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Abstract

In this thesis we address algorithms for polynomial factorisation over finite fields. In the
univariate case, we study a recent algorithm due to Niederreiter [102] where the factorisation
problem is reduced to solving a linear system over the finite field in question, and the solutions are
used to produce the complete factorisation of the polynomial into irreducibles. We develop a new
algorithm for solving the linear system using sparse Gaussian elimination with the Markowitz
ordering strategy, and conjecture that the Niederreiter linear system is not only initially sparse,
but also preserves its sparsity throughout the Gaussian elimination phase [3]. We develop a
new bulk synchronous parallel (BSP) algorithm based on the approach of Gottfert (1994) for
extracting the factors of a polynomial using a basis of the Niederreiter solution set over F,. We
improve upon the complexity and performance of the original algorithm, and produce binary
univariate factorisations of trinomials up to degree 400000 [1].

We present a new approach to multivariate polynomial factorisation which incorporates ideas
from polyhedral geometry, and generalises Hensel lifting [2]. The contribution is an algorithm
for factoring bivariate polynomials via polytopes which is able to exploit to some extent the
sparsity of polynomials. We further show that the polytope method can be made sensitive
to the number of nonzero terms of the input polynomial. We describe a sparse adaptation of
the polytope method over finite fields of prime order which requires fewer bit operations and
memory references for polynomials which are known to be the product of two sparse factors
[4]. Using this method, and to the best of our knowledge, we achieve a world record in binary
bivariate factorisation of a sparse polynomial with degree 20000. We develop a BSP variant of
the absolute irreducibility testing via polytopes given in [45], producing a more memory and
run time efficient method that can provide wider ranges of applicability [5]. We achieve absolute
irreducibility testing of a bivariate and trivariate polynomial of degree 30000, and of multivariate
polynomials with up to 3000 variables.
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Chapter 1

Introduction

1.1 Motivation

Symbolic computation has been the object of computer algebra systems for decades now, focusing
on the use of computers to perform symbolic mathematics. The rudimentary elements of a
computer algebra system consist in numbers and polynomials over a field, and the basic domains
are the natural numbers, rational numbers, finite fields and polynomial rings [29, 55]. One major
problem in this area has been the factorisation of polynomials over finite fields, an active area
of research that has gained a lot of interest in the last few decades. Finite fields in general, and
factorisation of polynomials over such fields in particular, have widespread applications in both
theory and practice. In many instances it becomes essential to be able to factor any large degree
polynomial or otherwise establish its irreducibility. Applications within mathematics appear in
a variety of situations: Equation solving, such as in modeling the Cyclohexane molecule and
studying the spatial conformations of Cyclohexane ([55], Chapter 24), and symbolic summation
and integration [111, 112, 126]. In number theory, univariate polynomial factorisation can be
used in finding complete partial fraction decompositions, and computing the number of points on
elliptic curves [37]. In coding theory, univariate polynomial factorisation is used in constructing
a useful class of cyclic codes, the BCH codes [9, 69, 95], some of which use polynomials over the
binary field [16]. Some cryptosystems, in turn, are based on the Goppa codes, a generalisation of
BCH codes [92, 93]. In cryptography, the factorisation of random polynomials over finite fields
is used in some randomised methods for computing discrete logarithms over finite fields [37].
High degree sparse univariate polynomials in this respect have recently been used in developing
public key cryptosystems: SPIFI [7], based on the difficulty of finding a sparse polynomial with
specified values at some given points, and EnRoot [61], based on the difficulty of finding a
solution to a given system of sparse polynomial equations over certain large rings.

Binary trinomials are also important in their role in constructing linear feedback shift regis-
ters, hence contributing to uses in random number generation, to constructing stream ciphers in
cryptography, and to generating Hamming and BCH error correcting codes [9, 93, 98]. Primitive
trinomials over Fy [18, 19] also play an important role in constructing fields of even characteristic
and for computing with elements within such fields. In general, computation over the binary
field is particularly fashionable because of its simplicity in computation, serving as an example
to illustrate some of the attractive features of a particular algorithm over finite fields. It is also
often used as the underlying field where applications in cryptography and coding theory employ



computations over finite fields [93].

Bivariate polynomial factorisation can be used to solve systems of polynomial equations
using Grobner bases ([55], Chapter 21). Methods for solving systems of algebraic equations
have also been developed using multivariate factorisation [28]. Algebraic simplification and
proving combinatorial identities can also make use of bivariate polynomial factorisations [55].
Absolute irreducibility testing of families of multivariate polynomials can be an important tool
in deformation theory and number theory [47]. Multivariate factorisation has also been used in
the classification of algebraic varieties [109]

Apart from applications in these domains, univariate polynomial factorisation over finite
fields serves as a subproblem of other factorisation problems, namely, those pertaining to multi-
variate polynomials over finite fields, and univariate and multivariate polynomials over the field
of rational numbers and finite extensions of the rationals [56].

