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Abstract

Computers often give the wrong answers. This
can be caused by human errors (“garbage in,
garbage out”), by software errors (programming
“bugs” or incorrect program specifications), or
even by hardware errors. As an example of a
hardware error we describe the Intel Pentium
divide bug that is estimated to have cost Intel
$US 475 million in 1994. Similarly expensive
was the software error that caused the crash of
an Ariane 5 rocket in 1996.

In simulation we often want computers to
generate “random” numbers that are
independent and have a known distribution.
This is not so easy as it seems. We give some
examples where the “random” numbers turned
out to be not so random as expected, with
potentially disastrous results.

To summarise, it is easy to produce random
numbers when you don’t want to, but not so
easy when you do.
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Part 1 – Getting the Wrong Answer

There are many reasons why computers
sometimes give incorrect answers:

• Asked the wrong question.

• Used an unstable numerical algorithm.

• Entered the wrong data.

• Program bug.

• Compiler bug.

• Firmware/hardware bug.

• Transient error.

We’ll look at some examples.
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Asked the wrong question

If someone asks your advice on a numerical or
statistical problem, they usually say

“I want to do XXX.”

You can answer

“This is how to do XXX · · ·”

but it is often better to answer

“Do you really want to do XXX?

Wouldn’t YYY be better?”
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Example – Runge’s phenomenon

For example, you might have some data yj

given at n equally spaced points xj , and want
to fit an approximation Pn(x) such that
P (xj) = yj . It’s natural to consider a
polynomial Pn(x) of degree n− 1. However, this
is likely to be disastrous as Pn(x) may oscillate
violently between the data points (and this only
gets worse as n increases).

Runge gave the example

f(x) =
1

1 + 25x2

on [−1, 1] with equally spaced points
(spacing h = 2/(n − 1)).

Unfortunately

lim
n→∞

||f − Pn||∞ = +∞
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More on Runge’s example

The key point of Runge’s example is that

f(z) =
1

1 + 25z2
,

regarded as a function of a complex variable z,
has poles in the complex plane at z = ±i/5.
These poles are close to the interval [−1, 1] on
which we wish to approximate f , in fact so close
that they make polynomial interpolation (at
equally spaced points) very innaccurate.

Polynomial interpolation is not always bad –
Weierstrass’s theorem says that any continuous
function can be approximated arbitrarily closely
by a polynomial. Interpolation at Chebyshev
points

xj = cos

(

2j − 1

2n
π

)

, j = 1, . . . , n

works in this example, However, we might not
be free to choose Chebyshev points.

In practice it would almost certainly be better
to use piecewise polynomials, i.e. splines.
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Used an unstable numerical algorithm

Numerical analysts worry about the numerical

stability of algorithms. That is, they worry
about the effect of rounding errors on the
results. Rounding errors are (usually)
unavoidable if we use the computer hardware to
perform “real” arithmetic – because it is only
an approximation to real arithmetic.

Nowadays most computers implement the
IEEE 754 standard for binary floating-point
arithmetic, which uses 32-bit or 64-bit computer
words to store floating-point numbers in the
form

(sign, exponent, fraction)

The fraction is sometimes called a mantissa for
obscure historical reasons. The fraction has 24
or 53 bits (including an implicit leading 1 bit).
Thus the precision is roughly equivalent to 7 or
16 decimal digits.
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Numerical stability

The most useful definition of numerical stability
is what Wilkinson called “backward stability” –
an algorithm is stable if it computes the exact
solution to a nearby problem.

For example, when solving a system of linear
equations

Ax = b

we don’t expect the computed solution x̃ to be
close to the exact solution x. If A is
ill-conditioned this is too much to expect.
What we do expect of a (backward) stable
algorithm is that the computed solution x̃
satisfies

Ãx̃ = b

where Ã is close to A.
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Closeness

“Close” usually means close in the relative sense
in some norm, e.g.

||Ã − A|| ≤ 2−tf(n)||A|| ,

where f(n) is a slowly-growing function of the
size of the problem (usually a low-degree
polynomial), and t is the number of bits in the
floating-point fraction.
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The symmetric eigenvalue problem

Recall that the eigenvalues of a square n × n
matrix A are (possibly complex) numbers λ
such that A − λI is singular. Also,

f(z) = det(zI − A)

is called the “characteristic polynomial” of A.
Thus, the eigenvalues are just the zeros of this
characteristic polynomial.

