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Abstract

The Kolakoski sequence 1221121221221121122 . . . is the unique
countable {1, 2}-sequence k1k2k3 . . . such that k1 = 1, whose j-th
block has length kj . We shall briefly survey what is known and
conjectured about this sequence.
Define the Kolakoski discrepancy function δ(n) :=

∑
1≤j≤n(−1)kj .

It is an open question whether δ(n) = o(n), i.e. whether the
density of 1’s in k is 1

2 .
The obvious algorithm to compute δ(n) takes linear time and
space. Nilsson (2012) gave an algorithm for computing k1 . . . kn

(and hence δ(n)) in time O(n) and space O(log n). We shall give
an algorithm that computes δ(n) faster, using a space-time
tradeoff. It is conjectured that the algorithm runs in time O(nα)
and space O(nα), where α = log(2)/ log(3) ≈ 0.631.
Using our algorithm, we have computed δ(n) for various
n ≤ 5× 1017. The results provide numerical evidence for the
conjecture that δ(n) = Õ(n1/2).
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Notation

Õ(f (n)) means O(f (n)(log n)c) for some c ≥ 0.

We consider finite or countably infinite sequences over an alphabet
Σ of two symbols. In the exposition we take Σ := {1, 2}.
In programs it is often more convenient to use Σ := {0, 1}.
We use sequence, string and word interchangeably
(in the literature some distinctions are made – e.g. strings are
sometimes assumed to be finite).

If σ = σ1 . . . σn is a finite sequence, the length of σ is λ(σ) := n.
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More notation

N is the set of positive integers.

The empty string (of length zero) is written as ε.

Σn is the set of 2n strings σ1 . . . σn of length exactly n ≥ 0.

Σ∗ = ∪n≥0 Σn is the set of finite strings over Σ.

ΣN is the set of countably infinite strings σ1σ2σ3 . . . over Σ.

σj is a string of j consecutive σ s (σ0 = ε, σj+1 = σjσ).

If σ = σj1
1 σ

j2
2 σ

j3
3 . . . where σi 6= σi+1 and ji > 0, then

σjn
n is the n-th run in σ and its length is jn.
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Run-length decoding

We can define a “run-length decoding” function T : Σ∗ → Σ∗ by

T (σ1σ2 . . .) = 1σ12σ21σ32σ4 . . .

For example, if σ = 12221121, then T (σ) = 122112212112.

σ is called the mother of T (σ).

Strings can be motherless. In our example, σ contains a run of
length three, so has no mother in {1, 2}∗.
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The Kolakoski sequence k

The Kolakoski sequence k is the (unique) fixed point of the map
σ ∈ ΣN 7→ T (σ). In other words, k = T (k), and this defines
k ∈ ΣN uniquely.

Proof of uniqueness (sketch). Suppose k = k1k2 . . . satisfies
k = T (k). Then k1k2k3 . . . = 1k12k21k3 . . ., where 1 ≤ kj ≤ 2.
Comparing the first symbols on left and right shows that k1 = 1.
Thus 1k2k3 . . . = 12k2 . . .. Thus k2 = 2 and k3 = 2. Proceeding in
this way, we see that, for j ≥ 3, kj on the left is defined by
k1, k2, . . . , km on the right, for some m < j . This shows that the
solution is unique (and also gives an algorithm for computing it,
thus showing existence).
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A small generalisation

We can define

T1(σ1σ2 . . .) = 1σ12σ21σ32σ4 . . .

and
T2(σ1σ2 . . .) = 2σ11σ22σ31σ4 . . .

(so T1 is the same as T , and T2 differs only in that its output
string starts with 2 instead of 1).

We say that σ = σ1σ2 . . . is the mother of both T1(σ) and T2(σ).

Thus, starting from any u ∈ Σ∗\{ε} as the root, we obtain an
(infinite) binary tree where the left child of σ is T1(σ) and the
right child is T2(σ).
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Remarks on fixed points

The equation T2(k̂) = k̂ has a unique nonempty solution

k̂ = 22112122122 . . . ∈ ΣN,

and this solution is the same as the Kolakoski sequence k with the
first symbol deleted, i.e.

k = 1k̂ .

Sometimes the Kolakoski sequence is defined to be k̂ instead of k .
We follow the definition in Sloane’s OEIS (sequence A000002).

If we allow finite sequences, i.e. σ ∈ Σ∗, then there are some
“trivial” fixed points:

T1(ε) = ε, T2(ε) = ε and T1(1) = 1.
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Example of a tree generated by T1 and T2

Starting from σ = 2 ∈ Σ∗, we obtain the following (infinite) tree
whose nodes are finite {1, 2}-sequences. Note that finite segments
of the Kolakoski sequences k = 122112 . . . and k̂ = 221121 . . .
occur in the tree.