Contemporary research in computer algebra aims both at wide functionality of the present
algorithms (by solving a wide range of different problems) and at their speed (how large can the
problems to solve be made, using reasonable resources of time and machinery) [55]. Our motives
behind undertaking this line of research from a computational point of view stem from our belief
that algorithmic trends in mathematics need to be examined and re-evaluated using the very
same tools for which the algorithms were originally intended, which is the actual “computer”
machine. A continuous challenge lies in connecting the new mathematical ideas on how to best
perform a certain algorithm, with the computing approaches and tools that help materialise a
particular algorithm. A variety of tools are made available towards this end. Improvements can
touch upon issues exploiting sparsity, memory management and space reduction. Parallelism
in computer algebra has also been interestingly demonstrated [31, 118, 129]. One of the main
contributions of this thesis is to also investigate areas of parallelism whenever an improvement
in run time or spatial complexity is desired. The main focus is on recent algorithms which
have still not been thoroughly used: Niederreiter’s algorithm for univariate polynomials and the
polytope method for bivariate polynomials. The ultimate aim of our work is to bring about the
best performance possible in those two approaches using a given hardware and reasonable time,
achieving competitive factorisation records that in some cases have not been achieved before.
In particular, we achieve the factorisation of a sparse binary bivariate polynomial with degree
20000, and the absolute irreducibility testing of a bivariate and trivariate polynomial of degree
30000, and of multivariate polynomials with up to 3000 variables.

1.2 Outline

Chapters 2 and 3 contain a preview of the mathematical ideas on which our work is based. In
Chapter 4 we examine the Niederreiter algorithm [102, 103, 104, 105] which has been predicted
to perform very well for sparse polynomials over the binary field. This prompts us to investigate
the sparsity feature for trinomials in particular, those providing the most immediate model for
sparse polynomial factorisation. We prove that the Niederreiter matrix is sparse in the case of a
trinomial, and establish the exact sparsity pattern and density of the Niederreiter matrix [3]. We
also develop a new algorithm for solving the sparse linear system directly to produce a basis for
the solution set through Gaussian elimination and using the data structure of Gustavson [65],
and show how the new algorithm circumvents the problems that have always been associated
with this data structure in terms of elbow space and compression. Although it can be easily



modified to become a general linear solver for other various applications over Fy, our experiments
show that the algorithm can be very efficient in the cases when the matrix maintains a high
level of sparsity throughout the reduction phase, typically an observed feature of the Niederreiter
maftrix.

These results are later incorporated into an algorithm for extracting the factors using a ba-
sis for the solution set, based on Gottfert’s acceleration of the Niederreiter algorithm over Fy
[59]. In Chapter 5, we develop a new BSP (bulk synchronous parallel) algorithm that outlines
a clear dependency between the major computations involved in the factors extraction process,
so that the resulting algorithm comprises a completely new task distribution process [1]. Our
main reasons behind adopting such a model of parallelism are due to its features simplifying
the cost analysis and its clear distinction between the three important phases of computation,
communication, and synchronisation. Our BSP theoretical model results in an efficient BSP
cost requiring relatively small communication and synchronisation costs, and the parallel algo-
rithm achieves very good efficiency as confirmed by our experimental results. Combining the
results of Chapters 4 and 5, the resulting hybrid algorithm provides a cheaper and more mem-
ory efficient alternative to the factorisation of trinomials over s than previously known dense
implementations of the Niederreiter algorithm [110].

In Chapter 6 we become interested in algorithms for bivariate polynomial factorisations over
finite fields. Based on joint work with Shuhong Gao and Alan Lauder [2], we introduce a new
approach to bivariate polynomial factorisation which incorporates ideas from polyhedral geome-
try, and generalises Hensel lifting. The method exploits the sparsity of input polynomials so that
bivariate polynomials can be processed significantly more quickly than using ordinary Hensel
lifting. Given a bivariate polynomial over a field, one may associate with it a convex polytope
in the two dimensional real space called its Newton polytope. A well known result is that if the
polynomial factors, then its Newton polytope decomposes, in the sense of the Minkowski sum,
into the Newton polytopes of the factors. If the polytope does not decompose, one immediately
deduces that the polynomial must be irreducible. However, the converse is not necessarily true,
and we are faced with the following problem: Given a decomposition of the polytope, can we
recover a factorisation of the polynomial whose factors have Newton polytopes of that shape,
or show that one does not exist. Our approach, motivated by Hensel lifting, is to assume that,
along with the decomposition of the polytope, we are given appropriate factorisations of the
polynomials defined by the edges of the Newton polytope. These polynomials will be essen-
tially in one variable less, and the boundary factorisation of the input polynomial is then lifted
into the Newton polytope, where the coefficients of the possible factors of the polynomial are
revealed in successive layers. In standard Hensel lifting, instead of lifting from the boundary,
one does so from a single edge. Uniqueness of the linear systems encountered during lifting
can then be ensured by randomising the polynomial to enforce coprimality conditions and to
make sure the edge being lifted from is sufficiently long. However, this randomisation is by
substitution of linear forms, and this destroys the sparsity of the input polynomial. With the
polytope method, uniqueness can be shown to hold in the bivariate case, only under certain
coprimality conditions, and without restrictions on the lengths of the edges. As with Hensel
lifting, the polytope method has an exponential worst-case running time, since the number of
summands of a Newton polytope could in the worst case be exponential in the total degree of
the associated polynomial. However, our experiments performed very efficiently in factorisations
of sparse polynomials whose polytopes have few edges, and hence very few Minkowski decompo-
sitions. This leads us to consider possible extensions of this work, in the belief that it could be



a promising new method with fast performance in practice, despite its worst-case exponential
time.

