
11• 1

I

I
!I.Ii

Machine Interpretation of Boundaries

in Textured Images

Paul Mackerras

January 1988

A thesis submitted for the degree of Doctor of Philosophy

of The Australian National University.

Computer Sciences Laboratory,

Research School of Physical Sciences,

Australian National University,

Canberra, A.C.T. Australia.

;111
I

.1

il

111

I
I

I declare that, except where acknowledgement is

given, this thesis is my own original work.

~ U:/1/tt

(Paul Mackerras)

.
1

Preface

This thesis presents the results of a detailed study of the problem of automatically

locating boundaries between regions of textured imagery. This problem is part of

the wider problem of segmentation of images, which falls within the area of machine

vision. In addition to current research in machine vision, this study draws on the fields

of computer science, perceptual psychology, and visual neurophysiology.

The course of this study ran from early 1984 to early 1988 in the Computer Sci­

ences Laboratory within the Department of Engineering Physics, Research School of

Physical Sciences, at the Australian National University. The work reported herein

was supervised by Prof. Richard Brent, and was largely under the guidance of Dr. Iain

Macleod. Financial support was provided by a Commonwealth P ostgraduate Research

Award.

The chapters are organized as follows: Chapter 1 introduces the area of segmenta­

tion in machine vision, and the particular problem of accurately locating the boundaries

between textured regions in an image. Chapter 2 reviews various segmentation strate­

gies with particular reference to the accuracy of the location information they provide,

and identifies their shortcomings. Chapter 3 discusses three criteria for a good de­

scription of a boundary, and develops an algorithm for finding a description satisfying

these criteria. Chapter 4 presents results obtained with this algorithm on a namber of

images, and compares and contrasts these results with those obtained with two con­

volution edge detectors. Chapter 5 discusses various interesting aspects of the new

algorithm. Finally, Chapter 6 summarizes the main conclusions of this study.

Preliminary results from this study were presented at t he Australian Joint Con­

ference on Artificial Intelligence, Sydney, November 1987, and were published in the

conference proceedings.

Notable contributions of this study include the following:

. .
11

11'
I

!1

• Fundamental limitations of convolution edge detection approaches as applied to

textured imagery have been identified.

• Three criteria-accuracy, simplicity, and consistency-have been argued as es­

sential for a good boundary description, and formulated in mathematical terms.

• An algorithm for locating and describing bo·undaries on the basis of these criteria

has been developed.

• A consistency test has been devised, and has been used in elaborating boundary

descriptions, and in obtaining confidence intervals on the positions of boundaries.

• The consistency test has also been used to test the accuracy of conventional

techniques, without knowledge of the true boundary position.

• Extensions of the technique have been suggested, for handling multiple regions,

and for modelling spatially-varying regions.

. ..
111

Ill I'
I

lf• 1

" -

Ackno-w ledgeIT1ents

I would like to thank Dr. Iain Macleod and Prof. Richard Brent for valuable guidance

and encouragement, and for their constructive criticisms of this thesis. In particular,

I would like to thank Dr. Macleod for giving his time so generously for many fruitful

discussions throughout the course of this study. I would also like to thank Dr. Terry

Bossomaier, Dr. Michael Cook, and Prof. Allan Snyder for many interesting discussions

on aspects of biological visual systems and perceptual psychology.

Thanks are also due to Mr. Darrell Martens and Mr. Joe Elso for their work in

developing the software and hardware of the image display system, which formed a

central part of the environment in which this study was conducted. I would also like to

thank all the members of the Computer Sciences Laboratory for their friendship during

the last four years.

Special thanks go to my wife Alison, for her love, encouragment, and support, and

for her assistance in preparing and proofreading this thesis.

.
lV

J

Abstract

Existing approaches to the problem of image segmentation do not give accurate and

concise descriptions of boundaries in texture images . This thesis presents a new ap­

proach for locating and describing such boundaries, which gives substantially improved

results. The new approach seeks the simplest description which is consistent with the

image data for the boundary between two specified regions.

The Marr-Hildreth and Canny edge detectors have been implemented for the pur­

pose of comparison with the approach developed in this study. These edge detectors

gave boundary contours which were irregular and inaccurate when applied to test im­

ages containing smooth boundaries between regions of t exture. Several reasons for

their shortcomings have been identified; the principal reason is that the textured re­

gions contain intensity variations which are irrelevant to t he boundary.

The new approach is motivated by three crit eria for a good boundary description:

accuracy, simplicity, and consistency. These criteria are formulated in mathematical

and statistical terms, enabling the development of an algorithm for finding a boundary

description which satisfies these criteria.

The accuracy criterion requires that the boundary should be the most likely at the

given level of complexity, that is, that it should have the highest likelihood according

to a statistical model which allows for a distribution of pixel intensities in each region.

The simplicity criterion requires that the simplest description be used which is still

consistent with the image data, and is formulated in terms of the number of parameters

in a parametric description of the boundary. The consistency criterion requires that

there be no areas adjacent to the boundary which are demonstrably on the wrong side

of the boundary; this is formulated in terms of a likelihood ratio test.

The algorithm for finding a description satisfying these criteria has four main el­

ements: maximizing the likelihood of the boundary description, testing whether the

V

description is consistent with the image data, elaborating the description as necessary

(using its inconsistencies as a guide), and simplifying the description where possible.

Implementation of each of these four steps is discussed in det ail.

The results obtained with this algorithm on a number of test images demonstrate

the appropriateness and effectiveness of the algorithm, and therefore of the three cri­

teria and their mathematical formulations. The test images include both real-world

images and images that have been artificially constructed from natural textures. The

results are accurate and concise, displaying no more complexity than the observable

level of detail in the image warrants, and are generally in excellent agreement with hu­

man perception. These results represent a substantial improve~ent over conventional

techniques.

In contrast to many existing techniques, the algorithm developed here has no critical

parameter values that must be set accurately for individual images or classes of images

to obtain correct results. The algorithm has two main _parameters, both of which

were set at the same values for all images tested, namely the significance level in the

consistency test, and the maximum scale of intensity variation which will be considered

as texture.

The new approach has been applied in this study to the problem of locating a

single boundary between two homogeneous textured regions . Extension of the approach

to handle multiple regions and boundaries is straightforward. The same approach

could also be used to identify distinct regions and to obtain descriptions of the spatial

variations within non-homogeneous regions. Thus, the new approach yields a consistent

framework for the overall problem of image segmentation .

.
V1

Contents

Preface

Acknowledgements

Abstract
Contents .. .

.
.

.

.

.

..
11

.
lV

V

..
Vll

X List of figures . . .

List of tables
.... Xl.ll

List of symbols and abbreviations

1 Introduction

1.1 Segmentation in machine vision ...

1.2 Edge-based approaches . . .

1.3 Region-based approaches ..

1.4 Texture

2 Review of previous studies

2.1 Edge detection

The Marr-Hildreth edge detector 2.1.1

2.1.2 Ganny's approach to edge detection

2.2 Region-based segmentation .

2.3

2.2.1

2.2.2

Pixel classification .

Split-and-merge schemes .. .

Texture segmentation

..
Vll

.

.

.

.
XlV

1

2

4

6

8

13

13

16

20

21

22

23

24

ll
'1

I

1)

!Ir
I

i.
I

I

2.3.1

2.3.2

Texture analysis methods

Examples of texture segmentation algorithms

.
.

2.4 Statistical segmentation .
2.4.1

2.4.2

2.4.3

Introduction to Markov random fields
Use of MRF models in image segmentation
Evaluation of MRF approaches

2.5 Conclusions .

3 A new approach to boundary location

3.1 The boundary location problem
3.2 Criteria .

3.3

3.2.1

3.2.2

3.2.3

Accuracy .
Simplicity
Consistency .

Overview of boundary locator algorithm
•

3.4 Implementation of BLM algorithm
3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

Boundary representation
Region representation
Obtaining initial information and estimating statistics ..

Likelihood maximization .
Consistency test .
Elaboration and simplification
Split-and-merge procedure .

4 Results

4.1 Evaluation of edge detector results ..

4.1.1

4.1.2

4.1.3

Quantitative tests of accuracy . . .

The Marr-Hildreth edge detector

The Canny edge detector ..

Vlll

.
.

.

.

25

28

30

33

34

36

37

39

39

40

41

42

44

46

47

50

52

53

54

69

79

80

84

85

86

89

99

flt

l1;

4.1.4 Conclusions about convolution edge detectors

4.2 Evaluation of results obtained with BLM algorithm .

.

.

101

105

4.2.1

4.2.2

Comments on individual images 107

Conclusions about the B LM algorithm . .

5 Discussion

5.1

5.2

Appraisal of BLM algorithm.

5.1.1

5.1.2

5.1.3

5.1.4

Discussion of performance . . .

Reasons for good performance

Appraisal of the implementation ..

Other aspects of the BLM algorithm .

Comparison with other approaches . .

5.2.1 Edge-based approaches

5.2.2

5.2.3

Region-based approaches

Statistical approaches

.

.

.

129

131

131

131

. 132

.
.

.
.

134

143

149

149

. . . . 152

. . . . 153

5.3 Possible extensions to the BLM algorithm 155

155

157

161

5.3.1

5.3.2

Handling multiple regions

Spatially-varying regions . . .

.

5.4 Use of the BLM algorithm in a machine vision system

6 Conclusions

Bibliography

.
lX

165

169

I''

11,

I

I

lli

!

I

·I
I
I

'i'l~
I

List of Figures

2.1 Image with two textured regions .
2.2 Results from figure 2.1 with Marr-Hildreth edge detector

2.3 Results from figure 2.1 with Canny edge detector

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Maximum-likelihood boundary

Inconsistent boundary

Results from split-and-merge procedure

Initial boundary hypothesis

Results from optimizing initial boundary hypothesis

Seven-segment boundary

Final results from BLM algorithm for figure 2.1 ..

Blending functions for cubic segments

3.9 Determination of allowable range of positions of z~

3.10 Outline of a protrusion ·

3.11 Knot movements for confidence contours and intervals

3.12 Directions used in determining cornerness measure

4.1

4.2

4.3

Image gmcorner

Marr-Hildreth edge detector results on image gmcorner

Coincidence of zero-crossings for image gmcorner

. . . .

. . . .

.

19

19

22

43

43

48

48

49

49

50

52

65

72

77

78

89

90

92

4.4 Selected edge string and patches for statistics for image gmcorner . . . 93

4.5 Comparison of Marr-Hildreth and correct results for image gmcorner . . 95

4.6 Comparison of Marr-Hildreth and optimized results for image gmcorner 95

X

Image rock . 4.7

4.8

4.9

Results from Marr-Hildreth edge detector for image rock

Selected edge string and bounding rectangle for image rock

4.10 Comparison of Marr-Hildreth and optimized results for image rock . . .

4.11 Results from Marr-Hildreth edge detector for image lenna

4.12 Canny edge detector results on image gmcorner
4.13 Selected edge string and patches for statistics for image gmcorner

4.14 Comparison of Canny and correct results for image gmcorner ...

4.15 Comparison of Canny and optimized results for image gmcorner

4.16 Results from Canny edge detector for image rock

. . .

4.17 Selected edge string and bounding rectangle for image rock

4.18 Comparison of Canny and optimized results for image rock

.

4.19 Results from Canny edge detector for image lenna

4.20 Results from BLM algorithm for image gmcorner .

. . .

.

96

96

97

97

98

100

101

102

102

103

103

104

104

108

4.21 Confidence intervals and contours for image gmcorner (magnified by 10) 108

4.22 Image gmarc .

4.23 Results .from BLM algorithm for image gmarc; PWL boundary

110

110

4.24 Results from BLM algorithm for image gmarc using cubic segment ... 111

4.25 Confidence intervals (magnified by 3) and contours for image gmarc .. 111

4.26 Results from BLM algorithm for image gmprot

4.27 Image gmwave

4.28 True boundary position for image gmwave

4.29 Results from BLM algorithm for image gmwave

4.30 Results from BLM algorithm for image rcirc; PWL boundary

113

113

114

114

116

4.31 Results from BLM algorithm for image rcirc with four cubic segments 116

4.32 Results from BLM algorithm for image learaf

4.33 Image noise

4.34 Results from BLM algorithm for image noise

.
X1

.

117

117

118

1"'

4.35 Results from BLM algorithm for image dots

4.36 Image straw

4.37

.
.

.

118

120

120

4.38

True boundary position in image straw

Texture filter output for image straw 121

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

5.1

5.2

Split-and-merge results for the image in figure 4.38

Results from BLM algorithm for the image in figure 4.38
Confidence intervals (magnified by 3) and contours for figure 4.38
Split-and-merge results for image rock
Results from BLM algorithm for image rock; PWL boundary
Results from BLM algorithm for image rock; five cubic segments

Image house with bounding polygon and areas for statistics
Results from BLM algorithm for image house

Edge of chimney in image house

.

.
Results from BLM algorithm for image pinetree
Image trunk with bounding polygon and patches for statistics

Results from BLM algorithm for image trunk

Middle tenth of image noise

Image with spatially varying regions

..
Xll

.

.

121

122

122

125

125

126

127

127

128

128

130

130

147

147

List of Tables

4.1 Quantitative evaluation of edge detector results on image gmcorner . . . 93

4.2 Quantitative evaluation of edge detector results on image rock 98

4.3 Images used for testing the BLM algorithm 105

4.4 Quantitative evaluation of BLM algorithm results 106

Xlll

List of syn1bols and abbreviations

BLM

GRF

LLR

MAP

ML

MRF

PWL

x, y

Na

NR,Nc

G(x, y)
1y2

(J'

w

I(x,y)

Ho

HA

hi(x)

P'i(X)
L

;\(x)

;\ii

Sii

boundary likelihood maximization

Gibbs random field

log likelihood ratio

maximum a posteriori

maximum likelihood

Markov random field

piece-wise linear

Cartesian coordinates

number of grey-levels in image

number of rows and columns in image

two-dimensional Gaussian

Laplacian operator

scale (standard deviation) of Gaussian

half-width at half-height of Gaussian

image intensity function

null hypothesis

alternative hypothesis

histogram of grey-levels in region i

estimated pixel grey-level distribution in region i

log likelihood

log likelihood ratio function

image of>.(x) values

image of row-sums of Aij

.
XIV

Zk

Zk(t)

Uk

Vk

r(i,j)

Zd

a

h

l

µ, 0'2

V

µi

R(j,k)

autodist

siglev

dwax
hmax

position of knot k

vector function defining segment k

initial velocity of (cubic) segment k

final velocity of (cubic) segment k

rotation number of pixel (i, j)

direction of movement of knot

distance that knot is moved

height of protrusion

log likelihood ratio statistic

mean and variance of l under H 0

normalized log likelihood ratio

mean of A-image in region i

autocovariance function of A-image in region i

maximum span for calculating au tocovariances

threshold controlling significance level of test

maximum distance to move knot

maximum height of protrusion

xv

I/

I
l
'!

I

Iii

111
I
I

Chapter 1

Introduction

Visual perception is a fascinating field of study. Although it is automatic and effort­

less for most humans, it involves very complex processes, about which little is known

in detail, despite years of research. Perception involves interpreting sense data, such

as the patterns of light on the retinas, in terms of the real world of three-dimensional

objects. In fact, we are usually not directly aware of the sense data.

Vision is our most useful sense for determining the presence, identity, position, and

characteristics of the objects around us. Since it is essential for many-tasks, it would
•

be an extremely useful capability for a computer to have, and this has been the aim

of much research. For example, two important industrial applications are control of

robot behaviour and automated inspection of products for quality assurance. What is

required is a computational method for interpreting two-dimensional images (patterns

of light) in terms of three-dimensional objects in the real world.

The universal conclusion is that mechanizing visual perception is an extremely diffi­

cult and complex problem. Consequently, most computer vision research concentrates

on limited goals, either on interpretation in a limited domain, or on a single aspect of

the process of perception. One important aspect involves image segmentation, that is,

finding the boundaries between visually distinct areas of an image. This thesis describes

a new method for accurately locating such boundaries in images containing textured
.

regions .

This chapter considers the role of segmentation in an overall strategy for machine

vision, the two dominant approaches to segmentation, and finally, t he prevalence of

texture and the problems that it creates for segmentation algorithms.

1

1'11

'I

I

1
I
I

!
I
ll1

.1

'I

1.1 Segmentation in machine vision

Why is visual perception so difficult? A central problem is that it involves relating

two quite different things: an image, and some sort of internal model of the object

world. The image has little structure; it is simply a two-dimensional array of numbers

(or vectors). In contrast, the model must be highly structured, so that it can adequately

describe the wide variety of possible objects and their relationships with each other.

A second significant problem is that the same object can appear in different ways in

the image, depending on its position and orientation in relation to the camera, other

objects, and light sources. A third problem stems from the ambiguity which results

from representing a three-dimensional world in a two-dimensional image; in principle

there are an infinite number of three-dimensional object-world arrangements which

could give rise to a given two-dimensional image. In addition, practical problems arise

because the amount of data to be handled is substantial.

Most researchers accept that the task of visual perception has to be broken down

into sub-problems, if it is to be computationally tract able (Ballard and Brown (1982),

Marr (1982)). Breaking the problem down involves creating a series of representations

that are intermediate between the image and the object-world description. Each sub­

problem involves interpreting some aspects of the current representation, and possibly

creating a new representation which is different in form . As the processing proceeds,

therefore, more and more 'meaning' is attached to parts of the image, and the repre­

sentations become more abstract in form.

Before any interpretive steps are performed, a variety of image-processing operations

can be used to enhance the appearance of the image or m ake certain features clearer.

These operations transform the original image into one or more additional images.

For example, texture filters can be used to enhance the differences between textures.

Another example is the determination of a depth image from st ereoscopic information.

Segmentation is an important early stage in the interpret ation process. It is the step

in which pixels begin to be associated with each other on the basis of having similar

characteristics, rather than on the basis of propinquity in the im age. Its purpose is to

identify parts of the image which are likely to correspond to significant features of the

arrangement of the object-world, and which are thus likely to be important in forming

a satisfactory interpretation of the image. These important part s of the image include

2

the following:

• Regions which are homogeneous with respect to intensity or texture, and are thus

likely to correspond to surfaces of objects

• Sharp changes in intensity or texture, corresponding to contours where one object

occludes or abuts another

• Changes in intensity or texture corresponding to

- the junction of two surfaces of an object

a surface receding from the camera

surface mar kings

• Slow ~ariations in intensity, corresponding to changes in distance and aspect of a

surface with respect to the light source(s) and the camera

• Changes in intensity corresponding to shadows (occlusion of the light source(s)

by another object).

Thus, edges and regions are important parts of the image, and there are two main

approaches to segmentation: edge-based and region-based. Edge-based approaches

attempt to identify edges, which are contours across which the characteristics of the

image change abruptly. These are likely to correspond to the edges of surfaces, and are

therefore likely to be important in determining the shapes of the visible objects. On the

other hand, region-based segmentation algorithms concent rate on identifying regions

of the image which are homogeneous in some sense, and can therefore be expected to

correspond to the surfaces themselves.

Segmentation involves deciding that certain parts of the image are similar, and

therefore belong together, and that other parts are different . At this early stage, it

is not possible to avoid making some wrong decisions , because correct decisions may

depend on interpretations put upon other parts of the image, or on use of object­

world knowledge. For example, if analysis of some parts of an image suggests that

it portrays a cube, then a small intensity difference between two areas of the image

might be important in determining the location of the edge where two faces meet. This

difference could well be dismissed as insignificant if the global interpretation was not

available.

It is therefore highly desirable for the segmentation step to be able to interact

with higher-level processes, so that incorrect decisions can be subsequently corrected.

3

I

l
'Ii

In the example of the cube, the segmentation process could then report the intensity
difference which had previously been dismissed as insignificant. It is necessary for
the segmentation step to make some initial decisions, so that higher-level processes can
begin to operate, but it is also important that the initial decisions be subject to revision
once more. information has been accumulated. In ambiguous situations, it may also be
possible for the segmentation process to produce a variety of possible interpretations.

Once the image is segmented, there still remain many significant problems in the
interpretation process. The image is organized to an extent, but still in two-dimensional
terms. Some of the remaining tasks are to group regions of the image into objects,

determine their three-dimensional shapes, positions, and relations to other objects, and
to identify the objects. Segmentation is a useful step because it creates a representation
in which most of the important features of the image are represented explicitly, and
also reduces the quantity of data which has to be handled.

There is an important distinction between determining that two adjacent parts· of

the image are different, and determining ~precisely where the boundary between them
lies. The first is defined here as the detection problem, and the second, the location

problem. A complete segmentation strategy requires a good solution to both, although

the specific difficulties in determining an accurate boundary location have often been
glossed over. This thesis addresses itself particularly to the location problem.

1.2 Edge-based approaches

Edge-based segmentation approaches attempt to find the boundaries between re­
gions by determining the places in the image where there are significant changes in
intensity. Many different variations have been tried, but the overall strategy is as
follows. First, local edge elements are detected. These are places where a local discon­
tinuity in image intensity appears to exist. These edge elements may have an associated
strength, orientation, and/ or length, and are usually represented in the form of an im­
age (edge map). They are then grouped together into edge contours, which may then
be approximated by a parametric representation of the contour (such as a piece-wise
linear or cubic-spline representation). These edge contours could then correspond to
the edges of objects, or to any of the other causes of intensity variations listed above.
They do not, in general, divide the image into disjoint regions.

4

'I:
!

The edge elements are obtained by application of one or more local operators at

points covering the whole image. These operators, or edge detectors, compare the

intensities in adjacent parts of the image, and signal the degree of difference between

them. In many cases, two or more operators sensitive to different orientations of edge

are used. The results are usually combined in some simple way, for example, by talcing

the operator giving the largest output at each point.

Further processing at this stage may include a thresholding operation to reject weak

edge elements. Such an operation is useful because it reduces the quantity of data, and

also tends to eliminate most of the responses which are due to noise or texture in the

image, while retaining the most obvious edges. However, it has the danger that a

weak, but vital, edge will be also eliminated; it is not possible to discriminate between

desirable and unwanted edge elements purely on the basis of their strengths.

An important parameter of an edge detector is the size of its support, that is, the

area of the image which is used in applying the edge detector at a given point. Small­

support edge detectors have the advantage that they are simple and efficient to use,

but they have only limited ability to discriminate between variations due to noise or

texture and true edges such as object boundaries, particularly in images containing

coarse textures. Consequently, they have the problem of tending to report many edge

elements within a uniformly textured region. Relaxation techniques can be used to

improve the quality of the edge map by iteratively adjusting the edge element strengths

according to the local evidence for an edge contour. Such techniques can help with this

problem to a limited extent, by reducing individual responses due to noise or fine

textures, but they cannot cope effectively with coarse textures.

Another solution to this problem is to use an edge detector with larger support,

allowing more information to be taken into account at each point. Such large-support

edge detectors usually involve smoothing the image by taking a weighted average of the

neighbouring pixels at each point, before using a derivative or derivative-like operator.

The smoothing operation reduces the magnitude of the variations due to noise or texture

without reducing the magnitude of edges between regions of significant size. This

method can cope with arbitrarily coarse textures, provided that a large enough support

is used. However, the smoothing blurs the edges, resulting iu the edge detector output

being high over a thick band or ridge around the edge position. Usually this is overcome

either by a 'non-maximum suppression' step, in which all pixels not at the top of a ridge

5

are set to zero, or by a 'thinning' step, in which broad bands of edge pixels are reduced

to their central axes. The blurring makes it more difficult to determine the precise

location of an edge, and can cause problems at sharp corners in an edge contour and

at the junction of three or more edges. In some cases, several different sizes of edge

detector are used; there is then the non-trivial problem of combining the results.

Edge-based approaches to segmentation generally do not differentiate between the

location and detection problems. The assumption is made that the edge detector will

respond most strongly at the correct location of an edge. This assumption is often

incorrect, especially when large-support edge detectors are used on textured images, as

the following chapters show.

1.3 Region-based approaches

In contrast to edge-based approaches, region-based segmentation approaches at­

tempt to locate the regions themselves rather than their boundaries. Regions are

usually defined to be areas of an image which are homogeneous in some sense. These

approaches are complementary to edge-based approaches in the sense that a set of

regions and their boundaries are duals: each can be determined from the other. How­

ever, the edge contours obtained using an edge detector need not divide the image into

disjoint regions, whereas region-based approaches generally do. If the image is divided

into disjoint regions, the segmentation can be expressed in the form of a 'segmented

image', in which each pixel contains the region number to which it belongs.

Having the image divided into disjoint regions has advantages for higher-level pro­

cesses if they wish to identify regions with surfaces. The incomplete boundaries ob­

tained with edge-based approaches will generally have to be completed, since surfaces

are bounded on all sides. In contrast, regions have complete boundaries by definition,

and are perhaps closer to the representation used at higher levels.

There are, however, some dangers in attempting to divide the image into disjoint

regions at an early stage, particularly if the image contains regions with gradual varia­

tions in brightness or texture, or if there are smooth transitions between regions. Most

studies assume that the regions obtained must be uniform in brightness or texture,

and therefore have difficulty coping with brightness or texture gradients. Regions with

slow variations in their characteristics therefore tend to be broken up into arbitrary

6

pieces in which the extent of variation is small enough for the region to be considered

homogeneous. This may well involve placing boundaries where none are visible in the
.
image .

Later processing stages therefore must be prepared to merge some regions and split

others. As with edge-based schemes, faint but vital boundaries can be missed. Thus, a

region may not be split when it should be, because decisions as to whether a region is

homogeneous are most often made on the basis of the magnitude of intensity differences

within the region. Dividing the image into disjoint regions at this stage thus tends to

involve making firm decisions on the basis of insufficient information.

These approaches are concerned with the properties of regions, such as the range

of grey levels present, and whether or not a region can be considered homogeneous,

according to an appropriate test of homogeneity. Therefore, the basic operations used

include the following:

• Testing whether a region (or the union of two or more regions) is homogeneous

• Splitting a region into two or more regions

• Merging two or more regions into one

• Classifying a region as one of a number of classes

The simplest technique for splitting an image into disjoint regions is thresholding,

which assigns each pixel to one of two regions if it is above a given threshold, or to

the other if it is below. In essence, this technique involves independently classifying

each pixel as belonging to one of two classes. The technique can be generalized to

handle vector images (in which each pixel has an associated vector, rather than a

simple scalar value), and to handle several classes. In some cases, small windows are

classified rather than individual pixels. The classes may be determined by some form

of cluster analysis, e.g., by searching for a valley in a histogram. Because the pixels or

windows are classified independently, these techniques generally give poor results; the

regions tend to be disconnected, and the boundary locations tend to be inaccurate.

These deficiencies can be remedied to a certain extent by using statistical models

for the shapes of the regions. Statistical estimation techniques can then be used to

determine a segmentation of the image by estimating the shapes of the regions, taking

into account both the image data and the preference for connected regions with smooth

boundaries. Such techniques effectively make the classification of each pixel (or window)

7

dependent on the classifications of its neighbours, and therefore produce better-formed

regions than those which classify pixels or windows independently. However, there

are many problems with this approach;: perhaps the principal one is the difficulty of

obtaining adequate statistical models for the region shapes.

Instead of classifying individual windows, another strategy is to split and/ or merge

regions until they are homogeneous. Region-growing techniques start with each pixel

as a region, and then merge regions together as far as possible, whereas region-splitting

techniques recursively split regions until each subregion is homogeneous. The split-and­

merge technique combines these two ideas to obtain better results than either can give

alone. It involves splitting initial large regions until each region so obtained satisfies the

uniformity test, and then merging adjacent regions as far as possible. The merge phase

produces regions that are not broken up to the same extent as with region-splitting

algorithms.

A major problem encountered by most region-based segmentation approaches is

the 'small region problem'-as the regions become smaller, the statistical tests used

to determine whether the region is homogeneous, or which class it belongs to, become

less reliable. This problem results in inaccurate boundary location information, and it

can also result in many small regions being reported along the boundary between two
.

regions .

Region-based approaches generally do not explicitly attempt to obtain a good so­

lution to the location problem. The boundaries of the regions are usually represented

implicitly in the segmented image, and no particular effort is expended to ensure their

accuracy. Consequently, the regions are often rather rough and 'blocky' in outline.

1.4 Texture

The segmentation approaches described above have mostly been developed with

the assumption that images consist of regions of approximately uniform brightness.

However, images of real-world scenes usually contain textured regions; the problem of

texture can be completely avoided only in highly artificial and constrained situations.

Outdoor images (or any images of objects of natural origjn) will almost certainly have

textured regions. Brodatz (1966) gives many examples of textured surfaces, including,

for example, grass, wood, cloth, and leather. Other examples include concrete, carpet,

8

j•,

11'

I

I

ll:

!

I

''.I

!
l

I

Ii

l1:

and the leaves of a tree (observed from a distance).

Texture can arise in a number of ways, for example:

• as a result of microstructure in the surface of an object, e.g., the grain in wood

or leather

• as a result of considering many similar small objects as forming a larger surface,

for example, the individual blades of grass in a lawn

• as a result of many small markings covering a surface.

The distinctions between these sources of texture are not sharp. Texture can even

be hierarchically arranged, as in a texture made up of objects which are themselves

textured.

There is a continuum in the degree of regularity of textures: they range from being

quite random to completely deterministic. Most textures have a degree of randomness

while still retaining a deterministic component. An example of this is the grain in wood,

in which the individual streaks are somewhat randomly placed, but are all oriented in

approximately the same direction. An example of a completely random texture is noise

introduced in the camera or during subsequent storage, transmission, or processing of

the image. Although such noise does not correspond to any characteristic of a surface,

we can include it as a special case of texture, because the techniques developed in

subsequent chapters for dealing with texture can deal equally well with such noise.

There are two main approaches to describing and analyzing texture: statistical

and structural. Statistical approaches generally describe the texture in terms of the

distributions of pixel intensities and the dependence between pixels, or in terms of other

similar statistics. Structural approaches, in contrast, attempt to obtain placement

rules describing the structure of the texture, and are really suitable only for textures

which are largely deterministic. Statistical approaches are applicable both to random

and deterministic textures, although they will generally not capture as much of the

structure of a deterministic texture as a structural approach.

A texture can be thought of as being composed of 'texture elements', which are

the components which are repeated to make up the texture. These elements can be

defined with respect to either the image or the object-world surface; in this study, we

are concerned primarily with image texture, so the term 'texture' generally refers to

texture in a two-dimensional image. The elements of an image texture may or may

9

j.l'

t

1~!
ii'
i

not correspond to identifiable objects or structures. If the texture is composed of

identifiable objects, or of structures which can be interpreted in three dimensions, then

these objects or structures can be regarded as the texture elements. If, however, there

are not distinguishable objects (or the image resolution is too coarse to resolve them),

the texture elements can be regarded as being the patches of similar grey level which

make up the texture. These texture elements can be many pixels across, or they can

be as small as single pixels.

Textures vary along a continuum from coarse to fine. The coarseness of a texture

is a function of the size and spacing of the texture elements. This relates also to the

degree of correlation between adjacent pixels, and the distance over which substantial

correlation exists between pixels. The coarseness of a texture is described by the 'scale'

of the texture, which is informally defined here as the distance over which it is necessary

to take into account the correlation between pixels, that is, the distance beyond which

pixels can be regarded, to a sufficiently good approximation, as uncorrelated.

In describing a textured surface, there are at least two levels of description: a

higher level, at which the surface is described in terms of its overall shape and other

gross properties (e.g., illumination), and a lower level, at which the individual texture

elements are described. A textured surface is thus not just an arbitrary collection

of small objects: there must be a sense in which the surface is homogeneous over a

considerably larger distance than the size of the texture elements. For example, if the

texture is due to roughness of a surface, the scale of the relief should be considerably

smaller than the width of the surface. One of the characteristics of a textured region

is therefore a degree of homogeneity in the texture.

It is generally the higher level of description which is most useful to later stages of

processing in interpreting the image. Thus, the term 'texture' is informally defined here

as referring to intensity variations which are merely part of the appearance of a surface.

That is, the variations are not individually significant in forming an interpretation of

the image (although the overall characteristics of the texture may be) . Thus, when the

image is segmented, a textured region should be regarded as a unit. This frees later

processing stages to concentrate on the higher-level aspects of the shape and orientation

of the surface, and its relation to other surfaces of the same object.

Usually, the microstructure of the surface is not of immediate interest; if it becomes

of interest, the image then needs to be re-examined at a finer scale, so that the individual

10

1' '

\11

texture elements are segmented from each other. An important parameter for a texture

segmentation procedure is therefore the scale at which the image is to be examined, i.e.,

an indication of how coarse a texture can be and still be regarded as a texture. Initially,

this would be set at a large value, to extract the broad outlines of the arrangement of

the scene. Later, individual regions could be further segmented at a finer scale.

· However, texture usually causes significant problems to segmentation algorithms

which are designed to segment images on the basis of differences in intensity. Edge

detection algorithms generally give poor performance, tending to give many unwanted

responses to intensity variations within the texture, and also reporting inaccurately

the positions of boundaries between textured regions. Small-support edge detectors,

and in particular those limited to a support of 3 x 3 pixels , are virtually useless for

dealing with textures-they cannot cope with any except very fine textures, and there

is no provision for specifying the scale of texture. Edge detectors of sufficiently large

support do rather better at discriminating between text ural intensity variations and

region boundaries, but the broad smoothing required causes inaccuracy in reporting

the positions of region boundaries, and also causes problems where three or more edges

meet. Region-based techniques can adequately discriminate region boundaries from

textural variations if they are constrained to consider windows of a sufficient size, but

once again, this causes considerable inaccuracy in the locations of boundaries.

The main problems in segmenting textured images are therefore discriminating be­

tween textural intensity variations and region boundaries, and accurately determining

the locations of these boundaries. These are the detection and location problems de­

fined above. A major contribution to the difficulty of these problems is that the pixels

in each region can have a range of intensities, and can be correlated over significant

distances; the ranges of intensity in adjacent regions can overlap . Current techniques

can give adequate solutions to the detection problem, provided that inaccuracy in the

boundary location can be tolerated, but there are no exist ing techniques which can give

accurate location information. This thesis therefore considers the problem of accurately

determining the location of a boundary between textured regions.

Humans generally have the ability to discriminate between t extures that have the

same distribution of pixel intensities, and therefore the same average brightness. Such

textures cannot be discriminated by standard edge detection techniques, and conse­

quently much previous research effort has been focussed on obtaining techniques for

11

t'

11,

I'
11
I

I
l
I

111
I
i

discriminating them. The usual strategy involves two steps. The image is first pro­
cessed with some kind of texture analyzer, which examines the t exture in local patches
of the image, and produces statistics for each patch describing the texture in the patch.
These can be thought of as forming another image, possibly of lower resolution and/ or
with vector-valued pixels. This image is then segmented by strategies very similar to
those used on grey-scale images.

The texture analyzer makes the difference between the regions obvious as a dif­
ference in the average value of some statistic on the text ure, that is, some textural
measure or 'feature', and thus enables the regions to be discriminated. Many suitable
features have been proposed. However, in most cases the statis_tical variations in a
textured region will cause the value of the feature to fluctuate within the area occupied
by the region. Consequently, the corresponding region in the feature image will also be
textured-the texture analyzer does not eliminate the textured nature of the region. It
may, perhaps, reduce the extent of variation within the texture, but it will not entirely
remove it.

Therefore, the problem of segmenting a textured image remains. It has not been
solved by the application of the texture analyzers. The analyzers have made it easier,
or possible, to discriminate differently textured regions, but they will not eliminate the
problems due to texture. The problem of segmenting regions with different intensity
distributions is therefore the central problem in texture segmentation; the problem
of segmenting regions with the same intensity distribution is a subproblem, solved in
general by the prior application of a suitable texture filter or analyzer. In fact, casual
inspection of a range of real-world images indicates that adjacent regions with similar
intensity distributions but different textures are relatively rare.

12

\"'

t

1··

"I

Chapter 2

Revie-w of previous studies

The area of segmentation in machine vision is one which has been extensively studied
over more than two decades, and the volume of published studies in the field is sub­
stantial. This chapter therefore concentrates on the problem of segmenting textured
images. Some standard grey-level segmentation algorithms are useful in this context,
both as applied directly to images where the regions differ in their grey-level distribu­
tions, and as applied to the output of a texture analyzer. Some appropriate edge-based
and region-based approaches are considered below in sections 2.1 and 2.2. Texture
analysis methods are necessary where the regions do not differ in their grey-level dis­
tributions; section 2.3.1 discusses methods which are suitable for use in segmentation.
Section 2.3.2 then discusses several studies where these two elements have been put
together in a texture segmentation algorithm. Finally, section 2.4 discusses a relatively
new approach to segmentation which views segmentation as a statistical estimation
problem.