2

11

12

122

...
...

211

...
...

21

112

...
...

221

...
...

22

1122

121122

...
...

212211

...
...

2211

112212

...
...

221121

...
...

Note the sequence (bj)j≥1 = (1, 2, 4, 6, . . .) of lengths of nodes on
the rightmost path: we will consider this later.
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Some history

The “Kolakowski” sequence was first defined (but not named)
in a paper by Rufus Oldenburger (1939).

In 1965, William Kolakoski (in the problem section of the
American Mathematical Monthly) gave the first 41 terms of the
sequence and asked

1. What is a simple rule for constructing the sequence?

2. What is [a formula for] the n-th term?

3. Is the sequence periodic?

In 1966, Necdet Üçoluk answered Kolokoski’s questions 1 and 3
(answer to 3: the sequence is not periodic). Kolakoski and Üçoluk
were apparently unaware of Oldenburger’s paper.
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History continued

Michael Keane (1991) and others conjectured that the density of
1s in k is 1

2 . This is still open. Even the existence of a density is
open. Vašek Chvátal (1993) proved an upper density of 0.501
(and a corresponding lower density of 0.499).

Michaël Rao (2012) improved these bounds to 0.5001 and 0.4999.

Arturo Carpi (1994) proved that the Kolakoski sequence is
cube-free, and contains only squares of length 2, 4, 6, 18 and 54.
Here a square is a nonempty substring of the form xx (with length
defined to be λ(xx) = 2λ(x)), and a cube is a nonempty substring
of the form xxx .

For other historical references, see the OEIS entry A000002.
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Some open questions

There are many open questions/conjectures about the properties
of the Kolakoski sequence k . Here is a subset from a report by
Dekking (1995).

I What is the subword complexity of k , i.e. the cardinality P(n)
of the set of words of length n that occur in k? Dekking
(1981) showed that P(n) has polynomial growth.

I If a word x = x1 . . . xn occurs in k , does it occur infinitely
often? Does it occur with bounded gaps? Does the reverse
xn . . . x1 occur? Does the complement x ′1 . . . x

′
n occur?

(Here 1′ = 2, 2′ = 1.)

I Equidistribution: Does the frequency of 1 in k exist, and is it
equal to 1/2?

I Subword equidistribution: For each word w in k, does the
frequency of w in k exist?
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Equidistribution

For a string σ = σ1 . . . σn ∈ Σ∗, recall that λ(σ) = n denotes the
length of σ. For x ∈ Σ, define λx(σ) to be the number of
occurrences of x in σ. For example, λ1(1121) = 3, λ2(1121) = 1.

By an abuse of notation, we abbreviate λx(k1 . . . kn) by λx(n).

k is equidistributed if

lim
n→∞

λ1(n)

n
= lim

n→∞

λ2(n)

n
=

1

2
.

Since λ1(n) + λ2(n) = n, an equivalent condition is

lim
n→∞

λ1(n)

n
=

1

2
.
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Equivalent conditions
Since

n∑
j=1

kj = λ1(n) + 2λ2(n),

an equivalent condition is

lim
n→∞

1

n

n∑
j=1

kj =
3

2
.

In other words, the “expansion factor” in going from k1 . . . kn

to its child 1k12k21k3 · · · (· · · )kn is asymptotically equal to 3/2.

Another equivalent condition (stated in the abstract) is
δ(n) = o(n), where

δ(n) :=
n∑

j=1

(−1)kj = λ2(n)− λ1(n) = n − 2λ1(n).
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Algorithms

Since there is no known theoretical approach to proving
equidistribution of k , there is an interest in computing δ(n) for
large n to see if we can obtain numerical evidence for/against
equidistribution.
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A linear time and space algorithm

It is straightforward to generate k1k2 . . . kn in linear fashion, using
the fact that k is a fixed point of the “run-length decoding”
function T1(σ1σ2 . . .) = 1σ12σ21σ32σ4 . . .

Denote the complement of x ∈ Σ by x ′. Thus 1′ = 2, 2′ = 1,
but we can represent 2 by 0 if desired (to save space).

We use an array A of n + 1 bits A1 . . .An+1, and indices i , j .

Algorithm 1:

(A1,A2, i , j)← (1, 1′, 2, 2);
while i ≤ n do

if Aj = 1 then (Ai , i , j)← (A′i−1, i + 1, j + 1)
else (Ai ,Ai+1, i , j)← (A′i−1,A

′
i−1, i + 2, j + 1).

Now A1 . . .An = k1 . . . kn.