Given a (real, square) symmetric matrix A, it
turns out that the eigenvalues are real and
well-conditioned. That is, if we make a small
(symmetric) change in A, the eigenvalues only
change by a small amount. More precisely

|λj − λ̃j | ≤ ||A − Ã||F .

There are well-known stable algorithms for
computing the eigenvalues of A. Because the
problem is well-conditioned, stable algorithms
compute the eigenvalues with small absolute
errors (small compared to ||A||).
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Using the characteristic polynomial

The obvious algorithm: computing the
characteristic polynomial f(z) of A, then
finding the zeros of f(z), is not stable.

Wilkinson gives the example

A = diag(1, 2, . . . , 20)

so

f(z) = (z−1) · · · (z−20) = z20−210z19+· · ·+20!

Suppose we compute f(z) but make just one

rounding error that changes the coefficient 210
to 210 + 2−23, that is we compute

f̃(z) = f(z) − 2−23z19 .

Then all hope of solving the orignal problem
accurately is lost, because ten of the zeros of
f̃(z) are complex with quite large imaginary
parts, e.g. there is a pair

16.73 ± 2.81i .
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Comment

There is a tendency to regard such facts as
“well-known” or “ancient history”, and hence
not worth learning, but if you don’t know
history you are doomed to repeat it!

Tradeoffs

Sometimes there is a tradeoff between speed
and stability. For example, the fastest known
parallel algorithm to solve an n × n linear
system

Ax = b

is Csanky’s algorithm, which requires time
O

(

(log n)2
)

using many (but polynomial in n)
processors. This is of theoretical interest,
because it shows that the problem is in the
complexity class NC.

Unfortunately Csanky’s method depends on fast
computation of the characteristic polynomial of
A (followed by an application of the Cayley-
Hamilton theorem) and is numerically unstable.
Avoid computing the characteristic polynomial!
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Entered the wrong data

Now for something completely different.

In September 1997 the US Navy missile cruiser
USS Yorktown was off the coast of Virginia. A
sailor accidentally entered a zero into a data
field of the Remote Database Manager Program,
part of the new Smart Ship system, which was
designed “to automate tasks that sailors have
traditionally done themselves”.

This caused a divide by zero in the program,
since whoever wrote the program had not
bothered to check for zero data. The divide by
zero caused a buffer overflow, and the “failsafe”
system shut down.

Unfortunately the program also controlled the
ship’s propulsion, so the ship was “dead in the
water” for more than two hours before the Navy
figured out how to reboot the system (based on
Windows NT).

Lucky it wasn’t in a war zone!
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Program bug

If you are developing your own programs, then
a program bug is the most likely reason for
wrong answers.

Some suggestions:

• Start with as simple a program as possible
and debug that before adding refinements
such as optimisations, bells and whistles.

• As you add “improvements” check that
the output is still correct.

• If possible, use two different methods and
compare results.

• If possible, try to replicate published
results before trying to get new results
(but be aware that published results are
not always correct).
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Example of debugging – GMP-ECM

An example of a program that is particularly
hard to debug is the elliptic curve method

(ECM) for integer factorisation. This uses a
Monte Carlo algorithm, so you need to be able
to rerun the program with the same “random”
numbers in order to test changes. Also, the
algorithm has two phases and a bug in one
phase will not necessarily stop the other phase
from finding factors (albeit more slowly).

As a way to help people debug and compare
their ECM programs, I introduced a “standard”
way of generating a pseudo-random elliptic
curve (parameterised by one pseudo-random
number σ). Then the developers of GMP-ECM
were able to compare the output of their
program with the output of my (earlier)
program using exactly the same elliptic curves
and other parameters. This was extremely
useful for debugging some sophisticated
enhancements of phase 2.
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Ariane 5 rocket crash

In June 1996 the European Space Agency
launched its new Ariane 5 rocket, an upgrade of
the old Ariane 4. Unfortunately the software
had not been (sufficiently) upgraded. The
rocket veered off course and exploded 37
seconds after liftoff. $US500 million worth of
communications satellites on board were lost
(not to mention ESA’s reputation).

It turned out that horizontal velocity was stored
in a 64-bit floating-point number and then
converted to a 16-bit signed integer. This was
OK for Ariane 4, but for Ariane 5 the number
exceeded 215 − 1 and integer overflow occurred,
with disastrous results.