Because of the extent of the literature, this chapter concentrates on the better
approaches which have been developed in each area so far, and on those studies which
are representative of different approaches to the problem of segmentation. The various
techniques discussed below are considered particularly in terms of their ability to cope

with texture, and the accuracy of the boundary location information they provide.

2.1 Edge detection

One major approach to segmentation involves finding edge contours in the image by
detecting edge elements and linking them together. The problem of detecting the edge

13

t
~;

u;
I

elements is not at all trivial. It has long been a subject of interest, and many different

edge detectors have been proposed; for reviews see Davis (1975) and Levialdi (1981).

Because of the huge variety of different edge detectors which have been proposed, a

comprehensive review of the field has not been attempted here. Inst ead, several different

approaches are mentioned briefly. Two large-support convolution edge detectors are

considered in more detail, as they have been implemented in this study for the purpose

of comparison with the methods described in following chapters. The problem of linking

edge elements together has received rather less attention and is not considered in detail

here.

An obvious first approach to the problem of detecting edge elements is to search for

places where adjacent pixels differ by more than a suitable threshold. A generalization

of this approach is to use one or more convolution masks of small size, e.g., 3 x 3 or 5 x 5

pixels, and combine the outputs in some way. Many different edge detectors of this

type have been proposed; some well-known examples are given in Frei and Chen (1977)

and Roberts (1965). However, as discussed previously, the small support of these edge

detectors means that they cannot give correct results on other than fine textures; there

is no provision for specifying the scale of the texture. Therefore, small-support edge

detectors are not considered further .

One way to approach the pro bl ems caused by noise and texture is to smooth the

image, e.g., by low-pass filtering, before applying an edge detector. This will reduce

the contrast of the textural intensity variations , but not the contrast of the edges,

provided that the adjacent regions are sufficiently broad. However, it will blur the

edge; consequently, the edges are usually taken to be at the points of local maximum of

gradient in the smoothed image. The operations of linear smoothing and differentiating

(taking the gradient) can be combined into one convolution mask, since both are linear.

Such detectors have large support and can operate at a range of scales, and are therefore

suitable for use on textured images . They are referred to here as convolution edge

detectors. Two examples, due to Marr and Hildreth (1980) and Canny (1986), are

discussed in detail below.

Several non-linear approaches have also been suggested, many of which were origi­

nally described with a small support, but which could be generalized to large support.

Notable amongst these are methods which attempt to fit an ideal edge profile to a

window of the image (Hueckel, 1971, 1973; Nalwa and Binford, 1986), methods based

14

•

Iii

on use of moments (Machuca and Gilbert, 1981; Tabatabai and Mitchell, 1984), and

methods based on the use of statistics other than the mean, such as medians or linear

rank sums (Bovik and Munson, 1986; Bovik et al. , 1986). These are not considered fur­

ther, because published results indicate that none of these met hods give dramatically

improved results over the convolution edge detectors mentioned above (although they

may give minor improvements), as illustrated by the images given in the papers listed

above and the quantitative comparisons in Suciu and Reeves (1982).

In addition, all of these methods (including the convolution edge detectors) share the

disadvantage of assuming that only one edge is present in the window. Most methods

also assume that the edge is a straight step edge between regions of constant grey-level

(possibly with some added noise). The problems demonstrated in subsequent chapters

with the convolution edge detectors can therefore be expected to occur with all of these

methods.

Several methods have been proposed which use multiple scales or sizes of edge

detector at each position, and combine the results in some fashion; for example, Davis

and Rosenfeld (1974), Marr and Hildreth (1980), and Canny (1986). However, the

results shown in figures 2.1 to 2.3 indicate that both the Marr-Hildreth and Canny

edge detectors provide poor location accuracy in textured images over a wide range of

scales. Consequently, the use of multiple scales cannot be expected to provide significant

improvements in location accuracy.

Once the edge elements have been obtained, they need to be linked together to form

continuous edge contours. The difficulty of this problem depends on the quality of the

information obtained from the edge detector. Where small-support edge detectors are

used, relaxation-based schemes, such as those of Zucker et al. (1977) or Hanson and

Riseman (1978) can be used to advantage. Other approaches include using heuristic

search or dynamic programming (see Ballard and Brown (1982, chapter 4) for a discus­

sion of these approaches). However, one advantage of large-support convolution edge

detectors is that they tend to give continuous strings of edge pixels without clutter,

and so the edge linking problem is straightforward. Linking algorithms are therefore

not considered further here.

Ma.nsouri et al. (1987) describe an approach in which the edge elements that are

detected are straight lines of various lengths. This approach to some extent circumvents

the need to link edge elements, if the boundaries of interest are st raight. They use a

15

•

' I

H1

fl

I
,'<!

'·l
\

hypothesis prediction/verification paradigm in which straight lines of a given length are
predicted to occur at various positions, and these hypotheses are then tested. Initially,
the image is processed with a small-support edge detector, which gives an gradi·ent
magnitude and direction at each pixel. After thresholding on the gradient magnitude
and thinning the resulting image, a straight line is hypothesized to occur at the location
of each surviving edge pixel. These lines are of a given length (typically 55 pixels)
and are oriented perpendicular to the gradient direction at the edge pixel. These
hypothesized lines are then tested by assessing the uniformity of the gradient direction
along the length of the lines; if the directions are sufficiently uniform, the hypothesis
is accepted. This process is repeated for various lengths of lines, and the results are
combined by deleting shorter segments which form part of longer segments. The results
indicate that this approach can detect long, straight edges in an image without texture,
but misses short and/or curved edges.

2.1.1 The Marr-Hildreth edge detector

Two edge detectors have been implemented in this study, for the purpose of com­
parison with the method presented in chapter 3. The first of these is the Marr-Hildreth
edge detector. It was chosen because of its widespread use, and the claims for near­
optimality made on its behalf (e.g., Lunscher, 1983).

The Marr-Hildreth theory of edge detection (Marr and Hildreth, 1980) proposes that
the image should be smoothed with Gaussian masks at a range of scales. Edges are
marked at the zero-crossings of the Laplacian of these images; the Laplacian operator,
~2 a2 a2 • . d d d . . t h . t . v = ax2 + ay2, 1s a non-or1ente secon er1vative opera or, t us 1 s zero-crossings
represent maxima and minima of the gradient. The Laplacian and Gaussian smoothing
operations can be combined into one operation, namely, convolution with

2 -1 x2 + y2 x2 + y2 V G (x, y) = -
4

(1 -
2 2

) exp(-
2

.,.)
Jr(j (j (j .

(2.1)

where G' represents the scale of the smoothing.

The zero-crossings can be shown to form closed, non-intersecting contours, only one
pixel wide, and are unchanged by additive or multiplicative changes to the image. The
edges obtained with this detector therefore have the desirable property of being line­
like. In practice, it turns out to be necessary to threshold the zero-crossings, because
a uniform field with some noise will tend to have a certain density of zero-crossings

16

(depending on the scale of the detector), independent of the amplitude of the noise.

The slope of the v' 2G * I surface across the zero-crossing depends on the magnitude of

the edge, so this is a suitable parameter to use in the thresholding. (Here I denotes

the original image, and the symbol '*' denotes two-dimensional convolution.)

Marr and Hildreth proposed that the operator should be applied at several scales,

and that important edges in the image should give zero-crossings at the same place

across a range of scales. In practice, this is not so, because neighbouring edges interfere

(Shah et al., 1986). At large scales, edges of opposite polarity repel each other; that is,

the reported edges for a narrow bar are too far apart. Edges of similar polarity (as in a

staircase function) attract each other and merge into one at large scales, and produce

a spurious edge between them at small scales. Methods for combining the results from

several scales are still a subject of research, of which Hildreth (1985) gives a summary.

Although the Marr-Hildreth edge detector has the advantage of good noise resis­

tance when a large support is used (large o-), it has some disadvantages. In particular,

because the zero-crossings form closed contours, this edge detector can never report

one boundary segment crossing or meeting another; instead, one of the segments will

veer away to avoid meeting the other. In order to close the contour, this edge detector

will sometimes also report zero-crossings where there is very little visual evidence of a

boundary.

This edge detector also gives inaccurate boundary location information in textured

images. Figure 2.1 shows an image with two textured regions, which was obtained

from an image of a uniform grass texture by halving the intensity of the pixels to the

left of the boundary, producing an effect very similar to a shadow. The shape of the

boundary is two straight lines meeting at a corner, which is the shape correctly reported

by human observers.

Figure 2.2 shows the results obtained with the Marr-Hildreth edge detector at four

different scales, corresponding to o- = 2, 4, 8, and 16 pixels. These results have been

thresholded, as described above, so as to eliminate some of the unwanted responses to

textural intensity variations, without eliminating the desired response to the boundary

between the regions. Note that the reported edge position deviates from the true

boundary position at all scales. The edge contour also tends to break up. These

problems are mainly due to the intensity variations within the texture. At the smaller

scales, it is primarily the local intensity fluctuations which cause the edge position to

17

deviate, and also to break up at intervals. At the larger scales, similar problems are

caused by the broader intensity fluctuations, and in particular by the dark patch just

above the corner. Note also that the proximity of the edge of the picture causes the

ends of the desired edge contour to curl over at the larger scales.

The deviations of the desired response from the true boundary do perhaps have the

smallest amplitude at the smallest scale. However, the changes in angle of the desired

edge contour are just as severe at the smallest scale as at any other, and the irregularity

of the edge contour is greatest. In addition, it would be almost impossible to select the

desired edge contour without knowledge of the true boundary position. There is an

apparent difference between the regions at the smallest scale; the edges are stronger in

the right-hand region because the contrast is higher. However, the response to the true

boundary is not distinguishable from the textural responses in the right-hand region.

Hildreth (1985) and Canny (1986), among others, have suggested that important

edges should be detected using large-scale detectors, and localized using small-scale

detectors. Certainly, the desired response in figure 2.2 is most obvious at the largest

scale. However, given the inaccuracy of the reported location at the larger scales,

and the irregularity and fragmentary nature of the edge contour at smaller scales, any

scheme for combining the results from multiple scales is unlikely to give substantially

improved results.

Kass et al. (1987) describe a non-traditional approach to the problem of locating

contours in an image. Their approach involves finding the curve with minimum energy,

where the energy of a curve has three components: internal energy, external constraint

energy, and image energy. The internal energy term seeks to keep the curve as smooth

and straight as possible, except at points of discontinuous slope, which can be specified

manually. The image energy term can be defined so as to attract the curve towards

edges in the image, light or dark features, or the terminations of linear features. Many

forms are possible for the image energy term; results are given using the Marr-Hildreth

edge detector to provide a term which attracts the curve towards the zero-crossings

detected at a given scale. The external constraint energy term provides a mechanism

for manual control of the curve (or control by higher-level interpretive processes).

Minimization of the total energy proceeds continually, so the curve can track dy­

namically changing images. The curve can therefore track the zero-crossings in the

output of the Marr-Hildreth edge detector as the scale is varied from a large value to

18

Figure 2.1: Image with two textured regions

Figure 2.2: Results from figure 2.1 with Marr-Hildreth edge detector

19

! ·-

a. sma.ller value. Kass et al. (1987, figure 4) show results where this technique ha.s been

used. At the broadest scale, the curve is attracted towards the correct boundary from

a. considerable distance a.way, but the blurring results in a.n inaccurate curve. As the

scale is reduced, the curve moves towards the correct boundary. At the finest scale,

the zero-crossings a.re somewhat irregular, but the tendency for the curve to stay near

a. string of zero-crossings, combined with its preference for smoothness, lead to a. re­

sult which is substantia.lly correct (the true boundary of the object is fairly smooth).

This approach therefore represents one way to combine the results from multiple scales;

however, it will probably only work well for objects with smooth boundaries. In addi­

tion, the results in figure 2.2 show that this approach may well lock on to an incorrect

position near the vicinity of the corner in this case, because the zero-crossing contours

at the coarser scales deviate a.round the dark patch just above the corner.

Examples of the results of the Marr-Hildreth edge detector on other images, and a.

quantitative evaluation of its accuracy, are given in chapter 4.

2.1.2 Canny's approach to edge detection

The edge detector suggested by Canny (1986) has also been implemented for com­

parison purposes. Canny approached the problem of edge detection by formulating

three criteria for a good edge detector, and determined the optimal one-dimensional

convolution edge detector according to these criteria. The optimal edge detector for

step edges can be approximated very closely by the first derivative of a. Gaussian.

For two dimensions, the impulse response is the product of the one-dimensional

impulse response with a projection function in the other dimension. This edge detector

is orientation-specific; several orientations at each scale are used. Canny suggests two

variations. The more complex variation, which involves an extended projection function

and several orientations, is not discussed here. The simpler one uses a Gaussian as the

projection function, with the same value of u as the Gaussian in the edge detector

function. This profile is very similar in form to one previously suggested by Macleod

(1972). Two orientations are used, horizontal and vertical, with profiles given by

Gx(x,y)

Gy(x,y)

-x x2 + y2
--exp(---)
21rcr4 2u2

-y x2 + y2
exp(-

2
.,) 1ru-s u .

Note that Gx is most sensitive to vertical edges, and Gy to horizontal edges.

20

(2.2a)

(2.2b)

[·•·

Convolution of the image I with these masks gives images Ix and Iy, which can be

considered as giving the gradient in x and y directions of a smoothed version of the

original image. At each point, these give a vector giving the direction and magnitude

of the gradient of the smoothed image. An edge is then defined to exist if the gradient

magnitude is a maximum along a line in the gradient direction.

Ganny's proposed criteria for a good edge detector are of interest. They are:

1. Good detection: a low probability of failing to detect edge points or reporting

false edge points.

2. Good localization: the positions of the reported edge points should be accurate.

3. There should be only one response to a single edge.

Thus, Canny distinguished between the detection and location problems, and recog­

nized the importance of accuracy of location information. He showed that, in the

presence of noise, there is a trade-off between criteria 1 and 2; a large detector will

have good detection performance but poor localization, whereas a small detector will

give good localization, but poor detection.

Figure 2.3 shows the results obtained with the Canny edge detector when applied

to the image in figure 2.1. Four different scales were used, with the half-width at half­

height w of the underlying Gaussian being 2, 4, 8, and 16 pixels. This is related to (J' in

equations (2.2) by (J' == w / \l1n4 ~ w /1.177. The results shown have been thresholded

on the magnitude of the gradient to give close to optimum results. Although the results

are better than those for the Marr-Hildreth edge detector, they display similar kinds

of problems, and similar comments apply. Chapter 4 gives results obtained on other

images and a quantitative evaluation of accuracy.

2.2 Region-based segmentation -

In contrast to the edge-based approaches discussed above, region-based segmenta­

tion techniques seek to obtain areas of the image with certain characteristics. Haralick

and Shapiro (1985) provide a survey and comparison of these techniques. They divide

them into measurement-space guided clustering schemes (i.e., pixel classification and

related schemes), region growing schemes, spatial clustering schemes (a combination

of pixel classification and region growing), and split-and-merge schemes. Of these, the

21

Figure 2.3: Results from figure 2.1 with Canny edge detector

window classification and split-and-merge schemes have been used as a component of

texture segmentation algorithms in the studies cited here. These two 9-pproaches are

examined in some detail below. Section 2.4 discusses statistical segmentation methods

involving the use of Markov random fields.

2.2.1 Pixel classification

One simple way to segment an image is to classify each pixel as belonging to one of

several regions. In its simplest form, the classification becomes simply a thresholding

operation. This approach can be used on vector data (i.e., where each pixel has several

components); the classification then becomes a partitioning of multi-dimensional space.

In some cases, windows are classified, rather than pixels, which gives a more reliable

classification at the expense of a less accurate boundary position. Pixel classification

is not suitable for use on textured images, since it will tend to fragment the regions.

Window classification is more suitable, since the size of the windows can be varied

according to the scale of the texture. Although window classification is not often used

for segmenting an image on the basis of intensity, it is often used on the output of

texture analyzers (e.g., Kashyap and Khotanzad, 1984).

22

Because the classification step requires prior knowledge of the regions , it is therefore

a boundary locator, rather than a boundary detector. That is, the number of regions,

and their characteristics, have to be determined beforehand. This information is gen­

erally obtained by some form of cluster analysis. In the usual case of scalar pixels,

this amounts to examining a histogram and, for example, inferring the presence of two

distinct regions if there are two peaks. Such procedures are error prone, particularly

in the case of textured images, where distinct regions may contain overlapping ranges

of grey levels.

Haralick and Shapiro (1985) show examples of the performance of several segmen­

tation schemes of this type. The results display several faults typical of the approach,

such as fragmented and disconnected regions and irregular boundary contours.

2.2.2 Split-and-merge schemes

Split-and-merge schemes (Horowitz and Pavlidis, 1976; Chen and Pavlidis, 1979,

1980) attempt to obtain homogeneous regions by an iterative process which splits re­

gions which are not homogeneous, and merges adjacent regions if their union would be

homogeneous. The process may start with the whole image being one block, or with the

image split already into a number of square blocks. The splitting phase then recursively

tests each square block for uniformity; if it is not uniform, the block is split into four

square blocks of half the size, and each sub-block is then tested and split if necessary,

until blocks of a given minimum size are reached. It is most convenient if the size of the

blocks is always a power of 2. This technique is often implemented using a quadtree

data structure for the image. After the splitting phase, the regions are generally broken

up by the artificially imposed square grid. The merging phase attempts to overcome

this problem by merging adjacent blocks which are sufficiently similar that the union of

the blocks passes the homogeneity test. (In the studies cited above, the term 'merging'

is used when merging the four sub-blocks of a larger block, and the term 'grouping'

is used when merging adjacent blocks that have different parents in the quadtree. In

both cases the operation is essentially the same.)

Chen and Pavlidis (1980) use a slightly different approach within the same frame­

work. Their procedure starts with an initial segmentation, and splits blocks which

are not homogeneous, and merges groups of four sub-blocks where the parent block

is homogeneous. At this point, a cluster analysis is performed on the characteristics

23

of the blocks so obtained, and regions are identified on the basis of the clusters. The
'grouping' phase then consists of classifying each block according to which region it
belongs to.

Two main problems occur with split-and-merge schemes, both related to the prob­
lem of accurately locating the boundary. First, the boundaries between regions tend to
be rather 'blocky', with segments that follow the outlines of large pat ches which were
not split; for example, if the boundary were to just cut off the corner of a block, then
the block could well still pass the uniformity test. The corner of the block would then
intrude into the shape of the boundary. Figure 3.3 on page 48 illustrates this deficiency.

Second, there is the 'small region problem' (Chen and Pavlidis, 1980), which is that
the hypothesi~ tests used become less reliable as the blocks get smaller. This causes
uncertainty about the boundary location, and can result in many small regions near
the boundary which cannot be merged. Some studies have used ad-hoc techniques to
eliminate these small regions, typically by forcing the small regions to merge with one
or other of the major regions adjacent to the boundary.

The split-and-merge technique is suitable for use on textures , if an appropriate
homogeneity test is used. Because the tests for homogeneity are performed on relatively
large blocks of the image, a homogeneous textured region can be recognized as such.
On coarse textures, it is necessary to place a lower limit on the sizes of the blocks.

2.3 Texture segmentation

The previous sections have discussed segmentation techniques which require at least
a difference in grey-level distribution between regions, if not a difference in mean grey­
level. However, adjacent textured regions may have the same pixel grey-level distribu­
tions, but nevertheless appear quite distinct to a human observer. Discriminating such
regions generally requires the application of some kind of texture analyzer or filter,
which takes into account the spatial arrangement of the pixels. Section 2.3.1 discusses
a range of methods of textural analysis. The textured image can then be segmented on
the basis of differences in the output of one or more textural analyzers. Section 2.3.2
discusses a number of studies in which this has been done.

24

2.3.1 Texture analysis methods

For use in a texture segmentation algorithm, a texture analyzer must must be appli­
cable to a wide variety of textures, and it must be able t o be applied to small windows
of the image without prior identification of areas of homogeneous texture. For both
of these reasons, structural approaches to t exture analysis are not suit-able, and are
not discussed here. Statistical methods are generally quite suitable, and several repre­
sentative methods are discussed below. For comprehensive reviews of both statistical
and structural approaches, see Haralick (1979), Wechsler (1980), and Van Gool et al.
(1985).

.

Most statistical methods which have been used in segmentation fall into one of the
following classes:

1. Second-order statistics (i.e., statistics of pairs of pixels) .

2. Filter methods.

3. Methods based on statistical texture models.

2.3.1.1 Second-order statistics

Second-order methods take account of the spatial dependence between pixels by
considering the joint properties of pairs of pixels separated by small distances. Such
methods are sometimes referred to under the general heading of the 'Spatial Grey-Level
Dependence Method'. They involve calculating the second-order statistics of a region,
which are based on the joint probability distribution of pairs of pixels separated by a
displacement vector d, for a range of values of d. The joint probability distribution of a
pair of pixels is simply a function which gives the probability that the first pixel will have
grey-level 91 and that the second will have grey-level g2 , for any given pair of grey-levels
91 and 92• The image is quantized to a limited number of grey levels Na. In practice,
relative frequencies are calculated and used as estimates of the underlying probabilities
(which are unobservable). The second-order statistics are usually expressed as a set
of co-occurrence matrices, one for each different displacement d. Each co-occurrence
matrix is of size N't;, and expresses the relative frequencies for all values of 91 and 92•

Even when Na is small (usually no more than 8), and only small displacements
are used, the second-order statistics still represent a very large number of parameters.
For example, with 8 grey-levels, each co-occurrence matrix contains 64 numbers. For

25

•LI\

1\

h••

'-,1

this reason, most methods based on second-order statistics reduce this to manageable
proportions by one means or another. Usually, a number of measures are defined on
each matrix, and these measures are used for classification. These measures are func­
tions of the entries in the co-occurrence matrix. Measures used include energy, entropy,
correlation, inertia, contrast, cluster shade, cluster prominence, and local homogeneity
(see Haralick (1979) and Conners et al. (1984) for definitions). Generally only a small
set of displacements is used. Some researchers combine the matrices for all orienta­
tions, producing an orientation-independent matrix (e.g. , Chen and Pavlidis (1979)).
In contrast, Gagalowicz and Ma (1985) used all displacements within a 25 x 25 window
centred on each pixel in analyzing and synthesizing textures.

2.3.1.2 Filter methods

These methods involve the convolution of the texture image with a set of convolution
masks, and the extraction of a set of statistics from the filtered images.

As described in Pietikainen et al. (1982), Laws used a set of 3 x 3 or 5 x 5 masks,
and calculated statistical measures over large windows. The most useful statistics were
the sums of the squared or absolute values of the pixels of the filtered images. Laws
uses the term 'texture energy measures' for these statistics . The masks are separable
(i.e., the outer product of two one-dimensional masks), therefore the method can be
implemented economically. The one-dimensional masks are derived from elementary
edge and spot detecting masks. The four most important 5 x 5 masks for Laws' data
set were those sensitive to a horizontal edge, a high frequency spot, a V-shape, and a
vertical line. Pietikainen et al. found that the power of the method depends on the
general form of the masks rather than the specific numeric values employed, and that
the local maxima of the filtered images were most important.

Wermser and Liedtke (1982) used a crude model of t he human visual system to
implement a texture analysis system. Their method derives 14 features from the image.
The first two are the mean and variance of the grey levels in the image after it has
passed through a logarithmic function and a bandpass filter . The other 12 features are
the mean squared outputs of 12 directional filters-four directions (horizontal, vertical,
45° and 135° diagonals) at three different scales. The inputs of the filters are three
binary images, one for each size of directional filter, derived from the original image
using a process that Wermser and Liedtke call 'median clipping,' in which each pixel is

26

1,.,

compared to the median of the pixels in a square neighbourhood. The corresponding
pixel in the output image is set to 1 if the input pixel is greater than the median,
otherwise to 0. This process is intended to model the contour formation which is said
to occur in early visual processing. In spite of its shortcomings, their method represents
an interesting attempt to emulate human texture discrimination capability.

Clark and Bovik (1986) also use a model of the human visual system to analyse
textures. They use filters described by Gabor functions, which are Gaussian-modulated
sinusoids. These functions provide a good model of the spatial response characteristics
of the 'simple' cells in the mammalian visual cortex, which perform the first steps in
the processing of the images relayed from the retinas (Marcelja, 1980). Turner (1986)
also used a range of Gabor function filters to perform texture discrimination.

The 'texton' theory of human perception of textures proposed by J ulesz and Bergen
(1983) has much in common with these analysis methods. Their theory proposes that
textures are discriminated on the basis of differences in density of textons. Textons
are patterns of specific shapes, such as elongated blobs of various sizes, orientations,
and colours, and the terminations of line segments. Caelli (1985) showed that textures
similar to those used by J ulesz could be discriminated using the edge detectors of Frei
and Chen (1977) as texture filters.

2.3.1.3 Texture model-based methods

Model-based methods assume some generating process for the texture, and estimate
the parameters of the assumed process for a given texture. These parameters are then
used to describe the texture, and can also be used in synthesizing a new texture, which
is hopefully equivalent in the sense that it is not discriminable from the original. These
methods generally seem to produce results as good as or better than methods based
on second-order statistics.

One approach is to use a linear model, such as an autoregressive or autoregressive/
moving average model. Kashyap and Khotanzad (1984) use an autoregressive model.
Such models express a pixel's intensity as a linear function of the neighbouring pixels'
intensities, plus a random component. Problems arise with representing textures con­
taining large elements, since practical considerations limit the order of the model. Some
authors have used a one-dimensional model rather than a two-dimensional model, which

27

increases the order which is practicable, but is obviously not as powerful at expressing
spatial constraints.

A more general approach is to model the texture as a Markov random field, which
allows an arbitrary dependence between nearby pixels. Markov r andom fields are dis­
cussed in detail in section 2.4.1.

2.3.2 Examples of texture segmentation algorithms

Several examples of texture segmentation algorithms are discussed below. These
combine one of the textural analysis methods described above with a segmentation
strategy, such as edge detection, window classification, or split -and-merge.

Wermser (1984) and Thompson (1977) have used edge-based methods to segment
textures. The textural analyzer used by Wermser is that of Wermser and Liedtke
(1982), which is discussed above. It produces a 14-component vector image (i.e., each
pixel is a 14-dimensional vector). These component s include local mean and variance,
and filtered images at three scales and four orientations. The gradient at each point is
determined in four directions (0°, 45° , 90°, and 135°), by evaluating the 'dissimilarity'
of adjacent patches. The dissimilarity measure is eit her a ratio of inter- to intra-class
distance, or the Euclidean distance between t he average vect ors for the two patches.
At each point, the largest gradient for the four directions is taken, giving a gradient
image. Thresholding and line-thinning are used to obtain boundary segments. Exami­
nation of the published results indicates that the boundary is detected reasonably well
(presumably the threshold is set manually, since no automatic procedure is described),
but the reported location is not accurate.

Thompson (1977) used a 'textural distance function ,' described in Zobrist and
Thompson (1975), which quantifies the degree of dissimilarity between textured im­
age regions. The image is divided into square blocks, and a Roberts-type gradient and
a local edge direction are obtained by evaluating the dissimilarity between diagonally­
adjacent blocks. Edge points are then located by looking for 'ridge points' in the
gradient image.

Edge-based methods such as t hese have the advantage of not requiring any prelimi­
nary information about the characteristics of the textures in the image. They still have
the problem of deciding whether two textured regions are in fact different, to avoid

28

l

I

I~
.I

1,•,
1 • ••

reporting false edges between two patches which are slightly different samples of the
one texture. Wermser (1984) uses a threshold to make this discrimination, but does
not indicate how the threshold is chosen.

Window-classification techniques have been used by Kashyap and Khotanzad (1984)
and Conners et al. (1984). Kashyap and Khotanzad analyzed the texture in small
windows by estimating parameters for two random field models, namely, a simultaneous
autoregressive and a circular autoregressive model. These models express the value of
each pixel as a weighted sum of a given set of neighbours plus a random term. A
cluster analysis is performed to identify the distinct t extures, and each window is
then independently classified. A clean-up stage is used to remove some of the mis­
classification errors, but even so, the results shown have quite 'blocky', inaccurate
boundaries.

Conners et al. (1984) used co-occurrence matrices to classify small windows of a
high-resolution aerial image, according to whether they contain one of a number of
pre-specified classes of texture, or a mixture. They propose a split-type algorithm for
subdividing the image until each block contains only one texture.

The split-and-merge algorithm has been employed by Chen and Pavlidis (1979)
using co-occurrence matrices to analyze the text ures. A block was defined to be ho­
mogeneous if the difference between the co-occurrence matrices of its four sub-blocks
was less than an arbitrary threshold. For each sub-block, the co-occurrence matrices
for four orientations were combined into one by adding them together, producing an
orientation-independent matrix.

Caelli (1985) used a relaxation-type algorithm called 'impletion' in segmenting tex­
tures on the basis of differences in the outputs from several texture filters. The re­
laxation algorithm removes the textured nature of the filt er outputs by an iterative
process which smooths the image and uses a non-linear t ransformation to increase high
values and decrease low values. The filters used involved convolution of the image with
the 3 x 3 masks suggested by Frei and Chen (1977) in the context of edge detection.

Pietikainen and Rosenfeld (1981) used pyramid node linking to segment textures.
This is a method which is related to split-and-merge algorithms, in that it uses a
pyramid of successively reduced-resolution images. However, the blocks at each level
overlap. Links are established between levels with an iterative procedure. These links
associate the blocks at the finest resolution level into regions. They used the 'contrast'

29

·~

statistic obtained from co-occurrence matrices to analyze the textures.

Davis and Mitiche (1982) present a relaxation-type algorithm for texture segmen­
tation, called MITES, which iteratively updates the value of each pixel in an image
with the average of a certain set of neighbours. The set of neighbours used depends
on which neighbours already have similar values to the pixel, and on the current in­
terpretation of the pixel as being an edge or interior point. The MITES algorithm can
either use pre-specified statistical descriptions of the regions, or obtain this information
by cluster analysis, and update the clusters as processing proceeds. Statistics used for
texture analysis were a 'contrast' statistic (defined in terms of the histogram of differ­
ences between pixels for a given set of displacements), and a set of statistics defined on
a polar plot of the number of edges as a function of orientation.

Yachida et al. (1979) present an algorithm for locating the boundaries of textured
regions, which optimizes a figure of merit for a piece-wise linear boundary. The figure
of merit has two components: a term which penalizes corners , which depends on the
angle between adjacent segments; and a term which is large when patches adjacent
to each segment have different textural properties. The textural properties used were
grey-level distribution, edges per unit area, and edge direction. The boundary is located
by a sequential search procedure within a plan obtained from an initial segmentation,
performed by a recursive thresholding procedure (Tomita and Tsuji, 1977). The study
of Yachida et al. is interesting, because it has several similarities with the method
presented in this thesis: it addresses the detection and location problems separately,
it uses an optimization procedure to find the best boundary, and the boundary is
represented parametrically.

2.4 Statistical segmentation

Whereas most traditional segmentation techniques view the sizes and shapes of the
regions as being determined by the sizes and shapes of the objects being viewed, a class
of segmentation methods which has been studied recently views the region shapes as
stochastic. The problem of segmentation then becomes a problem of statistical esti­
mation. Techniques such as maximum likelihood estimation are therefore appropriate
within this model. Given that the objects portrayed in the image are not known a
priori, it is perhaps reasonable to attempt to obtain a statistical model for the sizes

30

and shapes of regions likely to be encountered.

Within this model, the image is seen as having been generated by an underlying
two-part random process. The first part, called the 'region process', is responsible for
dividing the image into disjoint regions in a stochastic manner, thus generating the
unobservable correct segmented image. The second part, called the 'texture process',
fills in each region of the image with a different texture.

The task of a segmentation algorithm is, then, to estimate the segmented image,
and possibly also the parameters of the texture process, that is, the characteristics of
the texture in each region. Let X be the segmented image, and Y the observed image.
A part from Y, there are two other pieces of information essential for estimating X:

(a) knowledge (discovered or assumed) about the region process, in the form of an a
priori probability distribution P(X) for the segmented image,

(b) knowledge about the texture process, in terms of the probability distribution
P(YIX) for the observed image, given the segmented image.

The segmented image which is chosen is that which is most likely, given the observed
image; that is, the one which has the maximum a posteriori probability. These are
therefore called MAP (Maximum A Posteriori) estimation schemes. The a po.steriori
probability (i.e., the probability after the image has been seen) is, by Bayes' rule,

P(XIY) = P(YIX)P(X)/ P(Y)

The factor P(Y) does not depend on X, and therefore does not enter the optimization.
Segmenting the image therefore becomes a matter of finding the X which maximizes
P(YIX) · P(X).

Clearly, then, the choices of P(X) and P(YI-X) are of critical importance in the
performance of MAP segmentation schemes. The factor P(Y IX) is the likelihood of
the image given a proposed segmentation X. It expresses the degree to which the
area of the image assigned to each region resembles the texture which is supposed
to fill that region. Thus, a statistical characterization of the textures in the regions
is required for computing this factor. All the studies cited below assume that the
required characterization is specified a priori, which simplifies greatly the calculation
of P(YIX); these schemes therefore address the location problem, not the detection
problem.

31

Two alternatives exist in characterizing the textures. The simpler is to regard the
pixels as independent. Under this assumption, each texture process is specified by
the distribution of pixel intensities in the texture. The assumption of independence is
possibly close to the truth if the intensity fluctuations in the regions are due to noise
in the digitization or transmission of the image. If the fluctuations are due to texture
or fine detail, the assumption is generally not valid, especially at high resolutions. If
the pixels are regarded as independent, the segmentation algorithm will only be able to
discriminate regions which differ in their grey-level distributions. The other alternative
is to characterize the texture using a Markov random field (MRF). MRFs form a class
of statistical models which explicitly take into account the interdependence of pixels.

Whereas the factor P(YIX) represents the influence that the observed image has on
-obtaining the segmented image, P(X) represents a priori knowledge about the types

of region shapes which are desirable. It assigns a higher probability to segmentations
in which the region shapes have such properties as connectedness, smoothness, etc. As
P(X) represents information about the correct segmentations of the class of images to
be considered, it is practically impossible to measure, and is usually specified arbitrarily
or by experiment. Another difficulty lies in finding a statistical model for X (or a class
of models) which is simple enough to be practical, yet powerful enough to express a
preference for simple boundary shapes. MRF models form one possible class which has
been extensively investigated in recent years.

The formulation of boundary finding as a MAP estimation problem appears to have
been first suggested by Cooper and Elliott (1978). They also made the point that the
original image is more useful for estimating the locations of boundaries than is the
output of an edge detector. This study and a series of following studies used an as­
sumption of independent pixels, and characterized the boundary as a causal Markov
chain of edge elements (Cooper et al., 1980; Elliott et al., 1982). The transition proba­
bilities for each edge element were a function of the previous 7 edge elements, and were
set so as to favour straight chains. Two methods were developed to maximize the a pos­
teriori probability. The first was the 'ripple filter' (Cooper et al., 1980), which started
off with a closed initial boundary estimate, and iteratively made local adjustments to
increase the likelihood until a (local) maximum was reached. The main problem with
this approach is that the decision about whether to move a particular segment of the
boundary is made only on the basis of a few pixels nearby, so the boundary can tend

32

l" 11

to get stuck in situations where isolated atypical pixels stop it from moving to a global
maximum. The second method was a sequential boundary finder (Elliott et al., 1982),
using a heuristic search algorithm to track around the boundary of the region, guided
by information in a swath adjacent to the boundary. (This does not guarantee a closed
boundary.) The main failing with these approaches was that the boundary model was
not powerful enough. These approaches are mentioned here because they bear some
similarity to the approach developed in chapter 3.

2.4.1 Introduction to Markov random fields

Markov random field theory (Besag, 197 4) is a general way to model a set of random
variables which are mutually interdependent, such as the pixels in a textured image.
Each random variable in an MRF has a set of neighbours, which are defined simply as
those other random variables upon which it depends. In its full generality, the theory
allows each random variable to have any other random variables as neighbours, but we
consider here only a restricted class of MRFs, where

• the random variables are pixels, laid out on a square grid;

• the neighbours of a pixel are those within a given distance, called the 'interaction
distance', and

• the field is homogeneous-the conditional distribution of each pixel, given its
neighbours, is identical for each pixel.

Such homogeneous MRFs should be sufficient to describe most textures, provided that
the interaction distance is large enough. In practice, the neighbours are usually limited
to the nearest 4 or 8 pixels, by considerations of computational complexity.