In Chapter 7, we pursue this work in an attempt to get as close as possible to solving the
open problem of devising a sparse bivariate algorithm. The polytope method has potential
features that one can exploit, but as it stands above, it argues for one major advantage suiting
sparse polynomials, namely, the fact that the worst-case exponential search for summands can
in fact be very small if the input polynomial is sparse with a Newton polytope having few
decompositions. However, for an input bivariate polynomial of total degree d, the amount of
work per extension of a given boundary factorisation is still of the order O(d*). We investigate
whether this complexity can be reduced, in the case when the ground field is of prime order,
to some bound which is directly dependent on the number of terms, say ¢. The method, which
exploits both the fact that many of the coefficients corresponding to lattice points in the Newton
polytope of the input polynomial (and hopefully its factors) are zero, and also the fact that many
of the polynomials generated during the lifting steps are zero in general and sparse in the worst-
case analysis, results in very high degree, sparse, bivariate binary factorisations for input degree
equal to 20000. To the best of our knowledge, this is by far the highest binary factorisation
achieved to date [4].

In Chapter 8, we examine multivariate polynomial absolute irreducibility over finite fields, a
sub-problem which is indispensable for examining input polynomials before feeding them into a
possibly expensive and nontrivial factorisation algorithm. In particular, we revisit an algorithm
due to Gao and Lauder [45] that is also based on the use of polytopes. Motivated by their original
findings and the special feature which makes absolute irreducibility testing largely dependent on
the shape and the size of Newton polytopes, we investigate a BSP scheme that serves to extend
the range of applicability of the algorithm, by making it possible to tackle significantly higher
degrees, and by allowing a more efficient performance for low degree yet denser polynomials than
those reported in [47]. We show that the algorithm can be optimally parallelised by constructing
a balanced load scheme using the pattern of computations in the sequential case as in [45], and
by adopting a corresponding data distribution representing lattice points inside polytopes in RZ.
The distribution not only adheres to the proposed load scheme, but also allows for a scalable
parallel performance whose efficiency is reflected in our experiments. This then paves the way for
the multivariate case, where a model involving parallelism at two different levels is described.
The resulting improvement is shown to perform well for a wide range of input polynomials,
achieving absolute irreducibility testing of bivariate and multivariate polynomials up to degree
30000, and of lower degree multivariate polynomials with up to 3000 variables [5].

We conclude with a summary of our work in Chapter 9, and outline possible lines of research
of relevance to this thesis that can be undertaken in the future.



Chapter 2

Preliminaries

In this chapter we present a brief collection of classical terminologies and results describing the
tools upon which the rest of the thesis is based. We start our discussion by defining several
types of algebraic structures and properties necessary for the construction of finite fields. We
also discuss issues related to the representation of polynomials over such fields, and for per-
forming arithmetic of univariate polynomials over finite fields. We finally conclude with a brief
description of the BSP model that we will adopt in all our parallel algorithms.

2.1 Rings and fields

For a complete overview of the statements and proofs of all assertions coming forward, we refer
the reader to [9, 40, 55, 85, 93, 97].

Definition 2.1.1 A group G is a set together with a binary operation x operating on elements
of G such that:

1. * 18 associative.

ii. There exists a unique element e in G (called the identity element) such that for all a € G
we have:

axe=e*xa=a

iii. For each a € G, there exists a unique element a=' € G such that:

axa ' =axa ' =e
If the group also satisfies a x b = b* a for all a,b € G, then the group is called abelian (or
commutative).

In what follows, 0 denotes the identity under + and 1 the identity under -.

Definition 2.1.2 A ring (R,+,-) is a set R endowed with two binary operations + and - (not
necessarily the common operations of addition and multiplication) such that:

1. R is an abelian group under +.

1. - 1S associative.

i15. The distributive laws hold. That is, for all a,b,c € R, we have:



a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-a.
a

Definition 2.1.3 i. A ring R is called a ring with identity if the ring has a multiplicative
identity; that is, if there exists an element e # 0 such that a-e =e-a = a for all a € R.

i1. A ring is commutative if - is commutative.

i1i. An integral domain is a commutative ring with identity e # 0 in which a - b= 0 implies
a=0o0orb=0.

. A ring is called a division ring (or skew field) if its nonzero elements form a group under
the operation -.

v. A field is a commutative division ring.

In what follows we write ab as a shorthand for a - b.

Definition 2.1.4 A subset S of a ring R is called a subring of R provided S is closed under +
and - and S forms a ring under these operations.

Definition 2.1.5 Let J C R. Then J is called an ideal of R if J is a subring of R and we have
ra € J and ar € J for alla € J and r € R.

For a commutative ring R, the smallest ideal containing a given element a € R is the ideal
(a) ={ra+na:r € R,n € Z}. If R contains an identity, then (a) = {ra : r € R}.