Was this a program bug? More a bug in the
program specification, which was not upgraded
at the same time as the rocket.
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Patriot missile problem

The Patriot missile provides another example
where the software met the original
specification, but the specification proved
inadequate when the system was used in a way
that was not anticipated by the designers.

During the first Iraq war (Feb 1991) an Iraqi
Scud missile was fired towards Dhahran, Saudi
Arabia. A US Patriot missile should have
intercepted it but failed to do so. 28 soldiers
died as a result, and 97 were injured.
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What went wrong?

It turned out that the Patriot system had an
internal clock that incremented every 0.1
seconds, and the time (in seconds) was
determined by multiplying the counter value by
a 24-bit approximation to 1/10. Note that 1/n
is a non-terminating fraction in binary for any n
that is not a power of 2, in particular for n = 10.
Effectively the Patriot was multiplying by a
number close to 0.0999999 instead of 0.1000000

The Patriot was intended to be a mobile system
that would run for only a few hours at one site,
and in that case the rounding error would not
be serious. However, in Dhahran it ran for 100
hours and the rounding error was 0.34 seconds
(greater than the clock cycle of 0.1 sec). The
Patriot became confused and could not track
the Scud missile, so treated it as a false alarm.

It is sometimes said that the Patriot “missed”
the incoming Scud but this is misleading
because the Patriot never left the ground!
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Mars Climate Orbiter

In Dec 1998 the Mars Climate Orbiter was
launched from Earth. It arrived at Mars in Sept
1999. However, a navigation error caused it to
burn up in the Martian atmosphere.

A review board found that some data was
calculated on the ground in Imperial units
(pound-seconds) and reported that way to the
navigation system, which was expecting the
data in metric units (newton-seconds).

Unfortunately most programming languages
deal only with dimensionless quantities – the
responsibility for conversion of units rests with
the programmer!

The Climate Orbiter was intended to relay
signals from the Mars Polar Lander, which was
launched in Jan 1999. Communication with the
Polar Lander was lost during an attempted
landing near the South pole of Mars in Dec
1999.
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Compiler bugs

If your program does not work as expected, it is
tempting to blame the compiler. In nearly all
cases the compiler is not to blame. It is usually
a typo, logic bug, or a misunderstanding of the
syntax/semantics of the programming language
(e.g. beware implicit type conversions, the
operators “=” and “==” in C, etc).

Turn on compiler warnings and don’t ignore
them unless you are sure it is safe to do so.
Debug with optimisation turned off then see if
turning it on changes anything. (If it does,
check for uninitialised variables and array
bound violations.)

Compiler bugs do exist, especially for “exotic”
or rarely used features (e.g. extended
precision). Avoid such features if possible.
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The Pentium FDIV bug

Firmware/hardware bugs are the least likely,
but also the most spectacular and expensive
(for the computer manufacturer)!

Perhaps the best-known is the 1994 Intel
Pentium “FDIV” bug. Eventually Intel offered
to replace all faulty Pentium processors at an
estimated cost of $US475 million. Many users
did not bother to get their processors replaced,
so it cost Intel less than their estimate.
However, no one at Intel got a Christmas bonus
in 1994!
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What was the FDIV bug?

When designing their Pentium processor to
replace the 80486, Intel aimed to speed up
floating-point scalar code by a factor of three
compared to the 486DX chip,

The 486 used a traditional shift-and-subtract
algorithm for division, generating one quotient
bit per clock cycle. For the Pentium Intel
decided to use the SRT algorithm that can
generate two quotient bits per clock cycle. The
SRT algorithm uses a lookup table to calculate
intermediate quotients.

Intel’s lookup table should have had 1066 table
entries, but due to a faulty optimisation five of
these were not downloaded into the
programmable logic array (PLA). When any of
these five entries is accessed by the floating
point unit (FPU), the FPU fetches zero instead
of the correct value. This results in an incorrect
answer for FDIV (double-precision division) and
related operations.
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Example

The error is usually in the 9th or 10th decimal
digit, but in rare cases it can be much worse.

FDIV is supposed to give a 53-bit result,
i.e. about 16 decimal digits.

An example found by Tim Coe is

c =
4195835

3145727
.