MRF theory is formulated in terms of the conditional probability distribution for
each pixel; that is, the distribution given the values of all neighbouring pixels. For a
given realization x of a random field X, one cannot obtain the joint probability for
the whole field by multiplying together the conditional probabilities for each pixel.
The Hammersley-Clifford theorem (Besag, 1974) states that under the 'positivity'
condition 1, an MRF is equivalent to a Gibbs random field (GRF), which is described in
terms of the total joint probability of a realization. The MAP segmentation rule given

1i.e. , that every realization of the field has a non-zero probability

33

111

above requires the maximization of the joint probability, which is expressed explicitly
in the GRF formulation but not in the MRF formulation. The joint probability is

1
P(X=x)= Zexp(-L½(x))

cEC
(2.3)

where c is a clique--a set of pixels which are all neighbours of each other, C is the set
of all possible cliques in the image, ½(x) is independent of the pixels outside c, and Z
is the 'partition function':

Z = L exp(- L ½(x)) (2.4)
::c cEC

That is, Z is a normalizing factor so that the probabilities sum to 1. See Derin and
Cole (1986) for a fuller exposition.

The partition function is virtually impossible to calculate in general, except for very
small fields, because it involves a sum over all possible realizations of the field. For
example, even for a field of 64 x 64 pixels, quantized to 16 levels, there are 216384 ~ 105000

realizations-an astronomical number. However, since Z does not depend on x, it is
possible to compare the likelihood of two realizations without knowing Z.

Besag (1974) introduced the class of 'auto-models' , which is a subclass of MRFs,
for which the functions Vc(.x) are non-zero only for those cliques containing one or two
pixels; for those containing two pixels, ½(x) is of the form /3ijXiXj- Auto-models are
considerably simpler to use than general MRFs, since the number of 2-pixel cliques rises
only as the square of the interaction distance, whereas the total number of cliques rises
exponentially with the interaction distance. It is possible to write Z for an auto-model
in terms of the determinant of a matrix-see Cohen and Cooper (1987). Examples
of auto-models which have been used in image segmentation include the auto-logistic,
auto-normal, and auto-binomial models.

2.4.2 Use of MRF models in image segmentation

Markov random fields have been used to model both the shape of the regions and th~
textures they contain. When used to model the shape of the regions , the parameters are
set to assign higher probabilities to large connected regions than to small fragmented
ones, to encourage larger regions where possible. Here, it is not nece::;sary to calculate
the partition function, since relative likelihoods are being compared over the same size
and shape of field. Geman and Geman (1984) employ an interesting variant: they use

34

t

11

(J;
11

I

11:

an MRF to model the interdependence of the pixels of the segmented image with each
other and with the presence or absence of edge elements between pairs of pixels.

A few studies have employed MRF models to analyze and describe textures (e.g.,
Hassner and Sklansky, 1980; Cross and Jain, 1983). However, the practical impossi­
bility of calculating the partition function limits their usefulness in describing texture
within segmentation algorithms. Using MRFs to model the textures inside different
regions involves the problem of calculating the partition function, since different sizes
and shapes for each region must be compared. For this reason, only one study to
date (Cohen and Cooper, 1987) uses an MRF characterization to calculate the joint
likelihood of all the pixels in a region. In this case, the methods used are restricted
to auto-models, and some approximations are used in the case of non-square regions.
Derin and Elliott (1987) modelled the texture processes as MRFs, but then used these
to calculate the likelihoods of 3 x 3 regions belonging to each of the texture classes.
These likelihoods were assigned to the centre pixel, and multiplied together for all pix­
els inside one region. (This does not give the true joint likelihood for the region; only
an approximation.)

Searching for the MAP segmentation of an image is not a trivial task; an exhaustive
comparison of all possible segmentations is not practical, and some method which will
go more directly to the desired solution is necessary. Two methods which have been
employed are dynamic programming and stochastic relaxation.

Dynamic programming has been used to maximize the a posteriori probability with
an MRF region model by Derin and Elliott (1987). Dynamic programming reduces the
computation required by taking advantage of the limited interaction between pixels.
Even so, maximizing the likelihood over the whole image is still computationally in­
tractable, and these studies therefore only maximize the likelihood over narrow over­
lapping strips of the image. This yields a solution which is sub-optimal, because the
maximization cannot combine information over the whole image.

Stochastic relaxation (Geman and Geman, 1984) is a scheme which starts with an
initial segmentation and updates it over a large number of iterations so that the seg­
mentation approaches the MAP segmentation. Each iteration involves updating pixels
stochastically, according to their local conditional probability distribution. Stochastic
relaxation is also known as simulated annealing, since it involves a 'temperature' which
is slowly decreased. The temperature controls how probable it is for a pixel to change to

35

r
,1·

t

I

ll:

a less probable state; at zero temperature, this probability becomes zero. This scheme
never computes the total joint probability; rather, it relies on a theorem which states
that, provided the temperature is decreased slowly enough, the algorithm is guaranteed
to converge to the global maximum of the a posteriori probability in a stochastic sense
(i.e., the probability that the solution is the global optimum approaches 1 as the num­
ber of iterations approaches infinity). Unfortunately, the number of iterations required
by the theorem is impractically large (e.g., e40000 pixel updates (Geman and Geman,
1984)). Instead, the number of iterations is generally determined by inspection of the
results. Typically 25-1000 iterations are used. The major disadvantage of this scheme
is that it requires a large amount of computation.

All of the studies cited above assume that the parameters of the texture and region
processes are known a priori. These algorithms therefore rely on a previous detection
phase having estimated the characteristics of the texture processes in the different
regions. In general, therefore, an initial coarse segmentation must be performed using
some other method. Derin and Cole (1986) give an example of a segmentation where
the parameters for one of the texture processes were inadvertently wrongly specified;
the segmentation obtained was quite poor. Adaptive algorithms (those not requiring
an a priori estimate of the texture processes) are an active area of research.

The parameters of the region process are usually set to values encouraging large
connected regions. Derin and Cole (1986) note that there is a trade-off in setting the
parameters, between discouraging single-pixel regions and being sensitive to fine details
at the boundary.

2.4.3 Evaluation of MRF approaches

MRF theory is appealing, as it is a general way to model the statistical dependence
between pixels in an image. However, the computational burden involved in using
MRFs is large, and could be expected to increase exponentially with the interaction
distance (since the number of clique classes does so), unless attention is restricted to
auto-models.

Most studies which have employed MRFs have taken only the nearest 4 or 8 pixels
as neighbours, for practical reasons. It is doubtful whether this is sufficient to model
effectively the sort of region shapes that are simple on a global scale (even granted
that a limited interaction distance can give rise to longer-range order). Those studies

36

1"'

,-'

I

.I

Iii

,,!

that show results where the region shapes are simple (e.g., ellipses or rectangles), such
as Geman and Geman (1984) and Derin and Cole (1986), generally show boundary
contours that are quite noisy. That is, a first- or second-order MRF region model does
not appear to be able to favour boundaries that are straight or smooth over a distance
of tens of pixels. In addition, as the regions become harder to distinguish (signal to
noise ratio decreases), the boundary becomes more noisy and therefore more complex
in shape, whereas in fact less detail is really perceivable.

It is also doubtful whether practical neighbourhood sizes are sufficient to model
natural textures over the range of scales encountered in real-world images. Cross and
Jain (1983) give examples of textures synthesized from the parameters extracted from
natural textures, for a third-order auto-binomial MRF model; the results are adequate
for fine textures, but not for coarse textures. In any case, it appears to be impossible
to use MRFs to model the texture in the regions, due to the impossibility of calculating
the partition function, unless auto-models are used exclusively.

2.5 Conclusions

Of the approaches listed in this chapter, it is perhaps the edge-based approaches
which hold the most promise of being able to determine accurate information about the
locations of boundaries in textured images. Region-based approaches generally cannot
provide accurate location information, because they must use windows of a reasonable
size to be able to categorize the texture in the windows reliably. The size of these win­
dows then limits the accuracy with which the boundary location can be determined.

{ The statistical approaches using MRFs can potentially perform somewhat better, be­
cause individual pixels are classified, and the classification of a pixel is dependent on
the classifications of its neighbours. However, the region models used in these schemes
usually only incorporate dependence of a pixel on its nearest four or eight neighbours,
for computational reasons, and this is insufficient to encourage boundaries which are
globally simple.

Edge-based approaches are potentially capable of determining the location of a
boundary to within half a pixel spacing. Of the edge-based approaches, it is those
which can easily be used at a range of scales which are suitable for use on textures.
Most edge detection schemes have been developed with relatively small support; of

37

I

l
ll,
.,

\11

11·
/

I
I

r'

r

those which could be used with large support, convolution edge detect ors are most
widely used, easiest to implement, and scale in an obvious manner. For these reasons,
convolution edge detectors were chosen to be implemented in this study for evaluation
(and subsequently comparison with the approach developed in chapter 3). However,
as the results in figures 2.1 to 2.3 show, even convolution edge detectors do not give
accurate boundary location information in textured images. Clearly, a new approach .
1s necessary .

38

II:

.I

l,1

,1,

Chapter 3

A new- approach to boundary location

In this chapter, attention is focussed on the problem of locating the boundary be­
tween textured regions which differ in their pixel grey-level distributions. Sections 3.1
and 3.2 first discuss in more detail the difficulties of the location problem and the
deficiencies of conventional techniques, and then propose three criteria which capture
essential characteristics of a good boundary description. These three criteria, sim­
plicity, consistency, and accuracy, are formulated in mathematical t erms, which
enables the specification of an algorithm for finding a boundary description satisfying
these criteria. This algorithm, called the 'BLM algorithm' (for Boundary Likelihood
Maximization), is outlined in section 3.3, and its implementation is described in detail
in section 3.4. The BLM algorithm solves the location problem, but not the detection
problem, since it requires knowledge about the regions adjacent t o a boundary. There­
fore, a split-and-merge algorithm has been implemented to provide the initial statistical
information required. (See section 5.3.2 for a discussion of the possibility of using the
approach developed here to solve the detection problem as well.)

3.1 The boundary location problem

Ideally, the segmentation phase in a computer vision system should provide accu­
. rate, concise, and reliable descriptions of the boundaries between regions in an image,

even when those regions are textured. However, all of the schemes reviewed in the
previous chapter tend to produce rather inaccurate boundary descriptions on textured

I' images; certainly, the descriptions fall short of the accuracy and precision of human
perception of the boundaries. In other words, conventional algorithms may provide

39

1•,

1•,

I

I
I

I

r

n,

reasonable solutions to the detection problem, but they do not adequately solve the
location problem.

The previous chapter referred to a range of published results which demonstrate
the inaccuracy of conventional algorithms, and showed some example results from the
implementation of two convolution edge detectors on a textured image. These edge
detectors were selected as being the most promising candidates for providing accurate
boundary descriptions, as discussed in section 2.5. However, the results shown in
figures 2.2 and 2.3 have serious deficiencies as descriptions of the boundary in figure 2.1.
Assuming that the string of edge pixels which corresponds to the true boundary can
be identified (which is not easy at the smaller scales), it is evident that at all scales
the string deviates from the true boundary position, and has unnecessary and incorrect
undulations. In contrast, the boundary perceived by human observers in figure 2.1 has
a simple shape, and is accurately positioned with respect to the true boundary position.
(The true position is known, as this is an artificially generated im age.)

The main reason for these deficiencies is that the t extured regions contain intensity
fluctuations which are irrelevant to the boundary. These fluctuations can be locally
just as large as the intensity change at the boundary, and indeed, there can be intervals
along the boundary where the intensity change across it is locally very small or even
of reversed polarity. Thus, it is not necessarily t he pixels where the gradient of a
smoothed version of the image is highest that give accurate information about the
boundary location. The positions of these maxima are easily perturbed by intensity
variations within the regions.

3.2 Criteria

The segmentation schemes discussed in chapter 2 have been evaluated informally
with respect to their ability to give good descriptions of boundaries in textured images.
Before we consider an algorithm for finding a good description for a boundary, we must
first consider more precisely what is meant by a 'good' description. This is expressed
below in the three criteria of accuracy, simplicity, and consistency. These criteria are
expressed first in intuitive terms, and then formalized mathematically.

40

1•·

{.,

I
I

ll:

i
:I

I
' l ,.,

3.2.1 Accuracy

The first of the three criteria for a good boundary description is accuracy. Clearly,
the results from convolution edge detectors are inaccurate, whereas human observers
can accurately locate the boundary position. Inspection of figure 2.1 shows that the
boundary position is perceptually constrained by the bright pixels which only appear
in the right-hand region; they have a disproportionately powerful effect in determin­
ing where the boundary is perceived. Rather than points of maximum gradient in a
smoothed image, it is therefore those pixels which are unlikely to belong to one of the
regions which effectively constrain the boundary position.

Thus, accurate estimation of the location of the boundary requires some statistical
knowledge about the regions. Using such statistical knowledge means that some pixels
can be given much greater influence in positioning the boundary than others, according
to the likelihood of them belonging to one region or the other. Since we are considering
the location problem, we assume that an initial segmentation has been performed, and
that the necessary statistical information can be collected.

The accuracy criterion obviously cannot be formalized in terms of the distance
between the reported boundary and the true boundary. Instead , we require that all
the relevant statistical information should be taken into account in determining the
boundary location. In other words, the best available estimate of t he boundary location
should be used. The accuracy criterion is therefore formalized in terms of maximum­
likelihood estimation:

The boundary position should be that which maximizes the likelihood of
the image, given the position of the boundary.

(This likelihood is referred to informally as the likelihood of the boundary.) Maximum­
likelihood estimators are known to have generally good properties (Freund, 1972,
p267), and have been shown to give accurate results in locating the edge point in
one-dimensional data (Mazumdar et al., 1985). ·

Likelihoods are computed in the BLM algorithm using the assumption that pixels
are independent. This is a crucial simplifying assumption, which makes it possible to
compute the log likelihood of a given boundary by summing, for each pixel, a function
of its intensity. The independence assumption also means that regions must differ in
their grey-level distributions to be discriminable. The alternative to the independence

41

111

II' 1i
1i
'f

,,I

I
' ' I

,111

t-1,

assumption is to characterize the regions using Markov random fields . However, cal­
culating the likelihoods would then require computing the partition function, which is
virtually impossible. The results in chapter 4 show that good results can be obtained
using the independence assumption, even when the pixels are correlated.

Maximum-likelihood estimation must be constrained in some manner if it is not to
produce unnecessarily complex results. Under the independence assumption, uncon­
strained maximum-likelihood estimation becomes simply a pixel classification opera­
tion. With the constraint that there are only two regions, which are both connected,
maximum-likelihood estimation of the boundary in figure 2.1 will produce something
like that shown in figure 3.1. (This boundary was found by a procedure which is not
guaranteed to find the global maximum of the likelihood, but has evidently come very
close.)

3.2.2 Simplicity

The true boundary in figure 2.1 is actually a very simple shape, just two straight
lines meeting at a corner. The reported boundary in figure 3.1 is far more complex
than it needs to be (as are the results from the convolution edge detectors). The simple
shape is sufficient to adequately represent the image detail, and is clearly preferable
to the more complex shape shown in figure 3.1. Therefore, the second criterion is
simplicity:

The boundary description should be no more complex than is necessary.

A simple boundary description has many advantages over an unnecessarily complex
one. It has practical advantages in reducing the comput ational burden of processes
which use the boundary description. There is also a more fundamental advantage:
reporting an unnecessarily complex boundary description can imply that more infor­
mation has been extracted from the image than is statistically justifiable.

Quantifying this criterion requires a measure of complexity. An obvious method
is to measure the complexity of a boundary by the number of bit s needed to specify
its shape. This will depend on the representation used. Parametric representations,
such as piece-wise linear or cubic spline representations, will generally require fewer
bits to specify a given shape than either chain-coded or image-based representations.
Boundaries are therefore represented in the BLM algorithm in parametric form as a

42

1•'

I~:
jl,

jl'.

11·
I

111

I

11'
I'

Figure 3.1: Ma...-nmum-likelihood boundary

Figure 3.2: Inconsistent boundary

43

I"'

I
1~!
ii'
i

111

•li
I

set of linked segments, each either a straight line or a cubic polynomial curve. The
endpoints of the segments are called knots. A representation such as t his has a number
of important advantages:

1. The elements of such a description-straight lines , smooth curves, and corners­
correspond directly to the kinds of boundary shapes which appear perceptually
simple.

2. A parametric form should be more suitable for subsequent shape analysis than
either a chain-coded representation or a segmented image.

3. A parametric representation can easily be converted into other forms, such as
a chain-coded string or a segmented image, but the reverse t ransform ations are
difficult.

4. A preference for smooth or straight boundary shapes is maintained without ex­
cluding the possibility of corners.

5. There is a preference for shapes which are globally straight or smooth, since the
possible length of a segment is limited only by t he image size.

The complexity of a particular parametric representation is taken as being pro­
portional to the number of parameters (real numbers) used. St rictly speaking, each
parameter should be represented to what ever accuracy is necessary, and require a cor­
responding number of bits. In the current implementation, however, t he same floating­
point representation is used for all parameters, so the number of bits used is simply
proportional to the number of parameters required.

3.2.3 Consistency

The simplicity and accuracy criteria capture certain desirable aspects of a boundary
description, but they are not sufficient to ensure that the description corresponds closely
to what is actually in the image. If the description is too simple, it will not have
sufficient degrees of freedom to follow all the detail perceivable in t he image. The
simplicity criterion is therefore subject to a 'consistency' criterion:

There must be no patches of the image adjacent to the boundary which are
clearly on the wrong side of the boundary.

44

I

l
\.,
11

1~ ~
11'

I

' 111

I

i
I

lit

!

I
j,
I

,11

'' I

,111,

I;

11

Figure 3.2 (page 43) gives an example of a boundary description which is not consistent
with the image data. It is inconsistent because the light patches to the left of the
boundary at the top and bottom should quite obviously be on the other side, as should
the dark patch to the right of the middle section of the boundary. These inconsistent
areas are shown in red.

Testing whether a boundary is consistent with the image data or not requires some
way to find candidate patches to test, and an appropriate test to determine whether
or not they can belong in the region to which they have been assigned. If it can be
said, with confidence, that some particular patch cannot belong, then the boundary
fails the consistency test. On the other hand, there will usually be patches which are
more likely to belong on the other side of the boundary, but which can belong in the
region to which they have been assigned. Such patches do not cause the boundary to
fail the consistency test.

Suppose that a patch P has been selected for testing, and is currently assigned
to region A. What is needed is a statistical test for testing whether the patch can
reasonably belong to region A, that is, whether the pixels in P can reasonably be
expected to have been generated according to the statistical model for the texture in
region A. Thus, we frame a null hypothesis HO that the pat ch P belongs to region A,
with the alternative hypothesis HA that the patch belongs to region Bon the other side
of the boundary. A likelihood-ratio test (Freund, 1972, p304) of Ho versus HA involves
comparing the ratio of their likelihoods to an appropriat e threshold; HO is rejected if

Lo K -<
LA

where Lo and LA are the likelihoods of H0 and HA respectively.

Such a test may sometimes make an incorrect decision. T hese errors are divided
into two classes: type I errors, or 'false alarms', when Ho is t rue, but is rejected, and
type II errors, when H0 is not rejected although it is false. The probabilities of both
types of errors are determined by K. Within the context of the consistency test, a
type I error means that the boundary will be rejected, even though it may be correct.
This type of error is rather serious, because it will result in a boundary that is more
complex than necessary, with the patch incorrectly assigned to region B . Therefore, it
is necessary to set K low enough that the probability of false alarms is virtually zero.
This probability is sometimes referred to as the 'level of significance' of the test.

45

I"'

\1,

r
'I' ,'

I

I
ii.I 11

Ii
I'
I

I.I

Type II errors, on the other hand, correspond to situations where the boundary
is incorrect, but the test is not sensitive enough to detect the fact . Increasing K will
increase the sensitivity of the test, but will also increase the false-alarm probability.
Clearly, we want the most sensitive test with an acceptably low false- alarm probability.
The chosen value of K is thus ideally that which will give the highest acceptable false­
alarm probability. Section 3.4.5 gives details of the method used for choosing K.

The consistency criterion requires that the boundary description be a good ap­
proximation to the true boundary, which is in some ways a consideration of accuracy.
However, it is different from the accuracy criterion, because the accuracy criterion is
subject to the simplicity criterion. The accuracy criterion requires that the best possible
estimate at the given level of complexity be used. In contrast, the consistency criterion
requires that the boundary be complex enough to represent accurately the observable
detail in the boundary. It is thus concerned with how much det ail in the boundary de­
scription is statistically justifiable. It is not possible to determine, from the likelihood
of a description, whether it is complex enough ~o be consistent, or whether it is unnec­
essarily complex. The accuracy and consistency criteria therefore have complementary
roles.

3.3 Overview of boundary locator algorithm

Given the three criteria discussed above, an automatic procedure is required for
finding a boundary description satisfying them. The consist ency criterion requires that
any proposed boundary description be tested for consistency, and the accuracy criterion
specifies that only the most likely description at any given level of complexity needs
to be tested. Given the preference for simple descriptions embodied in the simplicity
criterion, it seems reasonable to start with a very simple description and elaborate it
as necessary until it is consistent, while maximizing its likelihood at each stage. The
boundary description at each stage is referred to as a 'boundary hypothesis', because
it represents a tentative statement about the boundary, which is tested and then either
accepted or rejected. This approach suggests the following procedure, which is an
outline of the BLM algorithm:

1. Initialize: Obtain statistics of regions and form a simple initial hypothesis.

46

111

l~i
j,,

1

1·
I,

··i

2. Optimize: Adjust the current bound_ary hypothesis so as to maximize its likeli­

hood.

3. Test: Check whether the boundary is consistent with the image.

4. Elaborate: If the boundary is not consistent, elaborate it (using the inconsis­

tencies as a guide) and return to step 2.

5. Simplify: Once a consistent boundary has been achieved, check whether the

boundary can be simplified while still maintaining consistency.

Figures 3.3-3. 7 illustrate the operation of the BLM algorithm on the image shown

in figure 2.1. A coarse initial segmentation is obtained using the split-and-merge pro­
cedure described in section 3.4. 7, giving the result shown in yellow in figure 3.3. From
this initial segmentation, two areas are defined for evaluating the statistics of the two

regions. These two areas are shown outlined in white in that figure. The initial bound­

ary hypothesis is the rectangle in figure 3.4. This is simply the bounding rectangle of

the left-hand area for evaluating statistics.

Optimizing the initial boundary hypothesis yields the result shown in figure 3.5.
This boundary is not consistent with the image data; the patches shown with red

cross-hatching are patches which fail the consistency test. (The procedure which finds

these patches only goes out a limited distance from the segment, for efficiency reasons.)

The hypothesis must be made more complex; extra knots are added at the midpoints of

the inconsistent segments. Returning to the optimization phase yields the result shown

in figure 3.6. This result is consistent, but has two more segments than are necessary.

The simplification step removes the two superfluous knots, yielding the correct result
shown in figure 3. 7.

3.4 Implementation of BLM algorithm

The essential problem of locating boundaries can be studied using the simplest pos­

sible configuration: two regions, separated by a single boundary. The BLM algorithm

has been implemented for this configuration, with the assumptions that the regions

are connected and homogeneously textured, and differ in their pixel intensity distribu-

47

II'
Ii

11,

I

I

11!
I

I
I

I

11:

'•1
!

,1,

~
ll:

•

Figure 3.3: Results from split-and-merge procedure

Figure 3.4: Initial boundary hypothesis

48

\1,

I

I
I

I
I
I
I

ll:

Ii
!' I

:1

lit

(
JI!

1.,

Figure 3.5: Results from optimizing initial boundary hypothesis

Figure 3.6: Seven-segment boundary

49

l
i
I

I
r
I

lli

llj

,,j
I
I

Figure 3.7: Final results from BLM algorithm for figure 2.1

tions. This is also the configuration which has been used in testing the convolution
edge detectors in the following chapter. .

3.4.1 Boundary representation

Boundaries are represented as a set of knots joined by either linear or cubic poly­
nomial segments. In general, there could be more than two segments connected to
each knot. However, since we assume that there are only two connected regions, each
knot will have two segments attached. Where the boundary extends from one side of
the image to the other, it should be completed along the borders of the image so as to

I

enclose one of the regions. Each pixel is therefore either inside or outside the boundary,
and is assigned to region 1 or 2 respectively.

Therefore, the boundary is represented as a circular list of knots and segments,
enclosing region 1 and linked together in anti-clockwise order around it. Since there are
as many segments as knots, the information for each knot and the following segment are
combined in one node, which contains the position of the knot, various details about the
following segment, and pointers to the next and previous nodes. Section 5.3.1 discusses
a more elaborate data structure, suitable for multiple regions and boundaries.

50

I' '

I
I
"I

Each boundary segment is expressed as a vector function Zk(t) = (xk(t),Yk(t)) for
segment k, with O < t < 1. (Vectors are denoted by bold type; the components of a
vector u are uz and uY. As a special case, the components of z are x and y.) The
boundary runs anti-clockwise with increasing k and t. The knot positions are zk, for
0 < k < N, where N is the number of knots, with Zo = ZN. (These should not be
confused: Zk is a knot position, and zk(t) is a function defining a segment .) Both
linear and cubic segments have the properties that zk(O) = Zk and zk(l) = Zk+l , for
0 < k < N. Linear segments are therefore defined by the equation

Zk(t) = Zk + t (zk+l - Zk) (3.1)

Cubic segments express Zk(t) as a cubic vector polynomial in t, that is, Xk(t) and
Yk(t) are each cubic polynomials. Eight parameters are required, of which four are
supplied by the knot positions. Four more parameters per segment are required. The
parameters used here are the initial velocity Uk and final velocity vk of the segment,
that is, zk(O) = uk and zk(l) = vk, where z(t) = dz/dt. It can easily be verified that
the cubic vector polynomial satisfying these conditions is

Zk(t) = Zkbo(t) + ukb1(t) + vkb2(t) + Zk+1b3(t) (3.2)

where the blending functions bi (t) are defined as

bo(t) = 1 - 3t2 + 2t3
(3.3a)

b1 (t) = t - 2t2 + t3
(3.3b)

b2(t) = -t2 + t3
(3.3c)

b3(t) = 3t2
- 2t3

(3.3d)

These blending functions are shown in figure 3.8. This formulation of the cubic spline
is equivalent to a Bezier spline with the control points Zk, Zk + uk/3, Zk+i - vk/3, and
Zk+1. Continuity of slope may be enforced at any knot between two cubic segments;
this requires that vk-l = Uk at knot k, if 1 < k < N, or VN-l = u 0 at knot 0.

The complexity of a piece-wise linear boundary is simply 2N parameters, that is,
two parameters per segment. If there are cubic segments, the complexity will depend on

•
1

\ whether slope continuity is enforced at any knots. Each cubic segment will contribute
six parameters without slope continuity at either end, five if the slope is continuous at
one end, or four if the slope is continuous at both ends.

51

,l·

1
tn
1f:

1 ,-----....._ ___..---,1

0 0

Figure 3.8: Blending functions for cubic segments

3.4.2 Region representation

It is often necessary to deal explicitly with the set of pixels that are contained within
a boundary. For example, it is necessary at certain points in the BLM algorithm to
determine whether a given pixel is inside or outside the boundary, or to take the

intersection of one region with another. These operations could be performed using a
representation of the regions in the form of an image, but that would be quite inefficient
in terms of both the time and the memory space required. A run-length encoded
representation is far more efficient for these purposes.

This representation stores one linked list for each scan-line occupied by the region.
Each list consists of a series of nodes which represent the x-coordinates at which one
enters or leaves the region on a left-to-right traversal of the scan-line. It is easiest
to think of this representation as being derived from an image representation of the
region, although it can be determined from the parametric boundary description in a
simple manner. Each node then stores an x-coordinate and the corresponding difference
between pixels at that point on the scan-line. The nodes are linked together in order
of their x-coordinates.

52

3.4.3 Obtaining initial information a~d estimating statistics

The BLM algorithm is intended to solve the location problem. It is therefore as­

sumed that an initial segmentation of the image has identified two adjacent regions,

over which statistics can be evaluated. In the current implementation, a split-and­

merge algorithm, described in section 3.4. 7, performs this initial segmentation. The

two largest regions identified by the split-and-merge procedure are taken as prototype

regions for the BLM algorithm. These regions are eroded using a square ~roding ele­

ment, and the eroded regions are used for evaluating the statistics of the regions. The

erosion procedure considers each pixel which is on the boundary of a region, and assigns

all pixels which belong to the same region, within a square centered on the pixel, to

a 'null' region. As noted earlier, the bounding rectangle of one of the eroded regions

is taken as the initial boundary hypothesis. The reason for eroding the regions is to

avoid including pixels near the boundaries, which may well belong to other regions as

the boundaries obtained with the split-and-merge procedure are somewhat inaccurate.

These two eroded regions are then used to characterize the regions in terms of

their intensity distributions. Intensities are quantized to a pre-specified number of

levels, Na, usually 8. The intensity distributions are estimated by calculating intensity

histograms for the two regions, with one bin for each intensity level. For region i

(i == 1 or 2), let the histogram be hi(x) where x is the quantized intensity level, let the

total number of pixels be Ni, and let the probability distribution of quantized intensity

be Pi(x). The simplest estimate (also the maxi1num-likelihood estimate) of Pi(x) is

hi(x)/Ni. However, this estimate causes severe difficulties when hi(x) == 0, because the

log likelihoods calculated in the following steps become infinite. Also, estimating Pi(x)
as O amounts to saying that there are definitely no pixels of intensity x in region i; it

does not seem reasonable to make such a dogmatic statement on the basis of just one

part of a region. An alternative estimate which avoids these difficulties is used:

hi(x) + l
Pi (X) == Ni + NG (3.4)

When hi(x) is large, this estimate is practically the same as the previous estimate;

when hi(x) is zero, this estimate is small but non-zero. The estimated probabilities

add to 1.

53

3.4.4 Likelihood maximization

Given a boundary hypothesis with a certain number of segments, the task of the
optimization step is to adjust it so as to maximize its likelihood, by moving the knots,
and by modifying the initial and final velocities of any cubic segments. This step thus

produces a maximum likelihood estimate of the boundary position, constrained by the

number and type of segments in the current hypothesis.

The likelihood to be maximized is the probability of the event that the image was
generated by a random process that assigns intensities to the pixels inside the bound­

ary according to distribution p1 (x), and assigns intensities to those outside according

to distribution p2(x). Here p1 (x) and P2(x) are the estimates of the pixel intensity
distributions on either side of the boundary.

The logarithm of the likelihood is used, rather than the likelihood itself, because of
the enormous range of likelihoods encountered; the log likelihood can easily be tens of
thousands. Maximizing the log likelihood is equivalent to maximizing the likelihood,

since the logarithm is a monotonic function. The log likelihood can be calculated as a
sum over the pixels inside the boundary:

L == L ln(p1(Iii)) + L ln(p2(Iii))
(i,j)ER (i,j)ER

L .:\(Iii) + L ln(p2 (Iii))
(i,j)ER all (i,j)

(3.5a)

(3.5b)

where L is the log likelihood for the boundary, R is the set of pixels enclosed by the

boundary, Iii is the quantized intensity of pixel (i, j), and .:\(x) is a log likelihood ratio

function defined as

.:\(x) == 1n(P1(x))
P2(x)

(3.6)

Here p 1 and p 2 are the estimates of the pixel intensity distributions for the two regions
adjacent to the boundary. The second term in equation (3.5b) does not depend on the

boundary, and therefore does not enter the optimization.

Given the function .:\(x), we define an image Aij (called the .:\-image), where Aij ==

.:\(Iii)- Thus, Aij is an image with predominantly positive pixels in region 1, and
predominantly negative pixels in region 2. The problem of estimating the boundary

then becomes one of finding the boundary which gives the greatest possible sum of the
pixels of Aij within the boundary.

54

We assume that each pixel is on one side of the boundary or the other; pixels are
never split across the boundary and assigned partly to each region. That is, pixels are
assumed to be points. One consequence of this assumption is that the log likelihood
will change in discrete jumps with continuous alterations in the boundary shape. For
example, as a knot is moved, the log likelihood will change every time the boundary
crosses a pixel. That is, the log likelihood as a function of the position of the knot is a
staircase function (i.e., a sum of positive and negative step functions).

3.4.4.1 Calculating log likelihoods

The log likelihood for the boundary can be calculated in a time dependent on the
length of the boundary, rather than the area enclosed, using a 'scan-row sum' image S,
obtained by summing Aij along scan lines. That is,

:J

Sij = L Aik (3.7)
k=l

The log likelihood is calculated by tracing anti-clockwise around the boundary, and for
each intersection with a scan-line, adding or subtracting the corresponding scan-line
sum. It is added if the boundary direction is upwards, and subtracted if the direction
is downwards. Generally, the scan lines run horizontally; vertical scans are also used
in optimizing cubic segments (the sum is then added if the direction is leftwards, and
subtracted if the direction is rightwards).

This procedure allows an important simplification: the log likelihood for the whole
boundary can be expressed as the sum of the log likelihoods for each segment. That is,
the procedure described above can be applied to individual segments, and the results
added together to obtain the total log likelihood. The log likelihood sum obtained
with the procedure described above is defined, whether the boundary contour is closed
or not; however, it can only be interpreted as a genuine log likelihood if it is closed,
because only then does it enclose a region of the image.

To show that this procedure for calculating the log likelihood is correct when the
boundary is closed, we first define the rotation number of a point with respect to the

boundary. This is simply the total number of anti-clockwise rotations that the line
from the point to a point on the boundary makes, as the point on the boundary makes
one circuit of the boundary. For a simple (i.e., not self-intersecting) boundary which
runs anti-clockwise, the rotation number will be zero for points outside the boundary,

55

and 1 for points inside. If the boundary runs clockwise, the rotation number will be
-1 for points inside. If the boundary intersects itself, it is possible for some points to
have rotation numbers greater than 1 or less than -1.

Each pixel in the image makes a contribution proportional to its rotation number;
the procedure described above calculates

L = L r(i,j)Aij (3.8)
i,J

where r(i, j) is the rotation number of point (i, j) with respect to the boundary. To see
this, consider the intersections of the boundary with a line extending horizontally from
point (i, j) to the right-hand border of the image. The rotation number will be equal
to the difference between the number of intersections where the boundary direction is
upwards, and the number of intersections where the direction is downwards. In the
above procedure, each intersection where the direction is upwards will contribute Aij
to the sum; each intersection where the direction is downwards will contribute -Aij, so
the total contribution will be proportional to r(i, j).

At this point, there are two coordinate systems: the (i, j) indices of pixels in the
image, and the (x, y) cartesian coordinate space for describing the boundary. Here i

and j are integers, with 1 < i < N R and 1 < j < N c, where N R and N c are the number
of rows and columns in the image, whereas x and y are reals. We use the convention
that pixel (i, j) is at position (j - ½, i - ½). Since row 1 is the top row of the images
shown in this thesis, the y-axis points downwards on these images.

Calculating the log likelihood requires determination of which side of the boundary
each pixel is on; where the boundary intersects a point at coordinates (j - ½, i-½), some
convention is required to assign it to one side or the other. In terms of the calculation
procedure above, there are three ambiguous situations:

(a) where an intersection of the boundary with a scan-line is at an x-coordinate of
. 1

J - 2'

(b) where the boundary is actually horizontal where it intersects a scan-line, and

(c) where a knot is on a scan line (i.e., its y-coordinate is i - ½).

Situation (a) causes ambiguity about whether the pixel in column j is to the left or right
of the boundary; situations (b) and (c) cause ambiguity about whether the boundary
direction is upwards or downwards.

56

The rule which has been adopted for resolving these ambiguities involves concep­
tually moving the boundary by an arbitrarily small amount 5 to the right, and then
(if necessary) an even smaller amount € upwards, where e/ 5 is arbitrarily small. These
movements are sufficient to move the boundary off the intersections with pixel points,
but are small enough that no other pixels cross the boundary. This is possible because
there are only finitely many pixels, of which one will be the closest to the boundary
(excluding those that are actually on the boundary); if € and 8 are made much smaller
than the distance from this pixel to the boundary, then moving the boundary will not
cause any pixel to cross the boundary. This rule is implemented by rounding coordi­
nates appropriately, but the above statement of the rule makes it evident that the rule
will give the same results no matter in which direction the boundary is traversed.

In case (a) above, this rule can be implemented by rounding upwards when convert­
ing a real x-coordinate to an integer column number in the row-sum image s. Thus, if
the boundary intersects row i at coordinates (x, i - ½), then Sik is added or subtracted,
where k = L x + ½J. (Note that Sio = 0 for all i.) According to this rule, the pixel in
column j will be included in the sum if x > j - ½.

