
Pitfalls in Computation

Richard P. Brent
CARMA, University of Newcastle

MATH1510 Guest Lecture
16 Oct 2019

Copyright c© 2019, R. P. Brent

Richard Brent MATH 1510

This lecture is about some of the many reasons why a
computer might give you the wrong answer, or no answer at all.
I’ll concentrate on examples with a computer science flavour.
However, there are many more mathematical examples that
you can easily find if you are interested.

Richard Brent Pitfalls

Getting the wrong answer

There are many reasons why computers sometimes give
incorrect answers, including:

I Entered the wrong data.
I Program bug.
I Compiler bug.
I Firmware/hardware bug.
I Transient error.
I Asked the wrong question.
I Used an inaccurate or unstable numerical algorithm.
I Neural net training error.

We’ll look at some examples.

Richard Brent Pitfalls

Entered the wrong data

In September 1997 the US Navy missile cruiser USS Yorktown
was off the coast of Virginia. A sailor accidentally entered a
zero into a data field of the Remote Database Manager
Program, part of the Smart Ship system, which was designed
“to automate tasks that sailors have traditionally done
themselves”.
This caused a divide by zero in the program, since whoever
wrote the program had not bothered to check for zero data. The
divide by zero caused a buffer overflow, and the “failsafe”
system shut down.
Unfortunately the program also controlled the ship’s propulsion,
so the ship was “dead in the water” for more than two hours
before the Navy figured out how to reboot the system.
Lucky it wasn’t in a war zone!

Richard Brent Wrong data

Program bug
If you are developing your own programs, then a program bug
is the most likely reason for wrong answers.
Some suggestions:
I Start with as simple a program as possible and debug that

before adding refinements such as optimisations, bells and
whistles.

I As you add “improvements” check that the output is still
correct.

I Does the program specification match what you actually
want the program to do?

I If possible, use two different methods and compare results.
I If possible, try to replicate published results before trying to

get new results (but be aware that published results are not
always correct).

Richard Brent Bugs

Ariane 5 rocket crash

In June 1996 the European Space Agency launched its new
Ariane 5 rocket, an upgrade of the old Ariane 4. Unfortunately
the software had not been (sufficiently) upgraded. The rocket
veered off course and exploded 37 seconds after liftoff.
$US500 million worth of communications satellites on board
were lost (not to mention ESA’s reputation).
It turned out that horizontal velocity was stored in a 64-bit
floating-point number and then converted to a 16-bit signed
integer. This was OK for Ariane 4, but for Ariane 5 the number
exceeded 215 − 1 and integer overflow occurred, with
disastrous results.
Was this a program bug? More a bug in the program
specification, which was not upgraded at the same time as the
rocket.

Richard Brent Ariane 5

Patriot missile problem

The Patriot missile provides another example where the
software met the original specification, but the specification
proved inadequate when the system was used in a way that
was not anticipated by the designers.
During the first Iraq war (Feb 1991) an Iraqi Scud missile was
fired towards Dhahran, Saudi Arabia. A US Patriot missile
should have intercepted it, but failed to do so. 28 soldiers died
as a result, and 97 were injured.

Richard Brent Patriot missile

What went wrong?
It turned out that the Patriot system had an internal clock that
incremented every 0.1 seconds, and the time (in seconds) was
determined by multiplying the counter value by a 24-bit
approximation to 1/10. Note that 1/n is a non-terminating
fraction in binary for any n that is not a power of 2, in particular
for n = 10. Effectively the Patriot was multiplying by a number
close to 0.0999999 instead of 0.1000000
The Patriot was intended to be a mobile system that would run
for only a few hours at one site, and in that case the rounding
error would not be serious. However, in Dhahran it ran for 100
hours, and the rounding error was 0.34 seconds. The Patriot
became confused (presumably because it had two different
values for the time), could not track the Scud missile, and
treated it as a false alarm.
It has been said that the Patriot “missed” the incoming Scud,
but this is misleading because the Patriot never left the ground!

Richard Brent Patriot missile

Mars Climate Orbiter

In Dec 1998 the Mars Climate Orbiter was launched from
Earth. It arrived at Mars in Sept 1999. However, a software
error caused it to burn up in the Martian atmosphere.
A review board found that some data was calculated on the
ground in imperial units (pound-seconds) and reported that way
to the navigation system, which was expecting the data in SI
(metric) units (newton-seconds).
Unfortunately most programming languages deal only with
dimensionless quantities – the responsibility for conversion of
units rests with the programmer!
Perhaps NASA learned something, because more recent
missions to Mars (Mars Exploration Rovers) have been much
more successful.