The algorithm uses time O(n) and space O(n).
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Illustration of Algorithm 1
The algorithm can be illustrated by the following table. As the
indices i and j increase, the third and fourth columns both
represent initial segments of the Kolakoski sequence.

i increases by 2 when Aj = 2 (skipped values in parentheses).

i j Ai Aj

1 1 1 1

2 2 2 2
(3) 2
4 3 1 2

(5) 1
6 4 2 1
7 5 1 1
8 6 2 2

(9) 2
10 7 1 1
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Saving space via recursion

Nilsson (2012) improved Algorithm 1 by reducing the space
required to generate kn (or δ(n)) from O(n) to O(log n).
The time required is still O(n).

The idea is to generate the Kolakoski sequence by a recursive
procedure, where the reference to Aj in Algorithm 1 is replaced by
a recursive call to the same procedure, unless j ≤ 2.

This can be illustrated by the table on the next slide.
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Recursive generation of the Kolakoski sequence
Each column A,B,C , . . . gives the Kolakoski sequence. Column B
generates column A, column C generates column B, etc. The
depth of recursion increases at each blue row (at indices bj + 2).

index A B C D E F G . . .
1 1 1 1 1 1 1 1 . . .
2 2 2 2 2 2 2 2 . . .
3 2
4 1 2
5 1
6 2 1 2
7 1 1
8 2 2 1 2
9 2
10 1 1 1
11 2 2 2 1 2
12 2
13 1 2
14 1
15 2 1 1 1
16 1 2 2 2 1 2
17 1
18 2 2
19 2
20 1 1 2
21 2 1
22 1 2 1 1 1
23 1
24 2 1 2 2 2 1 2
. . .
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A sublinear algorithm (Algorithm 2)

Nilsson’s algorithm takes time of order n to generate kn or δ(n).
This is the best that we can do if all of k1, . . . , kn are required.

However, it is possible to generate a single kn or δ(n) value
(or a sparse sequence of such values) in time � n.

The first step is to convert Nilsson’s recursive algorithm into an
iterative algorithm that generates the table on the previous slide
row by row. This gives a non-recursive algorithm with essentially
the same time and space requirements as Nilsson’s algorithm.

Next, we observe that a row in the table determines some of the
following rows, as illustrated on the following slide.
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One row determines several following rows

index A B C D E F

1–10 · · ·
11 2 2 2 1 2
12 2
13 1 2
14 1
15 2 1 1 1

16 1 2 2 2 1 2
. . .

Row 11 determines rows 12–15 as the number of columns (5) in
row 11 is at least the number of columns in rows 12–15.

However, row 11 does not determine row 16, since row 16 has 6
columns, and the column labelled “F” could have an entry 1 or 2.
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Using table lookup

For each d , 1 ≤ d ≤ dmax , where dmax is determined by the
amount of random-access memory available, we can construct a
table of 2d entries indexed by d-bit binary integers (the keys).
Each such integer m corresponds to a row (say row r) with d
symbols from Σ, which we can map to {0, 1}.
The table tells us how far we can skip ahead, say ` rows, and
sufficient information to construct row r + ` from row r . It should
also contain

∑
r<j≤r+` (−1)kj so there is enough information to

determine δ(n) when we reach row n.

In fact, it is sufficient to consider rows ending in 2, since rows
ending in 1 have ` = 0.

If a row has length > dmax , or if the table lookup would skip over
the desired index n, we revert to the “slow but sure” iterative
version of Nilsson’s algorithm.
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Space-time tradeoff

The mean value of ` over all 2d d-bit keys is (3/2)d . On the
assumption that each possible key is equally likely to occur, we
expect a speedup of order (3/2)dmax , ignoring logarithmic factors.
This is confirmed by numerical experiments.

Note: the keys are not substrings of the Kolakoski sequence. The
latter can not include strings such as 111 or 222, so the number of
length-d substrings that occur in the Kolakoski sequence is (much)
less than 2d . (It is polynomial in d .)

We have to initialise the lookup tables. This takes time Õ(2dmax ) if
done recursively, starting from small d .

Thus, the total time to compute δ(n) is [conjectured to be]

Õ((2/3)dmax n + 2dmax ).

Richard Brent and Judy-anne Osborn Space-time tradeoff



Choosing dmax

Choosing dmax = blog(n)/ log(3)c gives time Õ(nα)
and space O(nα), where α = log(2)/ log(3) ≈ 0.631.

For the values of n that we are interested in, say n ≈ 1018, this
would give dmax ≈ 37. Our program uses about 24× 2dmax bytes.
Thus, in practice, we are often limited by the availability of memory
and have to choose dmax smaller than the theoretically optimal
value. For dmax ≤ log(n)/ log(3), the runtime is Õ((2/3)dmax n).

One way to interpret this analysis is as follows. Each time that
we double the amount of memory available for lookup tables, we
obtain a speedup by a factor of about 3/2 (for sufficiently large n).
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Computing other quantities

It is possible to compute other functions related to δ(n) with only
a constant factor slowdown by variants on the algorithm described
for δ(n).

