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Introduction

Marsaglia recently proposed a class of uniform
random number generators called “xorshift
RNGs”. Their implementation requires only a
small number of left shifts, right shifts and
“exclusive or” operations per pseudo-random
number.

Assume that the computer wordlength is w bits
(typically w = 32 or 64). Marsaglia’s xorshift
RNGs have period 2n − 1, where n is a small
multiple of w, say n = rw.
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Example

Let F2 = GF(2) be the finite field with two
elements {0, 1}. We write ⊕ for addition in F2.

Here is an example of a 32-bit xorshift
generator with r = 1, n = w = 32.

If x(k) ∈ F 1×w
2 is a row vector, and x(0) 6= 0, the

iteration is:

x(k+1) = x(k)(I ⊕ L13)(I ⊕R17)(I ⊕ L5) ,

where L is the left-shift matrix and R = LT is
the right-shift matrix.

In C, where initially x is any nonzero 32-bit
integer, this is simply:

x ˆ= x << 13; x ˆ= x >> 17; x ˆ= x << 5;

Note that x ˆ= x << 13 is equivalent to
x = x ˆ (x << 13), and ˆ means ⊕ in C.
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Generators with long period – the idea

Choose parameters r > s > 0. We aim for a
generator with period 2rw − 1. This is often
(but not always) possible.

Computer words are regarded as row vectors
x(k) over F2. The basic recurrence is

x(k) = x(k−r)A⊕ x(k−s)B .

Here A and B are fixed matrices in Fw×w
2 ,

chosen so that xA “mixes” the bits in x (and
similarly for xB). So that the vector-matrix
products are easy to compute, A and B are
products of matrices such as I ⊕Lα and I ⊕Rβ.
Specifically, let us take

A = (I + La)(I + Rb)

and
B = (I + Lc)(I + Rd)

for small positive integer parameters a, b, c, d.
Marsaglia omits the factor I + Lc; we include it
for reasons of symmetry, to increase the number
of possible choices, and to improve properties
related to Hamming weight.
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Initialisation

Given x(0), . . ., x(r−1), the recurrence uniquely
defines the sequence (x(k))k≥0.

We need a different RNG, perhaps one of
Marsaglia’s original xorshift generators, to
initialise x(0), . . ., x(r−1). Any nonzero
initialisation works in theory, but it is a good
idea to discard at least the first 4r numbers to
get past any initial “non-randomness” in the
sequence [Gimeno].
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Connection with other RNGs

Marsaglia’s xorshift RNGs are a special case of
the well-known linear feedback shift register
(LFSR) class of RNGs.

However, the xorshift RNGs have
implementation advantages because n (the
number of state bits) is a multiple of the
wordlength w. In contrast, for RNGs based on
primitive trinomials, the corresponding
parameter n can not be a multiple of eight
(due to Swan’s theorem) and is usually an odd
prime.

For example, n = 19937 in the case of the
“Mersenne twister”. The “tempering” step
which transforms the output of the Mersenne
twister can be omitted in the xorshift RNGs.
Thus, the xorshift RNGs are simpler and
potentially faster.
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Why do we need a long period ?

It is desirable for RNGs to have a very long
period T . Most generators fail certain statistical
tests if more than about T 1/2 random numbers
are used.

For generators satisfying linear recurrences such
as the LFSR generators with period 2n − 1,
there is a linear relationship between blocks of
n + 1 consecutive bits, so the generator may fail
statistical tests that detect this linear
relationship.

On a parallel machine we may want to use
disjoint segments of the cycle on different
processors. This can be done by starting with
different seeds on each processor, if the
probability that two segments overlap is
negligible.

For all these reasons it is important for n to be
large. Our generators have n up to 4480, which
is large enough, but not so large that the
generators are slowed down by cache misses on
memory accesses.
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The companion matrix

It is well-known that we can write the
recurrence

x(k) = x(k−r)A⊕ x(k−s)B .

as

(x(k−r+1)| · · · |x(k)) = (x(k−r)| · · · |x(k−1))C ,

where the companion matrix C ∈ Fn×n
2 can be

regarded as an r × r matrix of w × w blocks
(recall that n = rw). For example, if r = 3 and
s = 1, then

C =





0 0 A
I 0 0
0 I B



 .