The correct value is

c = 1.333820449136241 · · ·

but a faulty Pentium gives

c = 1.33373906 · · ·

which is an error of about one part in 214.
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Summary of Intel’s reaction

1. There is no problem.

2. There is a small problem, but it is not
serious.

3. The problem might be serious for some
users; people who can prove that they are
affected by the problem can have their
Pentium processor replaced by Intel.

4. OK, we’ll replace any flawed processor
free of charge. [Note: the word “flaw” is
used, not “bug”.]

Jokes

There are lots of Pentium bug jokes. For
example:

Intel’s new motto:

United We Stand,

Divided We Fall
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Time-line

The history is interesting:

• July 1994: Intel discovered the bug, but
did not make this information public.

• Sept 1994: Thomas Nicely suspected the
bug because he obtained different answers
on Pentiums and 80486s (more on this
later).

• 30 Oct 1994: Nicely, unable to convince
Intel technical support, publicised the bug.

• 7 Nov 1994: Front page story in Electronic

Engineering Times.

25

Time-line continued

• 22 Nov 1994: Intel press release “· · · can
make errors in the 9th digit. · · · [Only]
theoretical mathematicians should be
concerned.”

• 5 Dec 1994: Intel claimed the flaw would
occur “once in 27, 000 years” for a typical
spreadsheet user.

• 12 Dec 1994: IBM Research said that the
error could occur as often as “once every
24 days”. IBM stopped shipping PCs
based on the Pentium.

• 21 Dec 1994: Intel said “We at Intel
sincerely apologize for our recent handling
of the recently publicized Pentium
processor flaw” and offered to replace
faulty processors.
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Brun’s constant

A twin prime pair is a pair (p, p + 2) where both
p and p + 2 are prime numbers, e.g. (11, 13).

Brun’s constant is the sum of reciprocals of twin
primes, i.e.

B =
∑

twins (p,p+2)

(

1

p
+

1

p + 2

)

and it is known that B is finite. In contrast, the
sum of reciprocals of all primes is divergent,

∑

prime p<x

1

p
∼ ln lnx → +∞ .

It is not known if there are infinitely many twin
primes, although this would follow from the
Hardy-Littlewood conjecture which is believed
by most number theorists.

In 1975 I computed the sum of reciprocals of
twin primes up to 1011 and estimated

B ≈ 1.9021604
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Nicely’s contribution

In 1994 Nicely decided to extend my 1975
computation. He started with some 80486
processors and compared his results with those
that I had obtained on a Univac 1108. This
revealed various bugs in his program and also a
bug in the Borland C++ compiler. By
September Nicely had verified my results and
was confident that his program was correct.

To be ultra-cautious he computed sums in
blocks of size 1012 and performed each run in

duplicate on two machines. He started to use
one Pentium as well as several 80486 processors.
It soon became clear that the Pentium was
producing different results from the other
machines! After several days of checking every
other possible cause, the problem was narrowed
down to the Pentium floating-point hardware
unit. However, Nicely was unable to convince
Intel technical support of this.

On 30 October Nicely publicised the problem in
an email message to several “interested parties”.
Soon “all hell broke loose”.
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Other discrepancies

Nicely continued his computations, and
occasionally other discrepancies appeared
between duplicated runs.

Two discrepancies were traced to defective
memory (SIMM) chips; parity checking had
failed to report the errors. Once a disk
subsystem failure generated many incorrect
(but plausible) results. Other discrepancies
were probably caused by “soft” memory errors.
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Soft memory errors

A soft memory error occurs when a cosmic ray
or alpha particle flips one or more bits in
memory. A single bit error should be detected
by a parity check and can be corrected if the
memory has “error checking and correction”
(ECC) hardware. Usually ECC can detect (but
not always correct) a double bit error – this is
called SEC/DED. Some systems write an entry
in an error log whenever an error is detected.

Soft memory errors are a known but not
well-advertised feature of modern memory
chips. According to Sun, a system with 10 GB
of memory might get an “ECC event” every 100
to 1000 hours, though this depends on the solar
sunspot cycle, the latitude, altitude, amount of
shielding, degree of miniaturisation, whether
the memory is interleaved, etc, etc.

Soft memory errors are probably the most
common sort of transient errors (errors that can
not be replicated).
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Other experiences of transient errors

Apart from Nicely’s twin primes computation,
several other large computations have been
checked and occasional transient errors found.