Where the boundary is composed of linear segments, situations (b) and (c) can also
be resolved simply. Situation (b) only arises if a whole segment is horizontal. In this
case, moving the boundary up slightly will cause the segment not to intersect the scan­
line at all; therefore horizontal segments make no contribution to the log likelihood
sum. Situation (c), where a knot is on a scan-line, is resolved according to the rule
given above by moving the boundary up slightly, which is equivalent to having the scan­
line intersect the boundary slightly below the knot. Therefore, if a boundary segment
comes to the knot from below, the intersection at the knot should be included; if it
comes from above, it should not be. That is, the intersection should be included for a
segment if the knot is the higher of the two endpoints of the segment. This provides
a convenient rule which can be applied to each segment individually: if an endpoint is
on a scan-line, include its intersection if (and only if) the endpoint is the higher of the
two endpoints. The scan-line sum is added or subtracted according to the slope of the
segment.

The procedure for calculating the log likelihood of a linear segment can now be
stated in detail. Suppose that the segment runs from z0 = (xo, Yo) to Z1 = (X1, Y1).
The procedure is:

57

I

l

11) '

(a) Ifyo>Y1,swapzoandz1.

(b) Set L = 0 .

(c) Perform steps (d) and (e) for all i such that Yo < i - ½ < y1 •

(d) Let y = i - ½ and x = (y - Yo)(x1 - xo)/(Y1 - Yo)-

(e) Add Sii to L, where j = lx + ½J.
(f) If step (a) swapped z0 and z1, negate L .

For a cubic segment, Yk(t) is divided into monotonic sections. There will be at
most three sections, since a cubic polynomial can have at most one minimum and one
maximum. The maximum and minimum, if present, are located by solving Yk(t) = O,
which is quite straightforward as Yk(t) is quadratic. Each monotonic section is then
treated in much the same manner as a linear segment . If one or both endpoints of a
monotonic section are on a scan line, only the higher endpoint is included, as before.
The likelihood for a cubic segment is then calculated by applying a procedure, very
similar to that shown above, to each monotonic section. The difference lies in how x is
calculated in step (d); now x = Xk(t), where tis obtained by solving Yk(t) = y. Solving
the cubic equation for y is performed numerically by the N ewton-Raphson method,
starting from the values of t and y from the previous scan-line. This is quite efficient,
as the previous value oft is usually close to the correct answer. For the first scan-line,
y and t for the appropriate endpoint of the monotonic section are used.

A simple adaptation of the procedure described above for calculating the log likeli­
hood of a boundary gives a procedure for generating a run-length encoded representa­
tion of the region. In fact, it generates a representation of the rotation number function
r(i, j), which is 1 for points inside the boundary and O for points out side, assuming
that the boundary is closed and non-intersecting, and travels anti-clockwise. As before,
the procedure considers the intersections of the boundary with the scan-lines. Suppose
that such an intersection occurs on scan-line i at x-coordinate x. If the direction of
the intersection is upwards, then the rotation number decreases at that point, that is, . -

r(i, j + 1) = r(i,j)-1 where j = lx + ½J. Consequently, a new node should be inserted
in list i of the run-length encoded representation, at x-coordinate j with a change of
-1. Similarly, if the direction is downwards, a nod~ is inserted with a change of +1. If
there is already a node at x-coordinate j, its change is updated, rat her than inserting
another node at the same x-coordinate. Calculating the total log likelihood from this

58

representation is very straightforward. Each node is considered in turn, and -c . Sii is
added to the total likelihood, for a node at x-coordinate j on row i with change c.

3.4.4.2 Optimization procedure

The optimization procedure used here is a hill-climbing optimization which moves
each knot in turn so as to increase the likelihood, until the boundary as a whole
converges to a stable position. The iteration is guaranteed to converge, since each knot
is only moved if that will increase the likelihood, and there is a lower bound on the size
of the increase, given by minx,.X(x):;co IA(x)I.

The overall procedure for optimizing the boundary uses a flag for each knot to
indicate whether it should be moved. Initially, all these flags are set . The procedure
then considers each knot in turn around the circular list. If the flag is set for the knot,
the optimization procedure described in the next paragraph is applied to it. If the
knot does not move significantly (i.e., less than a threshold distance €), then its flag is
cleared. On the other hand, if it does move, the flags for the preceding and following
knots are set, because these knots may be no longer at their optimum position.

Knots with both adjacent segments of linear form are optimized using different
strategies to those used when one of the adjacent segments is of cubic form. When
both adjacent segments are linear, advantage can be taken of the simpler geometry to
make the optimization both more efficient and more thorough.

3.4.4.3 Optimization procedures for linear segments

The procedure for optimizing a knot without adjacent cubic segments involves a
series of one-dimensional optimizations, which can be performed efficiently. Each one­
dimensional_ optimization considers moving the knot along an 'optimization line', and
chooses the position on the optimization line which gives the greatest likelihood. The
optimization line is a straight line segment of limited length which passes through the
current position of the knot. The steps involved in optimizing each knot are therefore:

(i) Choose an initial direction to move the knot.

(ii) Perform up to a specified number (usually 3) of the one-dimensional optimizations
described in steps (iii) to (v); then stop.

(iii) Optimize the knot position in the current direction.

59

r ,,.·

(iv) Optimize the knot position in the perpendicular direction.

(v) If the knot moved less than a threshold distance € in steps (iii) and (iv), then
stop.

(vi) Set the current direction to the overall direction in which the knot moved in steps
(iii) and (iv), and return to step (iii).

The parameter € controls the accuracy of the boundary and the time taken to
converge. Its value is not at all critical. A value of 0.1 pixels gave excellent results
without causing the optimization to become excessively slow.

It is quite important to prevent the boundary from intersecting itself or the border
of the image. In the more general situation with many regions and boundaries, the
boundary being optimized must also be prevented from intersecting any other boundary.
Otherwise, the boundary may turn itself inside out , or go around the region twice, or
include pixels that have already been assigned to the other side of a neighbouring
boundary. There are therefore limits on how far a knot may be moved along a given
optimization line in either direction.

For those knots far from any other boundary segment, there is an arbitrary limit
dmax imposed on the distance moved. The optimization then proceeds more smoothly,
since the knots tend to move in concert towards the correct boun dary. Imposing the
limit also reduces the computation required in each one-dimensional optimization, since
a smaller area of the image is considered.

The optimization line is defined by the direction chosen and the distance limits de­
termined as described in section 3.4.4. 7. The one-dimensional optimization procedure,
described in the next section, finds the position of maximum likelihood along this line.
This maximum is not a global maximum, since the length of the optimization line is
limited. Neither is it strictly a local maximum, since the procedure can pass over a
local maximum close to the knot in favour of a higher maximum further along the
optimization line. Thus the maximum could be called a 'regional ' m aximum. The limit
on the distance moved, dmax, should therefore not be too small, lest the optimization
become stuck at a local maximum. A value of 10 pixels gave good results on the tex­
tures considered. The value used is not critical, but should be at least comparable to
the scale of the texture being considered.

60

The initial direction is chosen by considering all positions around a circle of small
radius, centered on the current position of the knot. However, if the knot is very close
to another boundary segment, the direction parallel to that segment will be chosen
instead; if an adjacent segment is very close to some other knot, the direction of that
segment is used. These considerations ensure that a useful direction is chosen when
the movement of the knot is constrained by other parts of the boundary.

The procedure outlined above works well, and shows little tendency to choose a
solution which is globally below optimum. Partly this is qecause each one-dimensional
optimization uses information in an extended part of the image, namely, all the pixels
adjacent to the boundary between the neighbouring two knots. The sequence of di­
rections used is also important. Considering two perpendicular directions will usually
produce some improvement, even if the initial direction was badly chosen. The overall
direction of movement is then a better estimate of the direction of steepest ascent; the
third optimization can often move the knot much further than the previous two. It is
not possible to choose a direction by considering derivatives, since the derivative is zero
almost everywhere-the likelihood changes in discrete jumps as the boundary moves.

3.4.4.4 Choosing the initial direction

The procedure for choosing the initial direction of optimization considers a small
circle of radius r (usually 2 pixels). The new position of the knot is defined by

I
Xl

I
Y1

X1 + r COS 0

Y1 + r sin 0

(3.9a)

(3.9b)

The procedure then considers each pixel which will be crossed by the boundary as 0
goes from O to 2-rr. For each such pixel, the 0 values at which the boundary will cross
the pixel are calculated and put on a list, along with the associated change in the log
likelihood. This change equals Aij if pixel (i, j) is crossing from outside the boundary
to inside, or -Aij if it is crossing to the outside. The procedure then sorts the list by
0 value, and then proceeds through the list, accumulating the associated log likelihood
changes; the interval of 0 giving the maximum total log likelihood is noted. The centre
of this interval is used as the initial · direction.

61

3.4.4.5 One-dimensional optimization of knot position

Given a knot and an optimization line, the one-dimensional optimization procedure
divides · the optimization line into intervals in which the boundary does not cross any
pixels. There is only a finite number of these intervals, since there is only a finite
number of pixels. The interval is chosen for which the likelihood is highest . The knot
is moved to the centre of this interval, unless it is already within the interval.

Let the knot being moved be knot 1, at position z1 = (x1 , y1), and the preceding
and following knots be knots O and 2, at positions z0 and z2 , respectively. Only the
two segments adjacent to a knot are affected by moving the knot, so the optimization
requires knowledge of the positions of only the adjacent knots. Let Zd be a unit vector
in the direction of the optimization line. Knot 1 will be moved to a position

I
Z1 = Z1 + Ct'.Zd (3.10)

where a is the distance that the knot is moved. The procedure described in sec-
tion 3.4.4. 7 limits this distance, by limiting the range of a values to [Ct'.min, amax].

The procedure then considers each pixel which will be crossed by the boundary as
a goes from Ct'.min to Ct'.max• For each such pixel, the a value(s) at which the boundary
will cross the pixel are calculated and put on a list , along with the associated change in
the log likelihood. The procedure then sorts the list by a value, and proceeds through
the list, accumulating the associated log likelihood changes; the interval of a giving the
maximum total log likelihood is noted. If this range does not include a = 0, the knot
is moved to the position corresponding to the mid-point of t he range.

The mid-point is chosen because it is as far away as possible from the ends of the
range, which correspond to positions where the boundary is crossing a point . This re­
duces problems associated with the computational uncertainty of determining whether
a pixel is on the inside or outside of the boundary. If the range does include a = 0,
then no increase in likelihood is gained by moving the knot. However, if the knot is
near one end of the range, there is an advantage in moving· it to the centre, for the
reasons just mentioned. (This does not prevent the optimization from converging in
practice.)

62

3.4.4.6 Approximate one-dimensional optimization

An approximate technique can be used in the initial stages of the BLM algorithm,
when the current hypothesis is not close to the true boundary. This technique is faster
than the straight-line optimization described above, but less accurate, since it involves
using an approximation to the log likelihood data. Here, the scan-lines of the row-sum
image Sii are approximated by piece-wise linear functions. The procedure to determine
these approximate PWL functions uses a recursive strategy. Initially, the whole line is
treated as one linear segment. If any point deviates by more than a pre-set threshold
from the linear approximation, it is split into two pieces at the point of maximum
deviation, and each piece is checked and split if necessary .

Given this piece-wise linear approximation, the log likelihood will be a continuous
function of a in a straight-line optimization, with the derivative defined and continuous
almost everywhere. The derivative will have jumps where the boundary crosses one of
the breakpoints of the scan-line PWL approximations, and where z~ crosses a scan-line.
As before, the procedure makes a list of these a values, and the corresponding changes
in the derivative, and then sorts the list and processes it in increasing order of a. A
local maximum in the log likelihood will occur where the derivative crosses zero from .
positive to negative values, which can occur either at a jump or in the middle of a
continuous section. The procedure chooses the local maximum with the greatest log
likelihood. Problems can occur if one of the adjacent knots is on a scan-line; if the
boundary segment between it and the knot being optimized became horizontal, there
would be a step change in the log likelihood. To avoid this problem, the knot is moved
slightly to one side of the scan-line.

Since the derivative is defined almost everywhere, it is also possible to calculate the
direction of steepest increase in likelihood. This direction is used as the initial direction
for the optimization line. It is calculated by considering the derivative for movements in
four directions, namely, in both directions parallel to each of the two adjacent boundary
segments. Some care needs to be taken if the boundary is at the position of a jump
in the derivative, because the surface of the approximate log likelihood as a function
of the knot position can be locally composed of up to four planes of different slopes.
Using the derivatives calculated for movements in the four directions, the direction of
greatest derivative can be calculated.

63

3.4.4. 7 Constraining the movement of a knot

The procedure for determining how far a knot can be moved in a given direction is
responsible for ensuring that the boundary does not intersect itself or another bound­
ary. The current implementation of the BLM algorithm allows manual specification of
a bounding polygon which the boundary may not cross. This enables attention to be
restricted to a given part of the image. If no bounding polygon is specified, the rectan­
gular border of the image is used. Thus, there are two boundaries to be considered-the
boundary being optimized and the bounding polygon.

The procedure computes the allowable range of a values , given the knot positions
and the direction of the optimization line. Let the knot being optimized be knot 1;
the segments adjacent to it are then segments O and 1. Suppose that both of these
segments are linear. In outline, the procedure considers all linear segments in the
boundary being optimized, other than segments O and 1, and all linear segments in the
bounding polygon. For each such segment, and for both segment O and 1, the procedure
computes the range of a values for which the two segments will int ersect. The union of
all these ranges is taken. The interval containing zero which is not in this union is then
the allowable range of a values. This range is also limited by the m aximum length of
the optimization line, as discussed above.

Figure 3.9 illustrates the procedure for determining when two linear segments will
intersect. The segment from z0 to z~ will intersect the segment from z1c to Z1c+1 if
z~ lies in the shaded region. Therefore, it is sufficient to find the intersection of the
optimization line with the shaded region. Since the shaded region is always convex,
the optimization line will have only one interval of intersection with the shaded region,
giving one interval of a values for which the segments will intersect.

For the sake of efficiency, a simple test is first performed to determine whether the
two segments can possibly intersect. This involves taking the bounding rectangle of
the segment from z1c to Zk+i, and the bounding rectangle of the quadrilateral defined
by the points z0 , (z1 - ~zd), z2 , and (z1 + ~zd)· If these bounding rectangles do
not intersect, the segments cannot intersect, and the segment from z1c to Zk+1 need not
be considered any further.

The problem of determining when segment O or 1 will intersect a cubic segment is
far more difficult. The cubic segment may not be contained within the sect or defined

64

'I '

Zk+l

I
Optimization I
line Zt)I / #,

• Zd ##

I ##

I ##

I ##

I,#

/ # ---I~# ---

Zo ---

Figure 3.9: Determination of allowable range of positions of z~

by the endpoints in figure 3.9. Determining the sector within which the curve is con­
tained involves finding points at which the tangent to the curve is parallel to the line
from the curve to z0 (assuming that we are considering segment O). Locating these
points involves solving a 5th-order polynomial. Therefore, an alternative approach is
required. Cubic segments can be ignored at this stage, if each pixel considered in the
one-dimensional optimization procedure is checked to ensure that it is on the expected
side of the boundary. If it is not, it must be on the other side of a cubic segment , and
its corresponding a value is therefore too large. In this way, the allowable range of
a can be determined during optimization. The check for each pixel can be performed
efficiently using a run-length encoded representation of the current region. The test
using bounding rectangles can still be employed; pixels need only be checked during
optimization if there is at least one cubic segment whose bounding rectangle intersects
the bounding rectangle of the quadrilateral defined above.

3.4.4.8 Optimizing cubic segments

Optimizing a knot where one or both adjacent segments are of cubic form is more
difficult than when both segments are linear, because it is not possible to take advantage
of the geometry in the same way. The current implementation generally finds the correct

65

r~

maximum, but is rather slow. Further research into efficient procedures for optimizing
cubic segments is needed, but this falls outside the scope of the current work, whose
primary aim is to demonstrate the improved results obtained with the new approach
rather than to maximize the efficiency of implementation.

By analogy with the linear case, the approach initially considered . was to make
continuous changes in the parameters of a cubic segment, and determine when the
segment will cross each pixel. However, this is not possible in pract ice. Suppose that
we are considering segment k, defined by knot positions Zk and Zk+t, and initial and
final velocities Uk and vk. We wish to continuously modify this segment, so let us define
new values of these parameters by

z~ - Zk + a 8zk (3.lla)

u' k - u1c + a Suk (3.llb)

v' k - Vk + a 8vk (3.llc)
I

Zk+l + a 8z1c+1 (3.lld) Zk+l --

This corresponds to a one-dimensional optimization within the 8-dimensional space
defined by the parameters, with 8zk etc. defining the direction of movement, and a
defining the size of the movement as before. The new position of the segment is then
given by

z~(t) = z1c(t) + a 8zk (t) (3.12)

where 8z1c(t) is defined from 8z1c, etc., in the same way as Zk (t) is defined from z1c, etc.
For a given pixel at location z, we then wish to determine for which a there exists a
t such that zk(t) = z. In its essential form, the problem can be stated as follows: for
which a do the equations

Pt (t) + a qt (t)

P2(t) + aq2(t)

0

0

(3.13a)

(3.13b)

have simultaneous solutions, when Pt, p2 , q1 , and q2 are cubic polynomials? Multiplying
the first by q2 and the second by qt and subtracting gives the equation:

Pt (t)q2(t) - P2(t)qt (t) = 0 (3.14)

This is a sixth-order polynomial equation, and is consequent ly difficult to solve. It
could be solved numerically, but it must be solved for each pixel in the area swept out

66

,' I'

by the segment as it moves; this approach would be extremely time-consuming, and
was therefore rejected.

The approach which has been adopted involves two elements:

(a) a procedure which uses an estimate of the deviations of the current boundary
from the true boundary to update the segments, and

(b) a systematic procedure for searching the parameter space at a knot.

Rather than considering one cubic segment, we consider one knot, and the param­
eters which affect the curve near the knot. These parameters are the knot position zk,
and either or both of the initial velocity Uk and the previous final velocity vk-l (where
v _1 = VN-i), depending on which segments are cubic. There are four possible cases:

1. Two cubic segments, without slope continuity.

2. Two cubic segments with slope continuity.

3. A cubic segment followed by a linear segment.

4. A linear segment followed by a cubic segment.

Procedure (a) above estimates the deviations of the current boundary from the
true boundary using the procedure for finding protrusions to check in the consistency
test. This procedure, described in section 3.4.5.1, considers displacing short pieces
of a boundary segment in the direction perpendicular to the segment , and finds the
most likely position. When the current boundary is rather far from the true boundary,
this procedure can give a reasonable indication of how the boundary shape should be
changed. The protrusions determined by this procedure can be seen as outlining a
boundary shape of higher likelihood.

Given this irregular, but more likely, boundary shape, procedure (a) above then
takes the x- and y-components of the distance between the segment and the protrusions,
as a function oft, for both of the segments adjacent to the knot. The t values for the
segment before the knot are re-scaled to run from -1 to 0, giving the x- and y-deviations
as a function of t, with t running from -1 at the previous knot to 1 at the following
knot. The next step is to perform linear least-squares fits independently in x and y,
using the available basis functions. (The set of basis functions depends on which of
the above cases applies.) The parameters of the fitted functions give the changes to be
made in the parameters defining the two segments.

67

Ill'

The likelihood of the boundary with the changed parameters is then compared with
the original likelihood. If it is greater, the changes are accepted. If not, the changes
are used to define an optimization line (in a space of up to six dimensions); several
positions on the line are tested, and the position giving the greatest likelihood increase
is accepted. If none of the positions give an increase, the search procedure described
below is invoked. Each separate position that is tested involves re-calculating the
likelihood of the two segments.

This procedure works rather well when the current boundary is remote from the
true boundary, but as the fit improves it becomes inappropriate in some ways. The
most significant problem is that the x- and y-deviation functions to be approximated
are not independent, and are not fixed. Changing either of the x- and y-polynomials
will change the value oft at which a particular protrusion occurs, and therefore distort
both of the deviation functions. The procedure is trying to hit a moving target. This
problem is observed particularly when one segment needs to be extended.

Another problem arises because there are infinitely many functions Zk(t) represent­
ing a given curve, but it is possible that only one of them can be represented in cubic
polynomial form. Even if the deviation functions represent accurately the difference
between the true boundary and the current boundary, they still only represent one
possible parametrization of the true boundary, which may not be appropriate for cubic
representation. The deviation functions do not necessarily represent the true boundary,
either, because they tend to be affected by variations in the textures in the regions.

Other significant problems arise because the log likelihood does not, in general,
fall off quadratically as the boundary is displaced from the true boundary. Rather,
it usually falls off linearly, assuming homogeneous regions, and it may have different
slopes on the two sides of the true boundary. The unweighted least-squares criterion
therefore gives too much weight to some protrusions, and not enough to others, and
consequently cannot reliably determine the best direction to move when the current
boundary is close to the true boundary.

Consequently, a systematic search procedure is used to search the space of parame­
ters at the knot, once the curve-fitting procedure can produce no further gain. Although
the space can be up to six-dimensional, the search is always four-dimensional. Six pa­
rameters only apply when both segments are cubic, and the slope is not continuous; in
this case, the initial velocity Uk and the previous final velocity Vk-l can be optimized

68

[

separately for each value of the knot position Zk considered, because each velocity only
affects one of the segments.

The search procedure considers a range of positions for the knot, defined by a set
of square grids with decreasing spacing. These grids consist of nine points , centered
on the original knot position. At each position, a somewhat similar search pattern is
used to determine the best values for Uk and Yk-l; if they provide an improvement in
likelihood over the original value, the search terminates. The spacings used start at
a maximum value (usually 10 pixels) and decrease by a factor of 2 each time until a
minimum value is reached (usually 0.1 pixels). The central position only needs to be
considered on the first iteration.

The searches in the two-dimensional subspaces for Uk and Yk-l also consider a set
of square grids with decreasing spacing. These searches are slightly different from the
search for the knot position, in that the second and subsequent grids are centered on
the best position found with the previous grid, and the search proceeds to the smajlest
spacing. The maximum spacing is usually 30 pixels, and the minimum 0.3 pixels. The
spacings are three times as large for the velocities as for the knot positions, because
this corresponds to equal spacings for all four of the control points of the equivalent
Bezier spline.

The techniques described above for preventing the boundary from intersecting it­
self are not applicable when the knot has an adjacent cubic segment, because of the
difficulties of determining when a cubic segment will intersect another segment as its
parameters are changed. Instead, the rotation number of each pixel is checked; if the
rotation number is other than O or 1 for any pixel inside the bounding polygon, or other
than O for any pixel outside it, that combination of parameters must be rejected. This
test can be performed quite efficiently if run-length encoded representations are pre­
calculated for the bounding polygon, and for those segments of the boundary that are
not changing. As each combination of parameters is considered at a knot, a run-length
representation of the two adjacent segments can be calculated and checked.

3.4.5 Consistency test

The boundary obtained by the likelihood maximization step will be the best obtain­
able with the given number of segments, but the number of segments may be inade­
quate. The next step is therefore to test whether the boundary hypothesis is consistent

69

ii;

with the image data. The consistency test was described in outline in section 3.2.3;
this section considers implementation of the test in more detail.

In practice, the test is applied to each segment in turn. The three basic elements
of the test are:

1. Find a patch to test.

2. Calculate the log likelihood ratio statistic for the patch.

3. Calculate the mean and variance of the log likelihood ratio statistic under the
null hypothesis, and decide whether the null hypothesis can be rejected.

3.4.5.1 Finding patches to test

The procedure for finding patches to test searches along the length of the current
boundary segment for areas adjacent to the segment which are more likely to belong
on the other side. This procedure is as follows:

1. Divide the segment into short pieces.

2. Consider displacing each piece sideways (i.e., in the direction perpendicular to its
length), and choose the most likely position. This creates a 'protrusion' on the
boundary.

3. Collect together adjacent protrusions on the same side of the boundary to form
patches to be tested.

Dividing the segment into pieces. Dividing the segment into short pieces is simple
if the segment is linear; the length of the segment is divided evenly into a number of
pieces, with the number chosen so that the length of the pieces is close to a pre-set
value (usually 5 pixels). This value is not critical; smaller values generally involve more
computation. If the value is much too large, the protrusions will not be able to follow
details of the true boundary.

Cubic segments are divided into pieces which can be approximated by straight lines.
A standard length for the pieces is determined as described above. The algorithm then
starts at the beginning of the segment, and takes a piece of the standard length. If
this piece can be approximated by a straight line (in the sense described below), it is
accepted; otherwise the length is halved until it can be approximated by a st raight line.

70

The next piece is then taken, starting at the end of the previous piece, and so on until
the end of the segment is reached.

Each piece is described by four vectors: two giving the starting and ending points,
and two giving the direction perpendicular to the curve at the starting and ending
points. For linear segments, these perpendicular directions are const ant, whereas they
change along the length of a cubic segment. The endpoint and the perpendicular direc­
tion at the endpoint equal the starting point of the next piece and the perpendicular
direction there.

A piece of a cubic segment can be approximated by a straight line if a line segment
can be found which makes identical pixel assignments to the cubic piece, that is, if
the area enclosed by the cubic piece and the approximating line contains no pixels.
The approximating line is determined as follows: first, a line between the endpoints
of the cubic piece is tested. In most cases, it will be an adequate approximation. In
some, however, the cubic piece will curve around to enclose some pixels between the
cubic and linear pieces. In such cases, the endpoints of the linear piece are displaced
in the perpendicular directions until the linear piece crosses all of the enclosed pixels.
If this causes the linear piece to also cross other pixels, the length must be reduced as
described above. Otherwise, the linear piece is as accepted as an approximation of the
cubic piece. Using the approximate linear piece means that the piece can be described
by its endpoints alone.

Determining protrusions. The pieces into which the segments are divided then
form the basis for finding areas adjacent to the boundary which are more likely to
belong on the other side. These areas are called protrusions, and are defined as fol­
lows. Consider a piece of a segment, described by its endpoints z1 and z2, and its
corresponding perpendicular directions w 1 and w 2 . (These directions point towards
the outside of the boundary.) A protrusion is the area enclosed by z1 , z~, z;, and
z2, where z~ = z1 + h w 1 and z; = z2 + h w 2 for some h; here h is the height of the
protrusion-see figure 3 .10.

The task of finding the protrusions involves determining the value of h for which the
log likelihood of the protrusion is a maximum. The log likelihood of the protrusion is
evaluated from its boundary, using the procedures described above for evaluating the log
likelihood of a ~oundary. If h is positive, the area of the protrusion is positive, because

71

i1

boundary segment

Figure 3.10: Outline of a protrusion

its boundary proceeds anti-clockwise; the pixels within the protrusion are currently
assigned to region 2, and the log likelihood of the protrusion will be positive if the
pixels in it are more likely to belong to region 1. On the other hand, if h is negative,
then the boundary of the protrusion proceeds in a clockwise direction, and the log
likelihood of the protrusion will be positive if the pixels in it are more likely to belong
to region 2. The protrusion can be seen as a perturbation in the boundary shape; we
seek the perturbation which will maximize the log likelihood of the boundary.

The best value of h is determined by simply considering a range of values between
-hrnax and hrnax, where hmax is a pre-set parameter. For each value of h, the log
likelihood is calculated, and the value of h that gives the highest likelihood is t aken.
An alternative strategy is to seek only a local maximum, by proceeding out from h = 0
only while the log likelihood is increasing. The relative merits of these two strategies are
discussed in section 5.1.3.2. As each value of h is considered, it is important to ensure
that the protrusion does not intersect some other part of the boundary or the bounding
polygon; therefore, any pixels in the protrusion that are not on the expected side of the
boundary are removed, as are any that are outside the bounding polygon. This can be
done efficiently using run-length encoding of the regions concerned. The usual value for
hmax was 10 pixels. This parameter essentially controls a trade-off between sensitivity

72

l~!

of the consistency test and computation time; larger values allow larger patches, at the
expense of slower operation. Larger patches can be more reliably tested. The step-size
for h was always 1 pixel, because this ensures that more pixels will be included in the
protrusion for each step in h.

Collecting protrusions together. Each protrusion so obtained could be tested; but
since th~ test is more reliable for larger areas, the protrusions are collected together into
'clumps', which are simply contiguous groups of protrusions that are all on the same
side of the boundary. These clumps form the patches to be tested. The log likelihood
of each patch is the sum of the log likelihoods of the protrusions that form the patch.

3.4.5.2 Calculating the log likelihood ratio statistic

Suppose a patch P is to be tested, and that it belongs to region 1. The null hypo­
thesis H 0 is that the pixels in P were generated from the distribution described by
p1 (x), and the alternative hypothesis HA is that they were generated from the distri­
bution described by p2 (x), where p1 (x) and p2(x) are estimates of the pixel intensity
distributions for regions 1 and 2. The log likelihood ratio statistic for this test is

l ln (1:)
L ln(p1(Iij)) - L ln(p2(Iij))

(i,j) EP (i ,j) EP

~ .\·· L...t t J
(i ,j) EP

(3.15a)

(3.15b)

(3.15c)

This statistic is therefore just the log likelihood for the patch. If the patch belongs to
region 2, the expression for l is the negative of that shown above.

At this point, the pixels are still assumed to be independent. The correlation
between pixels is taken int_o account later, in setting the -threshold for rejection of H0 •

3.4.5.3 Setting the threshold

At this stage, we h ave a patch P currently assigned to region i (where i = 1
or 2), and its log likelihood r atio statistic l. The likelihood ratio test rejects the null
hypothesis, thus declaring the segment to be inconsistent with the image data, if l < K,
where K is a threshold set so as to give the desired false alarm rate for the test. In

73

general, setting this threshold requires knowledge of the distribution of l when the null
hypothesis is true. This distribution is rather difficult and time-consuming to evaluate,
especially when the pixels are not independent.

For this reason, the distribution of l is assumed to be Gaussian. This assumption
allows the threshold to be set on the basis of the mean µ and variance o-2 of the
distribution, because a Gaussian distribution is characterized completely by its mean
and variance. These will depend on the shape and size of the patch and the correlation
between pixels. The methods used for calculating them are detailed below.

In principle, the threshold is then set at a given number of standard deviations from
the mean, but in practice, the likelihood ratio statistic is normalized according to the
formula

v=-(l-µ)
0-

(3.16)

The null hypothesis is rejected if v is greater than a fixed threshold, here called siglev
-because it sets the significance level of the test. This threshold is independent of the
size and shape of the patch being tested and the t_extures in the regions. The usual
value is 5.0; section 5.1.3.2 discusses the choice of this value.

It remains to estimate the mean µ and variance o-2 of the distribution of l under the
assumption that H0 is true. The mean is easy to calculate, since it is proportional to
the number of pixels in the patch. The variance is more difficult, since the pixels are
correlated. If they were independent, the variance would be proportional to the number
of pixels. However, independence cannot be assumed here; assuming independence
usually gives values of v which are too large, because adjacent pixels are positively
correlated in most textures.

Let µ 1 and µ 2 be the mean values of the A-image in regions 1 and 2, respectively.
Then

µi = E Pi (x) A (x) (3 .1 7)
xEG

where G is the set of quantized grey levels. If the patch Pis assigned to region 1, then
the meanµ is given byµ= IPlµ1 , where IPI is the number of pixels in P. If the patch
is assigned to region 2, then µ = - IP lµz.

The log likelihood ratio l is the sum of pixels in the A-image, and is thus the sum
of a set of correlated random variables. The variance of such a sum may be calculated
from the variances and covariances of the individual random variables. Suppose we

74

l

11,

have N random variables xi; their sum is then

N

S= Lxi
i=l

with variance
N N

Var(S) =LL Cov(xi, x3)
i=l j=l

(3.18)

(3.19)

where Cov(xi,x1) is the covariance of Xi and x3 (and therefore Cov(xi,xi) = Var(xi)).
We therefore require the covariances of pixels in the .:\-image. Since the texture in each
region is assumed to be homogeneous, the covariance of two pixels should depend only
on the vector separating them, not on their position. That is,

Cov(Aij, Akz) = Rn(i - k,j - l) {3.20)

in region n, where Rn is the autocovariance function for the .:\-image in region n. The
variance of l for patch Pis therefore given by

o-2 = L L Rn(i - k,j - l)
(i,j)EP (k,l)EP

(3.21)

These autocovariances are estimated in the initial phase of the algorithm according
to the formula

Rn(i, j) = I:(k,l)ESn,(k+i,j+l)ESJ Akl - µn)(Ak+i,j+I - µn)
I:(k,l)ESn,(k+i ,j+l)ESn 1

(3.22)

where Sn is the area used for evaluating statistics for region n. They are estimated
only for O < i < M and Iii < 1vf, where Mis a parameter, elsewhere called autodist ,
which specifies the maximum scale of intensity variation which will be considered to
be texture. This parameter is discussed further in section 5.1.3.2. It is not necessary
to estimate Rn(i,j) for negative values of i, because Rn(i,j) = Rn(-i, -j).

Equation (3.21) can be rearranged as

M-1 M-1

o-2= L L N(i,j)Rn(i,j) (3.23)
i=l-M j=l-M

where N is defined by

N(i,j) = L 1 (3.24)
(k,l)EP,(k+i,j+l)EP

This can be calculated efficiently from a run-length encoded representation of P.

75

3.4.5.4 Other applications of consistency test-confidence measures

The consistency test can be used to obtain information about the clarity and sharp­
ness of the boundary, expressed in terms of confidence intervals on the boundary po­
sition. These confidence intervals are obtained by considering a range of positions for
a given section of the boundary, and applying the consistency test at each position.
This has been implemented for knots, for single segments, and for sections of segments.
The confidence intervals represent information which is potentially useful to later pro­
cessing stages. If the data are unclear, a broad range of positions may be acceptable,
indicating that later processes have some freedom in hypothesizing new positions to
facilitate interpretation.

Confidence contours. For a knot, a confidence contour is obtained which indicates
the area of acceptable positions for the knot. The knot is displaced outwards along
radial lines until one of the adjacent segments becomes inconsistent . The radial lines
are spaced at equal angles, thus providing a specification of the contour in polar form.
Examples of these contours are given in chapter 4. Figure 3.ll(a) shows how the
boundary is deformed as the knot is displaced. .

Rather than simply stepping out in small steps along each radius until the boundary
becomes inconsistent, a binary search procedure is actually used. This is much more
efficient, but it makes the assumption that the area of acceptable positions is connected,
that is, that there exists a radial distance such that all closer distances are acceptable,
and all further distances are not. The initial phase of this procedure searches outwards
for a distance which is inconsistent, by starting at a distance of 1 pixel and doubling
it until an inconsistent distance is found. Thereafter, the distance half-way between
the largest acceptable and smallest inconsistent distances is tested. If that distance
is acceptable, the acceptable distance is updated, otherwise the inconsistent distance
is updated. When the acceptable and inconsistent distances become acceptably close
(i.e., within 0.1 pixels of each other), the former is taken as the radius of the confidence
contour at that angle.

'Cornerness' measure. The confidence contour for a knot can represent rather a
large amount of data. It would be extremely useful to be able to extract from the
contour a 'cornerness' measure, that is, an indication of whether the knot represents

76

' f

~
~
~
~
~
~
~
~
~

(a)

~
~
~

~

,

~
~

, ,

~
~
~
~

, , , ,

(b)

~
~
~
~

, , , ,

I
I
I
I
I
I
I
I

(c)

I
I
I
I
I
I
I
I

Figure 3.11: Knot movements for confidence contours and intervals: (a) knot confidence
contour, (b) segment confidence interval, (c) confidence interval for sect ion of segment .

77

' di ul ' < 1 > perpen c ar
directions

Figure 3.12: Directions used in determining cornerness measure

a corner in the true boundary, or whether it is required in order to accommodate a
smooth change in angle of the true boundary. Knots which do not represent corners
should be able to be displaced further along the line of the boundary t han perpendicu­
lar to it. The cornerness measure is therefore defined here as the ratio of the maximum
acceptable distance in the directions perpendicular to the boundary to the maximum
acceptable distance in the directions along the boundary. These dir ections are illus­
trated in figure 3.12. Let 01 and 02 be the angles that the two segments make to the
horizontal at the knot. The directions 'along' the boundary are then 01, 01 + 1r, 02 ,

02 + 1r, (01 + 02)/2, and (01 + 02)/2 + 1r. The directions perpendicular to the boundary
are (01 + 02 + 1r)/2 and (01 + 02 + 31r)/2. Results obtained with this measure are given
in chapter 4.