The period of the recurrence is 2n − 1 if the
characteristic polynomial

P (z) = det (C − zI)

is primitive over F2.
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Testing primitivity

P (z) is primitive if it is irreducible (has no
nontrivial factors) and the powers

z, z2, z3, . . . , z2n−1

are distinct mod P (z). To verify this, without
checking 2n − 1 cases, it is sufficient to show
that P (z) is irreducible (straightforward) and

z(2n−1)/p 6= 1 mod P (z)

for each prime divisor p of 2n − 1. This is easy
using Magma provided we know the prime
factors of 2n − 1.

Since we wanted to use recently-discovered
factors that were not in Magma’s database, we
had to write our own primitivity test. We used
Magma’s irreducibility test IsIrreducible(P),
so when testing primitivity we could assume
that P (z) was irreducible.
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Testing primitivity efficiently

n may be such that n0 = 2n − 1 has many
(more than fifty) prime divisors. In such cases
it is inefficient to compute

zn0/p mod P (z)

independently for each prime divisor p of n0.

A recursive method

Suppose the distinct prime factors of n0 are
p1 < p2 < . . . < pk. Split them into two sets, say

S1 = {pj : j ≤ k/2}, S2 = {pj : j > k/2} .

Let n1 = n0/
∏

p∈S1
p, n2 = n0/

∏

p∈S2
p.

We can compute

P1(z) = zn1 mod P (z) , P2(z) = zn2 mod P (z) .

Now, zn0/p mod P (z) is a power of P1(z) or
P2(z), depending on whether p ∈ S1 or p ∈ S2.
The idea can be applied recursively. For
example, at the terminal nodes,

zn0/p1 = (zn0/(p1p2))p2 , zn0/p2 = (zn0/(p1p2))p1 .
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Complexity of the recursive method

In the description of the recursive method we
implicitly assumed that the prime factors of
n0 = 2n − 1 were distinct, i.e. that n0 was
square-free. If not, replace n0 by its maximal
square-free factor n′

0 and z by zn0/n′

0 mod P (z).
Thus, we only need consider the case that n0 is
square-free.

The computation can be thought of as a binary
tree, where at each node except the root we
perform a computation of some power
Pi(z)ei mod P (z) by the usual binary method,
in time proportional to log ei. If n0 has k
distinct prime divisors, there are ⌈lg k⌉+ 1
levels in the computation tree. At each level the
product of the exponents ei is at most n0, so
the work performed at this level is of the same
order as the computation of zn0 mod P (z).

Thus, the speedup compared to a naive
computation is

Θ(k/ log k) .
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Importance of ordering

Assume that P (z) is irreducible. Thus the
multiplicative group of the finite field
F2[z]/P (z) is cyclic with order n0 = 2n − 1.

Let p be a prime divisor of n0. If our
polynomials P (z) behave like random
irreducible polynomials of degree n, then there
is a probability 1/p that zn0/p = 1 mod P (z),
i.e. that the index of z in the cyclic group is a
multiple of p.

Thus, the order of evaluation is important.
because the small prime divisors of n0 are much
more likely to disprove primitivity of P (z) than
are the large prime divisors.

To implement the optimal ordering, we perform
a depth-first tree traversal, visiting the terminal
nodes in increasing order of the size of the
corresponding prime divisors of n0.

If P (z) is primitive then to prove this all of the
terminal nodes must be visited. However, even
in this worst case the recursive method of
computation gives a good speedup.
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A use for Fermat factors

Marsaglia’s original proposal discusses mainly
the case n ≤ 64, but an extension to larger n is
suggested, Our generalisation xorgens is for
certain n ≤ 4480. In particular, we can choose
any power of two n = 2k for 6 ≤ k ≤ 12.

The problem in going to larger n is that we
need to know the complete prime factorisation
of 2n − 1 in order to be sure that the
generator’s period is maximal. These
factorisations are known for all multiples of 32
up to 1632 and for certain larger n. If we
restrict n to powers of two then it is sufficient
to know the factorisations of certain Fermat
numbers Fk = 22k

+ 1, since for example

24096 − 1 = (22048 + 1)(22048 − 1)

= F11(2
2048 − 1) = · · · = F11F10F9 · · ·F1F0 .

The factorisations of the Fermat numbers
F0, . . . , F11 are known (but not the complete
factorisation of F12).
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The Cayley-Hamilton theorem

Suppose that

P (z) =

n
∑

j=0

cjz
j .

From the Cayley-Hamilton theorem,
n

∑

j=0

cj Cj = 0 .

Since

(x(j)| · · · |x(j+r−1)) = (x(0)| · · · |x(r−1))Cj ,

it follows that
n

∑

j=0

cjx
(k+j) = 0 .