GIMPS

GIMPS is the “Great Internet Mersenne Prime
Search”. This is a project to search for primes
of the form 2n − 1. On 4 Sept 2006 GIMPS
announced the Mersenne prime

232582657 − 1 .

A number N = 2n − 1 > 3 can be proved prime
by performing a Lucas-Lehmer test: if s0 = 4
and

sk+1 = s2
k − 2 mod N

then N is prime if and only if sn−2 = 0.

For example, if n = 7, we get the sequence
(4, 14, 67, 42, 111, 0), so 127 is prime.

The GIMPS organisers are careful, and all
results are checked before they are announced.
This has avoided at least one embarrassment.

31

The GIMPS experience

Occasionally two computers testing the same N
find different values of sn−2. Thus at least one
is incorrect! So far about 400, 000
Lucas-Lehmer tests have been checked, and the
observed error rate is about 1.1%.

A “P-90 CPU-year” is the work done by a
90 Mhz Pentium in one year. According to
George Woltman:

The average LL test now takes
about 6.5 P-90 CPU-years. So my
rough calculations are 0.011 errors
per 6.5 CPU-years or 1 error every
600 P-90 CPU-years.

Nowadays most machines are much faster than
90 MHz. If you have a cluster of 64 × 1Ghz
machines, you can expect an error about once
every ten months!
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Irreducible and primitive trinomials

A trinomial is a polynomial with three nonzero
terms, e.g.

x7 + x3 + 1 .

We consider polynomials over the finite field
GF(2). A polynomial is reducible if it has
nontrivial factors, otherwise it is irreducible. For
example, x3 + 1 is reducible over GF (2) because
it has (irreducible) factors x + 1 and x2 + x + 1.

There is an interest in finding irreducible
trinomials xr + xs + 1 of high degree r.
We always assume r > s > 0. Also, without loss
of generality r ≥ 2s, as otherwise we can
consider the “reciprocal trinomial”
xr + xr−s + 1.

A primitive trinomial is an irreducible trinomial
that satisfies another rather technical condition.
This condition is always satisfied if 2r − 1 is a
Mersenne prime. Thus, whenever a new
Mersenne prime is discovered, there is a
possibility of searching for new primitive
trinomials.
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Primitive trinomial search

A few years ago Samuli Larvala, Paul
Zimmermann and I found a new algorithm for
testing irreducibility of trinomials and
embarked on a search for large primitive
trinomials. Following my own advice, I checked
the published results and found an error! The
error was not in our program but in a paper by
Kumada et al in Math. Comp.

For the case r = 859433, Kumada et al claimed
there was only one primitive trinomial, with
s = 288477, but we found another one with
s = 170340. It turned out that there was a bug
in Kumada’s program and this trinomial was
incorrectly discarded by the sieving step (which
looks for small factors).

We then looked at the cases r = 3021377 and
r = 6972593, and found three new primitive
trinomials.

x6972593 + x3037958 + 1 ,

which was found in August 2002, is the largest
known primitive trinomial.
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Checking our results

Knowing Nicely’s story, I decided to check the
new results with a slightly different program
running on different machines. So far we have
checked 80% of the cases and found four errors!
They are all transient errors that can not be
replicated, and were probably caused by soft
memory errors. Fortunately they do not change
the results that Larvala, Zimmermann and I
published.

Our error rate is about one error per 1000 P-90
CPU-years, not too much different from the
rate observed for the GIMPS project.

Conclusion

If the result of a long computation is important,
then it should be verified. Otherwise the result
can not be trusted.
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Case study – Primality testing

In 2002 Agrawal, Kayal and Saxena (AKS)
surprised number theorists by finding a
deterministic polynomial time primality test.
This was certainly a great theoretical result.
However, from a practical point of view, nothing
changed.

Before AKS, the best practical algorithm was
the Rabin-Miller probabilistic algorithm. If you
run this algorithm once, it has a probability
< 1/4 of giving the wrong answer (an error can
only occur if the number being tested is
composite). Thus, if you run Rabin-Miller 100
times and it gives the same answer each time,
the probability of error is

< 4−100 < 10−60 ,

which is close enough to certainty for practical
purposes.