Confidence intervals for segments. The procedure for obtaining a confidence in­
terval for the position of a segment moves the segment until either the segment or one
of the two adjacent segments becomes inconsistent, as illustrated in figure 3.ll(b). The
segment is moved by displacing each endpoint by the same distance in the direction
perpendicular to the segment at the endpoint. These directions will be identical for a
linear segment, but different in general for a cubic segment. Once again, the binary

78

1••·

i1

search procedure described above is used. The segment is moved both inwards and
outwards, yielding a two-sided confidence interval which provides a useful indication of
both the clarity of the image data and the asymmetry between the distributions in the
two regions.

Confidence intervals for sections of a segment. The confidence interval obtained
for a segment refers to the segment as a whole. In some situations, it is useful to obtain
a confidence interval for a section of a segment, so that the clarity of the boundary at
different points along the segment can be assessed. The section of the segment to be
considered is defined by two points on the segment. At each of these points, two extra
knots are temporarily added, which allows the section to be displaced sideways without
affecting the rest of the segment, as illustrated in figure 3.11(c). Once again, the binary
search procedure is used to determine the maximum acceptable displacement to each
side, but in this case, both the displaced section and the two segments joining it to the
original segment must be acceptable.

The confidence intervals and contours have been defined above for the movement
of a single knot or segment, or section of a segment. There are many ways in which
the boundary could be deformed, and confidence intervals could be obtained for any of
them. Higher-level processes in an overall image interpretation system could therefore
request that any given deformation could be tested in this manner. Such a facility
should provide a very useful check to prevent these processes from hypothesizing inter­
pretations which are contradicted by the image data.

3.4.6 Elaboration and simplification

The elaboration and simplification steps have only been implemented for piece-wise
linear boundaries. The specific difficulties in implementing these steps when the option
of using cubic segments exists are discussed in detail in section 5.1.3.3. The elaboration
step is quite simple for piece-wise linear boundaries: a new knot is added at the middle
of each inconsistent segment. This simple strategy gives good results , and is discussed
further in section 5.1.3.3.

The algorithm used in the simplification step considers each knot in turn. If it
passes an area test, described below, then the current state of the boundary is saved
and the knot is removed; the two adjacent segments are replaced by a single linear

79

.
I

111,

n i

segment between the adjacent knots. The boundary is then re-optimized and tested
for consistency. If it is ·not consistent, the previous state of t he boundary is restored.
The algorithm then proceeds to the next knot. The algorithm terminates once there
are three or fewer knots or when all knots have been considered. The simplification
step is discussed in more detail in section 5.1.3.4 .

The area test is designed to detect quickly those knots which are likely to be essential
in the boundary description. This test is based on the area enclosed by the triangle
formed by the knot and the two adjacent knots. If the area is large, then the knot
is most likely necessary in the boundary description, but if it is small, it may not
be necessary, and it is a candidate for elimination. The threshold area is a settable
parameter; its usual value is 200 pixels, but the value is not critical. Increasing this
value will increase the computation time required. If it is too small, the boundary
description obtained may in some cases be slightly more complex than required.

3.4. 7 Split-and-merge procedure

The BLM algorithm requires sample patches for the two regions adjacent to the
boundary of interest. These patches must be indicated by some process which detects
the difference between the regions. In the current implementation, a split-and-merge
algorithm is used for this purpose. The algorithm used here differs from the classical
algorithm (Horowitz and Pavlidis, 197'6) in the homogeneity test used . In keeping with
the spirit of the BLM approach, the test used involves a likelihood ratio test of the
hypothesis that each sub-region of interest belongs to t he joint region. It also differs in
that the 'merge' phase corresponds to the 'grouping' phase of Horowitz and Pavlidis,
and their 'merge' phase is not used. The merge phase used here merges adjacent regions
if they are sufficiently similar, and will thus eventually merge the four sub-blocks of a
larger block if necessary; a separate step to merge these sub-blocks is not required.

The 'split' phase of the procedure begins with the image split into a pre-specified
number of blocks (usually 16). Each block is recursively split until each sub-block is
homogeneous or has reached a given minimum size (usually 16 pixels square) . The
initial block can be initially split to a given number of levels to reduce the processing
time required, because the homogeneity test is slower on the larger blocks. The homo­
geneity test on a given block first estimates the distribution of pixels in the block. For
each sub-block, it then tests the null hypothesis that the pixels in the sub-block were

80

111

generated by the distribution estimated for the whole block, against the alternative
that they were generated by the distribution estimated from the sub-block alone. If
the null hypothesis can be rejected for any sub-block, the block is split.

Two different forms of this test were used, corresponding to different assumptions
about the distribution of pixel intensities. The first form used essentially the same test
described above for the consistency test. That is, the pixel intensity distributions in the
two regions were estimated from their histograms, autocovariances were calculated, and
a normalized log likelihood ratio was obtained and compared with a threshold. This
form of the test was rather slow, because the autocovariances have to be calculated for
each sub-block, since they depend on the function .X(x) and therefore on the histograms.
In addition, the results of the test were sometimes counter-intuitive, because no account
was taken of the brightness difference between pixels which fall into different bins of
the histograms.

Consequently, a simpler form of the test was used, based on the assumption that
the distribution of pixel intensities was Gaussian. The null hypothesis was rejected if
the mean of the sub-block was outside the range expected from the mean and autoco­
variance of the pixels in the larger block, that is, if

µs - µI> siglev V=I
O"

(3.25)

where µs is the mean pixel intensity in the sub-block, µ is the mean intensity in the
larger block, and a-2 is the variance expected for the mean of the sub-block, given
the autocovariances of the pixels in the larger block. This test is faster than the one
described previously (because the autocovariances for the larger block need only be
calculated once), and it also gives results which are more in accordance with human
perception.

The homogeneity test has two important parameters . The first is siglev, which
was set at the relatively low value of 2.0 (standard deviations from the mean) in the
split phase, to ensure that blocks were split when required; failing to split a block is a
more serious error than splitting it unnecessarily, since the latter can be corrected in
the merge phase. A higher value is used in the merge phase. The second parameter is
autodist, which controls the scale of intensity variation which is considered texture.
Values of between 2 and 4 were appropriate for the textures considered. Some prob­
lems were encountered in estimating the autocovariances for small blocks. When the

81

[

hi

width of a block was less than approximately four times autodist, the estimates could
be unreliable, leading to variance estimates which were too small, and in some cases
negative. Therefore, the value of autodist was dynamically reduced to be at most one
quarter of the width of the block being tested.

The merge phase considers pairs of adjacent regions, and merges them if both
regions could belong to the joint region. Therefore, the statistics of the joint region
are estimated, and the test described above is applied to each region, to test the null
hypothesis that the pixels in the region were generated by the distribution estimated
for the joint region. If the null hypothesis is accepted for both regions, the two regions
are merged. A higher threshold for rejection of the test is used in the merge phase than
that used in the split phase, to ensure that regions can be merged when appropriate.
A value of 5.0 (standard deviations from the mean) gave good results.

The merging procedure starts with each block forming a separate region. It then
considers each block in turn, and attempts to merge it with each block that adjoins on
the right-hand side or below, unless they already belong to the same region. However,
before merging any pair of blocks, it attempts to merge the second block with any
blocks that adjoin it, using a lower threshold. The threshold is set to the value of v
obtained from the first two regions. Thus, the second block will only be merged with a
third if the distribution of the second block is closer to that of the third than that of the
first. This proceeds recursively, attempting to merge the third with blocks adjacent to
it, using an even lower threshold, and so on. If the second block does in fact merge with
any adjoining regions, it is necessary to recalculate v for the first and second regions;
if it is still less than the threshold, the two regions are then merged. This procedure
tends to merge regions which are very similar early in the process, and thus creates
larger regions for the later tests, which are then more reliable. It gave better results
than the more straightforward procedure of merging two regions as soon as they pass
the test.

This formulation of the split-and-merge algorithm has some interesting features.
The first is that it explicitly takes account of the distribution of pixel intensities in a
texture, and of the correlation between pixels. The values of the thresholds for splitting
and merging are therefore largely independent of the textures considered. The other
interesting feature is the merging strategy, which gave results which are less dependent
on the order in which the blocks are considered than the straight-forward strategy.

82

Typical results from this procedure are given in chapter 4.

83

Chapter 4

Results

Previous chapters have demonstrated via examples that convolution edge detectors
· give inaccurate and confused results when applied to textured imagery. Further ex­

amples are given here of the results obtained with the Marr-Hildreth and Canny edge
detectors, together with a quantitative evaluation of their accur acy. The consistency
test described in the previous chapter is applied to the results from the convolution
edge detectors, and as might be expected, it shows that the boundary descriptions
obtained with these detectors are often inconsistent with the image data.

In contrast, the BLM algorithm produces excellent result s on a variety of images.
Results are shown for nine artificial images and four real-world images, including some
which do not conform to the assumptions made in the current implementation of the
BLM algorithm. These results are generally in very good agreement with human per­
ception, and also demonstrate some interesting characteristics of the BLM algorithm.

The artificially generated images used have a single boundary between two homo­
geneous textured regions. The textures in the regions were nat ural textures, obtained
from the set of digitized Brodatz textures (Brodatz, 1966) in the image data base dis­
tributed by the University of Southern California Image Processing Institute (Weber,
1983). Use of these artificially generated images has the advantage that the correct
boundary position is known, so the accuracy of the reported edge position can eas­
ily be assessed. These images generally have a clear, sharp boundary which humans
can locate accurately. The real-world images chosen each have a boundary between
extended regions of texture. They include some images which were digitized from neg­
atives during the course of this study, and also some images from the USCIPI data
base. Each image has a descriptive name, which is shown in a 'typewrit er' font (e.g.,

84

gmcorner). The name is intended to be descriptive; for example gmcorner comes from
'Grass Multiplied (by half) with a Corner'.

4.1 Evaluation of edge detector results

The two edge detectors which have been implemented, namely the Marr-Hildreth
and Canny edge detectors, were described previously in chapter 2. Both edge detectors
provide as output a map of edge pixels and their strengt hs. Many of the problems
associated with the use of these edge detectors can be seen simply by a visual inspection
of these maps, and comparison with the original image. The deficiencies which are
visually obvious are confirmed by the quantitative measures of accuracy. Two test
images are used, one artificial image (gmcorner) and one real-world image (rock). One
further real-world image (lenna) is used as a visual check that the edge detectors have
been correctly implemented.

In most cases, these edge maps are displayed as an image in which the edge pixels
are shown as coloured points overlayed on · the original image. This representation
allows comparison of the location of the edge pixels with the true edge (or at least, the
edge perceived by human observers). The edge maps must be thresholded for display
in this form; the threshold has in each case been set manually at a level which gives
the best results, suppressing the responses to texture as far as possible without causing
the edge string of interest to break up.

In some cases, the edge maps are also shown in the form of a grey-scale image, in
which edge pixels have an intensity proportional to their strengt h . No thresholding is
required with this representation, but for display purposes t he range of edge strengths
has been truncated at the high end so that the weaker responses ar e visible. -With this
representation, the strength of the edge string of interest can be compared with the
strength of responses to textural variations.

85

4.1.1 Quantitative tests of accuracy _

Three quantitative tests are described below, which test the accuracy with which
the boundary has been located. These are:

1. Number of misclassified pixels

2. Mean absolute error

3. Consistency

These tests are appropriate when a particular boundary of interest can be identified.
Tests 1 and 2 above require knowledge of the true boundary, and are applied to the
results from image gmcorner. The consistency test can be applied with or without
knowledge of the true boundary, provided that appropriate regions on each side of the
boundary can be identified for evaluating the necessary statistics.

4.1.1.1 Tracking edges and obtaining a segmented image

All three tests require that the boundary be represented in the form of a region mask
(i.e., a segmented image). Deriving this representation from the edge map proceeds in
three steps:

(a) Isolate the edge pixels corresponding to the boundary of interest,

(b) link them together to form a continuous chain, and

(c) form a region mask by determining, for each pixel in the image, which side of the
chain it is on.

In the case of the artificial images, it might be expected that the edge pixels cor­
responding to the boundary of interest will be much stronger than all the others, and
could therefore be isolated with a thresholding operation (possibly with hysteresis, as
suggested by Canny (1986))-. However, .this is not generally true, especially at the
smaller scales, as inspection of figures 4.2 and 4.12 shows. Therefore, where necessary,
the string of edge pixels closest to the true boundary has been identified manually.
This bypasses the inadequacy of the edge detectors in indicating the difference between
a globally significant edge, and an edge due to textural variations, thus favouring the
edge detectors.

Once a string of edge pixels has been isolated by thresholding and manual selection
(if necessary), the edge pixels are linked together by a relatively simple procedure. This

86

I
t
I

I

~I :

involves starting at one end, and proceeding by stepping to neighbouring pixels until
the other end is reached, thus producing a chain-code representation of the boundary.
Gaps are bridged by searching out in squares of increasing size until another edge pixel
is reached. The maximum size of these squares is limited, so that the edge tracker does
not jump across to other edge strings. If the end of the string is sufficiently close to
the beginning, the chain is closed by bridging from t he end to the beginning.

Converting the chain-coded boundary so obtained to a region mask requires that
the boundary be closed. If the boundary is not closed, as in the case of images where
the boundary extends from one side of the image to t he other, then it is arbitrarily
closed by manually connecting the ends with straight lines to one of the margins of
the image. The procedure for constructing the region mask looks at the number of
times that the chain crosses the scan-line to the right of a given pixel. The -rule is
that the pixel is 'inside' if the number of times the chain crosses the scan-line to the
right of the pixel, going upwards, differs from the number of times that it crosses going
downwards. An arbitrary decision is made about the edge pixels, by displacing the
chain a small amount upwards, and a smaller amount to the left (in much the same
manner as described for the parametric boundaries in section 3.4.4.1).

Where the true boundary extends to the borders of the image, the string of edge
pixels reported will usually not extend to the borders of the image, due to the problems
that the edge detectors have in the regions of the image where the convolution mask
extends beyond the borders. In such cases, the evaluation techniques are restricted to
considering the range of rows or columns spanned by the string of edge pixels, thus
bypassing this deficiency of the edge detectors.

4.1.1.2 Description of quantitative tests

For the artificial image gmcorner, it is possible to compare the region mask obtained
as described above with the correct result, which is available in the form of the mask
used to generate the image. The simplest comparison is to count the number of pixels
classified differently. This can then be divided by the length of the boundary to give
the mean absolute error (i.e., the average distance of the reported boundary from the
true boundary).

Just as the results from the edge detectors do not satisfy the accuracy and simplicity
criteria, they also do not satisfy the consistency criterion. Applying the consistency

87

n.

test requires that patches be identified for testing. These patches are connected groups
of pixels which are all on one side of the reported boundary. Two methods have been
used to obtain these patches. The first method takes connected groups of pixels which
are classified differently by the correct and reported boundaries. Each such group is
tested as described in section 3.4.5.

The second method does not require knowledge of the correct result. Instead, the
reported boundary is compared with a more likely boundary. T his involves finding
patches on each side of the boundary which are more likely to belong on the other
side. This is done using a procedure which attempts to maximize the likelihood of the
reported mask by iteratively re-classifying pixels that have a neighbour in the other
region. Pixels are only re-classified if they are more likely to be in the other region, and
if re-classifying them could not split either region into two pieces. This procedure is
iterated until no more pixels can be re-classified. It will generally increase the likelihood
substantially, but it is not guaranteed to find the global maximum of the likelihood. As
before, connected groups of pixels which are classified differently in the reported and
optimized masks form the patches for testing.

As this test does not require knowledge of the true boundary, it can be applied to
results obtained from real-world images. Thus, the accuracy of an edge detector can be
evaluated without knowing the true boundary. This is in contrast to previous methods
for evaluating accuracy, which require knowledge of the true boundary (e.g. , Abdou
and Pratt, 1979).

4.1.1.3 0 btaining statistical characterizations

The consistency test requires statistical information about the regions adjacent
to the boundary of interest. Thus, representative patches of these regions must be
identified. These patches are used for evaluating the statistics of the two regions.
They are obtained by erodi_ng the two regions in the reported mask, as described in
section 3.4.3. As noted there, the reason for eroding the regions is that the boundary
is likely to be somewhat inaccurate, and there may therefore be pixels near the edge
of each region which actually should belong to the other region. The eroded regions
are then used for the extraction of the required statistical information, as described in
sections 3.4.3 and 3.4.5.3.

88

' 1, '
Figure 4.1: Image gmcorner

4.1.2 The Marr-Hildreth edge detector

4.1.2.1 Image gmcorner

Figure 4.2 shows the results obtained with the Marr-Hildreth edge detector, at
four different scales, from the image gmcorner shown in figure 4.1. This image was
constructed from a uniform grass texture by halving the intensity of the pixels to the
left of the boundary. The scales were a- = 2, 4, 8, and 16 pixels , as shown in the
figures. Figure 4.2(a) shows the edge strengths in grey-scale form, while figure 4.2(b)
shows the thresholded edges overlayed on the original image. Only at the largest scale
is the boundary of interest unambiguously marked. At smaller scales, the deviation of
the reported boundary from the true boundary is generally smaller, but the boundary
of interest is weaker relative to the textural responses, and it also tends to break up
where there are dark and light clumps adjacent to the boundary. Given the problems
observed over the range of scales considered, it is unlikely that substantially better
results would be obtained at any scale.

The original Marr-Hildreth theory (Marr and Hildreth, 1980) proposed that impor­
tant edges in the image would be signalled by a coincidence of zero-crossings over a

89

' -2- r '' 1 , ;\'.')•<'_<c, ~~c;,.:1(<;:>i'A . ._,;)~:·~. ,- 4
1
-,' - - _ - " '""Di ,·-?/,,- --:, ~ r " _ I !~!Y-\~ OO~ •~~11i\'(' •1'\'J,ro - - _ I 'C"'-' - . , r >,/ ,1,\. " l - ... V-~c.~· '~,, ~~;.,,: ,- \- ::J ...-.... '"llr:/ (,:'.L/·~--~·-~·· ·~ /· ~~~rrl?w{,"cj~·,. ~'t,,#J" "' '~' I -,----~\~ _~f~-~l_<f() Lx'..) ~ l 1 ,, '"",.:; r nll~,(l')"'- .-~~• () •, \.. , 1 , ~ --, , 1 ,f~II 1,,,1 .. ,> ,_ l'~ go t11 •" . r,;,• ,, , _ ·_ ,

1
- cs-; ·- _, r I •~ '" " - ,. , . ''1 of,;;-',. o~ .;;""' '- ' -· _) ' C'---.,,1 0 , or , r l' , , , - c:;. "' , V (· 'l ~ (_l,_,_ , ,:-~,t --- -:-- · '<•'.'.> f J ,t ~J':f,~'cf<; .. , . .1 · (,,,, __ ,_ ·r, -~q) Jl c('l I l I• r, , 1.:;r. r; ~f'. ~\\(-11., It../) '\._) I ,:> , -0 r'J --H;,),ri~~· \, ', ·,\\1;:,J~r::.,1\$"~\1~\r\\.< '\I \ _'-'- I ' ' r'fS_ '->)"\ r er' ,,. _,)-,,~,. -_,, ,,_ >r,'''--=-~i3o\"\.:-•'("' \ , '-.... ' - ·. c r-:::::J(\

,'_1-;. '~,.'-'•,~.) ,' ;,· -X\fl~~~~lq,\~c-~ ~1) -, ,I_ 'n~'~,-~,<, ,/·,e::,.-l , ' ,'' '-'"I~-.· · 'ltJ, r,,,~~1 Vj'~-:;(V ·1) I ' , \/ - ~~ _) ,(:--. 1 n I \ - ;, f ~") . , ,; ~ , ' ' - , 1. ' · - -_' . • ~ · r/lv::~ ,c:: ,;~~ '.?~ ~ , l \.. :-- '-I C, -,,..,,-/ f) . -_,_ I (1 ' 1,_1" ,., 1-n.>,•[~\\"QDtJ>X-''' \1r \ ',0..1)0\)u , > (:~.' -"~ ,---,~-)=-•:J,•/ir;-lt<.c:..(r:_ r,:-=-r :;,f,_-~U~ J,\°:'\ , /),(5~0/'6,f _I,(<\~•/7 . - ,\v~ _hV":: c ~1} · ,·••(G ~ , /) (1 \ , , L' (_,_, ':'; ·, ,L-.i(~). '::3-,v]'(r~''''.:'.}.'" Cr ~ 'v:,'_ ~ ~\ ,.r"' I
0 r, ,,_ /~~r~~q_~2V~11f-di1~~ 1 ') I ;J ~-~[r~OL,-'T'o7/' \;,. •·;:, ' ''- . -1'-'i;'(~J V V (.I :.i~~•·.ro ' " - '-- ✓ ..JI) U ~

8- - ~ (/- 1---?
16

___ I I " ,._,,' \

1 i/, . ?.J1
.. ~· 'I ~\J \~ I

I I ('- (
) I /i SV/

')

--) I

) , , ~~~~\ ~ (
~ c;___.. v -- - - - I -- -

(a) edges in grey-scale form

(b) edges overlaid on image

Figure 4.2: Marr-Hildreth edge detector results on image gmcorner
llj

90

range of scales. · To test this idea in the case of textured images, the Marr-Hildreth
edge detector was applied at 13 scales between o- = 2 and o- = 16 at quarter-octave
intervals (o- =2, 2.4, 2.8, 3.4, 4, 4.8, 5. 7, 6. 7, 8, 9.5, 11.3, 13.5, and 16). The image
shown in figure 4.3(a) shows the coincidence of zero-crossings: each pixel has brightness
proportional to the number of zero-crossings at that pixel. The boundary of interest is
not at all clearly marked. Figure 4.3(b) shows the result obtained when only the largest
seven scales were used; it is no better. The larger scales were used because the smaller
scales respond to the texture elements as strongly as to the boundary of interest, and
could therefore be interfering with the larger scales reporting the boundary of interest.
However, it is evident that the proposed coincidence of zero-crossings does not occur
even at the larger scales.

The scale o- = 8 was chosen for further quantitative evaluation , as being the scale
which gave the best accuracy while still reporting the boundary of int erest relatively
clearly. The larger scale o- = 16 reports the main boundary clearly, but is quite in­
accurate, especially in the neighbourhood of the corner. On the other hand, with the
smaller scales, the boundary of interest is almost impossible to distinguish from the
responses to textural detail.

The boundary in the output for o- = 8 was then selected manually and converted to
a region mask in the manner described above. The edge string is shown in figure 4.4,
which also shows the outlines of the eroded regions used for evaluation of statistics.
Notice particularly that the edge string has been truncated where it turns away from
the true boundary in the vicinity of the corner. A square of width 25 pixels was used
for the erosion.

Table 4.1 shows the quantitative evaluation of the accuracy of both edge detectors
on image gmcorner. The length of the true boundary is different for the two detectors
because the edge pixel strings spanned different sets of scan-lines. (Note that all images
are displayed with line 1 at the top.) This length is the sum of the distances from the
corner to the points of intersection of the true boundary with the first and last scan­
lines. The rows in the table labelled 'No. of patches failing test ' show how many of
the patches tested were found to be clearly on the wrong side of the boundary, and
the rows labelled 'Maximum v' give the normalized log likelihood ratio for the worst
patch. The thresholds were 5.0 for the comparison with the correct mask, and 10.0 for
the optimized mask. Section 5.1.3.2 discusses the choice of these thresholds. Patches

91

,I' .,, __ ., . _.,, ...,, • - • · • .. ~ ~ - - ' ~ -,,_ • .J':"t.. :-....;_~·:.. /' - ' • • ..__ , · ~- ,~ t1 ,· .- ,) l ~ ' . I (,) L_.:.., . I-· - ·-:'I\~ ~... · ~ ... , J - ., I
'~~='"' _.,..· _--_ ,_ J~.--- ,~. T,,_: 1_ I;,,•/_/ J_/·_ _· 't"•A --~ j ~\~l, - ·...,.---- ...,!-,': ;._)• \ , _. I J . - . • • ' ... ' ._:, I ~::·

J •,~,- '. t_~,' ~-fl::-_ .:.{\~\~. •_ .'~i' •;-F,:\.j' (,- j,..1~> I(:~ ·-.,_) ~sw·· - ~:'I ~..,..."'\ \ \,..,. -1~· -/ , '\.-... .. ---~ t----t'_ - , _ , ;- "--.... 1·• , ,, 1 ·\. l_;- · · ,. "l !,_ I -• .,. ·f • ' ·• ~ , ' U l"' "_ ,I ""'- -~ • "'"'°"' ~ -<,. , , "1 \.

~. -·- . ,' ' \. " ' J;L-- t }

.,_-.--- .,1 ,'~ .. ~· f ,/ (,.,.,' .\CA ;-0,.,.,. I' ,_-. ({ ")

- ' I · 1 ' ,.,..._,, ' • - · • - I •• ~,I;. " .. • \ 1-... ' • • • · , . . J ., ,, : I - • P1 j I \._ 1 I-, . " ~ • / • /

...;· , __ v~ · - ~- 1.,.. , l"'· , L • __ .--.. _. ,. (.'~ t') £,.,;. .. .,r \ " , - . ---, ,,., '.., , ~ ·j I (\ ') • ,~ ' , ,..: • . •-.. ' f (J - ,, ,•' • -- ~i ': L I, I ' ' .. l .f I t) i+.i . , . r '- . . '-. 1 • -": . - I/ 1 \ ~-· ~ .. ~'_ ?._--~l. :_~•\~'il' -~ J/1./ ... , c,\\(,~_- _ .1" .. ~·-: __ c;,1· • J t.. ... L \ ... ~ ' ·' r""'II,. '- • ~ J \ .. -- (I _.,. I .. . J
)

-.. ' -~ "~ '. ·I. ";: -e; -1._ _ _,_ ({--:- r I ' • J -· ~ • •• ' .. ,· 'J . '-..•- . ·' . ---- ' '-'· --.., • -.x, I <' '- C .. ~· .,.. I_ .. (: ,i.-·~- . - ,.. .. "\,_ J '(_ ~;0.,~_1_.. I'°/'~~/ ~l:• ··~·.:/l" Ji Lt':·-, \i~,,•y ... \~:~,:~· -... ., · ! • · °' r I , , 1 --.- • ' • · _. .• ,, .
ll) 1-_ ' ' I ,i ~L 'l.· I I ' (l ' ~ ·• \ ' i _ • r.~·~~ ('";' _,t_ >-~' \~ \ /. ,• ,d .~i .: \ -~~fl \ J ~) Y,_?. (, ~-- J -~ .· i... / ·, ,_. .. , • "_· .,,,.:\~ .c- -~Y- .• . · . · . ' . ·t -,,_, ,· ·•. . •,·· -- .,.,_) ' .._ . , ,...,.__ '- I l .·• . , ,I -~ • I) • ',, ., , • • ~ ... > ·. \~ ~ ,',_ , --~,-·:; ' (t .. r ; ·' (···· '•. · _, 1,:-' I ~~-.. ,~ Jr _· /(\'- :) ~ - ~ ; ~ l.✓-\•· ' - · ,,-... , . (I\ .h,J L "'"!! __ _,.~- 'I •. ,' __ ..,.. . J ' - ~ . ~ \ - ,. : t I \: !, - , ' ~ • .) . • . ~ • ' ~ -.., I I · - '" ·'p-~'- . ._ ' _,, v •

• .., /· r_ (., ~ - f '.', \ · Y-) 1CL(,-:,--. ·t .. • :'.)- C\,/ · ~ · I I\ V . ' (- \ .. , I ' ../. ~ (• I..-, < ~? . -·· . _,,. I • - - "'.'~ ~:11/-;· .. ~, --:- r_.:·/(. \ ~(1' t _-' ~ ~- _·-# _!)u--_1 ,' ') ~,,, ' (_)~-• -4j ,•- _... • ' I I , I I •-:;." "'-'.. -I Ci. ,,.:, :.. . •- ,r.-' ',""\ I i • \ .' t_! ""I(" . ; ,_,) ··-' ~ .. - ~•.-JJa. . ._ - .,..._, •.••

(a) 13 scales

- - · . - - ~<"-
j.___ .. - --· \ 'I / ·. . I-, - --·· ~-. -;:;-- --··.... _,__,,,,~·- I.- ✓- ' ~~ - - .- (< • ;•• ,.,, ,.-_Jt': ' 'I I .• -~ •,

) ~~} ? ~"'' -. ' ··~ Y<--~ ... '
-· I. J } ~ . ' .,J· f ! . I ,.if ' . ::,-... -~ -. . • I .-J / t'.= -r· 'i. -~---e ._.. / ~ ..-:? I / o •• -,- • •• • / r· -1 l ' (.· ·:. .,·) ~-.- _..,.,-....___ l· (. • • I "irr, • ... '\.. • ' \.- . . • , .-. - . .- - v '\ . . . ~_:,, : _•~•-•/ ~ , > -.-- ,•) .P:'_ ·' I , ~ --·...... ..r"'\ ,, -· . .. ~ ~ __., '--., ,. \ ' ' . ,··'l '. ... -, •-.. ~\. • ••• t, . ._ __ _'• • I~ __ ' \ • :•~ '-••••• ,•"\ t ' r -- "---"- 1 J , -· , f :-~/:::,~ < -l ? ,~:·:· ~ .,l~ ·

.. \~~5:s .) .. (;' I ":~ "':, \ ~.' I
. .- ' ~--~ I \. ?,, 1' • ,• / ~ ~--. ,• '· ,,. ") . .,.. - . ,-) (~- . ,:":. T-::- \-'\ - .; _-:----, ._ ___...,... ~ -

. - ❖• • '- ,I L ..-· ~.. . ' \ -~ (' --
J

. . ..
··, .. ~ - - -. .

(b) 7 scales
Figure 4.3: Coincidence of zero-crossings for image gmcorner

92

Edge detector Marr-Hildreth Canny

Scale u (pixels) 8 13.6
Scan-lines processed 13-238 19-236
Area misclassified (pixels) 549 629
Length of true boundary (pixels) 246.8 238.2
Mean error distance (pixels) 2.22 2.64
Comparison with correct mask:

No. of patches failing test 5 4
Maximum v 30.3 35.6

Comparison with optimized mask:

No. of patches failing test 7 7
Maximum v 31.4 53.5

Table 4.1: Quantitative evaluation of edge detector results on image gmcorner

Figure 4.4: Selected edge string and patches for statistics for image gmcorner

93

which passed the test are not indicated in the table.

Figures 4.5 and 4.6 show where th.e reported mask for the Marr-Hildreth edge
detector differs from the correct and optimized masks, respectively. The thin yellow
line shows the position of the reported boundary. The colours of the patches indicate
whether the patch failed the consistency test: red and magenta indicate fail, and blue
and cyan indicate pa.ss. Notice that where the reported boundary is to the left of the
true boundary, even quite large patches can pa.ss, but where the reported boundary is
to the right, the test is much more sensitive. This is a consequence of the asymmetry
in the distributions. The results shown in table 4.1 confirm the visual impression that
the edge detector output is inaccurate. The reported boundary fails the consistency
test quite badly-values of around 30.0 for vindicate patches which are most definitely
wrong.

The results given in table 4.1 indicate that the Canny edge detector is not a.s
accurate as the Marr-Hildreth. This is probably due in part to the different scales
used. However, the intention here is not to compare the two edge detectors, but rather
to indicate that they both have serious deficiencies when used on textured images.

4.1.2.2 Image rock

Figure 4. 7 shows image rock, which portrays a rock in front of some vegetation.
The results from the 1'Ia.rr-Hildreth edge detector are shown in figure 4.8. Once again,
the scale c, = 8 wa.s chosen for quantitative evaluation. Figure 4.9 shows the selected
edge pixel string. Attention was restricted to the left-hand portion of the boundary of
the rock by placing a bounding rectangle on the image, also shown in figure 4.9. This
portion of the boundary has relatively homogeneous regions on either side. Table 4.2
and figure 4.10 show the comparison of the reported mask with the optimized mask
(no knowledge of the true boundary is assumed with this image).

This image was included to demonstrate that the problems which arise with the
artificial images can be expected to arise also in real-world images. Once again, the
results shown in table 4.2 confirm the visual impression that the reported boundary
does not correspond to the reality in the image.

94

Figure 4.5: Comparison of Marr-Hildreth and correct results for image gmcorner

Figure 4.6: Comparison of Marr-Hildreth and optimized results for image gmcorner

95

jll

Figure 4. 7: Image rock

Figure 4.8: Results from Marr-Hildreth edge detector for image rock

96

I
I
I
I

l
r

I
I
I

ll:

Figure 4.9: Selected edge string and bounding rectangle for image rock

Figure 4.10: Comparison of Marr-Hildreth and optimized results for image rock

97

111!

I
I

I
I
I

I

·I
I

I

11:

·I

Edge detector Marr-Hildreth Canny

Scale u (pixels) 8 6.8
Columns processed 2-218 2-213
Comparison with optimized mask:

No. of patches failing test 31 21
Maximum v 22.9 19.3

Table 4.2: Quantitative evaluation of edge detector results on image rock

4.1.2.3 Image lenna

Figure 4.11 shows the results obtained at four scales on the image lenna, which is
from the USCIPI data base. Note that the edges of the light vertical bar in the upper­
left corner of the image are correctly located at all scales, which is an indication that the
implementation is correct, as the Marr-Hildreth edge detector can be expected to work
well on isolated edges between areas of constant grey-level. However, notice that at the
larger scales, the detected edges in the region of the face bear almost no resemblance to

Figure 4.11: Results from Marr-Hildreth edge detector for image lenna

98

1{ I

,1

•1
I
I
I
I
I
I

,JI
I
I

,. ll:

the boundary of the face or features in it, because of interference between neighbouring
edges (as described by Shah et al., 1986).

4.1.3 The Canny edge detector

4.1.3.1 Image gmcorner

Figure 4.12 shows the results obtained with the Canny edge detector on the image
gmcorner (figure 4.1) at four different scales; figure 4.12(a) shows the edge strengths in
grey-scale form, while (b) shows the thresholded edges overlaid on the original image.
The numbers in figure 4.12 give the half-width at half-height w of the underlying
Gaussian.

The scale w = 16 was chosen for further quantitative analysis of accuracy, as de­
scribed previously. This scale was chosen because it gives the clearest description of
the boundary; at smaller scales, the string of edge pixels tends to break up, especially
at the corner. At no scale is the location of the boundary reported accurately. The
selected string of edge pixels is shown in figure 4.13, along with the outlines of the
areas used for evaluating statistics. Figures 4.14 and 4.15 show where the reported

· mask differs from the correct and optimized masks, respectively. Table 4.1 lists the
numerical results.

4.1.3.2 Image rock

Figure 4.16 shows the results obtained at four scales from image rock (figure 4.7).
In this case, the scale w = 8 was selected for further evaluation; figure 4.17 shows the
selected string of edge pixels, and the bounding rectangle used to confine attention to
the boundary of the rock. The results are shown numerically in table 4.2, and visually
in figure 4.18.

4.1.3.3 Image lenna

Figure 4.19 shows the results at four scales of applying the Canny edge detector to
the image lenna. Once again, the isolated edges are correctly located, indicating that
the implementation of the edge detector is correct, while neighbouring edges interfere
at the larger scales.

99

' ,·, ,. '§'-' .' , 2 •, ',, ,I - ,_= 0 (Y 1)1' -<~. ;,,,<~-, - . ..:,..,\J ; -t::l ... r~ u) _ .1 ~~ ' - l'' , (. , '.,_ . ; , , () 'i ,I J . ' 1.r' , ,.. : . , , ~~-J- '/-~~~·- .1"!, JlfJ),> ~ 1 .,· ,9, ·~ ·1"' •· ,r.,·o~ r:_ (·.) " , '-'!1 .), ~ ... 1,.1;,r, ,, ':(_I
I (. ' ,I I , f:,('\o 'i:,P.,'l!JQ ,· (.·-' . ,-(~ \~ :•,r_;,,--: -:::,1),., ~<> ·, .)- ,1 •• - •. _, !:)-n--.-~r,ro , , (" • J{,'. i) ,_r!J 1 . ',\:' \ \'- ', , \\f.'.'._;t;•:.,-.J .J..__
I .(~- \· '-\: 1/f!,Jv,_,,'-::J ?~ ,'='o,C)

L_.- _) I •• I ' ',i;i--t.S:fl I f\'<~ .. t r I, l,Y.7f ((;;1 Q •l}~•J..I ,,-
) . ' 1"' :_' / ·. ,)11':-)~J ,7

11/J' <. ') / ~,H./ ,,1 , ..JV: 1'
' - I., ' • ' • '-'l:"fj (::J ·>.•c.'..