Thus the pseudo-random sequence x(k) satisfies
a linear recurrence over F2. Any n + 1
consecutive x(k) are linearly dependent over F2.
For a good random number generator it is
important that n is large and also that the
weight W (P (z)) of the polynomial P (z), i.e. the
number of nonzero coefficients cj, is not too
small.
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“Optimal” generators

Suppose the wordlength w and a parameter
r ≥ 2 are given, so n = rw is defined. We want
to choose positive parameters (s, a, b, c, d) such
that s < r and the RNG obtained from the
recurrence has period 2n − 1. Of the many
possible choices of (s, a, b, c, d), which is best?

We give a rationale for making the “best”
choice (or at least a reasonably good one, since
often many choices are about equally good).
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Criteria

1. Each bit in x(I ⊕ La)(I ⊕Rb) should depend
on at least two bits in x, that is each column of
the matrix (I ⊕ La)(I ⊕Rb) should have weight
(number of nonzeros) at least two. A necessary
condition for this is that a + b ≤ w.

Similarly, we require that c + d ≤ w.

2. Repeated applications of the transformation
x← x(I ⊕La)(I ⊕Rb) should mix all the bits of
the initial x (that is, after a large number of
iterations each output bit should depend on
each of the input bits). A necessary condition
for this is that GCD(a, b) = 1.

Similarly, we require that GCD(c, d) = 1.

3. If (s, a, b, c, d) is one set of parameters,
then (s, b, a, d, c) is associated with the same
characteristic polynomial. Thus, we may as well
assume that a ≥ b.

So that the left shift parameters (a and c) are
not both greater than the right shift parameters
(b and d) we also assume that c ≤ d.
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Criteria continued

4. In order that the bits in x(I ⊕ La)(I ⊕Rb)
depend on bits as far away as possible (to both
left and right) in x, we want to maximise
min(a, b). Similarly, we want to maximise
min(c, d). Thus, we try to maximise

δ = min(a, b, c, d) .

5. Once (a, b, c, d) are fixed, we want to choose
s so that the generator has period 2n − 1.

6. Finally, in case of a tie (two or more sets of
parameters satisfying the above conditions with
the same value of δ), we choose the set whose
characteristic polynomial has maximum
weight W .

There might still be a tie, that is two sets of
parameters satisfying the above conditions, with
the same δ and W values. However, because the
weights W are quite large, this is unlikely and
has not been observed.
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Search for good RNGs

Criteria 1 and 4 lead to a simple search strategy.
From criterion 1 (a + b ≤ w) we see that

δ = min(a, b, c, d) ≤ min(a, b) ≤ w/2 ,

but criterion 4 is to maximise δ.

We start from δ = w/2 and decrease δ by 1 until
we find a quadruple of parameters (a, b, c, d)
satisfying criteria 1–3. This involves checking

O((w/2− δ)4)

possibilities since

(a, b, c, d) ∈ [δ, w − δ]4 .

We then search for s satisfying criterion 5
(this is the most time-consuming step).

There are r − 1 candidate s for each quadruple
(a, b, c, d). If no s is found, we decrement δ and
repeat the process.

Once one satisfactory quintuple (s, a, b, c, d)
has been found, we need only check other
quintuples (s′, a′, b′, c′, d′) with the same δ, and
choose the best according to criteria 5 and 6.
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Are there any solutions?

There might not be a solution satisfying all the
criteria 1–6.

The number of candidates (s, a, b, c, d) is
O(rw4), that is O(nw3) since n = rw.

The probability that a randomly chosen
polynomial of degree n over F2 is primitive is
between 1/n and 1/(n log n), apart from
constant factors.

Thus, if our characteristic polynomials behave
like random polynomials of the same degree, we
expect at least of order w3/ log n solutions. The
probability of finding no solutions for a given
n ≤ 4096 should be very small unless w is small.

For w ≥ 32 we have always been able to find a
solution with w/2− δ ≤ 9. The worst case is
w = 64, r = 30, δ = 23, w/2− δ = 9.