If you really want certainly, there is another
probabilistic algorithm, ECPP, which always
gives the right answer; only the running time is
nondeterministic.
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Comparison of algorithms

Let’s consider testing a 100-decimal digit
number on a 1 GHz machine,

• 10 runs of Rabin-Miller takes 0.03 seconds
(using our Magma implementation)
with error probability < 0.000001

• 100 runs of Rabin-Miller takes 0.3 seconds
with error probability < 10−60

• ECPP takes about 2 seconds

• AKS takes 37 weeks and, using the
GIMPS statistics, the result has a
probability of error exceeding 0.01
even if the program is correct!

Which would you choose ?
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Part 2 – Random Number Generators

Random numbers should not be

generated with a method chosen at

random. Some theory should be

used.

Don Knuth (Vol. 2, §3.1).

Pseudo-random number generators (RNGs) are
critical in simulation and cryptography.

Note the qualification “pseudo”. There is no
way to generate random numbers on a
deterministic computer (unless we allow random
inputs, e.g. from a cosmic ray counter or some
quantum device). All we can hope for is a
deterministic sequence of numbers (xn) that
appear random in the sense that they pass all
our favourite statistical tests, so are statistically
indistinguishable from a random sequence.
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Cryptographic applications

In cryptographic applications (xn) is usually a
sequence of bits and it is important that the
sequence is unpredictable which is a stronger
requirement than passing statistical tests.

Formally, for any ε > 0, given (x0, x1, . . . , xn−1)
it should not be possible to predict xn [in
polynomial time?] with probability greater than
0.5 + ε. It is not known if this is possible.

Public-key cryptography is built on the stronger
assumption that one-way functions exist
(this assumption implies P 6= NP ).

I won’t consider cryptographic applications
today.
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Quasi-random numbers

Quasi-random sequences are designed for
specific applications such as numerical
quadrature. The numbers need to be
“well-distributed” but they do not need to be
independent (there can be a strong correlation
between xn and xn+1).

For example, if you want to approximate the
integral of an analytic function f(x) on the unit
circle using function evaluations at N points,
you probably can’t do better than use the N -th
roots of unity

exp(2πij/N), j = 1, . . . , N .

These points are certainly not random!

Life gets more interesting on other domains,
e.g. a sphere or a high-dimensional cube, but in
any case the requirements for quasi-random
numbers are quite different from those for
pseudo-random numbers.

We won’t consider quasi-random numbers any
further today. From now on, “random” will
mean “pseudo-random”.
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Pseudo-random number generators

Often we want random numbers that are
uniformly distributed on some bounded interval.
By a linear transformation we can assume the
interval is [0, 1].

If the computer wordlength is w, it is often
convenient to generate pseudo-random integers

n ∈ {0, 1, . . . , 2w − 1} and then scale them
appropriately (e.g. return x = n/2w).

There is a certain discretisation error here: we
have restricted ourselves to a finite set of 2w

rational numbers in [0, 1) instead of the
uncountable set of real numbers [0, 1]. However,
this is probably acceptable if w is not too small.

Nowadays most computers have w = 32 or
w = 64, though in conversion to single/double
IEEE “real” format some low-order bits are lost
(32 → 24 and 64 → 53).
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The state

The state of a random number generator is the
information that uniquely defines all future
numbers in the sequence.

Often the state is just the last number in the
sequence, so

xn+1 = f(xn)

for some (deterministic but pseudo-random)
function f , Thus, if xn is represented in a w-bit
word, the state is at most w bits.

Sometimes the state includes other numbers in
the sequence, e.g.

xn+1 = f(xn, xn−1)

or other bits that are “hidden” from the user:

xn+1 = f(sn), sn+1 = g(sn) .

All practical RNGs have a finite (and not too
large) state.
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The period

The sequence (xj) is periodic with period N if

xj+N = xj for all sufficiently large j

and N is the smallest positive integer with this
property.

For example,

(1, 7, 0, 3, 0, 3, 0, 3, 0, 3, . . .)

is periodic with period 2. Here (1, 7) is the
“non-periodic part” or “tail”; often it is empty.

It is important to note that any RNG with n
state bits must be periodic with period

N ≤ 2n .

This is because there are only 2n possibilities
for the state, and the state uniquely defines the
future.
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Period should be large

When using a random number generator we
don’t want the numbers to repeat. Thus the
period N should be larger than the number of
random numbers that we will ever use.