..,'\. J , (,1 ,,, \,

j /, ".; 'C: ~ • ~I f I r.~\-.- ()' ~f!J..~:l~(
U

,\ r\J \,r, \;'I• 1,, \/(0:,
., {.,J --.. -~ -;', ·--1 ..,-... 1<•,) ;, . . , \ ., if.S '('· 'V ,:) .Fl'/ ~--0 ' . r ,·A-'. l_ ~'r-9_,~.'.fl.> .'-"~f.> I .-;. r ~ ~ ~ ,- ') .-- C.. , 1 , ' '•·'- ~ . . ,; _..f .·-~ •('"~Cl.:,.1n1 • • ,, J ..,_ ,,·1,:f

8 \~/
·-/

I
._I

I
\

/ '--._ /

·. -)
J / ,_,
,-- ~

4

/

16

-~
·_-: 'J . // I ' r..,

_ , I
, £,r I/((,_~ \ '\\ r, r --./ : /
r '- -- } --__,<, ~ I'. J (

. <\ // ~, . I;;,,> ,1J , V
\, . .

... \ (..........,.._. J \.) ,...,.

I • \, '/ > . , I - /;). { , J

(. ~ ~\·1 :,.­·,1\ 1'() C , , --1.

I , u) _ __. - , - , ' . ,, l.,) -..J,1 r-/ /
; :;:J" (J,J'-...,- p I ~ ~, . r' ' \.., I ,

\

. ..J.

(a) edges in grey-scale form

(b) edges overlaid on image
Figure 4.12: Canny edge detector results on image gmcorner

100

Figure 4.13: Selected edge string and patches for statistics for image gmcorner

4.1.4 Conclusions about convolution edge detectors

The main point to be drawn from the results given above is that these convolution
edge detectors give quite inaccurate results when applied to textured images. At small
scales, the respo.nses to important boundaries are indistinguishable from responses to
the texture, and are also fragmentary and irregular. At larger scales, the desired
responses are more obvious, but are inaccurate. The inaccuracies are obvious visually,
and have been confirmed by application of the consistency test. The consistency test is
a useful way to check the accuracy of an edge detector without requiring knowledge of
the true boundary location. The results from these convolution edge detectors satisfy
none of the three criteria set out in chapter 3.

101

Figure 4.14: Comparison of Canny and correct results for image gmcorner

Figure 4.15: Comparison of Canny and optimized results for image gmcorner

102

I -

Figure 4.16: Results from Canny edge detector for image rock

Figure 4.1 7: Selected edge string and bounding rectangle for image rock

103

Figure 4.18: Comparison of Canny and optimized results for image rock

Figure 4.19: Results from Canny edge detector for image lenna

104

:I

I

'i ,,,,

4.2 Evaluation of results obtained with BLM algorithm

In contrast to the convolution edge detectors discussed above, the BLM algorithm
gives accurate and concise information about the locations of boundaries in textured
images. As discussed in chapter 3, the current implementation of the BLM algorithm
assumes that a single boundary is to be located, and that the regions on either side are
homogeneous. The range of real-world images which are suitable for processing with the
current implementation of the BLM algorithm is therefore rather restricted, since its
operation is best demonstrated on boundaries of reasonable length with homogeneous
regions on either side; section 5.3 discusses how the approach could be extended to
remove these restrictions. Table 4.3 lists the images which were used. Confidence
intervals on segment positions or confidence contours on knot positions are shown for

Name Boundary shape Region 1 Region 2
gmcorner two lines with corner dark grass grass ...

I,_

gmarc circular arc dark grass grass
gmprot polygon dark grass grass
gmwave perturbed line grass dark grass
rcirc circle dark raffia raffia
learaf circle raffia leather

.
straight line Gaussian noise Gaussian noise

noise

dots circular arc dots, density = 0.1 dots, density = 0.01
straw filtered noise straw straw rotated 90°

(a) Artificial images

Name Description

rock Rock in front of vegetation.

house Brick house.

pinetree Outline of pine tree against sky.

trunk Trunk of tree against grass.

(b) Real-world images

Table 4.3: Images used for testing the BLM algorithm

105

Image Area Boundary Mean
misclassified length error

gmcorner 3 280.9 0.01
gmarc (PWL) 144 287.5 0.50

(cubic) 9 287.1 0.03
gmprot 26 431.9 0.06
gmwave 783 303.9 2.58
rcirc (PWL) 69 422.8 0.16

(cubic) 9 420.7 0.02
learaf 862 429.2 2.01 .

13 265.3 0.05 noise

dots 244 133.2 1.83
straw 400 307.7 1.30

Table 4.4: Quantitative evaluation of BLM algorithm results

some representative images.

The split-and-merge procedure has been used to obtain the initial segmentation for
all of the artificial images and all but one of the real-world images. The exception is
image house, in which the BLM algorithm was set to find a very subtle boundary.

The methods which are appropriate for evaluating the BLM algorithm results are
visual inspection, and for the artificial images, comparison of the correct and reported
boundaries. The consistency test has already been applied in the course of the BLM
algorithm, so the boundaries will be consistent with the image data. Therefore it is
not necessary to check the results from the BLM algorithm for consistency.

The results of the quantitative comparison for the artificial images are shown in
table 4.4. In this table, the 'Area misclassified' column gives the number of pixels clas­
sified differently by the reported and correct boundaries. The 'Boundary length' column
gives the length of the reported boundary, excluding any segments which complete the
boundary around the border of the image. The length of the reported boundary is
used rather than the length of the correct boundary, because the former is easier to
calculate, and should be very close to the latter. The 'Mean error' column gives the
ratio of the area misclassified to the length of the reported boundary, as a measure of

106

the mean distance between the reported and correct boundaries.

Where the boundary extends from one border of the image to another, it is possible
for the segments completing the boundary around the border of the image to move
away from the border slightly if there are some atypical pixels adjacent to the border.
The effect of this is to assign these pixels to region 2, when they should be assigned to
region 1. The few pixels misclassified in this way have been excluded from consideration
in table 4.4, since they do not occur along the boundary of interest .

4.2.1 Comments on individual images

4.2.1.1 Image gmcorner

This image, shown in figure 4.1, is one of those used for testing the convolution edge
detectors. The results from the BLM algorithm, shown in figure 4.20, are identical to
the boundary perceived by human observers. This is an interesting image for testing a
boundary locator, for the following reasons:

(a) It is sufficiently textured to present problems for convolution edge detectors, yet
human observers perceive a clear, sharp boundary.

(b) The asymmetry in the pixel intensity distributions means that the bright pixels
are disproportionately important in fixing the location of the boundary (bright
pixels appear only in the right-hand region, whereas dark pixels occur in both
regions).

(c) The fortuitous presence of the dark blob just above the corner is a good test of
the ability of any technique to accept that the blob is just part of the texture (as
indeed the BLM algorithm does).

This image represents an easy test for the BLM algorithm, in that the boundary
shape is composed of straight-line segments. However, it is worth noting that the BLM
algorithm has placed a knot accurately at the position of the corner, rather than within
the dark blob just above the corner. The algorithm has been able to give much more
weight to the presence of the light pixels just above the corner than to the dark pixels
within the blob, as indeed these light pixels deserve. Also, the dark blob does not cause
the boundary to fail the consistency test.

107

Figure 4.20: Results from BLM algorithm for image gmcorner

Figure 4.21: Confidence intervals and contours for image gmcorner (magnified by 10)

108

I

1": I
.I

The confidence intervals and contours are shown in figure 4.21. The intervals and
-contours are shown magnified by a factor of 10 for ease of viewing; the regions are

very distinct, and the boundary is tightly constrained. The confidence intervals are
essentially zero on the right-hand side, and the boundary (shown in magenta) has thus
overlaid the confidence interval (shown in cyan) in some cases. The confidence contours
are shown in yellow. The boundary is much more tightly constrained on the right than
on the left, due to the asymmetry in the pixel intensity distributions. The confidence
intervals and contours are consequently asymmetrical, extending much further to the
left then the right. Figure 4.21 also shows the cornerness measure at each knot.

4.2.1.2 Image gmarc

Figure 4.22 shows the original image, which was constructed in a similar manner
to gmcorner, except that the shape of the boundary is an arc of a circle, rather than
a polygon. This represents a more difficult test for the BLM algorithm, in that the
smooth curve has to be approximated either by a number of straight-line segments
or by a cubic segment. Inspecting the results, shown in figure 4.23, we see that the
algorithm has found that six segments are sufficient to give a consistent boundary. Note
that the knots have been placed generally at locations along the boundary where there
is a small dark patch adjacent to the boundary in the right-hand region.

Using a cubic polynomial segment gives better results, shown in figure 4.24. The
algorithm was able to obtain a consistent description of the boundary with only one
cubic segment. This description is preferable to the piece-wise linear description, be­
cause it is simpler; eight parameters are required for the spline segment, compared to
sixteen for the seven piece-wise linear segments (defined by eight knots). The program
was instructed to use a cubic segment.

Figure 4.25 shows the confidence intervals and contours for the piece-wise linear
boundary in figure 4.23, with a magnification of 3 on the intervals and 1 on the contours.
Note that the confidence intervals are broader for the shorter segments, and that the
confidence contours are elongated along the direction of the boundary. The cornerness
measures for the knots along the arc are generally lower than those shown for image
gmcorner, i.e., the knots are less 'corner-like'.

109

Figure 4.22: Image gmarc

Figure 4.23: Results from BLM algorithm for image gmarc; piece-wise linear boundary

110

Figure 4.24: Results from BLM algorithm for image gmarc using cubic segment

Figure 4.25: Confidence intervals (magnified by 3) and contours for image gmarc

111

4.2.1.3 Image gmprot

This image (figure 4.26) was constructed in a similar manner to gmcorner. It was
deliberately chosen to check the consistency test and elaboration steps in the ELM
algorithm. After two iterations of the algorithm, the top-right portion of the boundary
has been fitted with a single segment, which is not consistent. The iteration has to
proceed through three more cycles, adding three more knots on that segment, before
further progress can be made. Then the middle of the three added knots moves up into
the protrusion. Two more knots are added, which gives a consistent boundary. The
simplification step yields the result shown in figure 4.26, which is correct. Parameter
hmax had to be increased from 10 to 20 for this image (see section 3.4.5.1). The higher
value could have been used for all images; the lower value was used in other cases
because the processing time required was less.

4.2.1.4 Image gmwave

In generating this image (figure 4.27), the position of the true boundary on each
scan-line was obtained by filtering white noise with a low-pass filter of Gaussian profile.
Points to the right of the true boundary position were multiplied by 2/3. Figure 4.28
shows this image with the true boundary outlined. The true boundary contains more
detail than can be resolved in the final image, because of the texture in the regions
and the overlap in the distributions. Perceptually, the impression is of a boundary
which is not clear and sharp (though still quite obvious). There appear to be texture
elements in the left-hand region which overlap the right-hand region-this is a kind
of boundary which is quite common in real-world images (for example the boundary
between a concrete path and a lawn). The results, shown in figure 4.29, follow the true
boundary remarkably well, given the relatively small contrast of the edge.

4.2.1.5 Image rcirc

This image is an example of one in which the boundary is very tightly constrained,
because the regions are so distinct. This, combined with the curved boundary shape,
forces the ELM algorithm to use many piece-wise linear segments. The result shown
in figure 4.30 is a good approximation to the circle, using 18 segments.

112

11 ,,

I(
ill,

Figure 4.26: Results from BLM algorithm for image gmprot

Figure 4.27: Image gm~ave

113

'
".i

Figure 4.28: True boundary position for image gmTJave

Figure 4.29: Results from ELM algorithm for image gmTJave

114

A better approximation to the circle is obtained by using four cubic segments with
slope continuity at each knot, as shown in figure 4.31. This is a better description of the
boundary, because it is both simpler and more accurate. The program was instructed
to use four cubic segments with slope continuity.

4.2.1.6 Image learaf

This image has the same boundary as rcirc, but the regions are much less distinct
(the contrast is lower), and the textures in the regions are different. The results are
shown in figure 4.32. Notice the error that the algorithm makes in the bottom left­
hand part of the inner region. This is an example where non-homogeneity of the regions
has caused problems. Human interpretation of this image appears to be based on the
nature of the textures in the regions, as well as the grey-level distributions.

4.2.1. 7 Image noise

Figure 4.33 shows this image, which has a straight boundary between two fields of
white Gaussian noise. The standard deviations of pixel intensity in each region are
equal, and are equal to the difference between the means, that is, the signal to noise
ratio is 1. In this image, the percept of a clear, sharp boundary can only be obtained
when a substantial length of the boundary is visible; if all but a short length is masked
off (as in figure 5 .1 on page 14 7), the boundary does not look at all sharp and clear.
The percept of a sharp, clear boundary therefore seems to require that information be
integrated along the length of the boundary, as indeed the BLM algorithm does. Its
results, shown in figure 4.34, are correct.

4.2.1.8 Image dots

This image contains random dots, with density 0.1 to the left of the boundary, and
density 0.01 to the right of the boundary. Figure 4.35 shows the results from the BLM
algorithm, which correspond very well to the perceived boundary. The shape of the
correct boundary is a circular arc; this is another example where the details of the
shape of the correct boundary are obscured by the texture. The statistical fluctuations
within the regions are rather extreme in this image; nevertheless, the BLM algorithm
performs well.

115

Figure 4.30: Results from BLM algorithm for image rcirc; piece-wise linear boundary

Figure 4.31: Results from BLM algorithm for image rcirc with four cubic segments

116

Figure 4.32: Results from BLM algorithm for image learaf

Figure 4.33: Image noise

117

Figure 4.34: Results from BLM algorithm for image noise

it- • -~- - = --~•·-~·~·····-- •...... ·,·.•-- • '·.· w y • •• , I, • I • ~ • _. ... ~--
,, .,.._ ... I • •• .. ·-

• • •• . -· .. ,/'
! •• --- • • .--:> • .-w- -., I •,/'• 1._. • . . . ,/' - . . ~I • • • rl'. • • I ••• ,,. • -c- •• ,I . • - • ••• .> •1 • -. ~,/' . . .
•• ••.• •1• :-• rl'J r/'I •

• • •• • •• •• • • ~-• • , ,/' .
• • • ••• •_. I •• • ... •• • ,/' ... 1.-;•.

~ •y- • • •• • • r/' I
II I - • • • • Ir/' • .,._ .- • 'J • • • 1•-.. ·:,,. ••• ·-- . . I • • •• -V• r/' • • • I • • • •• •• .._• "'• • ._ I .,._ __ .1 ••

•-., • -.. I • P •• I ... ~,/' ., .. ., ,/' . .,. . .,._ I • r• •
- y • ~ -· •• • 'J' r/' ~ • • I • • • • ._ • • I• • • " • I •• • • • ._-.., • Ir/' I • ,.

-~--•

,/'

•
•

•

•

I I - I -. - ._ •• • } •• .. -•._ I •• h • • • • • • rl' •' • -- .. ---· . -- ,/' ,/' : •• • --- • • • • • • --- - ,! • . . . "'· ,/' . . :,, . "
• • • • - •.

••• •••• ··•·rl''! _. . -. ~
rt I

• • I • - ._.
I • • • • • I • • • . .. -••
~ ·. r

• •
•

•• -.• • • • ~

..- I Sr~
• •

• r/' • • ._ I.Y •
I • • II. I i • -. . . _./ ..

•.·• •,I' ,i
•

=

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

,I'

•

•

•

•

•

•
•

•

•
•

•

•

•
•

...

•

••

•

• • • •

•

•

•
•

• •

• •
•

•

Figure 4.35: Results from BLM algorithm for image dots

118

The 'texton' theory of human texture perception (J ulesz and Bergen, 1983) proposes
that textures are discriminated on the basis of differences in density of textons, which
are various types of salient image feature. If each texton of a given type was marked with
a dot, the resulting image might be something like image dots. The BLM algorithm
could then be used to locate the boundaries between distinct regions.

4.2.1.9 Image straw

This image illustrates the use of a texture filter prior to the BLM algorithm. The
two halves of this image (figure 4.36) have the same intensity distributions, since they
come from the same original image (the 'straw' texture in the Brodatz collection).
The right-hand region comes from the straw texture rotated through 90~. The strong
directionality of the straw texture gives rise to the discrimination of the two regions on
the basis of the orientation difference. Human perception of the boundary location is
also assisted by the endings of the pieces of straw (especially on close inspection). The
true boundary in this image was obtained in the same manner as described for image
gmwave, and is shown in figure 4.37.

The output of the texture filter is shown in :figure 4.38. (The filter used is discussed
below.) Note that the orientation difference has been converted to an intensity dif­
ference, but that the two regions are still textured. This filtered image was initially
segmented with the split-and-merge procedure, giving the result shown in :figure 4.39.
The BLM algorithm then gave the result shown in figure 4.40.

The results shown in figure 4.40 appear to indicate more detail than is perceiv­
able. However, the confidence intervals on the segment positions in figure 4.41 indicate
that the segment positions are not tightly constrained. The confidence intervals are
magnified by a factor of 3, and the contours by a factor of one. In particular, the
lower segments are not as clear as the upper segments. This is partly because they are
shorter, and partly because the boundary is quite fuzzy there.

The reported boundary deviates most from the true boundary in the segment at the
top of the image, where a curved section is approximated by one long linear segment.
Inspecting :figure 4.36 again reveals that at the point where the true boundary is to the
right of the reported boundary, the image detail has no strong directionality. This area
is therefore somewhat ambiguous. Human perception appears to rely on the endings

119

~

n
j
~

.µ

I'll

Q
.)

bO

cd

s
• .-1

:,
A

n

j
• .-

i

~

A

.µ

0
1:/l

• .-
i

-+
,j

Q
.)

• .-
i

V
J

bO

ro
0

s
0..

~

~

0
~

C"1
..

ro
r-4

c.o

~

M

A

.
~

:;j
0

Q
.)

..0

~

::1
Q

.)
bO

~

• .-1

~

~
 .. t-M

 .
~

Q
.)
~

::1
bO

• .-i

~

Figure 4.38: Texture filter output for image straw

Figure 4.39: Split-and-merge results for the image in figure 4.38

121

11• !. I

Figure 4.40: Results from ELM algorithm for the image in figure 4.38

Figure 4.41: Confidence intervals (magnified by 3) and contours for figure 4.38

122

'I

I

I ••

of the linear features in the image as a cue to the fine boundary location. The filter
used here is not sensitive to such features.

The filter used involves convolution with Gabor function masks. These masks are
two-dimensional sinusoidal gratings modulated by a Gaussian impulse. They give a
good description of the properties of the 'simple' cells in the mammalian visual cortex
(Marcelja, 1980). The masks are described by

Gc(x,y;er,f,</>) [
x2+y2]

exp - er
2

cos (21r f (x sin¢ - y cos <p)] (4.la)

[

x2 + y2] Gs(x, y; er, f, <p) == exp - er
2 sin [21r f (x sin <p - y cos <p)] (4.1 b)

where er controls the extent of the Gaussian modulation, f gives the frequency in cy­
cles/pixel, and <p gives the orientation; <p == 0 gives a mask most sensitive to horizontal
features. As the straw texture contains features at approximately 60° to the horizontal,
two orientations were used: <p == 60° and 150°. The frequency f was 0.25 cycles/pixel,
and er was 1.8. These particular values were chosen on the basis of the characteris­
tics of the textures. In order to reduce the computational effort required, only these
values were used, rather than a range of values. In general, a bank of such filters at
regular intervals of orientation, at a range of frequencies, would be used, as indeed the
mammalian visual cortex appears to do (Sakitt and Barlow, 1982).

The image was filtered with four masks ('cos' and 'sin' masks at two orientations),
giving images C60o, S60 o, C150o, and S1500. These were combined into two images by
taking the magnitude of the response at each orientation:

1

M4>(x, y) == (CJ(x, y) + SJ(x, y)) 2 (4.2)

for <p == 60° and 150°. The final filtered output, shown in figure 4.38, is the difference
M6oo -M150o. This subtraction serves to sharpen the orientation specificity of the masks;
it is quite similar to the phenomenon of cross-orientation inhibition· in_ the mammalian
visual cortex (Morrone et al., 1982), where cells tuned to a particular orientation are
inhibited by cells tuned t o the perpendicular orientation.

Thus, this particular filter has been chosen to be similar to the filtering operations
which occur in biological visual systems; only one filter has been used, but it is of a
type which could be expected to be used in a practical texture-analysis system. Indeed,
Turner (1986) obtained good results using Gabor functions for texture analysis; he also
combined the 'cos' and 'sin' terms into a magnitude term as in equation (4.2).

123

4.2.1.10 Image rock

This image was used in testing the convolution edge detectors, and is shown in
figure 4. 7. The split-and-merge algorithm produced the results shown in yellow in
figure 4.42, in which the region directly above the rock was split into two. These regions
were combined into one, giving the areas outlined in white for evaluating statistics. This
is necessary for the current implementation, but it actually increases the difficulty of
the problem because the unified region is less homogeneous.

The piece-wise linear boundary found by the BLM algorithm (figure 4.43) follows the
edge of the rock fairly closely. Some minor problems have occurred towards the right­
hand edge of the image, however, where there is another rock, with some vegetation in
front of it. The boundary has had to go around the dark patches, and has done this a
little clumsily. The reason for these problems is that there are more than two distinct
regions in this area of the image.

Figure 4.44 shows how the BLM algorithm fitted the left-hand portion of this bound­
ary with five cubic segments, with slope continuity at two of the knots. Once again,
the number of cubic segments and their slope continuity were specified manually. A
bounding rectangle (not shown) was used to remove the confused area at the right-hand
side of the picture from consideration.

4.2.1.11 Image house

This image, from the USCIPI data base, contains many distinct edges. However, we
shall focus on the edge of the chimney, which manifests itself as a very subtle change in
the texture of the brick wall. The edge of interest is the corner of the chimney, where
the right-hand face perpendicular to the wall of the house meets the face parallel to
the wall-see figure 4.45. The right-hand face has faint highlights.

This image also illustrates the use of a bounding polygon to restrict the BLM
algorithm to the area of interest. This bounding polygon, entered manually, is also
shown in figure 4.45, along with the areas for evaluating statistics outlined in white.
Within this region, the boundary found by the BLM algorithm is shown in figure 4.46.
Notice that the boundary of interest has been fitted with a si~gle straight line, which
is quite reasonable given the small difference between the two adjacent regions. The
edge of the chimney might be expected to be vertical, but it is not; there is evidence in

124

Figure 4.42: Split-and-merge results for image rock

Figure 4.43: Results from BLM algorithm for image rock; piece-wise linear boundary

125

Figure 4.44: Results from BLM algorithm for image rock; five cubic segments

the image that the width of the chimney is not constant, but rather becomes thicker
towards the bottom-as the shape of the shadow on the left-hand window shows. In
fact, the edge of the chimney seems to be something like that shown in figure 4.4 7.
This shape was entered manually on the basis of faint cues; the corners were positioned
by following the lines of bricks across from the left-hand edge of the chimney, which
is very slightly more distinct. Comparing this with the boundary found by the BLM
algorithm, it is clear that the BLM algorithm has in fact done remarkably well, just on
the basis of the difference in pixel grey-level distribution between the front and side of
the chimney.

4.2.1.12 Image pinetree

Two aspects o~ the BLM algorithm are illustrated here: the ability of the piece­
wise linear boundary to represent a very complex shape, and some of the difficulties
experienced when there are more than two connected regions. This image is taken from
the top left-hand corner of an image from the USCIPI data base, showing a lake with
pine trees on its shores. The results from the BLM algorithm are given in figure 4.48.
The boundary of interest is that between the pine trees and the sky. This is a very

126

Figure 4.45: Image house with bounding polygon and areas for statistics

Figure 4.46: Results from BLlvI algorithm for image house

127

,,I

'1

I

Figure 4.47: Edge of chimney in image house

Figure 4.48: Results from BLM algorithm for image pinetree

128

.....

distinct, high contrast boundary, so there is very little ambiguity about which side any
pixel is on; consequently, the boundary is tightly constrained, and many segments are
needed (a total of 81 segments in the result shown in figure 4.48). Clearly, the reported
boundary follows the edge of the pine trees quite closely, yet the result does not seem
to correspond closely with human perception; probably because the tree is perceived
as an aggregate of dark clumps, rather than as a region with a distinct boundary.

The split-and-merge algorithm split the right-hand region into two, corresponding
to the clear sky and the clouds. As with image rock, these two regions were manually
combined into one.

4.2.1.13 Image trunk

This image is part of a photograph of some Australian forest, showing a eucalyptus
tree standing in a grassed area. For this image, a bounding polygon was used to restrict
attention to the edge of the tree. The patches used to estimate statistics (obtained with
the split-and.,,merge algorithm), and the bounding polygon, are shown in figure 4.49.
The results (figure 4.50) show a boundary which follows the trunk of the tree quite
closely. Four segments were sufficient, as the regions are not particularly distinct.

4.2.2 Conclusions about the BLM algorithm

The results shown above demonstrate that the BLM algorithm performs exception­
ally well on a wide range of images. In most cases, the results correspond closely to
human perception of the boundary shape. The reported boundary position is very
accurate for the images, such as gmcorner, where the regions are distinct; for those,
such as gmwave, where the true boundary is complex and the regions are not -distinct,
the results are as accurate as can reasonably be expected. The results are generally
more complex for the images where the regions are more distinct, and in all cases are
only as complex as can be justified by the clarity of the image data.

In comparison with traditional approaches, the BLM algorithm produces results
which are dramatically superior, both in qualitative and quantitative terms.

129

Figure 4.49: Image trunk with bounding polygon and patches for statistics

Figure 4.50: Results from BLM algorithm for image trunk

130

Chapter 5

Discussion

Previous chapters have presented a new approach to boundary location in textured

imagery and contrasted the results of the the new approach with previous methods.

The following sections examine some broader aspects of the BLM algorithm, the reasons

for its improved performance, and possible extensions of the approach.

5.1 Appraisal of BLM algorithm

5.1.1 Discussion of performance

The results in the previous chapter demonstrate that the BLM algorithm performs

very well on ·a wide range of images. Generally, the results are both simpler, and more

accurate, than those obtained with other techniques. Some notable points are:

• The results are generally very accurate; they correspond closely to the true bound­

ary in the artificial images. They show neither the unnecessary and incorrect

undulations present in the output of convolution edge detectors, nor the 'blocky'

characteristics of the boundaries of the regions found with the split-and-merge

technique, nor the fragmentation of regions observed with thresholding or window

classification techniques.

• The boundary found by the BLM algorithm is the simplest possible boundary

which is still tenable (within the class of boundary shapes available to it). It is

almost always simpler than the boundary found by the convolution edge detectors.

It is certainly simpler in the sense that the parametric representation generally

requires fewer bits than either a chain-coded or an image-based representation

131

the boundary (except possibly for an extremely intricate boundary, or for regions
only a few pixels across).

• The boundary shape is not perturbed by irrelevant intensity variations within
the textures.

• The agreement with human perception is generally excellent, and much better
than previous techniques. There are, however, some discrepancies:

Where the boundary is unclear, human perception does not report a clear

position (e.g., image gmwave), whereas the BLM algorithm has to report
some definite position. However, the fact that the boundary is not clear can

be determined from the confidence contours for the knots and/ or the confi­

dence intervals for the segments. This discrepancy is partly due, therefore,

to limitations in the display of the reported boundary for human inspection.

Where a smooth undulating boundary is sufficiently unclear that the piece­

wise linear representation is fairly coarse (e.g., image straw), the bound­

ary will be perceived without the corners which are (apparently) present

in the piece-wise linear representation. The confidence contours and inter­

vals should indicate that the knots do not correspond to sharp corners in

the true boundary. Clearly, the human perceptual apparatus does not use

piece-wise linear boundary approximations; perhaps more extensive use of

cubic polynomial segments would reduce this discrepancy.

• The current implementation can give incorrect results on images where the regions
are not homogeneous, or where there are more than two regions, simply because

these images do not conform to the assumptions that are made in the current
implementation. Section 5.3 discusses how these limitations could be overcome

(within the framework of the BLM algorithm).

5.1.2 Reasons for good performance

The major reason why the BLM algorithm produces such good boundary represen­
tations is that it explicitly attempts to find a good interpretation of the image dat a.
The view of segmentation as being an act of interpretation is therefore central to the

132

success of this technique. Within this framework, four reasons for the good performance
of the algorithm can be identified:

1. The criteria of simplicity, accuracy, and consistency successfully capture the
essence of a 'good' boundary hypothesis.

2. The formalization of the criteria of accuracy and consistency in statistical terms
is both appropriate and effective.

3. The framework of the BLM algorithm allows relevant statistical knowledge to be
applied effectively.

4. The implementation of the algorithm is generally effective in finding a boundary

which satisfies the three criteria.

These points are discussed in detail below.

The criteria of simplicity, accuracy, and consistency have considerable intuitive

appeal. Unnecessary complexity in the boundary description can only create difficulties

for further processing, and a description which is inaccurate, or inconsistent (that is,

detectably wrong), is undesirable. The three criteria are each aspects of a desirable

boundary description; the results indicate that, together, they are sufficient to constrain

the boundary locator to produce excellent boundary descriptions.

Given these criteria, the next important aspect is how they are formalized and

quantified for use in an algorithm. Formalizing the simplicity criterion virtually forces

the use of a parametric boundary representation. Such representations generally have

the advantage that the number of bits required depends on the shape of the boundary,

not its orientation or size, and corresponds to an intuitive idea of how 'complicated'

the boundary shape is. In contrast, neither chain-coded nor image-based representa­

tions have these desirable properties. The number of bits required for a chain-coded

representation depends on the length of the boundary, not on how much it changes

direction; image-based representations are even less appropriate, requiring a large, but

fixed, number of bits.

The consistency and accuracy criteria require a statistical formalization when deal­

ing with textures, because the regions do not c~ntain a single intensity level, but rather

a distribution of intensities. In most cases, the pixel intensity distributions will overlap,

leading to ambiguity about which region some pixels belong in. The degree of ambi­

guity of a pixel will be a function of how often pixels of the same intensity occur in

133

each region. (This ambiguity is at the root of the small-region problem in region-based

segmentation methods.) Quantifying this ambiguity as a likelihood ratio enables the

BLM algorithm to give each pL"Cel the weighting that it deserves, given its level of am­

biguity. Formalizing the accuracy criterion in terms of maximizing the total likelihood

of the boundary therefore means that the boundary represents the best possible resolu­

tion of the ambiguity of the pixels near the boundary. All the available information is

taken into account, since each pixel near the boundary can contribute to determining

its position, and so the most likely boundary can be expected to be accurate.

For similar reasons, the consistency criterion is formalized in terms of a likelihood­

ratio test of hypothesis. Considerable care was taken in formulating the test to ensure

that the 'false-alarm' rate was standardized. (The false-alarm rate is the probability

that a patch of the image will be rejected, even though it does belong to the region it is

in.) Successfully controlling this false-alarm rate requires that the correlation between

nearby pixels be taken into account. The test used in the BLM algorithm does this, as

described in section 3.4.5, which results in a test which is both powerful and reliable.

It is reliable in the sense that the rate of false alarms is controlled to be virtually zero,

and it is powerful in the sense that the threshold used in the test is always kept as low

as possible, consistent with an acceptable rate of false alarms. Thus, the test adapts

to the particular textures in the regions so that it is as sensitive as possible without

making mistakes.

Statistical characterization of the regions is an essential ingredient in the BL1tf al­

gorithm's performance. This statistical information represents extra knowledge which

is brought to bear in locating boundaries._ Application of this knowledge enables the

BLM algorithm to take account of the textures, distinguishing the intensity variations

which are merely part of the textures from those associated with the boundary. This

statistical knowledge, and its application through the criteria of accuracy and consis­

tency, is one of the main reasons why the BLM algorithm performs so much better

than convolution edge detectors.

5.1.3 Appraisal of the implementation

It may seem that the BLM algorithm is complex, and likely to be computationally

expensive. In fact, it is not particularly expensive, when compared to the time taken

for convolution of the image with an edge detector profile of reasonably large support.

134

The processing time required for the BLM algorithm depends on the complexity of the

boundary, but is usually of the order of minutes, on a VAX 11/750, for a piece-wise

linear boundary on an image of size 256 · x 256 pixels. This time is quite similar to the

time required for the Marr-Hildreth and Canny edge detectors (typically 5 minutes for

each convolution). The optimization routine for cubic segments is much slower, but

there is considerable room for improvement. The BLM algorithm is certainly more

complicated than a simple convolution edge detector; the current implementation oc­

cupies approximately 8000 lines of code in the 'C' language. However, it is probably no

more complicated than the complete process of detecting edge pixels, linking them up,

and approximating the resulting strings of edge pixels with some parametric represen­

tation. The approach which has been taken in this research is that it is more important

to discover how to obtain accurate and reliable estimates of the locations of boundaries

(since no previous methods give satisfactory results) than to restrict attention to fast

algorithms.

5.1.3.1 Optimization phase

The results indicate that the optimization phase generally does very well in finding

the desired maximum of the likelihood for piece-wise linear boundaries. To a large

extent, its ability to pass over local maxima is provided by its ability to combine

information over a reasonably large area of the image. This area is determined by the

lengths of the segments adjacent to each knot and the length of the optimization lines.

The parametric representations of the boundary are therefore a major factor in the good

performance of the optimization phase; the segments in a parametric representation are

generally much longer than they would be with a chain-coded representation.

The task of the optimization phase is not to find the globally most likely position

over the whole image, but rather to find the most likely position for the boundary

between the two regions of interest, which are known to be connected. This is a

considerably easier task, because the boundary can generally be started at a rough

approximation to its correct position, so that the likelihood is continually increasing as

the boundary moves towards the correct position. The hill-climbing technique used in

the current implementation is therefore quite adequate.

Note also that the use of the original image information in the optimization step,

rather than an abstraction such as an edge map, makes the optimization much more

135

/ii, .

reliable and straightforward. An edge map only contains information near the true po­

sition of the boundary: if the current boundary is relatively far from the true boundary,

there is little information to indicate which way the boundary should move, that is, the

'force' on the boundary is weak or non-existent. In contrast, using the original image

information means that the 'force' is (on _ average) constant throughout the whole of

each region adjacent to the true boundary. Consequently, for the case of two regions

where a closed boundary is used, enclosing (say) the left-hand region, the optimization

can be started with the initial boundary estimate enclosing only a small patch inside

that region. Each segment will move outwards, since that increases the likelihood by

an amount proportional, on average, to the area thus brought inside the boundary.

Therefore, the boundary will continue to expand until it reaches the true boundary.

In the optimization phase, the pixels are assumed to be independent. While this

assumption is not , strictly speaking, correct, the likelihood maximization still produces

good results. The inter-dependence of the pixels means that the 'likelihood' is really

only a pseudo-likelihood; calculating the true joint likelihood of a set of correlated pixels

requires the use of a Markov random field characterization. The effect of assuming pixel

independence is mainly that clumps of similar pixels are given more weight than they

deserve. This has not caused any problems in practice; it should cause problems only

when the lengths of the boundary segments are similar to the sizes of the clumps. For

relatively long boundary segments, such clumps do not cause significant problems. The

reason for this is that the effects of such clumps along the boundary tend to balance

out.

Optimization of cubic segments in the boundary is quite slow, in the current im­

plementation, due to the difficulty of searching the space of up to 6 dimensions for the

parameters at each knot. Further research into efficient algorithms for optimizing cubic

segments is required.

5.1.3.2 Consistency test

The consistency test is a key element of the BLNI algorithm, since it essentially

controls how many segments the final boundary has. The current implementation of

the consistency test works very well. One of the best features is that the threshold

siglev, controlling the significance level of the test, can be set at a constant value.

During evaluation of the BLM algorithm, this threshold did not have to be changed

136

for any image. In all cases, the value of 5.0 standard deviations from the mean was

used, which gives a sensitive test with a false-alarm rate of practically zero (certainly,

no false alarms were observed).

The implementation of the consistency test is based on the assumption that the

distribution of the log likelihood-ratio (LLR) statistic is Gaussian when the null hy­

pothesis is true (i.e., when the patch really does belong on the side to which it has been

assigned). This is quite a reasonable approximation for large patches (as would be ex­

pected from the Central Limit theorem (Freund, 1972, p206)) and for natural textures.

It may, perhaps, break down for small patches of textures with strongly non-Gaussian

intensity distributions.

The usual threshold value of 5.0 may seem rather high, given the assumed Gaussian

distribution. One might expect a threshold value of 3.5 or 4.0 to give an acceptable

false-alarm rate with better sensitivity. There are two reasons why the higher value is

used, both relating to the fact that the rate of false alarms must be practically zero-a

false alarm will introduce unnecessary complexity into the boundary. The first is that

the distribution may deviate from the assumed Gaussian shape. The second is that,

even when the Gaussian assumption is true (or a good approximation to the truth), the

relationship between the observed false-alarm rate and the threshold depends on the

method used to determine the patches to be tested. Because only patches which are

likely to fail are tested, a much higher proportion will fail the test than the proportion

that would fail if the patches were chosen purely at random. This proportion is given

by the probability in the upper tail of a Gaussian distribution beyond the threshold.