Richard Brent Mars Climate Orbiter

Concurrent Computing and Race Conditions

In concurrent computing, different resources may be shared
between different tasks that run concurrently. This can cause
problems unless the order in which shared resources are
accessed is carefully controlled.
For example, suppose task A does something like (in C):
y = s; y = y+1; s = y (or s = s+1)
while task B is doing:
z = s; z = 2×z; s = z (or s = 2×s).
Suppose the shared variable s initially has the value 5. The
final value of s could be 6,10,11, or 12, depending on the order
in which the loads (. . . = s) and stores (s = . . .) are performed.
(Check it out!) The outcome depends on a “race” between the
tasks A and B.

Richard Brent Race conditions

Compiler bugs

If your program does not work as expected, it is tempting to
blame the compiler. In nearly all cases the compiler is not to
blame. It is usually a typo, logic bug, or a misunderstanding of
the syntax/semantics of the programming language (e.g.
beware implicit type conversions, the operators “=” and “==”
in C, etc).
Turn on compiler warnings and don’t ignore them unless you
are sure it is safe to do so. Debug with optimisation turned off
then see if turning it on changes anything. (If it does, check for
uninitialised variables and array bound violations.)
Compiler bugs do exist, especially for “exotic” or rarely used
features (e.g. extended precision). Avoid such features if
possible.

Richard Brent Compiler bugs

The Pentium FDIV bug

Firmware/hardware bugs are the least likely, but also the most
spectacular and expensive (for the computer manufacturer)!
Perhaps the best-known is the 1994 Intel Pentium “FDIV” bug.
After initially denying then downplaying the bug, Intel eventually
offered to replace all faulty Pentium processors, at an estimated
cost of $US475 million (1994 dollars).
Many users did not bother to get their processors replaced, so
it cost Intel less than their estimate. However, no one at Intel
got a Christmas bonus that year!

Richard Brent Pentium FDIV bug

What was the FDIV bug?

When designing their Pentium processor to replace the 80486,
Intel aimed to speed up floating-point scalar code by a factor of
three compared to the 486DX chip,
The 486 used a traditional shift-and-subtract algorithm for
division, generating one quotient bit per clock cycle. For the
Pentium Intel decided to use the SRT algorithm that can
generate two quotient bits per clock cycle. The SRT algorithm
uses a lookup table to calculate intermediate quotients.
Intel’s lookup table should have had 1066 table entries, but due
to a faulty optimisation five of these were not downloaded into
the programmable logic array (PLA). When any of these five
entries is accessed by the floating point unit (FPU), the FPU
fetches zero instead of the correct value. This results in an
incorrect answer for FDIV (double-precision division) and
related operations.

Richard Brent Pentium FDIV bug

Example
The error is usually in the 9th or 10th decimal digit, but in rare
cases it can be much worse.
FDIV is supposed to give a 53-bit result, i.e. about 16 decimal
digits.
An example found by Tim Coe is

c =
4195835
3145727

.

The correct value is

c = 1.333820449136241 · · ·

but a faulty Pentium gives

c = 1.33373906 · · ·

which is an error of about one part in 214 (not one in 253).

Richard Brent Pentium FDIV bug

A 3-D plot of the ratio x/y where x ≈ 4195835, y ≈ 3145727,
calculated on a Pentium with the FDIV bug. The “spikes”

indicate incorrect values.

Richard Brent Pentium FDIV bug

Summary of Intel’s reaction

1. There is no problem.
2. There is a small problem, but it is not serious.
3. The problem might be serious for some users; people who

can prove that they are affected by the problem can have
their Pentium processor replaced by Intel.

4. OK, we’ll replace any flawed processor free of charge.
[Note: the word “flaw” is used, not “bug”.]

There are lots of Pentium bug jokes. For example:

Intel’s new motto:

United We Stand,
Divided We Fall

Richard Brent Pentium FDIV bug

Time-line

The history is interesting:

I July: Intel discovered the bug, but did not make this
information public.

I Sept: Thomas Nicely, who was working on a
number-theoretic computation related to “twin” primes,
suspected the bug because he obtained different answers
on Pentiums and 80486s.

I 30 Oct: Nicely, unable to convince Intel technical support,
publicised the bug. Soon “all hell broke loose”.

I 7 Nov: Front page story in Electronic Engineering Times.

Richard Brent Pentium FDIV bug

Time-line continued

I 22 Nov: Intel press release “· · · can make errors in the 9th
digit. · · · [Only] theoretical mathematicians should be
concerned.”