Definition 2.1.6 Let R be a commutative ring and J an ideal of R. If there exists an a € R
such that J = (a), then J is called the principal ideal generated by a.

Definition 2.1.7 Let J be an ideal of a ring R. We say that b and ¢ in R belong to the same
residue class modulo J if b—c € J.

If a € R, the residue class of @ modulo J will be denoted by [a] = a + J, consisting of all
elements of R of the form a + ¢ for some ¢ € J.

Definition 2.1.8 The ring of residue classes of the ring R modulo the ideal J under the oper-
ations:

@+ )+ (b+J)=(a+b)+J
(a+J)(b+J)=ab+J

is called the residue class ring (or factor ring) of R modulo J. We denote this ring by R/J.

Theorem 2.1.1 The ring Zy of residue classes of the integers modulo the principal ideal gen-
erated by a prime p is a field.

Definition 2.1.9 Let p be a prime and let F, = {0,1,...,p — 1}. Let
$:Z/(p)— T,

be the mapping defined by ¢([a]) = a for a =0,1,....p — 1. Then ¢ induces a field structure on
F, which we call the Galois field of order p.



Theorem 2.1.2 The mapping ¢, as defined above, is an isomorphism, i.e.:

¢([a] + [8]) = d(la]) + H([b]) and p([a][b]) = ¢([a])p([B])-

It is clear that the finite field ¥, has zero element 0 and identity 1. Moreover, its structure is
identical to that of Z,. An obvious advantage to this is the fact that computing with elements
of I, reduces to ordinary arithmetic of integers modulo p.

Definition 2.1.10 Let R be an arbitrary ring. Suppose that there exists a positive integer n
such that nr = 0 for every r € R. We call the characteristic of R the least such positive integer
n. If no such positive integer exists, R is said to have characteristic 0.

Theorem 2.1.3 A finite field has prime characteristic.

Theorem 2.1.4 Let R be a commutative ring of prime characteristic p. Let a,b € R andn € N.
Then

(a+b)P" =aP" +b7".
In the following, all polynomials are assumed to be in one variable.

Definition 2.1.11 Let R be an arbitrary ring. The ring formed by polynomials over R with the
usual operations of polynomial addition and multiplication is called the polynomial ring over R

and denoted by R][z].

Definition 2.1.12 Let F be a field. The field of fractions of the polynomial ring F[x] is the set
F(x) of rational functions in x with coefficients in the field .

Definition 2.1.13 Let f(z) = Y.I, fiz" be a nonzero polynomial over R such that f, # 0.
Then we call n the degree of the polynomial f (denoted by deg(f)), fn the leading coefficient of
f(x), and fo the constant term. If R has identity 1 and the leading coefficient of f(x) is 1, then
f(x) is called a monic polynomial.

Definition 2.1.14 A Laurent polynomial with coefficients in the field F is a polynomial of the
form

amt ™+ a g oz Y+ tasiz T fag +arz 4+ ana”

where a; € F, for —m < i <n, m,n € Z>o, and where only finitely many of the a;’s are nonzero.

n 2

Definition 2.1.15 Given a nonzero Laurent polynomial f =Y " a;xz*, where m,n € Z, its

degree is defined to be the difference n —m.

Definition 2.1.16 A reqular polynomial is a polynomial whose indeterminates cannot have neg-
ative exponents.

Within applications involving only regular polynomials, we set deg(0) = —oo or —1 depend-
ing on the suitability of each. If f = 0 is treated as a Laurent polynomial, we set deg(0) = —oo.
Polynomials of degree equal to zero are the nonzero constant polynomials. In all the following,
F denotes an arbitrary field.



Theorem 2.1.5 Let g # 0 be a polynomial in F[z]. Then for any f € F[z] there exist polyno-
mials q,r € F[z] such that

f =qg+r, where deg(r) < deg(g).

Definition 2.1.17 A polynomial f € F[x] is said to be irreducible over F if f has positive degree
and f = be with b, c € F[x] implies that either b or c is a constant polynomial (equivalently, either
b or ¢ belongs to ). In other words, f is irreducible if and only if it has only trivial factors.

Theorem 2.1.6 Let f € F[x] have positive degree. Then f can be written in the form

f:agfl "'g;fra

where a € I, g1,...,g, are distinct irreducible polynomials in F[z], and ey,...,e, are positive
integers. Moreover, this factorisation is unique up to the order of factors and multiplication by
units (the nonzero constants from ).

Theorem 2.1.7 Let f € F[z]. Then the residue class ring F[z]/(f) is a field if and only if
f is irreducible over F. In particular, the residue classes comprising F|x]/(f) are of the form
r+ (f), where r runs through all polynomials in Flx] with deg(r) < deg(f). Thus, if F = F,
and deg(f) =n >0, then Fy[x]/(f) has p™ elements.

Theorem 2.1.8 Let f € F[z] be a polynomial of degree n over F. Then f can have at most n
distinct roots in .

2.2 Field extensions and structure of finite fields

We call a subfield K of F that subset of ' which itself is a field under the operations of F. We
call F an extension field of K.