Early RNGs often had only 32 bits of state, so
N ≤ 232. If we make the reasonable assumption
that a random number can be generated and
used in 1 µsec, it takes only 72 minutes to run
through 232 numbers. Thus, 32 bits of state is
too small.

In fact, computers are getting faster and we use
clusters with many processors, sometimes
running programs for days or weeks, so the
state should be much larger than 32 bits.

More subtle is the fact that deterministic
sequences have structure, and many RNGs fail
certain statistical tests if we use more than
about

√
N consecutive numbers. Thus, even a

state of 64 bits may be too small.

I recommend a state of at least 256 bits.
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Linear congruential generators

The most common RNGs used to be linear

congruential generators of the form

xn+1 = (axn + c) mod m ,

where each xn is a nonnegative integer.
a, c and m are suitably chosen constants, and
the sequence is defined once x0 is given.

x0 is the seed

a is the multiplier

m is the modulus.

Usually m ≤ 2w so each xn fits in a single
computer word (in C, an “unsigned int” or
“unsigned long”). Of course xn can be scaled to
give a real number in [0, 1).

The choice of multiplier is important and there
is a lot of theory concerning this (see Knuth,
Vol. 2).
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Mainly in the planes

In a famous paper entitled “Random numbers

fall mainly in the planes”, Marsaglia showed
that linear congruential generators all suffer
from a defect (though some more than others).

Suppose we use (x3n, x3n+1, x3n+2) to get a
point Pn in the unit cube (or similarly in higher
dimensions). Then these points all fall on a
relatively small number of parallel planes (or
hyperplanes). No matter how many points we
generate, the space between these planes will
never be sampled.

For example, the generator RANDU with
a = 65539, c = 1, m = 231 was once widely used
because it was included in an IBM library (and
later copied by DEC and Fujitsu). However, the
points generated by RANDU lie on just 15
planes!
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Analysis of RANDU

The main problem with RANDU is that
a = 216 + 3 (IBM chose this value so
multiplication by a would be fast).
It’s easy to see that

a2 − 6a + 9 = 0 mod m

and deduce that

xn+2 − 6xn+1 + 9xn = 216 − 2 mod m .

Thus (xn+2, xn+1, xn) lies on one of the planes

x − 6y + 9z = km + 216 − 2

and we must have −5 ≤ k ≤ 9. The distance
between the planes is

1√
12 + 62 + 92

> 0.092 ,

so we can fit a sphere of diameter 0.092 between
the planes and no points will fall in it!
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Short period

A generic problem with linear congruential
generators is that the period is at most m ≤ 2w,
which is much too small.

Summary

Linear congruential generators are obsolete and
should not be used, except for “toy” examples
or applications such as initialising better
generators.
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Other generators

Many classes of RNGs have been proposed to
replace linear congruential generators. For
example:

• “xorshift”

• “add with carry” (or “subtract with
borrow”)

• Generalised Fibonacci

• Linear feedback shift register (LFSR)

• Combinations of the above using shuffling
or rejection methods

To give just one example, if we have a primitive
trinomial

xr + xs + 1

then there is an associated LFSR (single-bit)
generator

xn = xn−r ⊕ xn−s

and this has period 2r − 1 provided
(x0, x1, . . . , xr−1) are not all zero. The
parameters r and s are called lags.
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Memory requirements

If the state is too large, the generator uses a lot
of memory and tends to be slow because the
state bits will not all fit in the machine’s cache.
Also, the state has to be initialised – more on
that later. A state of more than 1KB
(8, 192 bits) may be “overkill”.

Random number generators based on primitive
trinomials of degree r need at least r state bits.
For example, the Mersenne Twister uses a
primitive trinomial of degree 19, 937 and has a
state of (slightly more than) 19, 937 bits.

It is dangerous to use generators based on
trinomials of small degree because trinomials
have low weight (each number depends on only
two previous numbers in the sequence).
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Knuth’s random number generator

A few years ago, in collaboration with Pedro
Gimeno (Spain) and Don Knuth (Stanford), I
fixed a serious flaw in the RNG published in
Volume 2 (third edition) of Knuth’s The Art of

Computer Programming.

The flaw is not unique to Knuth’s generator: it
applies to most commonly-used RNGs!