I 5 Dec: Intel claimed the flaw would occur “once in 27,000
years” for a typical spreadsheet user.

I 12 Dec: IBM Research said that the error could occur as
often as “once every 24 days”. IBM stopped shipping PCs
based on the Pentium.

I 21 Dec: Intel said “We at Intel sincerely apologize for our
recent handling of the recently publicized Pentium
processor flaw” and offered to replace faulty processors.

Richard Brent Pentium FDIV bug

Other discrepancies

Nicely continued his computations (related to twin primes and
Brun’s constant), and occasionally other discrepancies
appeared between duplicated runs.
A twin prime is a prime number p such that p + 2 is also prime.
For example p = 101 is a twin prime, because p + 2 = 103 is
also prime.
Brun’s constant is the sum of reciprocals of twin primes. It is
finite, unlike the sum of reciprocals of all primes.
Nicely traced two discrepancies to defective memory (SIMM)
chips; parity checking had failed to report the errors. Once a
disk subsystem failure generated many incorrect (but plausible)
results. Other discrepancies were probably caused by “soft”
memory errors.

Richard Brent Other hardware errors

Soft memory errors

A soft memory error occurs when a cosmic ray or alpha particle
flips one or more bits in memory. A single bit error should be
detected by a parity check and can be corrected if the memory
has “error checking and correction” (ECC) hardware. Usually
ECC can detect (but not always correct) a double bit error – this
is called SEC/DED. Some systems write an entry in an error log
whenever an error is detected.
Soft memory errors are a known but not well-advertised feature
of modern memory chips. According to Sun, a system with
10 GB of memory might get an “ECC event” every 100 to 1000
hours, though this depends on the solar sunspot cycle, the
latitude, altitude, amount of shielding, degree of miniaturisation,
whether the memory is interleaved, etc.
Soft memory errors are probably the most common sort of
transient errors (errors that can not be replicated).

Richard Brent Soft memory errors

Another example of transient errors

GIMPS is the “Great Internet Mersenne Prime Search”. This is
a project to search for primes of the form 2n − 1. On 21 Dec
2018 GIMPS announced the Mersenne prime

282589933 − 1 .

A number N = 2n − 1 > 3 can be proved prime by performing a
Lucas-Lehmer test: if s0 = 4 and

sk+1 = s2
k − 2 mod N

then N is prime if and only if sn−2 = 0.
For example, if n = 7, we get the sequence
(4,14,67,42,111,0), so 127 is prime.
GIMPS is cautious; all results are checked before being
announced. This has avoided at least one embarrassment.

Richard Brent GIMPS

GIMPS error statistics

Occasionally two computers testing the same N find different
values of sn−2. Thus at least one is incorrect! Millions of
Lucas-Lehmer tests have been checked, and the observed
error rate is about 1.1%.
A “P-90 CPU-year” is the work done by a 90 Mhz Pentium in
one year. According to George Woltman:

The average LL test now takes about 6.5 P-90 CPU-
years. So my rough calculations are 0.011 errors per
6.5 CPU-years or 1 error every 600 P-90 CPU-years.

Nowadays most machines are much faster than 90 MHz. If you
have a cluster of 256× 2 GHz machines, you can expect an
error about once a month (unless reliability has improved)!

Richard Brent GIMPS

Case study – Primality testing

In 2002 Agrawal, Kayal and Saxena (AKS) surprised number
theorists by finding a deterministic polynomial time primality
test. This was certainly a great theoretical result. However,
from a practical point of view, nothing changed.
Before AKS, the best practical algorithm was the Rabin-Miller
probabilistic (or Monte Carlo) algorithm. If you run this
algorithm once, it has a probability < 1/4 of giving the wrong
answer.
Thus, if you run Rabin-Miller 100 times (using independent
random numbers) and it gives the same answer each time, the
probability of error is

< 4−100 < 10−60 ,

which is close enough to certainty for practical purposes.

Richard Brent Primality testing

Comparison of algorithms

Let’s consider testing a 100-decimal digit number on a 1 GHz
machine. (Cryptographic algorithms need to do this sort of
thing.)

I 100 independent trials of Rabin-Miller takes 0.3 seconds
(using a Magma implementation), with error probability
< 10−60, i.e. one error in 1060 trials. There are about 1057

atoms in the whole solar system!

I AKS takes 37 weeks and, using the GIMPS statistics, the
result has a probability of error exceeding 0.01 (when
testing a number that is actually prime) even if the program
is correct!