Let K be a field and [F a finite extension of it. Then [F can be viewed as a vector space over
K. I is called a finite extension if it is a finite dimensional vector space. Its degree (denoted by
[F : K]) is precisely its dimension as a vector space.

Lemma 2.2.1 Let F be a finite field containing a subfield K with q elements. Let m = [[F : K].
Then IF has ¢ elements.

Theorem 2.2.1 The order of a finite field F is a power of its characteristic. Consequently,
every finite field has order p™, where p is prime and n is the degree of an irreducible polynomial
over ¥, such that ¥ is isomorphic to Fp[z]/(f).

Definition 2.2.1 A field F is said to be algebraically closed if every univariate polynomial of
degree at least 1 with coefficients in I has a zero in F.

Definition 2.2.2 A field extension I of F is said to be algebraic if every element of IL is a root
of a nonzero polynomial with coefficients in IF.

Definition 2.2.3 An algebraic closure F of a field F is an algebraic eztension of F that is
algebraically closed.



Theorem 2.2.2 The algebraic closure of a field F is unique up to isomorphism which fizes all
elements of TF.

Definition 2.2.4 Let F be a finite field and K a subfield of F. Let f € K[z] be a polynomial
of degree n > 0 and leading coefficient a. Then f is said to split in F if it can be written as a
product of linear factors in F[z] or equivalently, if there exists some au,...,an € F such that

flx)=a(x —ar) - (x—ap).

The field F is called a splitting field of f.

The following theorem states that finite fields of any prime power order exist and are essen-
tially unique in structure though their representation may vary.

Theorem 2.2.3 For every prime p and every positive integer n there exists a finite field with
p" elements. Any finite field with ¢ = p™ elements is isomorphic to the splitting field of x9 — x
over IF),.

Theorem 2.2.4 Let F be a finite field with q elements and a € F. Then
a? = a.

Theorem 2.2.5 Let IF be a finite field with q elements and K a subfield of F. Then the polyno-
mial £9 — z in Kz] factors in F[x] and the factorisation is given by:

2l —x = H(ZE—G).
acF

In this case, F is a splitting field of 9 — x over K.

Theorem 2.2.6 For q = p™, I, contains an isomorphic copy of ), as a subfield. In other
words, ¥y is an extension field of ), of degree m.

Theorem 2.2.7 Let F, be a finite field and n € N. The product of all monic irreducible poly-
nomials over F, whose degrees divide n is equal to 24" — .

In what follows let FZ denote the set of nonzero elements of Fq.

Theorem 2.2.8 The nonzero elements of Iy, form a group under multiplication. Furthermore,
this group is cyclic of order q — 1.

Definition 2.2.5 An irreducible polynomial f(z) € Fp[z] of degree m is called a primitive
polynomial if x is a generator of F;m, the cyclic multiplicative group of nonzero elements in

Fpm = Fyla]/(f(2))-

Theorem 2.2.9 For each m > 1, there exists a monic primitive polynomial of degree m over

F,.



In conclusion, we define the formal derivative over fields bearing in mind that the definition
entailed does not involve the idea of a limit (because of the absence of the notion of distance
or topology on a field). Instead, we adopt the following definition which applies to arbitrary
commutative rings and not just fields :

Definition 2.2.6 Let R be an arbitrary commutative ring with 1. Let f =y .cp fix' € R[z].
We define the formal derivative of f by o

fh= Z ifiz L

1<i<n

Theorem 2.2.10 Let R be a commutative ring with 1, ¢1,...,g. € R[z], and ey, ..., e, positive
integers. We then have:

: T f
(g5 g5 ) = > eigigr Lo = D eigi

1<i<r ) 1<i<r b

where f =g - - gtr.

2.3 Construction of finite fields

We have seen in the previous section that, given ¢ = p™ for some m > 1, we can always determine
a finite field of order ¢q. In addition, any two fields of the same order are isomorphic, i.e.
structurally the same; however, the difference in representing isomorphic copies of those fields
is essential to practical applications where one has to come up with the most suitable choice of
field representation.

We start our discussion on how to construct finite fields by considering the case ¢ = p. In
this case, we know that I, is isomorphic to Z, and so the finite field can be taken to be the set
of integers {0, ...,p — 1}. If ¢ = p™ where m > 1, the representation can become more difficult.
One efficient way to construct fields of prime power order is the following. We have seen that, if
f(z) is an irreducible polynomial of degree m over F,, for some m > 1 and p a prime number,
then IFy[z]/(f(z)) is a field consisting of p™ elements. By the uniqueness (up to isomorphism)
of finite fields, we know that IF,[z]/(f(z)) can represent all fields F; of order ¢ = p™. Thus,
elements of [, can be represented as polynomials taken modulo the polynomial f. Moreover,
if f(x) is primitive, we know that z is a generator of the group FZ; in other words, all ¢ — 1
nonzero elements of I, are obtained by computing =’ mod f(z) for i = 1,...,q¢ — 1, where f(z)
is the primitive polynomial of degree m over I, used to construct the finite field. It is now
obvious that elements of the finite field I, where ¢ = p", can be represented by polynomials in
F,[z] of degree less than m. Subtraction and addition of elements of I, are the usual operations
as performed among polynomials in [F,[z]. The product of two elements g;(z) and go(x) of
F,, however, is obtained by multiplying g;(z) with g2(z) and reducing the result modulo f(z).
Multiplicative inverses and gcds of elements of IF, can be obtained using the Extended Euclidean
Algorithm in F)[z], always followed by reduction modulo f(z) [97, 98].