For example, we can compute

max
a≤n≤b

δ(n) and min
a≤n≤b

δ(n), and hence max
a≤n≤b

|δ(n)|,

at the expense of a factor 5/3 in memory for lookup tables, and a
small constant factor increase in running time.

Richard Brent and Judy-anne Osborn Enhancements



Computation of δ(n)

The following table gives some values of δ(n) and scaled values of
δ(n) and ∆(n), where ∆(n) := max1≤j≤n |δ(j)|.

n δ(n) δ(n)/n1/2 ∆(n)/n1/2

103 - 4 - 0.1265 0.1897
106 +28 +0.0280 0.0660
109 - 2,446 - 0.0773 0.1560
1012 - 101,402 - 0.1014 0.1515
1015 - 1,954,842 - 0.0618 0.1390

5× 1017 +40,997,288 +0.0580 0.0921

Our computation took about 3.5 hours per block of 1015 on a
2GHz Intel Xeon running Linux, using 80GB memory (dmax = 31).
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Conjecture

From our ∆(n) computations we can conclude that

|δ(n)| < n1/2/4 for 2000 ≤ n ≤ 5× 1017.

Thus, it is natural to conjecture that δ(n) = Õ(n1/2).

For a random walk with i.i.d. random variables we would get
δ(n)�

√
n log log n almost surely (this is Khinchin’s law of the

iterated logarithm).

The function
√

log log n grows far too slowly to make a significant
difference to the numerical results. Thus, we only conjecture
Õ(n1/2), although the numerical results suggest O(n1/2).
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Fractal nature of the Kolakoski sequence

A table lookup algorithm can speed up computation of δ(n)
because the Kolakoski sequence exhibits some self-similarity,
i.e. in some sense it is a fractal (I won’t try to define this).

The graph shows δ(n) for n ≤ 8000. If you look closely you can see
evidence of self-similarity.

Richard Brent and Judy-anne Osborn Fractal nature of the Kolakoski sequence



The sequence 1, 2, 4, 6, 9, 14, 22, 33, . . .
Recall the tree 2

11

12

122

...
...

211

...
...

21

112

...
...

221

...
...

22

1122

121122

...
...

212211

...
...

2211

112212

...
...

221121

...
...

OEIS sequence A042942 “From substitutional generation of
Kolakoski sequence” is the sequence (bj)j≥1 = (1, 2, 4, 6, . . .) of
lengths of the sequence 2, 22, 2211, 221121, . . . obtained by
starting at the root (2) and always taking the rightmost branch.
The nodes are initial subsequences of the Kolakoski sequence k̂ .
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Computation of the sequence of lengths

If b1, b2, b3, b4, . . . = 1, 2, 4, 6, . . . and at depth d of the tree we
have

bd = λ(k2k3 . . . kn) = n − 1,

then

bd+1 = λ1(n) + 2λ2(n)− 1 =
3n + δ(n)

2
− 1.

Thus

bd+1 =
3bd + δ(bd + 1) + 1

2

Thus, the conjecture δ(n) = o(n) implies that bd+1 ∼ 3bd/2.

Starting from b1 = 1, our program for the function δ can compute
b2, b3, . . . , bd+1 in [conjectured] time Õ((bd)α), where α ≈ 0.631.
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Computational results for b1, b2, . . .
Benoit Cloitre conjectured that bd ∼ c(3/2)d where c ≈ 1.3094.

The OEIS entry A042942 gives b1, . . . , b69 = 1850766589061,
computed by David Spies. Our program verifies these values in 161
seconds using 384MB of memory (speedup about 160).

We have extended the table of Spies to

b100 = 532329637135234861

by a computation that took 33.5 days, using 96GB of memory on a
2Ghz Intel Xeon (dmax = 32). To store b100 bits would require
6.65× 1016 bytes of memory, but our program does not store
(or even explicitly generate) all these bits. We find that

b100/b99 = 1.49999999997275 . . .

and estimate
c ≈ b100

(3/2)100
≈ 1.309346948± 1 ulp

(the error is at most 1.2×10−9 if |δ(n)| ≤ n1/2/4 for large n).
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Rao’s computation

Michaël Rao (2012) computed λ1(n)1 by an algorithm based on
composition of finite state transducers, for various n ≤ 1018. We
have confirmed the values that he gives where they overlap our
computations (up to n = 5×1017).

Rao does not give any information about running times or storage
requirements, so we can not compare the efficiency of his
algorithm with that of our Algorithm 2.

So far as we know, Rao did not compute ∆(n) or the A042942
sequence (bn).

1Recall that δ(n) = n − 2λ1(n), so computing λ1(n) is essentially equivalent
to computing δ(n).
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