For example, the probability that a normalized Gaussian variate will be greater than

5.0 is only 2.9 x 10-7
, but the observed false-alarm rate in the test with a threshold

of 5.0 will be higher than that, because the test only chooses patches with a relatively

high LLR, and thus cuts off the lower end of the distribution.

This is the reason why a higher threshold had to be used in comparing the results

from the convolution edge detectors with an optimized region mask. The optimization

routine used in that case has much more freedom to search out patches with high values

of the LLR, and therefore concentrates on the upper end of the (assumed) Gaussian

distribution to a greater extent than the procedure used in the BLM algorithm.

137

J

Strategy for finding protrusions. The procedure used in the BLM considers dis­

placing small pieces of a boundary segment out from the segment, searching for the

most likely position for the piece. Two options exist: (1) find the most likely position

within a given distance (a global optimum over the distance considered), which is the

method currently used, or (2) move the piece away from the segment only while the

likelihood increases (finding a local optimum). The first method gives a more sensitive

test, and one which is less susceptible to noise (since it can pass over textural intensity

variations in finding the largest possible area which is (apparently) on the wrong side

of the boundary), but it can give rise to problems if one of the regions contains an­

other embedded region, close to the part of the boundary being tested. This situation

does not conform to the assumptions made in the current implementation of the BLM

algorithm, but is reasonably common in real-world images. Section 5.3 describes an

extension of the scheme to handle multiple regions; the second method would probably

be preferable with the extended scheme.

Calculating autocovariances. Applying the test to a given patch requires calcu­

lating the variance of the LLR statistic under the null hypothesis. This variance is

calculated using the autocovariances of the A-image, as described in section 3.4.5.3.

This approach works well, provided that a reasonable area of each texture is avail­

able for calculating the autocovariances, that is, an area at least four or five times as

broad as the maximum span over which autocovariances are calculated (controlled by

parameter autodist). If insufficient area is available, the estimates of the autocovari­

ances will be unreliable, and it is possible for the calculated variance for a region to be

negative. Since the variance must be positive, such a result clearly indicates that the

autocovariances are incorrect, and that therefore autodist is too large. On the other

hand, if substantial correlation exists over a considerable fraction of the breadth of the

region, then there is a strong case for saying that the variations are too coarse to be

considered as texture, that is, that the region is not homogeneous.

Note that these autocovariances are of the pixels in the A-image, not the original im­

age; thus, they depend on the function .X(x), which depends on the estimated intensity

distributions in both regions. In the case where there are more than two regions, the

autocovariances will have to be calculated for each pair of adjacent regions (rather than

just for each region). These autocovariances could be calculated from the grey-level

dependence matrices (i.e., the second order statistics), but since a complete Na x Na

138

matrix is required for each span for which the autocovariance is required, the matrices

would consume a very considerable amount of storage. Using these matrices is therefore

probably not a viable strategy.

5.1.3.3 Elaboration step

The task of the elaboration step is to increase the complexity of the boundary

hypothesis if it is found to be inconsistent with the image data. For a piece-wise linear

boundary, the only way to increase its complexity is to add more knots. The question is,

how many, and where? The strategy in the current implementation is to add one extra

knot in the middle of each inconsistent segment (i.e., half-way between the adjacent

knots). Clearly, it makes most sense to add the extra knot(s) to inconsistent segments,

but it is reasonable to ask, is there a more intelligent strategy than adding the extra

knot at the half-way point? It may be possible to use the information contained in the

locations and sizes of the inconsistent patches to guide where to place the extra knots,

but experience indicates that such a strategy would have to be quite complex, and

would probably be error-prone. The simple strategy of adding the knot at the half-way

point was chosen because it has the advantage of tending to keep the segment lengths

even, and it avoids the need for a complex algorithm to determine where to add the

knots. This strategy may mean that up to three iterations are required for sufficient

knots to be added in the right places to enable . the boundary to move towards the true

boundary, but it will eventually add the required knots. It may add more knots than

necessary (as is discussed further in the following section).

In considering a more intelligent elaboration algorithm, at least three possible rea­

sons for a segment to be inconsistent must be considered:

1. The true boundary is curved, and there are, as yet, too few segments to approx­

imate it sufficiently well (e.g., image gmarc (figure 4.22, page 110)).

2. The true boundary contains a corner in the length spanned by the segment (e.g.,

image gmcorner (figure 4.1, page 89)).

3. The true boundary contains a protrusion, but is approximated for some of its

length by the current hypothesis (e.g., image gmprot (figure 4.26, page 113)).

In case (1), the segment needs at least one extra knot, but there is no obvious way of

determining whether one is enough (without trying it). One extra knot will, however,

139

allow some progress to be made. In case (2), one extra knot will probably suffice; in

fact, there may be adjacent inconsistent segments which do not need a.n extra. knot

(i.e., this section of the boundary only· needs one extra knot to be able to become

consistent). In both these cases, adding the knot at the half-way point-will usually be

quite adequate, since the optimization phase should be able to move it to where it is

required. However, in case (3), at least three extra knots are needed, a.nd they need to

be added near the protrusion, so that the middle one of the three can move up into the

protrusion when the boundary is optimized.

There is no obvious way to determine which category a.n inconsistent segment be­

longs to. The shape and size of the inconsistent clumps may be some guide, but not

a particularly reliable one. The reason for this is that the procedure which finds the

clumps, being a relatively unconstrained likelihood maximization working on short

pieces of the segment, tends to be influenced considerably by noise and textural vari­

ations, as well as by the positio~ of the true boundary. (This is why the outline of

the clumps is not particularly useful as a boundary h~othesis.) Consequently, it is

difficult to decide where the best position to add extra knots is, or how many to add.

The root of the problem seems to be that accurate knowledge of the true boundary

is required to make the best choice, and this knowledge (almost by definition) is not

available at this point. The simple strategy of adding the extra knot half-way a.long

the inconsistent segment is therefore probably the best alternative.

Elaboration of cubic segments. When the alternative of using cubic segments

exists, the elaboration step has now at least three choices: add extra piece-wise linear

segments, add extra cubic segments, or change some segments from piece-wise linear

form to cubic form. If the boundary already has cubic segments, more options exist,

since the slope can be made continuous or discontinuous at a knot adjacent to a cubic

segment. These options exist at each iteration of the algorithm, so the set of hypotheses

to be considered forms a tree. The tree is not infinite, since a consistent hypothesis

will be reached at some point down each branch, but it could be very large; a complete

search of every option (i.e., a search with backtracking) is probably impracticable. It

may be possible to use some kind of heuristic search. For the reasons outlined above,

it would be very difficult to determine reliably whether a linear or cubic segment is

required from the size and shape of the inconsistent patches.

140

I
I

111,
'

Detailed algorithms for the elaboration and simplification steps, when the possibility

of using cubic segments exists, have not yet been developed. There are two obvious

strategies that could be used in searching for the simplest consistent hypothesis, to

avoid the need for backtracking in the elaboration step: (a) use only piece-wise linear

segments until a consistent hypothesis is established, and then simplify the hypothesis

by using cubic segments where appropriate, or (b) use cubic segments exclusively until

a consistent hypothesis is established, and then simplify by using straight-line segments

where possible.

The first option would probably be the less expensive in terms of processing time,

unless a drastic improvement can be made in the speed of optimizing cubic segments.

It would have the advantage that information from the shape of the piece-wise linear

boundary (i.e., the lengths of the segments and the angles between them) could be used

to determine likely places for using one cubic segment in place of several linear seg­

ments, and also to give a good initial approximation for the shape of the cubic segment

(which should speed the optimization). The 'cornerness' measure would also be very

useful: those knots which do not correspond to definite, sharp corners are obvious can­

didates for being subsumed into a cubic segment. Note that a cubic segment (without

slope continuity at either end) has the same complexity as three linear segments: the

cubic segment requires two coordinates (four parameters) to specify its initial and final

velocities. A cubic segment without slope continuity at either end, to be a preferable

alternative, would therefore have to either (i) replace three linear segments, and have

a higher likelihood, or (ii) replace four or more linear segments. Similar rules apply if

slope continuity is maintained at one or both ends.

5 .1.3.4 Simplification step

At first sight, it might seem that a simplification step should not be necessary, given

that the BLM algorithm starts with a very simple hypothesis and elaborates it until it

is consistent. However·, as noted above, the elaboration step cannot always determine

the least possible elaboration which will give a consistent boundary, since that would

require knowledge of the true boundary which is not available. In practice, it may add

more segments than are needed, in the process of adding those extra segments which

are necessary.

The algorithm used for simplifying a piece-wise linear boundary, given in sec-

141

~.I

tion 3.4.6, represents a search with a limited degree of backtracking. Briefly, the

algorithm for testing whether a knot can be removed is to remove it, re-optimize the

boundary, and test for consistency. If the boundary is not consistent, it must be restored

to the state before the knot was removed. In practice, this strategy is not particularly

expensive in processing time. Those knots which are most likely to be necessary in the

boundary are eliminated from consideration by a very quick test on the area enclosed

in the triangle formed by the adjacent segments and a line between the adjacent knots.

The knots which pass this test are therefore those where the adjacent segments are

short, or where the angle between them is close to zero or 180°. The effect of removing

such knots tends to be relatively local: that is, -re-optimizing the boundary generally

only moves a few knots near the knot which was removed; this optimization is therefore

usually quite fast.

It is important to re-optimize the boundary when a knot is removed, before testing

for consistency. A strategy which was used initially, and rejected, was to consider re­

moving each knot, replacing it with a straight segment between the adjacent two knots,

without re-optimization. If this segment was not consistent, the knot was restored. Fur­

thermore, this procedure was performed on each iteration of the BLM algorithm. The

problem with this strategy is that one could thus obtain a boundary which was sim­

pler than the original, and consistent, but which was not the most likely. Subsequent

re-optimization of the boundary could then give one which was more likely, but not

consistent! Furthermore, when this simplification step was used within the iteration

of the BLM algorithm, the possibility existed for the algorithm to get into an infinite

loop adding and removing segments.

Where cubic segments are used, many more possibilities for simplification exist: for

example, some of the additional options are:

• Convert a cubic segment to a linear segment

• Merge two ~djacent cubic segments

• Merge a cubic segment with an adjacent linear segment

• Enforce slope continuity between two adjacent cubic segments

• Convert three or more linear segments to a cubic segment.

A detailed strategy for the simplification step under these circumstances has not yet

been developed.

142

5.1.3.5 Boundary representation

In the framework of the BLM approach, the boundary representation has a critical

role, because it determines which shapes are considered simple. Those shapes for which

large sections can be fitted with a single segment will be considered simple, so to some

extent the repertoire of segment types could be application-dependent. The segment

types used in the current implementation of the BLM algorithm (linear and cubic)

provide a versatile repertoire for :fitting a wide range of shapes, and the complexity

measure they provide corresponds well to an intuitive idea of how complex a given

shape is. One possible exception to this statement is a circular arc-an arc would

generally be considered simpler than an arbitrary cubic curve. This could be overcome

by adding circular arcs to the repertoire of segment representations. Arcs would have

five parameters: four for the endpoints, and one for the radius of curvature. (Four

of these are shared with adjacent segments, giving effectively three parameters per

segment.) If a section of the boundary was approximately circular, an arc would be

preferable to a cubic segment, as being simpler (provided it was consistent).

However, increasing the repertoire of segment representations will increase the com­

plexity of the elaboration and simplification steps. There are many possible segment

representations which could be used, and it is necessary to select a suitable subset.

Increasing the repertoire will enable a simpler description to be found, in some cases,

at the cost of time spent searching through the repertoire for the simplest consistent

description. If the images to be processed contain many instances of a particular type

of curve, a representation for that type of curve should probably be added to the reper­

toire. In general, however, linear and cubic segments perform quite well (figure 4.24 on

page 111 shows that a single cubic segment can approximate a circular arc very closely

over quite a long distance).

5.1.4 Other aspects of the BLM algorithm

5.1.4.1 Behaviour as signal/noise ratio changes

An interesting and useful characteristic of the BLNI algorithm is that the amount of

detail in the boundary can be expected to decrease as the two regions become less dis­

tinct; that is, as the contrast between them decreases, or as the level of noise increases.

With many other edge-finding algorithms, increasing noise will affect the boundary

143

rr;

shape more and more, causing the shape to become more comple.."'t, rather than less.

However, with the BLM algorithm, a. lower contrast between the regions will mea.n

tha.t the consistency test is less stringent, resulting in a. less complex boundary. Thus,

the BLM algorithm does not report more information than can reliably be extracted

from the image. When the contrast between adjacent regions is low _with respect to the

variations within the regions (that is, the signal-to-noise ratio is low), the amount of

information in the image is low, so those algorithms which report a. complex boundary

shape are reporting noise as 'signal', i.e., as useful information present in the image.

This spurious information can only cause problems for subsequent processes using this
data.

5.1.4.2 Boundaries with broad transitions

It is of interest to consider how a. boundary with a. broad transition between two

regions could be handled. The BLM algorithm, as formulated, makes no provision

for_ such transition regions: each pixel is assigned to one region or the other, and the

regions are assumed (in the current implementation) to be homogeneous. In fact, if the

distributions of the regions overlap, there is generally no serious problem. The pixels

near the middle of the transition region will have ·characteristics intermediate between

the two regions, and consequently will be ambiguous. That is, the corresponding pixels

in the .:\-image will have values close to zero. The location of the boundary will therefore

not be tightly constrained; its likelihood will tend to have a. broad maximum at the

centre of the transition region. The fact that there is a broad transition region will

be reflected in relatively large confidence intervals for the segment positions. However,

this does not distinguish between the two cases where the boundary location is not

tightly constrained: (a) where the noise or texture level is high (low contrast between

regions), where the transition could be sharp, but its location cannot be accurately

determined, a.nd (b) where the noise level is low, but there is a. broad transition.

If the two distributions are quite distinct, the intermediate pixels will tend to be such

that they could not well belong to either region. Consequently, their log likelihood ratios

will be essentially zero, and the boundary will have a flat-topped likelihood maximum

in the vicinity of the transition region. Problems may arise in the consistency test,

however, because it may be possible to find clumps which cannot belong to either
.

region .

144

In the spirit of the ELM algorithm, and of the region modelling discussed in sec­

tion 5.3.2, it would be best to model the transiiion region explicitly with a parametric

model. If the transition region is very broad, it is probably best modelled as a region

in its own right, with spatially varying characteristics. The boundaries of such a region

would probably not be at all tightly constrained-perhaps a fixed width for the region

would be appropriate. Narrower transition regions could be modelled by incorporating

the transition as part of the boundary model (which would complicate the optimiza­

tion phase). \iVith a sharp transition, the likelihood changes according to those pixels

which the boundary crosses as it moves. A broad transition would mean that all pixels

within the transition region would have to be taken into account in_ determining how

the likelihood changes when the boundary is moved.

5.1.4.3 Vector pixels

In many applications, the information available for each pixel has a number of

components, that is, it forms a vector, rather than being a simple scalar value. The ·

most obvious example of this is colour_ information (or more generally, multi-spectral

information), where each pixel has red, green, and blue components. Such information

could be handled quite easily within the framework of the BLM algorithm. This would

require the statistical models to be extended to provide the likelihood of a pixel as a

function of its vector value. These likelihoods would define the function .X(x), which

would be a scalar function of the vector pixel x. Thus, the .\-image would still be a

scalar image, and the autocovariances would be calculated as before.

The likelihoods could be defined in two ways. The simpler way is to make the

approximation of assuming that the components of the vector are independent. His­

tograms can then be constructed for each component independently; the log likelihoods

obtained for each component would simply be added. Pre-processing techniques such

as pri~cipal components analysis (Rao, 1973, p590) could be used to reduce the corre­

lation between the components, making the assumption of independent components a

very good approximation to the truth. On the other hand, if this assumption cannot be

justified, the likelihoods will have to be assigned using methods that take into account

all the components at once, such as multi-dimensional histograrnrning.

One major advantage of using the BLM algorithm on vector data is that one segmen­

tation is done, yielding one result. Other techniques which are only suitable for scalar

145

data would have to be applied to each component in turn, giving a set of segmentations

which have to be combined in some way.

A bank of different te..nure filters could be used before the BLM algorithm to enable

it to distinguish textures which do not differ in their pixel intensity distributions. The

set of output images from these filters can naturally be regarded as forming one vector­

valued image, which could be processed as described above. Therefore, using a. large

number of pre-filters need not add substantially to the complexity or expense of the

BLM algorithm.

5.1.4.4 Correspondence with human perception

The results from the BLM algorithm generally correspond closely to the boundary

perceived by humans. Image noise shows the ability of the BLM algorithm to integrate

information globally, as humans seem to be able to do. When the whole length of the

boundary is visible, as in figure 4.33 on page 117, the b-oundary seems fairly clear

and sharp. However, if a.11 except the middle tenth is masked, as in figure 5.1, the

boundary is perceptually much less sharp. Obviously, the whole length of the boundary

in figure 4.33 is required to obtain the perception of a. sharp boundary. The BLM

algorithm obtains corresponding results-the confidence interval for the middle tenth

of the boundary is 4.4 pixels wide, whereas the confidence interval for the central 95%

is only 1.2 pixels wide. (The central 95% section was used, rather than the whole length

of the segment, to a.llow the section to be displaced some distance· without intersecting

the border of the image.)

Subjective contours. A subjective contour is a percept of an edge where there

is no actual edge in the stimulus. Thus, the sharp boundary perceived by human

observers in an image such as gmcorner (figure 4.1, page 89) has intervals where the

contour is subjective, as there are intervals along the boundary where there is little

or no change in intensity across the boundary. In this sense, the BLM algorithm can

'perceive' subjective contours. The intervals where there is no intensity change across

the boundary can be quite long, as in the case of image dots (figure 4.35, page 118).

The BLM algorithm could also 'perceive' the subjective contour completing a bound­

ary behind an occluding object, if the area occupied by the occluding object was iden­

tified, and the log likelihoods of all the pixels in that area were set to zero. This

146

Figure 5.1: Middle tenth of image noise

1m
:l

Figure 5.2: Image with spatially varying regions

147

~I I

would indicate that there is no information about where the boundary is, in the inter­

val behind the occluding object. The BLM algorithm could then be used to find the

simplest hypothesis which is consistent with the information which is available, i.e., the

parts of the boundary which are visible. The part of this boundary hypothesis which

is occluded would be a 'subjective' contour. If cubic splines were used, it might be

necessary to introduce some method to encourage constant curvature in the absence of

any likelihood information.

5.1.4.5 Architectures for fast implementation of the BLM algorithm

As stated previously, the aim of this study has been to identify methods for obtaining

accurate and concise descriptions of boundaries, rather than necessarily to seek methods

which can be implemented in real-time. There is some scope for improvement in the

algorithms employed in the BLM approach. However, it is of interest to consider what

types of computer architecture could be used to advantage in efficiently implementing

the BLM approach. In particular; parallel computation is probably the only way to

obtain dramatic increases in speed.

An array of processors, one per pixel, could be used to advantage in some parts of

the BLM algorithm, notably in the likelihood optimization phase (where each processor

could simultaneously calculate when it will be crossed as the boundary moves), and the

consistency test (where the protrusions could be determined at each point along the

boundary simultaneously). Such operations would require that the current boundary

description and other information be broadcast to all processors. This appears to be

essential, because any segment of the boundary can a:ff ect pixels over any portion of

the image. A central facet of the BLM algorithm is that it relates two distinct entities:

a parametric representation of the boundary shape, and the array of pixels forming the

image. Opportunities for algorithms in which each processor communicates only with

its neighbours are therefore limited.

Parallel computation could also be used in other ways, for instance, to optimize

many segments at once (as long as no two segments being optimized are adjacent), or

to try different classes of description simultaneously (e.g., one processor could obtain

a piece-wise linear description while another uses cubic segments). Clearly, further

research into efficient implementation of the ELM algorithm is required if it is to be

used in a real-time machine vision system.

148

I
Im

I'"'

1 ...

5.2 Comparison with other approaches

5.2.1 Edge-based approaches

With suitable pre- and post-processing, edge-based approaches are capable of giving

reasonable results on simple images, such as 'blocks-world' images, in which the regions

are of substantially uniform brightness. However, the assumptions on which they are

based are not appropriate for textured images, as the results in chapter 4 show. The

philosophy of edge-based approaches to segmentation is quite different from that of the

BLM algorithm, in that it is assumed that the extent of difference between two areas of

an image is purely a function of the difference in brightness between them. In contrast,

the BLM algorithm uses statistical models for the regions, explicitly allowing for local

intensity variations within regions.

The intensity variations within textured regions tend to cause unwanted responses,

because edge detectors cannot distinguish intensity variations within a texture from the

changes in intensity that occur at the boundaries between regions. (The BLM algorithm

is not based on and does not attempt to make this distinction.) This problem of false

responses can be overcome to some extent by smoothing the image with a low-pass filter,

i.e., by averaging over large areas, prior to the derivative (or derivative-like) operation

which compares the intensity in neighbouring parts of the image. This is based on

an assumption that the intensity change at the boundary of a region will persist over

a larger distance than the intensity changes within the texture in the region. This

assumption is valid in simple cases, but it causes problems in many situations, such as

where the boundary of the region has a sharp corner, at the junction of three or more

edges, and near the edge of the image.

The two approaches differ in how the location of an edge is determined. Edge

detectors usually mark edges at the points where the smoothed image is changing

fastest. Intensity variations within the textures may be considerably reduced in the

smoothed image, but they cann_ot be entirely eliminated, and these variations tend

to perturb the position of maximum rate of change. Consequently, the reported edge

position tends to wander around the true boundary position, as the results in chapter

4 show.

The output of an edge detector is usually a map of edge pixels, or possibly several

maps for different scales. Combining the results for different scales is quite difficult, in

149

111:

'·1

I

general, because the responses corresponding to the same edge in the original image

will tend to occur in different places in the different edge maps . Given that the different

scales a.re combined, there still remain the problems of identifying strings of edge pixels,

linking them together, and (if necessary) approximating the resulting chains with a

parametric representation.

These chains tend to be smooth when large amounts of smoothing are used on the

image, but apart from that, there is no notion of preferring a 'simple' boundary. (Note

that the large-scale detectors will report a smooth shape even when the true boundary

has a sharp corner.) Converting the edge strings to a parametric representation there­

fore involves making approximations, in order to obtain a relatively simple shape, and

also to try to remove unnecessary undulations caused by texture. These approxima­

tions are generally made without referring to the original image, with the consequent

danger that the approximation could be even further from the true boundary than the

chain of edge pixels.

The BLM algorithm does not suffer from such problems. Use of parametric rep­

resentations allows 'simple' boundary shapes to be encouraged, without prohibiting

corners. The parametric representation of the boundary is fitted directly to the orig­

inal image data; the algorithm makes no arbitrary and untested approximations in

determining the boundary shape. Multiple scales are not used, so there is no problem

of combining the results at multiple scales. (There is a scale parameter, which spec­

ifies the maximum scale of textural variations, but setting this parameter to a large

value does not cause the algorithm to give inaccurate results.) The BLM algorithm

can actually combine information over much larger distances than are practicable for

a convolution edge detector, without having to smooth the image.

Thus, we see that th~ edge-based approaches involve making a number of assump­

tions which are inappropriate for images which contain textured regions, chief of which

is the assumption that the larger the difference in intensity between two patches, the

more likely they are to belong to different regions. In contrast, the BLM algorithm com­

bines explicit knowledge about the textures with a preference for simplicity to obtain

a boundary hypothesis which is-simple, consistent, and accurate.

150

5.2.1.1 Comparison with the approach of Mansouri et al.

The approach of Mansouri et al. (1987) has some interesting similarities with the

BLM approach, but also some important differences. Their approach initially convolves

the image with two masks of 3 x 3 pixels and obtains a gradient magnitude and ori­

entation at each pixel. The basic idea underlying their approach is that pixels along a

straight segment of an edge contour will have similar orientations, and that the hypoth­

esis of a given straight-line segment can be tested by assessing the uniformity of the

gradient direction along the length of the segment. Experience with the convolution

edge detectors implemented in this study demonstrates that the gradient orientation

will generally not be uniform along a straight edge in textured images, especially when

small edge detection masks are used. For example, the results shown in figure 4.12

on page 100 for the smallest scale show that the gradient orientation oscillates wildly

along the length of the true boundary. (The masks used for the smallest scale have a

su-pport of 15 x 15 pixels.) It is therefore doubtful whether the approach of Mansouri et

al. could identify the true boundary in image gmcorner (figure 4.1, page 89). Another

relatively minor point is that their hypothesis test is not formulated so as to have a

fixed false-alarm rate; their test depends on pre-set thresholds, and the false alarm rate

is not assessed.

5.2.1.2 Comparison with the approach of Kass et al.

The approach of Kass et al. (1987) is also similar in some ways to the BLM approach.

Their approach finds a smooth curve which is influenced both by the image data and

by a preference for smoothness, and is thus able to find a reasonable interpretation of

the image data in many cases. In fact, their approach has most in common with the

statistical estimation approaches discussed in section 2.4, although it is not formulated

in statistical terms. Both approaches find an interpretation which combines an influence

from the image data with a preference for smooth boundaries; the MAP approaches

express this in terms of probabilities, whereas Kass et al. express it in terms of 'energy'.

The relative weighting of the image data with respect to the preference for smoothness

is a critical parameter in both approaches.

In one example given by Kass et al., their procedure has found a smooth boundary

around an object, despite the irregularity of the zero-crossing contours which it is

using. If the internal forces were relaxed, the boundary would follow the zero-crossings

151

II•

more closely, and would therefore become more irregular. The method thus gives no

indication as to whether the boundary really is smooth or irregular. This illustrates the

major denciency of their approach-there is no consistency test. The BLM algorithm
uses the consistency test to determine whether intensity fluctuations represent real

deviations in the boundary, or whether the boundary is actua.lly smooth, with the
fluctuations being due to texture.

The energy minimization performed by Kass et al. is similar to the likelihood op­

timization step in the BLM algorithm, and their methods could perhaps be adapted

to likelihood maximization by using an appropriate energy functional. The curve that

their method finds is simple in the sense of being smooth, but not simple in the sense

of being able to be described with few numbers. The curve is the solution of a set of

differential equations, which is solved numerically. Describing the curve (independently
of the original image) would therefore require either a large array of coordinates, or a

chain code; in neither case is the description concise.

5.2.2 Region-based approaches

Region-based approaches generally tend to be able to take into account the sta­

tistical properties of regions more easily than edge detection algorithms, and in this

sense they are closer to the BLM algorithm. However, region-based approaches differ

considerably from the BLM approach in that very little attention is paid to the shapes

of the boundaries of the regions obtained; rather, the aim is to identify the different

regions in the image. In this way, the region-based approaches are complementary to

the BLM algorithm, which assumes that the regions have already been identified (by a

split-and-merge phase in the current implementation), and seeks to find the accurate

location of the boundary between the regions.

Because region-based approaches regard the region boundaries as of secondary im­

portance, they tend to produce rather poor information about the shapes of the bound-­

aries. Pixel classification techniques (e.g., thresholding) tend to produce disconnected

regions with irregular boundaries. Techniques which concentrate on larger blocks of

the image (e.g:, window classification, split-and-merge) tend to produce region bound­

aries which have a 'blocky' appearance, and may also tend to generate many small

regions near the boundaries between large regions. These small regions cannot reliably

be merged with either region. The BLM algorithm has an analogous difficulty to cope

152

~-·

11,.,

with, in that it may be ambiguous as to which region an individual pixel (or clump of

pixels) belongs. This problem is solved by seeking to make the best overall assignments,

that is, by assigning pixels to one region or the other so as to maximize the overall

likelihood.

Thus, region-based approaches and the BLM algorithm are concentrating on dif­

ferent aspects of the segmentation problem, and are perhaps not directly comparable.

Section 5.3.2 discusses a segmentation technique, using the same basic principles as the

BLM algorithm, which combines the region-finding and boundary-locating aspects of

the segmentation problem in one algorithm.

5.2.3 Statistical approaches

Techniques which seek to segment an image by maximizing an a po3teriori proba­

bility have more in common with the BLM algorithm than either edge-based or region­

based approaches. These techniques are described in section 2.4. They are called MAP

segmentation techniques (for Maximum A Po3teriori). The underlying idea is to as­

sign pixels to regions so as to maximize the probability of the segmentation, given the

observed image; this probability is proportional to the product of the probability of the

region assignments multiplied by the likelihood of the original image, given the region

assignments.

There are thus two components to the statistical model: the model for the region

shapes, which assigns an a priori probability to each possible segmentation, and the

model for the texture in each region, which assigns a likelihood to each region, given

the contents of that region of the image. The a priori component is used to introduce

a preference for 'nice' region shapes, (e.g., connected regions with smooth boundaries).

The likelihood component is, in principle, the same as that used in the BLM algorithm,

although different statistical models are used.

The BLM and MAP approaches are therefore similar in that they both contain an

element of seeking to maximize the likelihood of the image data, given the proposed

assignment of pixels to regions. However, they differ in the way in which this likeli­

hood-maximization is constrained in order to produce reasonable results. (Likelihood

maximization, with the assumption of independent pixels, becomes merely pixel clas­

sification.) The MAP segmentation techniques seek to encourage 'good' or 'simple'

region shapes by assigning them a high a priori probability, which acts to compensate

153

t . I

for the generally lower likelihood tha.t such regions would ha.ve. In contra.st, the BLM

algorithm uses the criterion of consistency to define a.n a.ccepta.ble set of segmenta­

tions, a.nd chooses the simplest of these. Therefore, the BLM algorithm can choose a.

less likely segmentation in favour of a. more likely one, provided that the less likely one

is consistent and simpler. The MAP approaches can also choose a. less likely segmenta­

tion in favour of a. more likely one, if the a priori probability of the first is sufficiently

greater than the second.

Both a.pproa.ches can cope with texture in the regions, that is, with a. distribution

of pixel intensities rather than an almost constant intensity. If adjacent pixels a.re not

statistically independent, the MAP approaches generally require Markov random field

models to cope with the dependence. Use of such models usually involves considerable

computational expense. Fortunately, they were not found to be necessary in the BLM

algorithm.

In their current implementations, both methods require the statistical character­

istics of the regions to be supplied before starting. That is, both require an initial

segmentation, and so both can be described as boundary locators, rather than region

detectors. So-called 'adaptive' algorithms for MAP segmentation, which do not require
•

the region models to be initially specified, a.re an active area of research (e.g., Cohen

and Cooper, 1987). Some suggestions for extending the BLM algorithm to eliminate

the need for the initial segmentation are given in section 5.3.2.

The main difference between the BLM and MAP approaches lies in the criteria. for

the required segmentation. Whereas the BLM algorithm uses the consistency test to

provide an absolute yes/no decision a.bout whether a. boundary hypothesis is acceptable,

the MAP approaches only use relative information (i.e., one segmentation is better or

worse than another). Consequently, there is no guarantee that the results obtained

with a MAP segmentation technique will correspond to the image data within given

limits; that is, the results may not be consistent with the image data. The results

from MAP segmentation have not, in any of the studies cited, been checked against the

image data with a consistency test, nor has a measure of confidence in the boundary

location been derived .

Similarly, the shapes of the regions may be quite complex, even when there are

much simpler shapes which a.re consistent (but perhaps of lower a posteriori probabil­

ity). The region shapes that a.re obtained will depend on the relative strengths of the

154

likelihood and a priori probability contributions; if the likelihood contribution domi­

nates, the region shapes will tend to be complex, whereas if the a priori contribution

dominates, the region as·signments may become inconsistent with the image data. Since

the a priori probabilities are usually specified quite arbitrarily, they represent a set of

para.meters in the segmentation process whose values are quite critical to obtaining

correct segmentations.

Published results from MAP segmentation techniques most often show segmenta­

tions of completely artificial images (e.g., Derin and Cole, 1986). Even so, the results

often show rather irregular region boundaries, and sometimes also show numbers of

small isolated regions. These deficiencies are mainly due to inadequate models for

specifying the a priori probabilities of regions of various shapes. The best models that

have been used to date are Markov random field models, with the parameters set so

as to encourage neighbouring pixels to belong to the same region. However, practical

considerations usually limit the set of neighbours of a pixel to the nearest four or eight

pixels. While a dependence span of this size is capable of producing large, connected

regions, it is not capable of expressing the difference between a. region with a. globally

straight or smooth section of its boundary, a.nd a. region with a quite irregular bound-
•
ary. These models for the region shapes therefore do not capture the essential qualities

of 'simple' boundaries .

5.3 Possible extensions to the BLlVI algorithm

5.3.1 Handling multiple regions

As noted a.hove, the current implementation is limited to considering two homo­

geneous regions. The limitation to two regions could be overcome quite easily. This

would involve implementing an appropriate data structure to represent the regions,

boundary segments, and knots. These would be linked together into a. structure here

called the 'RSK graph' (for Regions, Segments, and Knots). This structure is based

on the 'RSV graph' (V for vertices) of Hanson and Riseman (1978). The following

information would be associated with the various nodes:

• Each region would be linked to the boundary segments which define the boundary

of the region, and to the adjacent regions. Each region would be associated with

155

f:

a statistical model for the region, giving the estimated intensity distribution, and

possibly the grey-level dependence matrices.

• Each pair of adjacent regions, say regions j and k, would have an associated

log likelihood ratio function Ajk(x), plus the mean, variance, and autocovariance

function for the Ajk-image in both regions.

• Each boundary segment would be linked to a knot at each end, and to the regions

on either side. Other information in the node would include the segment type

(e.g., linear or cubic) and any other parameters needed to define its shape (e.g.,

initial and final velocities).

• Each knot would be linked to the segments which are attached to it. The infor-­

mation stored in the node would include the position of the knot, together with

any constraints on the boundary shape; for example, collinearity of one or more

pairs of segments.

With this representation, the structure of the graph corresponds directly to the

structure of the regions and boundaries in the image. That is, the 'region' nodes

would correspond to visible surfaces (or parts thereof), and the 'segment' nodes would

correspond to events such as boundaries of surfaces, occlusion of one surface by an­

other, shadows, or changes in surface properties. Knot nodes with more than two

segments attached will be called 'junctions' here. They are quite important, because

they essentially define the topology of the boundary structure. Each junction could be

characterized as a T-junction, Y-junction, or X-junction, etc., according to the number

of attached segments and any constraints between them. These different types of junc­

tion could correspond to events such as occlusion of a boundary or three-dimensional

corners. The knot nodes with two segments attached are necessary to represent cor­

rectly the shape of the boundary between two regions. Thus, dealing with a string

of segments joined by such knots essentially involves only two regions. As discussed

above, these knots could either correspond to corners in the shape of the true boundary,

or perhaps merely be necessary to represent the shape of the true boundary.

The BLM algorithm, extended in this way, could easily and naturally handle the

junction of three or more edges, giving accurate and reliable results, without inter­

ference between adjacent edges. This is a situation where many edge detectors (in

particular the Marr-Hildreth detector (Shah et al., 1986)) fail badly.

156

Some minor changes to the BLM algorithm would be necessary to handle the RSK

graph. These are:

• As before, the region characterizations and initial boundary hypothesis would be

obtained from an initial segmentation . . Obtaining the initial hypothesis would

be slightly more complex than previously, since sufficient knots would have to be

established that the initial segments around each region enclosed at least part of

that region. This would include inserting all of the junctions which were necessary

to represent the topology of the regions and their boundaries.

• Optimizing the positions of knots with two segments attached would be the same

as previously. When optimizing a junction, there can be as many possibilities for

the likelihood of some pixels as there a.re regions in the vicinity of the junction.

Even so, as a knot is moved along an optimization line, the likelihood will change

in discrete steps as before, according to the pixels crossed by any segment attached

to the junction. Where there a.re constraints on some of the attached segments

(such as at a T-junction), these constraints may affect the permissible movements

of the knot, or may require that one or more other knots move in concert with

the knots being optimized. .

• The consistency test would operate as before, since it considers each segment

individually.

• The elaboration and simplification steps would operate largely as before, since

we a.re assuming at this point that all the regions have been identified, and thus

all the necessary junctions have been inserted at the stage of forming the initial

hypothesis. However, these steps would also have to consider simplification by

adding constraints (e.g., a T-junction should be regarded as simpler than a Y­

junction), or elaboration by removing constraints. This is very similar to the

possibility of slope continuity at a knot between two cubic segments.