As a result, the representation of a univariate polynomial in [F; [z] becomes, informally speak-
ing, that of a bivariate polynomial (a polynomial with two variables) in F,[z]. To illustrate, if
h(z) € Fy[z], then we can write

h(z) = Z hiz' where h; € T,
0<i<n

10



However, h; € [F, implies that h; is a polynomial over F,, except that it is regarded as a
“constant” in .
The following example illustrates how we can construct a finite field and represent a poly-
nomial in the ring of polynomials over that field.
Example [98]
We are given p = 2, m = 4, and f(z) = z* + 2 + 1 a primitive polynomial over [F5.
i. Elements of Fy4 can be generated in two ways as follows:
Method 1 :
We know that [y consists of all polynomials over 5 of degree less than 4. As a result, we have:

Fye = {a3x3 + a2x2 + a1z +ag | a; € {0,1}},

which confirms that Fys consists of 16 elements.

Method 2 :

Since f(z) is a primitive polynomial of degree 4 over [y, we can generate all elements of Fos by
computing z* for i = 0,...,2* — 2 and reducing the result modulo f(x). The computations are
summarised in table 1.

‘t ‘ z! mod f(z) ‘
0 1

1 T

2 z2

3 z>

4 z+1

) 4

6 x> + 22

7 2441

8 2 +1

9 3+

10 22 +r+1
11 24’4+
12| 3 +22+z+1
13 2>+ 2+ 1
14 34+ 1

Table 2.1: The powers of x modulo f(z) = z* + 2 + 1.

ii. We can add any two elements of IF;g using regular polynomial addition. Since all elements
are reduced modulo f(z), the resulting polynomial sum would need only be reduced modulo 2.

iii. Two elements in 14 can be multiplied as polynomials and then reduced modulo f(z).
For instance,

(@ +22+ 1) - @+ 1) =2+ 2" + 22+ 1= (2* + 22 + £+ 1) mod f(x).

It is worth noting that multiplication can be performed more easily using a look-up of indices

11



only. For example,

2 + 22 4+ 1 = 2" mod f(z),
23 +1 = 2" mod f(z),

and thus to perform the product (2% + 22 + 1) - (#* 4+ 1) we calculate
2B =22 =22 mod f(z) = (23 + 22+ +1).

This kind of table look-up (called the Zech logarithms representation) can be precomputed and
is efficient for small values of ¢ only.

iv. The inverse of 23 + = + 1 in Fyg is given by z? + 1. Using the Extended Euclidean
algorithm for polynomials, we can verify that

(P +z+1)-2°+1)=2"+2>+2+1=1mod f(z).

v. Polynomials in Fs[z] can be constructed with the help of elements of the field serving as
the constant coefficients. For instance, an example of a polynomial of degree 5 over 4 is given
by:

fy) =@ +z+1)y° + (z+1)

where x + 1 is the constant term of the polynomial.

2.4 Univariate polynomial arithmetic over finite fields

Arithmetic of univariate polynomials over finite fields covers operations such as addition, multi-
plication, division with a remainder, gcd computation, and repeated squaring. Such algorithms
fall into two categories, the first of which is the classical arithmetic, where the operations are
implemented literally as in their definition. The complexity of these algorithms is hopefully
greater than the corresponding ones in the second category of “fast” arithmetic, such as Karat-
suba’s multiplication algorithm, Schonhage and Strassen’s multiplication algorithm, and the
Fast Fourier Transform [55]. Since fast arithmetic does not always provide an improvement in
performance for input size under certain cross-over points, one has to make a careful choice on
which options to use based on the problem at hand. In our implementations, we use the classical
algorithms for general arithmetic purposes. Detailed discussions of classical and fast arithmetic
algorithms can be found in [21, 29, 55].

The complexity of the algorithms below is measured in terms of the maximum number of
arithmetic operations required over F,, where ¢ = p™ for m > 1, and all polynomials are
understood to be univariate. In what follows, let ', be again a field with ¢ elements where,
as usual, ¢ = p™ for some prime p and a positive integer m. logz denotes the binary (base 2)
logarithm of z.

Theorem 2.4.1 Two polynomials of degree at most n over Iy can be added using at most O(n)
operations in IFy.

We note that there is no useful alternative to the classical addition algorithm.
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Theorem 2.4.2 Two polynomials of degree at most n over F, can be multiplied by the classical
algorithm using at most n’ operations in F,. Fast algorithms perform this multiplication using
O(nlognloglogn) operations in F,,.

Definition 2.4.1 Let R be a commutative ring with 1. Let
M : N>0 — R>0

be a function such that two polynomials in R[z] of degree less than n can be multiplied using at
most M (n) operations in R. Then M is called a multiplication time for R[z].

We have the following from [55]:

for all m,n € Nyj.