If w is very small, there may be no solution. For
example, there is no solution for w = 8, r = 6.
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Table 1: 32-bit generators.

n r s a b c d δ W

64 2 1 17 14 12 19 12 31
128 4 3 15 14 12 17 12 55
256 8 3 18 13 14 15 13 109
512 16 1 17 15 13 14 13 185
1024 32 15 19 11 13 16 11 225
2048 64 59 19 12 14 15 12 213
4096 128 95 17 12 13 15 12 251

Results

The parameters for “optimal” random number
generators with n a power of two (up to
n = 4096) are given in Tables 1–2. Parameters
when n is not a power of two are available from
my web site (or send me an email).
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Table 2: 64-bit generators.

n r s a b c d δ W

128 2 1 33 31 28 29 28 65
256 4 3 37 27 29 33 27 127
512 8 1 37 26 29 34 26 231
1024 16 7 34 29 25 31 25 439
2048 32 1 35 27 26 37 26 745
4096 64 53 33 26 27 29 26 961

The computations

The computations were performed using
Magma on a 500 Mhz Sun Blade 100 and for
(the largest) n = 4480 it took about 17 hours
to perform 576 irreducibility tests and one
primitivity test.

Which RNGs to use ?

We do not recommend the RNGs with n ≤ 128
since they may fail the matrix-rank test in the
Crush package. No problems have been
observed while testing the RNGs with n ≥ 256.
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The good news

The xorgens class of RNGs are easy to
implement since only simple operations
(left and right shifts and xors) on full words
are required.

Unlike RNGs based on primitive trinomials,
their characteristic polynomials have high
weight.

Provided n ≥ 256, they appear to pass all
common empirical tests for randomness.
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The bad news

The xorgens class, like Marsaglia’s xorshift
class, has an obvious theoretical weakness.

For x ∈ F 1×w
2 , define ||x|| to be the Hamming

weight of x, that is the number of nonzero
components of x. Then ||x⊕ y|| is the usual
Hamming distance between vectors x and y.

For random vectors x ∈ F 1×w
2 , ||x|| has a

binomial distribution with mean w/2 and
variance w/4.

Because the matrices (I ⊕ La) and (I ⊕Rb) are
sparse, they map vectors with low Hamming
weight into vectors with low Hamming weight,
in fact

||x(I ⊕ La)|| ≤ 2||x|| , ||x(I ⊕Rb)|| ≤ 2||x|| ,

and consequently

||x(I ⊕ La)(I ⊕Rb)|| ≤ 4||x|| .

It follows that our sequence (x(k)) satisfies

||x(k)|| ≤ 4
(

||x(k−r)||+ ||x(k−s)||
)

.
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Bad news continued

Thus, the occurrence of a vector x(k) with low
Hamming weight is correlated with the
occurrence of low Hamming weights further
back in the sequence (with lags r and s). A
statistical test could be devised to detect this
behaviour in a sufficiently large sample.

This is a more serious problem for the 32-bit
generators than for the 64-bit generators, since
the probability p that a w-bit vector x has
Hamming weight ||x|| ≤ w/8 is 1.0× 10−5 for
w = 32, but only 2.8× 10−10 for w = 64. The
sample size required to detect the low Hamming
weight correlation is roughly of order 1/p2.
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The cure

One solution, recommended by Panneton and
L’Ecuyer, is to include more left and right shifts
in the recurrence. This slows the RNG down,
but not by much, since most of the time is
taken by loads, stores, and other overheads.

Another solution, which we prefer, is to
combine the output of the xorshift generator
with the output of a generator in a different
class, for example a Weyl generator which has
the simple form

w(k) = w(k−1) + ω mod 2w .

Here ω is some odd constant (a good choice is
an odd integer close to 2w−1(

√
5− 1)). The

generators in our xorgens package return

w(k) + x(k) mod 2w

instead of simply x(k). Note: we are implicitly
converting bit-vectors into integers; this is a
“free” operation if the bit-vectors are stored in
computer words.
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Weakness of the Weyl generator

The period of the least significant bit of the
Weyl generator is 2. Thus the least significant
bits of our generators satisfy a linear recurrence
of order 2n + 1 over F2. It would be better to
return

w(k)(I ⊕Rγ) + x(k) mod 2w ,

where γ ≈ w/2. This improvement is in the
latest version (3.00) of xorgens.

26

Mixing operations

Addition mod 2w is not a linear operation on
vectors over F2, so we are mixing operations in
two algebraic structures. This is generally a
good idea because it avoids regularities
associated with linearity.

For example, suppose we use one of Marsaglia’s
xorshift generators to initialise our state vector,
and we do it three times with seeds s, s′, s′′

satisfying
s = s′ ⊕ s′′

(this is quite likely, e.g. s = 1, s′ = 2, s′′ = 3).
By linearity over F2 our three sequences
x, x′, x′′ satisfy

x = x′ ⊕ x′′ ,

which is clearly undesirable.

This problem vanishes if the xorshift RNG
used for initialisation is modified by addition
(mod 2w) of a Weyl generator, as is done in the
xorgens package.
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