5.3.2 Spatially-varying regions

The current implementation assumes that the regions are statistically uniform­

that is, the statistical characterization obtained in one part of each region applies to

the whole region. Clearly, in real-world scenes, this is not the case; gradual changes

157

often occur across a region. The underlying philosophy of the BLM algorithm (i.e., ob­

taining the simplest hypothesis which is accurate and consistent with the image data),

can be used to obtain models which account for gradual variations across regions. Such

a method will also sub-divide the image into regions, and will interact with the bound­

ary locator. Thus, this underlying philosophy extends to provide a. complete image

segmentation algorithm. (However, real-world images may still contain some detail,

such as linear features, which cannot conveniently be described within a. framework of

disjoint regions with smooth variations.)

Some important causes of gradual variation across regions are:

• Variations in illumination on a. surface due to

changes in aspect of the surface,

diffuse shadows, or

changing distance from the light source;

• Variations in spatial scale of texture due to changing aspect and/or distance from

the viewer ('texture gradient' (Stevens, 1981; Witkin, 1981; Gibson, 1950)).

These variations are rich in information a.bout the surfaces being viewed, their orien-
•

tations, distances, and shapes. Algorithms such as the 'shape from shading' algorithm

of Ikeuchi and Horn (1981) use these variations in three-dimensional reconstruction of

a. scene.

Thus it will be necessary in processing real-world scenes to take spatial variations

within regions into account for two reasons: (a) so that the image can be correctly

segmented, and (b) because the variations are themselves informative. The first reason

relates to the incorrect results given in some cases by the current implementation when

the regions are not uniform in their statistical characteristics. An extreme example of

this is shown in figure 5.2. This image could not be correctly segmented into the two

regions perceived by human observers by any technique which assumed that regions

were homogeneous. Such images as this cause severe problems to other strategies such

as edge detection (because the contrast of the edge becomes zero at the middle), and

split-and-merge techniques (because regions are assumed to be homogeneous).

As a. first step, the BLM algorithm could easily be extended to handle regions

which are not. homogeneous, given appropriate statistical models for the regions; the

158

BLM algorithm could then handle images such as figure 5.2 on page 147 correctly. A

spatially-varying region model would require two components:

1. A probability distribution function for the intensity of each pixel. This distri­

bution could be a function of the position of the pixel. Consequently, the log

likelihood ratio function Ajlc(x) -for adjacent regions j and k would also become a.

function of position.

2. Information about the spatial dependence of the pixels. Sufficient information

would be required to be able to calculate the variance of any given patch of the

A;k-image for adjacent regions j and k. In general, this would also depend on

the position of the patch. (Only patches near the boundary between regions j

and k will be considered.) In principle, all the necessary information is expressed

in the spatial grey-level dependence matrices, which would now be a. function of

position.

How could these statistical models for the regions be determined? In the spirit of

the BLM algorithm, they could be determined by searching for the simplest hypothesis

which is accurate and consistent, given the following elements:

(a) A set of parametric models for different types of spatial variation, each with an as­

sociated level of complexity. These would represent various classes of hypotheses

about a region.

(b) A method for finding the most likely model in a given class for a particular

region. This would involve estimating the parameters of the model by likelihood

maximization.

(c) A method for ·testing whether a given model is consistent with the image data in

a region, that is, for finding patches of the region which are inconsistent.

(d) A strategy for elaborating and simplifying region models.

Most of these elements would be rather more complex than in the case of the BLM
-

algorithm, since they deal with two-dimensional areas rather than one-dimensional

lines. (One-dimensional (time series) data could be segmented with this approach;

these elements would then be much simpler than for two-dimensional images.) In

particular, the consistency test involves searching for patches within a region which

159

I

l
~I

n,• 1

l
.

.

fail the appropriate test of hypothesis. Given the astronomical number of possible

connected patches within a region, it is clearly impossible to test them all; some kind

of representative subset should be tested (perhaps partly overlapping square windows

at a range of sizes).

These elements would be combined into an algorithm very similar in outline to

the BLM algorithm, whose purpose is to find an overall, composite hypothesis for the

whole image, which would incorporate parametric models for all of the regions and

their boundaries. The overall hypothesis would be accurate and consistent when each

component satisfied the criteria of accuracy (i.e., maximum likelihood) a.nd consistency.

This algorithm would start with the simplest hypothesis: one homogeneous region

for the whole image. This hypothesis would be fitted to the image data using likelihood

maximization ((b) above), and then tested for consistency ((c) above). If the image is

of a uniform texture, the model will be consistent, a.nd the process terminates. On the

other hand, if there are two (or more) regions, or a broad spatial variation across the

region, then the consistency test will fail.

At this point, there are several options for the elaboration step. It can either use

a more complex model for the region, or it can split the region into two (or more)

pieces. Suppose that a spatially-varying model is chosen for the region, but that there

are actually two distinct regions. Now, the spatially-varying models should allow for

smooth variation across the region, but not for sharp changes within the region. Conse­

quently, none of the spatially-varying models will be consistent with the image data, so

the region will eventually have to broken into two pieces in the search for a consistent

hypothesis. After it has been subdivided, there will be two regions, which then have

a boundary between them. Each region would start with the simplest class of region

model, which would be elaborated or subdivided as necessary in a recursive fashion.

On the other hand, suppose that the image consists of a single region with spatially­

varying characteristics. It may be possible to obtain consistency with multiple, uniform

regions. However, the option of using a single, spatially-varying model will also be

consistent, and will be preferable because it is simpler. The classes of models which

are a~able should correspond to the types of smooth variation which are expected in -

the scene, such as those listed above.

As the image is subdivided, initial hypotheses are formed about the boundaries be­

tween the subregions. Once reasonable hypotheses about the regions have been formed,

160

11
11

the BLM algorithm would be used to refine the boundary hypotheses. Modifying the

boundary of a region may cause the estimates of its statistical properties to change,

which may then affect the estimated boundary position. In this way, the region and

boundary hypotheses would interact, leading to an iterative process for determining

the best models for a region and its boundaries. As the total likelihood should never

decrease, this iteration should converge .

The above procedure is somewhat similar in parts to the split-and-merge procedure;

elaboration by subdivision of a region corresponds to the 'split' phase, and simplification

by merging adjacent regions corresponds to the 'merge' phase. However, the new

procedure has considerably more flexibility, in using spatially-varying region models,

and in subdividing a region according to the shape and size of inconsistent patches

within it rather than always subdividing it into four sub-squares.

There is an interesting analogy between the different classes of region models and

boundary models. A uniform region model is analogous to a straight-line segment. If

this is not consistent, one can use a spatially-varying region model, which is analogous

to a cubic segment (change of angle being analogous to change in statistical properties).

Alternatively, one can subdivide the region into two new regions, which is analogous
•

to introducing another knot in a boundary representation.

Thus, we see that the notion of determining simple, consistent, and accurate hypo­

theses extends to the whole problem of image segmentation, leading to a segmentation

technique which would yield parametric models for the texture in each region and

for the boundaries between regions. Such a technique would (hopefully) have similar

advantages to the BLM algorithm in practical applications. In particular, it would

cope, explicitly and correctly, with spatial variations within regions, and describe them

in parametric terms, suitable for use by subsequent processes in three-dimensional

interpretation of the scene.

5.4 Use of the BLM algorithm in a machine vision system

The BLM algorithm is, of course, not ~ end in itself: it is useful only insofar

as its results can be used by later processing stages, for performing such tasks as

3-dimensional analysis of a scene, locating objects, and recognizing them. In this

context, the BLM algorithm is potentially quite useful as it stands, but with the further

161

j

extensions described in section 5.3, it could be of even greater value.

As it stands, the BLM algorithm would not replace other segmentation techniques,

such as edge detectors or split-and-merge algorithms_ Instead, it would form a subse­

quent stage to obtain accurate boundary location estimates, after the initial segmenta­

tion technique had tentatively divided the image up into regions. The extended scheme

described above, which forms a segmentation by obtaining the simplest consistent hy­

potheses for the regions and their boundaries, would do away with the need for the

initial segmentation.

Several advantages of using the BLM algorithm, rather than using the output of a.n

edge detector or a split-and-merge algorithm, are listed below. Some advantages relate

to the algorithm as it stands, a.nd some to extended versions.

• The boundary reported by the BLM algorithm is generally simpler. This should

simplify later processing, since there is less information to deal with.

• The boundary reported by the BLM algorithm is generally more accurate .. Once

again, this should simplify further processing. In particular, the absence of un­

necessary and incorrect undulations in the boundary should make recognition of

objects considerably easier. The boundary shows neither the 'blockiness' present

in the output of the split-and-merge technique, nor the following defects, present

in the outputs of the convolution edge detectors used in chapter 4: ·

- Unnecessary undulations, due to the influence of variations in brightness

within the textures

- Breaking-up of the boundary

- Problems at the edge of the image and at the junction of edges

• There is no need to convert from an image-based or chain-coded representation

to a parametric representation. Such conversion generally requires making ap­

proximations (so that the parametric representation is not unduly complex). An

important point is that these approximations are generally made without refer­

ence to the original image. In contrast, the BLM algorithm fits the parametric

representation directly to the original image, and is thus much more accurate.

For example, an edge map represents less information than is in the original im­

age (assuming that a thesholding or non-maxmimum suppression step has been

162

I

I

performed). The BLM algorithm is therefore in a. position to use much more of

the relevant information.

• The results from the BLM algorithm are reliable; they are guaranteed to be

consistent with the image data. Later processing can thus proceed with confidence

that the reported boundary corresponds with what is in the original image. This

is quite important, since subsequent stages would rarely go back to the original

image, relying instead on the reported boundaries.

• There is no need to combine the results over multiple scales to obtain results

which are both accurate and reliable, as required for the convolution edge de­

tectors. There are, indeed, parameters for the BLM algorithm which relate to

the maximum scale of variation which can be considered as te.."rlure, but the al­

gorithm does not give inaccurate results when this scale is large. In contrast,

convolution edge detectors generally give inaccurate results at large scales, and

unreliable results at small scales.

• There are no critical parameter or threshold settings. There are only two impor­

tant parameters: the significance level in the consistency test, and the maximum

scale of texture. The significance level can be set to a constant value, and the

maximum scale of texture should depend on the sizes of the regions.

• Other information, potentially useful to later processing stages, can be obtained.

For example, the confidence contours and intervals (section 3.4.5.4) should be

useful, as an indication of the sharpness or clarity of the boundary, and also

as an indication of the range of acceptable positions for the boundary. The

latter could be very useful if some later process wishes to hypothesize a slightly

different position for a boundary segment, in order to obtain a simple description

at that level. For example, some later process may wish to hypothesize that two

boundary segments are, in fact, collinear, even though their reported positions

and orientations don't give collinearity. It should be possible to evaluate whether

this hypothesis is consistent with the image data using the reported con:fiden.ce

intervals and contours. Similarly, the 'cornerness' measure should be useful in

guiding the interpretation of knots in a piece-wise linear boundary as representing

corners in the true boundary, or as being a descriptive convenience.

163

U.l:

• Parts of the BL1'f algorithm could be used in other ways: for example, the con­

sistency test could be used to test a. boundary hypothesis suggested at some later

stage in the interpretation. Or, if ambiguity exists, the likelihoods of two slightly

different boundary hypotheses could be compared.

• The BLM algorithm is quite amenable to control by higher levels of processing.

For example, in the version extended to hand.le multiple regions, it would be quite

easy to place constraints on the angles that segments form at knots. Specifying

that two segments must be collinear at a knot with three adjacent segments would

give a. 'T' junction a.t that knot.

• The BLM algorithm could easily be adapted to make use of statistical knowl­

edge about the forms of the pixel grey-level distributions. For instance, if the

distributions were known to be Gaussian, the mean and variance of each region

could be estimated rather tha.n the entire distribution. Likelihoods would then

be calculated according to the Gaussian distribution.

• The BLM algorithm could also be used to obtain an a.pproxima.te description of a

boundary, if the consistency test was adapted to only consider those protrusions

whose length perpendicular to the boundary is longer than a. given distance.

This would a.llow the true boundary to deviate from the reported boundary by

(at most) that distance, thus producing a simpler, but approximate, boundary

description.

• Where ambiguity exists, it should be possible to produce more tha.n one hypoth­

esis. In this context, the criteria of simplicity and accuracy should be seen as

relative rather than absolute: that is, an acceptable hypothesis should. be rela­

tively simple, not necessarily the simplest; or of relatively high likelihood, not

necessarily the highest. The likelihood should still be the highest for the given

configuration of linear and cubic segments; however, if two boundaries were of

similar complexity and likelihood but of different form, then they would both be

tenable. Possible hypotheses must still, of course, be consistent.

164

Chapter 6

Conclusions

Existing approaches to the problem of segmentation do not give accurate, concise,

or reliable information about the locations of boundaries in textured images. Inspection

of sample results shows that current segmentation algorithms fall far short of human

performance. In particular, the Marr-Hildreth and Canny edge detectors give boundary

contours which are irregular and inaccurate when applied to test images containing

smooth boundaries between regions of texture.

These deficiencies are due to intensity variations within the textures. Textured

regions may contain a broad range of intensities, and nearby pixels may be correlated.

The intensity changes within a textured region can be larger than the intensity changes

at the border of the region. Generally, edge-based methods tend to be perturbed by the

intensity variations within the regions, and thus yield inaccurate results. Large-scale

edge detectors can distinguish between local intensity variations due to texture and

changes in average intensity at the border of a region, because the latter tend to persist

over larger distances than the former. However, the textural intensity variations still

affect the positioning of the edge elements along the region boundary. On the other

hand, small-scale edge detectors cannot distinguish between textural variations and

region boundaries; their results are so confused as to be virtually useless.

Traditional region-based methods cannot give fine location information because the

characterization of a block of texture becomes less reliable as the block becomes smaller.

The classification of small blocks near the boundary between two textured regions can

therefore be ambiguous, especially if the distributions of the properties of the two

regions overlap. This ambiguity makes it difficult to obtain an accurate and reliable

estimate of the boundary position. Consequently, most region-based methods impose

165

~11:
I

I

'
llr'

I

a minimum size on the blocks considered, and the boundaries of the regions obtained

therefore tend to be "blocky" in outline.

Many of the problems with region-based methods a.re due to the independent clas­

sification of pixels or small blocks of pixels. This deficiency can be overcome to some

extent by usi~g statistical estimation methods which make the classification of a pixel

dependent on the classification of its neighbours. These methods use statistical models

for the shapes of the regions which express a. preference for having each pixel classi­

fied to the same region as its neighbours. However, practical considerations limit the

neighbourhood size to the nearest four or eight pixels, which is insufficient to express

a preference for boundary shapes which a.re globally simple.

The approach presented in this study (as embodied in the BLM algorithm)-over­

comes these difficulties. Use of a statistical model for the texture in the regions allows

for the intensity variations within the regions, and use of a parametric representation

of the boundary enables the BLM algorithm to determine the description which is

the simplest possible in a global sense. Ambiguous pixels near the boundary cause

few problems, because the maximum-likelihood estimate of the true boundary position

takes account of the relative degree of ambiguity of all pixels near the boundary. Fi­

nally, the boundary estimate obtained by the BLM algorithm is reliable, because it has

been tested for consistency with the image data.

The results obtained with the BLM algorithm a.re consequently concise and accu­

rate, and generally correspond well with the results of human perception. The BLM

algorithm has been applied to a wide range of imagery, including both real-world images

and images that . have been artificially constructed from natural textures. The results

display no more complexity than the observable level of detail in the image warrants,

and represent a substantial improvement over conventional techniques.

The BLM algorithm is driven by three criteria for a good boundary description:

accuracy, simplicity, and consistency. These criteria were motivated by the charac­

teristics of human perception of boundaries in textured images, and are formulated in

mathematical terms. The appropriateness and effectiveness of these criteria are demon­

strated by the excellent results obtained with the BLM algorithm. These three criteria

together capture the essence of a good description of a boundary.

The formulation of the accuracy criterion in terms of maximum-likelihood estima­

tion of the boundary position gives good results. Maximum-likelihood estimation takes

166

J

into account all of the relevant statistical information. The assumption of pixel inde­

pendence used in calculating likelihoods does not ca.use sign.incant problems, although

it does require that the regions differ in their pixel intensity distributions. Regions with

the same pixel intensity distribution but with different textures can be segmented by

applying an appropriate texture filter before using the BLM algorithm.

Use of a parametric representation for the boundary has several advantages. The

parametric representation allows a natural measure of the complexity of a. boundary,

which depends only its shape, not on its size or on the pixel resolution of the image.

This complexity measure corresponds well to human assessment of the compl~-nty of a

boundary. There is also a significant advantage in fitting a. parametric representation

directly to the original image data, as the BLM algorithm does, rather than fitting it

to some abstraction such as an edge map. Fitting a parametric representation to a.n

edge map or other abstractions inevitably involves making approximations which a.re

not tested against the image data, and which therefore may be inconsistent with the
.
image .

Perhaps the single feature which most clearly distinguishes the present approach

from previous approaches is the use of a consistency test. The likelihood-ratio test

used in testing whether a boundary is consistent with the image data works well.

One of its best features is that the false-alarm rate is controlled explicitly by a single

threshold, yielding a test which is as powerful as possible, consistent with an essentially

zero false-alarm rate, and which does not require critical setting of any thresholds. The

test successfully takes the correlation between pixels into account. The results from

the BLM algorithm show that the consistency test judges correctly, given the level

of observable detail in the boundary. Thus, the BLM algorithm has the desirable

characteristic of producing a less complex boundary description in situations where

the regions a.re less distinct, because the consistency test is then less stringent. The

approximation of normality of the log likelihood ratio statistic does not cause any

significant problems.

In contrast to most previous studies, the results obtained with the BLM algorithm

demonstrate that it is possible to obtain good descriptions of boundaries without re­

quiring fine choice of values for critical parameters. The behaviour of the algorithm is

controlled by two main parameters: the significance level in the consistency test, and

the maximum sea.le of intensity variation which will be considered as texture. Both

167

were Jet at the .same valueJ for all the imageJ proce.sJed. The scale parameter is at the

discretion of higher-level processes; however, large values do not cause the algorithm

to give incorrect or inaccurate results on fine textures.

The current implementation of the BLM algorithm assumes that there are only

two regions, and that the regions are homogeneously te."rlured. The implementation

adequately demonstrates the concept of using the three criteria. to drive the process

of locating and describing boundaries, and is sufficient to obta.in excellent results on

a wide variety of images. However, these assumptions are somewhat restrictive in

dealing with real-world images, and the implementation needs to _be e.tjended for use

in a general-purpose vision system. The necessary extensions to handle multiple regions

are straightforward.

The BLM approach has many implications for the overall image segmentation prob­

lem, and also for the problem of machine vision in general. The three criteria can be

applied to descriptions of other entities, such a.s spatially-varying regions of an im­

age. The approach developed in this study not only makes a significant contribution

to the problem of locating boundaries in textured imagery; it also provides a clear

and coherent framework for characterizing regions a.swell, leading to a complete image

segmentation procedure.

168

Bibliography

I.E. Abdou and W.K. Pratt, 'Quantitative design and evaluation of enhancement/

thresholding edge detectors', Proc. IEEE 67(5), 753-763, 1979.

D.H. Ballard and C.M. Brown, Computer Visiqn, Prentice-Hall Inc., Englewood Cliffs,

New Jersey, 1982.

J ~ Besag, 'Spatial interaction and the statistical analysis of lattice systems', J. Roy.

Statistical Soc. B36, 192-236, 1974.

A.C. Bovik, T.S. Huang, and D.C. Munson, 'Nonparametric tests for edge detection in

noise', Pattern Recognition 19(3), 209-219, 1986.

A.C. Bovik and D.C. Munson, 'Edge detection using median comparisons', Computer

Vision, Graphics, and Image Processing 33, 377-389, 1986.

P. Brodatz, Textures: A Photographic Album for Artists and Designers, Dover Publi­

cations, New York, 1966.

T. Caelli, 'Three processing characteristics of visual texture segmentation', Spatial

Vision 1(1), 19-30, 1985.

J. Canny, 'A computational approach to edge detection', IEEE Trans. Pattern Analysis

and Machine Intelligence PAMI-8(6), 679-698, 1986.

P.C. Chen and T. Pavlidis, 'Segmentation by texture using a co-occurrence matrix and

a split-and-merge algorithm', Computer Graphics and Image Processing 10, 172-182

(1979).

169

P.C. Chen and T. Pavlidis, 'Image segmentation as an estimation problem', Computer

Graphics and Image Processing 12, 153-172 (1980).

M. Clark and A.C. Bovik, 'Texture discrimination using a model of visual cortex', 6pp.

in Proc. IEEE International. Conference on Systems, Man, and Cybernetics, Atlanta,

October 1986.

F.S. Cohen and D.B. Cooper, 'Simple parallel hierarchical and relaxation algorithms

for segmenting noncausal Markovian random fields', IEEE Trans. Pattern Anal.ysis and

Ma.chine Intelligence PAMI-9(2), 195-219, 1987.

R.W. Conners, M.M. Trivedi, and C.A. Harlow, 'Segmentation of a high-resolution ur­

ban scene using texture operators', Computer Vision, Graphics, and Image Processing

25, 273-310, 1984.

D.B. Cooper and H. Elliott, 'A maximum.likelihood framework for boundary estimation

in noisy images', pp. 25-31 in. Proc. IEEE Computer Soc. Conf. on Pattern Recognition

and Image Processing, Chicago, May/June 1978.

D.B. Cooper, H. Elliott, F. Cohen, L. Reiss, and P. Symosek, 'Stochastic boundary

estimation and object recognition', Computer Graphics and Image Processing 12, 326-

356, 1980.

G.R. Cross and A.K. Jain, 'Markov random field texture models', IEEE Trans. Pattern

Analysis and Machine Intelligence PAMI-5(1), 25-39, 1983.

L.S. Davis, 'A survey of edge .detection techniques', Computer Graphics and Image

Processing 4, 248-270, 1975.

L.S. Davis and A. Mitiche, 'MITES: a model-driven, iterative texture segmentation

algorithm', Computer Graphics and Image Processing 19, 95-110, 1982.

L.S. Davis and A. Rosenfeld, 'Detection of step edges in noisy one-dimensional data',

Tech. report TR-303, Uni. of M3.ryland Computer Science Center, College Park, Mary­

land, 1974.

170

H. Derin and W.S. Cole, 'Segmentation of textured images using Gibbs random fields',

Computer Vision, Graphics, and Image Processing 35, 72-98, 1986.

H. Derin and H. Elliott, '1'Iodeling and segmentation of noisy and textured images

using Gibbs random fields', IEEE Trans. Pattern Analysis and Machine Intelligence

PAMI-9(1), 39-55, 1987.

H. Elliott, D.B. Cooper, F.S. Cohen, and P.F. Symosek, 'Implementation, interpreta­

tion, and analysis of a suboptimal boundary finding algorithm', IEEE Trans. Pattern

Analysis and Machine Intelligence PAMI-4(2), 167-182, 1982.

W. Frei and C-C. Chen, 'Fast boundary detection: a generalization and a new algo­

-rithm', IEEE Trans. Computers C-26(10), 988-998, 1977.

J.E. Freund, Mathematical Statistics, 2nd ed., Prentice-Hall International, London,

1972.

A. Gagalowicz and S.D. Ma, 'Sequential synthesis of natural textures', Computer Vi­

sion, Graphics, and Image Processing 30, 289-315, 1985.

S. Geman and D. Geman, 'Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images', IEEE Trans. Pattern Analysis and Machine Intelligence P AMI-

6(6), 721-741, 1984.

J .J. Gibson, The Perception of the Visual World, Houghton-Mifllin, Boston, 1950.

A.R. Hanson and E.M. Riseman, 'Segmentation of natural scenes', pp. 129-163 in

Computer Vision Systems, ed. A.R. Hanson and E.M. Riseman, Academic Press, Inc.,

Orlando, Florida, 1978.

R.M. Haralick, 'Statistical and structural approaches to texture', Proc. IEEE 67(5),

786-804, 1979.

R.M. Haralick and L.G. Shapiro, 'Image segmentation techniques', Computer Vision,

Graphics, and Image Processing 29, 100-132, 1985.

M. Hassner and J. Sklansky, 'The use of 1'Iarkov random fields as models of texture',

Computer Graphics and Image Processing 12, 357-370, 1980.

171

E.C. Hildreth, 'Edge detection', A.I. memo no. 858, MIT Artificial Intelligence Lab.,

1985.

S.L. Horowitz and T. Pavlidis, 'Picture segmentation by a tree traversal algorithm', J.

Ass. Computing Machinery 23(2), 368-388, 1976.

M.H. Hueckel, 'An operator which locates edges in digitized pictures', J. Ass. Comput­

ing Machinery 18(1), 113-125, 1971.

M.H. Hueckel, 'A local visual operator which recognizes edges and lines', J. Ass. Com­

puting Machinery 20(4), 634-647, 1973.

K. Ikeuchi and B.K.P. Horn, 'Numerical shape from shading and occluding boundaries',

Artiii.eial Intelligence 17, 141-184, 1981.

B. Julesz and J. R. Bergen, 'Textons, the fundamental elements in preattentive vision

and perception of textures', Bell System Tech. J. 62(6), 1619-1645, 1983.

R.L. Kashyap and A. Khotanzad, 'A stochastic model based technique for texture

segmentation', pp. 1202-1205 in Proc. 7th International Conference on Pattern Recog­

nition, Montreal, July/ August 1984.

M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: active contour models', pp. 259-268

in Proc. First International Conf. on Computer Vision, London, June 1987.

S. Levialdi, 'Finding the edge', pp. 105-148 in Digital Image Processing, ed. J.C. Simon

and R.M. Haralick, D. Reidel Publ. Co., Dordrecht, Holland, 1981.

W .H.H.J. Lunscher, 'The asymptotic optimal frequency domain filter for edge detec­

tion', IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-5(6), 678-680,

1983.

R. Machuca and A.L. Gilbert, 'Finding edges in noisy scenes', IEEE Trans. Pattern

Analysis and Machine Intelligence PAMI-3(1), 103-111, 1981.

I.D.G. Macleod, 'Comments on "Techniques for edge detection"', Proc. IEEE 60(3),

344, 1972.

172

A-R. Mansouri, A.S. Malowany, and M.D. Levine, 'Line detection in digital pictures: a.

l?,ypothesis prediction/verification paradigm', Computer Vision, Graphics, and Image

Processing 40(1), 95-114, 1987.

S. Marcelja, 'Mathematical description of the responses of simple cortical cells', J.

Optical Soc. Am. 70(11), 1297-1300, 1980.

D. Marr and E.C. Hildreth, 'Theory of edge detection', Proc. Roy. Soc. Land. B207,

187-217, 1980.

D. Marr, Vision, W .H. Freeman ·and Co., San Francisco, 1982.

M. Mazumdar, B.K. Sinha, and C.C. Li, 'A comparison of several estimates of edge

point in noisy digital data across a step edge', pp. 27-33 in Proc. IEEE Computer Soc.

Conf. on Computer Vision ?J1d Pattern Recognition, San Francisco, June 1985.

M.C. Morrone, D.C. Burr, and L. Maffei, 'Functional implications of cross-orientation

inhibition of cortical visual cells. I. N europhysiological evidence', Proc. Roy. Soc. Lond.

B216, 335-354, 1982.

V.S. Nalwa and T.O. Binford, 'On detecting edges', IEEE Trans. Pattern Analysis and

Machine Intelligence PAMI-8(6), 699-714, 1986.

- M. Pietikainen and A. Rosenfeld, 'Image segmentation by texture using pyramid node

linking', IEEE Trans. Systems, Man, and Cybernetics SMC-11(12), 822-825, 1981.

M. Pietikainen, A. Rosenfeld, and L.S. Davis, 'Texture classification using averages of

local pattern matches', pp. 301-303 in Proc. 6th International Conference on Pattern

Recognition, Munich, October 1982.

C.R. Rao, Linear Statistical Inference and its Applications, 2nd ed., John Wiley &

Sons, New York, 1973.

L.G. Roberts, 'Machine perception of three-dimensional solids', in Optical and Electro­

Optical Information Processing, ed. J.T. Tippett et al., MIT Press, Cambridge, Mass.,

1965.

173

B. Sakitt and H.B. Barlow, 'A model for the economical encoding of the vis-aal image

in cerebral cortex', Biological Cybernetics 43, 97-108, 1982.

M. Shah, A. Sood, and R. Jain, 'Pulse and staircase edge models', Computer Vision,

Graphics, and Image Processing 34, 321-343, 1986.

K.A. Stevens, 'The information content of texture gradients', Biological Cybernetics

42(2), 95-105, 1981.

R.E. Suciu and A.P. Reeves, 'A comparison of differential and moment based edge

detectors', pp. 97-102 in Proc. IEEE Computer Soc. Conf. on Pattern Recognition and

Image Processing, Las Vegas, Nevada, June 1982.

A.J. Tabatabai and O.R. Mitchell, 'Edge location to subpixel values in digital imagery',

IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-6(2), 188-201, 1984.

W.B. Thompson, 'Textural boundary analysis', IEEE Trans. Computers C-26(3), 272-

276, 1977.

F. Tomita and S. Tsuji, 'Extraction of multiple regions by smoothing in selected neigh­

bourhoods', IEEE Trans. Systems, Man, and Cybernetics SMC-7, 107-109, 1977.

M.R. Turner, 'Texture discrimination by Gabor functions', Biological Cybernetics 55,

71-82, 1986.

L. Van Gool, P. Dewaele, and A. Oosterlinck, 'Texture analysis anno 1983', Computer

Vision, Graphics, and Image Processing 29, 336-357, 1985.

A. Weber, 'Image data base', USCIPI report 1070, Image Processing Institute, Uni. of

Southern California, Los Angeles, California, 1983.

H. Wechsler, 'Texture analysis-a survey', Signal Processing 2, 271-282, 1980.

D. Wermser and C-E. Liedtke, 'Texture analysis using a model of the visual system',

pp. 1078-1080 in Proc. 6th International Conference on Pattern Recognition, Munich,

October 1982.

174

D. Wermser, 'Unsupervised segmentation by use of a. texture gradient', pp. 1114-1116

in Proc. 7th International Conference on Pattern Recognition, 1--fontreal, July/ August

1984.

A.P. Witkin, 'Recovering surface shape a.nd orientation from shading a.nd occluding

boundaries', Artificial Intelligence 17, 17-45, 1981.

M. Yachida, M. Ikeda, a.nd S. Tsuji, 'Boundary detection of te..nured regions', pp.

992-994 in Proc. 6th International Joint Conference on Artificial Intelligence, Tokyo,

August 1979.

A.L. Zobrist a.nd vV.B. Thompson, 'Building a distance function for gestalt grouping',

IEEE Trans. Computers C-24(7), 718-728, 1975.

S. W. Zucker, R.A .. Hummel, and A. Rosenfeld, 'An application of relaxation labeling

to line and curve enhancement', IEEEJ Trans. Computers C-26(4), 394-403, 1977.

175

	b16629607_0_002_R
	b16629607_0_003_R
	b16629607_0_004_R
	b16629607_0_005_R
	b16629607_0_006_R
	b16629607_0_007_R
	b16629607_0_008_R
	b16629607_0_009_R
	b16629607_0_010_R
	b16629607_0_011_R
	b16629607_0_012_R
	b16629607_0_013_R
	b16629607_0_014_R
	b16629607_0_015_R
	b16629607_0_016_R
	b16629607_0_017_R
	b16629607_0_018_R
	b16629607_0_019_R
	b16629607_0_020_R
	b16629607_0_021_R
	b16629607_0_022_R
	b16629607_0_023_R
	b16629607_0_024_R
	b16629607_0_025_R
	b16629607_0_026_R
	b16629607_0_027_R
	b16629607_0_028_R
	b16629607_0_029_R
	b16629607_0_030_R
	b16629607_0_031_R
	b16629607_0_032_R
	b16629607_0_033_R
	b16629607_0_034_R
	b16629607_0_035_R
	b16629607_0_036_R
	b16629607_0_037_R
	b16629607_0_038_R
	b16629607_0_039_R
	b16629607_0_040_R
	b16629607_0_041_R
	b16629607_0_042_R
	b16629607_0_043_R
	b16629607_0_044_R
	b16629607_0_045_R
	b16629607_0_046_R
	b16629607_0_047_R
	b16629607_0_048_R
	b16629607_0_049_R
	b16629607_0_050_R
	b16629607_0_051_R
	b16629607_0_052_R
	b16629607_0_053_R
	b16629607_0_054_R
	b16629607_0_055_R
	b16629607_0_056_R
	b16629607_0_057_R
	b16629607_0_058_R
	b16629607_0_059_R
	b16629607_0_060_R
	b16629607_0_061_R
	b16629607_0_062_R
	b16629607_0_063_R
	b16629607_0_064_R
	b16629607_0_065_R
	b16629607_0_066_R
	b16629607_0_067_R
	b16629607_0_068_R
	b16629607_0_069_R
	b16629607_0_070_R
	b16629607_0_071_R
	b16629607_0_072_R
	b16629607_0_073_R
	b16629607_0_074_R
	b16629607_0_075_R
	b16629607_0_076_R
	b16629607_0_077_R
	b16629607_0_078_R
	b16629607_0_079_R
	b16629607_0_080_R
	b16629607_0_081_R
	b16629607_0_082_R
	b16629607_0_083_R
	b16629607_0_084_R
	b16629607_0_085_R
	b16629607_0_086_R
	b16629607_0_087_R
	b16629607_0_088_R
	b16629607_0_089_R
	b16629607_0_090_R
	b16629607_0_091_R
	b16629607_0_092_R
	b16629607_0_093_R
	b16629607_0_094_R
	b16629607_0_095_R
	b16629607_0_096_R
	b16629607_0_097_R
	b16629607_0_098_R
	b16629607_0_099_R
	b16629607_0_100_R
	b16629607_0_101_R
	b16629607_0_102_R
	b16629607_0_103_R
	b16629607_0_104_R
	b16629607_0_105_R
	b16629607_0_106_R
	b16629607_0_107_R
	b16629607_0_108_R
	b16629607_0_109_R
	b16629607_0_110_R
	b16629607_0_111_R
	b16629607_0_112_R
	b16629607_0_113_R
	b16629607_0_114_R
	b16629607_0_115_R
	b16629607_0_116_R
	b16629607_0_117_R
	b16629607_0_118_R
	b16629607_0_119_R
	b16629607_0_120_R
	b16629607_0_121_R
	b16629607_0_122_R
	b16629607_0_123_R
	b16629607_0_124_R
	b16629607_0_125_R
	b16629607_0_126_R
	b16629607_0_127_R
	b16629607_0_128_R
	b16629607_0_129_R
	b16629607_0_130_R
	b16629607_0_131_R
	b16629607_0_132_R
	b16629607_0_133_R
	b16629607_0_134_R
	b16629607_0_135_R
	b16629607_0_136_R
	b16629607_0_137_R
	b16629607_0_138_R
	b16629607_0_139_R
	b16629607_0_140_R
	b16629607_0_141_R
	b16629607_0_142_R
	b16629607_0_143_R
	b16629607_0_144_R
	b16629607_0_145_R
	b16629607_0_146_R
	b16629607_0_147_R
	b16629607_0_148_R
	b16629607_0_149_R
	b16629607_0_150_R
	b16629607_0_151_R
	b16629607_0_152_R
	b16629607_0_153_R
	b16629607_0_154_R
	b16629607_0_155_R
	b16629607_0_156_R
	b16629607_0_157_R
	b16629607_0_158_R
	b16629607_0_159_R
	b16629607_0_160_R
	b16629607_0_161_R
	b16629607_0_162_R
	b16629607_0_163_R
	b16629607_0_164_R
	b16629607_0_165_R
	b16629607_0_166_R
	b16629607_0_167_R
	b16629607_0_168_R
	b16629607_0_169_R
	b16629607_0_170_R
	b16629607_0_171_R
	b16629607_0_172_R
	b16629607_0_173_R
	b16629607_0_174_R
	b16629607_0_175_R
	b16629607_0_176_R
	b16629607_0_177_R
	b16629607_0_178_R
	b16629607_0_179_R
	b16629607_0_180_R
	b16629607_0_181_R
	b16629607_0_182_R
	b16629607_0_183_R
	b16629607_0_184_R
	b16629607_0_185_R
	b16629607_0_186_R
	b16629607_0_187_R
	b16629607_0_188_R
	b16629607_0_189_R
	b16629607_0_190_R
	b16629607_0_191_R
	b16629607_0_192_R
	b16629607_0_193_R
	b16629607_0_194_R