Which would you choose ?

Richard Brent Deterministic or Monte Carlo?

Asked the wrong question or used a bad algorithm

If someone asks your advice on a numerical or statistical
problem, they usually say

“I want to do XXX.”

You can answer

“This is how to do XXX · · · ”

but it is often better to answer

“Do you really want to do XXX?

Wouldn’t YYY be better?”

Richard Brent The wrong question or algorithm

Example – Runge’s phenomenon
For example, you might have some data yj given at n equally
spaced points xj , and want to fit an approximation Pn(x) such
that P(xj) = yj . It’s natural to consider a polynomial Pn(x) of
degree n − 1. However, this is likely to be disastrous as Pn(x)
may oscillate violently between the data points (and the
oscillations only get worse as n increases).
Carl Runge gave the example

f (x) =
1

1 + 25x2

on [−1,1] with equally spaced points
(spacing h = 2/(n − 1)).
Unfortunately

lim
n→∞

||f − Pn||∞ = +∞.

Here, || · · · ||∞ means the maximum over the interval [−1,1].

Richard Brent Runge

Illustration

The red curve is the Runge function.
The blue curve interpolates at 6 equally-spaced points.

The green curve interpolates at 10 equally-spaced points.
The oscillations near ±1 get worse as you use more points!

Richard Brent Runge

A better question
Instead of asking to interpolate at equally-spaced points, we
could ask to interpolate at Chebyshev points.

The Chebyshev points (or nodes) are the projections on the
x-axis of equally spaced points on a unit semicircle. They

cluster towards the end-points of the interval [−1,1].

Richard Brent Runge

Polynomial interpolation

Polynomial interpolation is not always bad – interpolation at
Chebyshev points

xj = cos

(
2j − 1

2n
π

)
, j = 1, . . . ,n

works for Runge’s example and many others.
Weierstrass’s theorem says that any continuous function can be
approximated arbitrarily closely by a polynomial. Such a
polynomial can be computed using the Remez algorithm.
In practice it is often simpler and better to use piecewise
polynomials, i.e. splines.
Splines can be generalised to two or three dimensions,
e.g. for approximating the shape of an aeroplane wing.

Richard Brent Runge

Machine learning and neural nets

Recently, artificial intelligence (AI) has become important
because of its many potential applications, e.g. to face
recognition, machine translation, medical diagnosis, control of
autonomous vehicles, etc.
Many such systems depend on training “neural nets”, which are
hardware/software analogues of a simplified model of the
human brain. This can work well in limited domains (e.g.
chess/go, where the rules are simple and well-defined).
A problem is that no one (not even the programmers)
understands exactly how such neural nets work. They are just
too complicated and unintuitive. Thus, no one knows all their
limitations.

Richard Brent Machine learning

Example

There have been several crashes (and some fatalities) involving
autonomous vehicles.
For example, on 7 May 2016, a Tesla Model S was driving in
“Autopilot” mode. An oncoming semitrailer was making a turn at
an uncontrolled (i.e. no traffic lights) intersection, but the Tesla
software did not recognize the semi and continued straight on
without applying the brakes. The Tesla actually passed
underneath the trailer, and the “driver” (of the Tesla) was killed.
I wrote “driver” because the real driver was the software, not
the human!
There are different theories about the cause of the accident, but
a plausible one is that the software was not able to react to the
trailer coming from the side, as it was trained to avoid rear-end
collisions by detecting the rear of vehicles ahead.

Richard Brent Machine learning

Further reading

A recent book on the topic of this lecture is:

Thomas Huckle and Tobias Neckel, Bits and Bugs: A Scientific
and Historical Review of Software Failures in Computational
Science, SIAM, 2019.

You could also look at my old talk:

Pitfalls in Computation: Random and not so Random Numbers,
available from https://maths-people.anu.edu.au/
~brent/pd/NAMS06t4.pdf.

Richard Brent Further reading

https://maths-people.anu.edu.au/~brent/pd/NAMS06t4.pdf
https://maths-people.anu.edu.au/~brent/pd/NAMS06t4.pdf

Inspiration
The topic of this lecture was inspired by the paper:
George E. Forsythe, "Pitfalls in Computation, or why a Math
Book isn’t Enough", Amer. Math. Monthly 77 (1970), 931–956.
https://www.jstor.org/stable/2318109.
Forsythe was the founder and first head of the Computer
Science Department at Stanford University.

George Forsythe
1917–1972

Richard Brent Inspiration

https://www.jstor.org/stable/2318109