It’s interesting that Knuth recommends a
different RNG in each edition of his Volume 2
(and some experts think there is still plenty of
room for improvement).
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Testing RNGs – traditional approach

Random number generators typically generate a
sequence

X(s) = (x
(s)
0 , x

(s)
1 , x

(s)
2 , . . .)

which depends on a seed s provided by the user.
Different seeds should provide different,
preferably uncorrelated, sequences.

When testing a random number generator we
traditionally select a seed s, generate a long
initial segment of the sequence X(s), and apply
various empirical tests to see if it behaves “like”
a genuine random sequence. For example,
Marsaglia’s Diehard program tests about
3× 106 numbers using assorted statistical tests.

The traditional method of testing is reasonable
if the random numbers are to be used in a long
simulation.
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Testing RNGs – Pedro’s approach

Pedro Gimeno was looking for a good random
number generator for a computer game
application. He wanted to use many different
seeds (say s = 1, 2, 3, ..., 30000) and only a short
segment of X(s) for each seed (say 100 numbers
per seed). Each seed corresponded to a different
game and the set of random numbers was used
to initialise the game. Think of each seed
generating a different game of poker or bridge,
and the random numbers being used to shuffle
the deck of cards.

Pedro wanted different seeds to generate
different games. He also wanted the short
segments of random numbers to be uncorrelated
so each game was independent of the others. An
obvious way to test this is to concatenate the
different segments and feed the combined list
into Diehard.
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Testing with Diehard

If S is the number of different games required,
and each game uses n random numbers, the list
tested by Diehard is:

x
(1)
0 , x

(1)
1 , . . . , x

(1)
n−1,

x
(2)
0 , x

(2)
1 , . . . , x

(2)
n−1,

. . .

x
(S)
0 , x

(S)
1 , . . . , x

(S)
n−1

There is nothing special about Pedro’s choice of
S = 30000, n = 100. The traditional case is the
extreme S = 1, n large.

Another extreme case is S large, n = 1. In this

case we want x
(s)
0 to behave like a random

function of the seed s.

A good, general-purpose RNG such as Knuth’s
should pass all the tests we care to throw at it.
Thus, it should pass both the traditional test
and Pedro’s test.
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The problem

Pedro and I found that Knuth’s RNG
conclusively failed several of Diehard’s tests
when tested with S = 30000, n = 100.

We tried several other well-known generators.
They nearly all failed just as spectacularly as
Knuth’s (some even more spectacularly – for
example it’s easy to see why all linear
congruential generators fail).

One generator which passed was my RANU4 –
surprising since Knuth’s generator is based on
the same theory as RANU4, but the initialisations
differ in a subtle way that turns out to be
crucially important.
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The solution – outline

When writing out a correct proof,

the proof gets shorter.

Andrew Wiles, May 2000.

The idea is to ensure that the least significant

bits of the RNG behave randomly, and that
there is enough time for this randomness to
propagate to the high order bits (by carry
propagation during addition).

Knuth’s original method accidentally injected
non-randomness into the high-order bits faster
than they were randomised by carries from the
low order bits!

The improved version passes Diehard’s tests
with flying colours. As a bonus, it is simpler and
easier to understand than the earlier version.

However, there are still some doubts about this
generator because it is based on a primitive
trinomial with quite small lags. I prefer my
generator xorgens.
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Other distributions

Sometimes we need random numbers with a
given non-uniform distribution, e.g. exponential
or normal (Gaussian). This is a big topic and I
don’t have time to go into it. However, I can
tell you one amusing story about the normal
random number generator used at a certain
university some years ago.

The software library at the time used the
formula

x = u1 + u2 + · · · + u12

the get an approximation x to a normal N(0, 1)
random variable. Here u1, . . . , u12 are
independent uniform random numbers in the
interval [−0.5, +0.5]. It’s easy to see that x has
the correct mean (0) and variance (1), and by
the central limit theorem we expect x to be
approximately normally distributed. Clearly the
approximation is poor in the tails, since |x| ≤ 6.

57

Improvement

When the University’s main computer was
upgraded to a faster one with a longer
wordlength, it was decided to improve the
approximation by taking 15 terms instead of 12.
Thus the software library was modified to use
the formula

x = u1 + u2 + · · · + u15 .

This was used for several months, and
contributed to quite a few papers and at least
one Ph.D. thesis, before someone noticed that
the variance of x had changed to 15/12 = 1.25.
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