.11-09|-.12-10{-.18-11 .4@-11 -.11-11
.14-04  .10-05 -.35-1¢ .31-1¢ .12-11| .16-13|-.91-13 .11-12 .67-13
.34-05 -.10-04 .16-04 .20-06 -.22-08|-.15-08| .47-08 -.74-89 -.29-08
12 -.39-§2 -.18-1¢ .37-10 -.24-10|-.16-11|-.47-13 .12-12 -.12-12
.62-05  .67-06 -.10-10 .92-11 .24-12| .73-16{-.23-14 .62-14 -.31-15
.15-05 -.47-85 .69-85 .59-@7 —.45-89|-.25-10| .21-89 -.23-89 -.20-09
13 -.26-02 -.36-11 .75-11 -.49-11|-.21-12|-.21-14 .22-14 -.51-14
.28-05  .45-06 -.31-11 .28-11 .48-13|-.14-16|-.28-16 .19-15 -.18-15
.68-06 -.21-05 .31-05 .17-87 —-.89-1@| .14-11| .54-11 -.14-10 -.62-12
14  -.18-92 -.76-12 .15-11 -.99-12 -.27-13|-.16-15| .24-16 ~-.11-15
.12-05  .30-06 -.93-12 .83-12 .95-14 -.12-17| .74-18| .35-17 -.82-17 -
.31-06 -.92-86 .14-05 .51-@8 -.17-160 .25-12| .74-13|-.44-12 .39-12
15 -.12-92 -.16-12 .32-12 -.20-12 -.36-14(-.14-16| .59-19 -.15-17
.55-06  .20-06 -.28-12 .25-12 .19-14 -.79-19| .97-19| .35-19 -.18-18
.14-06 -.41-06 .61-06 .15-88 -.34-11 .32-13|-.92-15|-.82-14 .19-13




of frequently used symbols and expressions some of which may have a

INDEX

different meaning within certain sections.

Integers
n =

m:

number of variables and equations
dimension of nullSpaqe N of‘ Vf(x*)
order of determinant function

order of singularity

degree of singularity

Vector Functians

determinant function

leading term in expansion of §
b§undary function of R

= upper outer density of set A at x*

smallest singular value of Vf(x)
Newtonian iteration function

leading term in expansion of g

minimal angle between t and N

smallest singular value of ﬁ(t)
1, -1
= E-mlnlmal‘angle between t and S n ™, (0)

boundary function of R

homogeneous polynomial

Matrices and Matrix Functions

P -

It

monnw

(]
il

orthogonal projection onto nullspace of VfT(x*)

submatrices of Jacobian in normal form

reduced Jacobian

164

21

21

15
18
20
21
45
50
59
68

69



Wi
fi

leading term in expansion of B

Qi
I

leading term in expansion of C

Sets and Spaces

§ "(0) = singular set

N = nullspace of V£f(x*)

55 = ball with radius p about x*
R" : starlike domain of invertibility
X0 = full domain of convergence

W e X, : starlike domain of convergence

R e X, : starlike domain of convergence
Variables Equations

- singular 5 " - singular

- nonsingular 5 - nonsingular
Directions Domains

-~ tangential 10 - starlike

~ excluded 11 - of invertibility

- included 14 " - of convergence

- irregular 17 v - of bounded conv.

- regular 17 - of contraction
Singularities Newton sequences

- balanced 48 - approximate

- regular 54 - regular

- strongly regular 64

165

48

48

29
62

68

10

14

30

34

40

63

90
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