Theorem 2.4.3 Let f be a polynomial of degree n > 0 over F, and g be a polynomial of degree
m such that 0 < m < n. Then the division with remainder of f by g requires O(M (n)) operations
in IF,.

The Euclidean algorithm can be applied to compute the gcd of polynomials over finite fields.
In particular, the Extended Euclidean algorithm can also be used to determine the inverse of a
polynomial over a finite field. There are also two classes (classical and fast) corresponding to
these algorithms.

Theorem 2.4.4 Let f and g be two polynomials of degree at most n over F,. Then ged(f,g) can
be found using O(M(n)log(n)) operations in F,, where M (n) is the multiplication cost defined
above.

Theorem 2.4.5 Let I be a field and f € F[z] of degree n. Let R be the corresponding residue
ring Flx]/(f). Then a multiplication in R can be performed using 6M(n) + O(n) arithmetic
operations in F, and an inverse with at most (24M(n) + O(n))logn operations in IF.

Corollary 2.4.1 Every arithmetic operation in the finite field of order p™ for some prime p
and positive integer m can be performed using at most O(mlogmloglogm) operations in IF,.

2.5 The bulk synchronous parallel model (BSP)

The bulk synchronous parallel model is a model for parallel programming which provides a
simple framework to achieve portable parallel algorithms independent of the architecture of the
computer on which the parallel work is carried out. The model is attractive because of its simple
cost function which helps predict the running time of parallel algorithms before implementing
them, and has been successfully used in a variety of applications (see [14, 71] for instance). For
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a detailed description of the BSP model, we refer the reader to [15, 127]. In our implementation
of the BSP model, we use the standard BSP library [15, 66, 67]. An alternative is the Paderborn
University BSP (PUB) library [20] which has the extra feature of allowing subset synchronisation
and hence, very importantly, nested parallelism.

A BSP computer consists of a set of p processors each with its own private memory, and
having remote access to other processors’ private memories through a communication network.
A BSP algorithm consists of a sequence of parallel steps, denoted by supersteps. A computation
superstep is a series of computations performed on local data available to the processor before
the superstep. A communication superstep is a series of communications in the form of sending
or receiving a number of non-local data between processors that are needed to perform local
computations. Communication supersteps are followed by synchronisation barriers, whereby all
transferred data is updated. A BSP computer can be described by the following four parameters:
e p, the number of processors available;

e s, the processor speed in flop/sec;

e g(p), the time (in flop time units) it takes to communicate (send or receive) a data element
among p processors;

e /(p), the time (in flop time units) it takes all p processors to synchronise.

We distinguish between the BSP cost of an algorithm and its expected running time. The
BSP cost is established using the parameters g and ¢ and the estimate of the execution time is
obtained by dividing the BSP cost in flop time units by s, the single processor speed. The BSP
cost of an algorithm is simply the sum of the BSP costs of its supersteps. The complexity of a
superstep is defined as

Wnaz + g(p) * Amaz + ﬁ(p),

where w4z is the maximum number of flops performed, and h,q; is the maximum number of
messages sent or received by any one processor during that superstep. In our applications over
the binary field, floating point operations correspond to binary operations, and thus all costs
are understood to be expressed in bit operations.
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Chapter 3

Factorisation algorithms

In this chapter we present the key algorithms in the literature of polynomial factorisation on
which our work is based. We discuss in more detail Niederreiter’s algorithm and Gottfert’s
refinement of the algorithm over fields of characteristic 2, give a brief outline of Hensel lifting
for bivariate polynomial factorisation, and present a review of Newton polytopes in relation
to absolute irreducibility of multivariate polynomials. For a broad survey on the origins of
polynomial factorisation we refer the reader to [29, 55, 74, 79].

3.1 Univariate factorisation

A basic premise in the discussion of polynomial factorisation is its uniqueness, the fact that for
any field IF' the polynomials in F[z1, ..., z,] can be uniquely factored into a product of irreducible
polynomials, and that this factorisation is unique up to the order of the factors and the mul-
tiplication by units (which are the nonzero constants in F[xy,...,2,]). Since we are interested
in polynomials over finite fields, we restrict the discussion to the case when I, is a finite field
of order ¢ = p™, for some m > 1, and where the corresponding ring of polynomials over [ is
denoted by F,[z].

Definition 3.1.1 A polynomial f is square-free if and only if it is not divisible by a non-constant
square.

Definition 3.1.2 If f = g{'...g¢" for some irreducible polynomials ¢i,...,gr and exponents
e; >0, fori=1,...,r, then the product g1...g, is called the square-free part of f.

In what follows, let f € Fy[z] denote a polynomial of degree n. The factorisation of f over
I, consists of determining pairwise distinct monic irreducible polynomials g, ..., g, € F,[z] and
positive integers ey, ..., e, such that

f(z) =1lc(fgf .97,

where lc(f) denotes the leading coefficient of f.

The algorithms fall into two classes: deterministic algorithms and probabilistic (or ran-
domised) ones. The general aim is to devise algorithms with running time bounded by a polyno-
mial in the input size, i.e. the total degree of the polynomial to be factorised and the logarithm
of the order of the finite field. Musser presented an algorithm for the square-free decomposition
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of univariate polynomials over the integers [101], which has been extended to the multivariate
case by Yun [133]. Berlekamp gave the first deterministic algorithm for univariate factorisation
over a finite field [8]. Kaltofen and Shoup [82] and Shoup [120] provided an algorithm with
subquadratic time based on asymptotically fast power series composition algorithms from [17],
and the algorithm is known to perform best for large finite fields. Kaltofen and Lobo intro-
duced a black box representation for factoring high degree polynomials over finite fields using
the Berlekamp algorithm [81]. The work of Berlekamp [8, 10], Cantor and Zassenhaus [22], and
Kaltofen and Shoup [82] are among many examples where univariate factorisation algorithms
have successfully achieved quadratic or subquadratic running times in the input size.

Perhaps the simplest approach with which to view factoring univariate polynomials over
finite fields consists of performing the three stages of:

e square-free factorisation,
e distinct-degree factorisation, and
e equal-degree factorisation.

Square-free factorisation concerns eliminating multiple factors of a non-square-free polynomial
f, which amounts to computing g¢...g, such that f = le(f)g{'...g5" for positive integers e;.
A well known algorithm in this respect is due to Yun [133], and returns the square-free part
of f deterministically using O(M (n)logn + nlog(q/p)) operations in F,. Once a polynomial
is reduced to a square-free form, its factorisation can be achieved by simply decomposing the
square-free part. First, one calls Gauss’s distinct-degree factorisation, which operates on the
polynomial to separate its factors according to their degree. Let f be a non-constant, square-
free polynomial of degree n over F,. The distinct-degree decomposition of f consists of the
sequence (w1, ..., ws) (ws # 1) of polynomials such that w; is the product of all monic irreducible
polynomials in F[z] of degree i that divide f. Moreover, the distinct-degree factorisation is the
process of computing this sequence [55, 56]. The process is deterministic and can be shown
to require O(sM (n)log(ng)) operations in IF,, where s is the largest degree of an irreducible
factor of f. Finally, equal-degree factorisation solves the remaining problem by splitting all the
factors of the same degree whose product has been generated by the preceding algorithm for
distinct-degree factorisation. Proposed in probabilistic form by Cantor and Zassenhaus [22], the
algorithm takes as input a monic byproduct of the distinct-degree factorisation, say g, with r
monic irreducible factors all known to have some degree d < n. It returns all such irreducible

factors with probability of failure less than or equal to half, using an expected number of
O((dlog g + logn)M (n)logr) field operations. For more extensive details related to the above
algorithms, we refer the reader to [29, 55, 56].

3.1.1 Niederreiter’s algorithm for small finite fields

We now discuss an important class of Linear algebra based algorithms, so called since they
reduce the factorisation algorithm to solving a linear system over the field in question, and
using the solutions to produce non-trivial factors of the input polynomial. The earliest work in
this respect was due to E. Berlekamp, and appeared successively in two versions, a deterministic
and a probabilistic one, designed to work over small and large finite fields respectively [8, 9, 10,
22,29, 55, 93]. Berlekamp’s algorithm for small finite fields achieves deterministically a complete
factorisation into irreducibles in O(n“ + rqM (n)logn) field operations, where r is the number
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of distinct monic irreducible factors of f and w the exponent for solving an n X n linear system
over [y, and where r ~ O(logn) [83, 84, 100]. Note that w = 3 using classical direct methods
and w = log, 7 using for instance Strassen’s fast matrix multiplication algorithm. For large finite
fields, it succeeds with probability at least 1/2 and requires O(n“ + rM (n) lognlog qlogr) field
operations. The bottlenecks associated with these methods usually concern the linear algebra
phase, where the costs of setting up the linear system, solving it or even storing it dominate
the operational and spatial complexities. However, it is perhaps paradoxically this very aspect
which makes these algorithms attractive in practice, since many techniques already known to
improve upon the performance of linear solvers over finite fields can be used to expedite the
entire factorisation algorithm, as can be demonstrated in the factorisation records of [1, 38, 39,
110, 117].

In this section we report on a relatively recent factorisation algorithm for univariate polyno-
mials in the linear algebra based class. For proofs of the results given below, we refer the reader
to [102, 103, 104, 105]. First proposed by Niederreiter in [102], the algorithm has received a lot
of attention particularly for its effectiveness over binary fields. Niederreiter’s original contribu-
tion first addressed small finite fields, specifically, fields of prime order only. At the heart of the
algorithm is the study of the differential equation:

of order p — 1 in the rational field I, (z). Here, y®=1 denotes differentiation of order p — 1 and
yP denotes exponentiation of order p. Although this equation can still be used for factorisation
over fields with prime power order, we shall restrict our discussion to the case when the ground
field is I, where p is a prime. Since we have seen that any arbitrary polynomial can be made
square-free, we can also assume that f is a square-free polynomial of degree n > 0 over [, and
that we aim to determine its monic irreducible factors g1, g2, ..., g» € Fp[z].

3.1.2 The square-free case

Let L(y) denote the expression y®=1) 4 4P Several properties characterise the differential
equation L(y) = 0, most important of which are that L(y) is a linear operator on the vector
space [, (z) over IF),, and that the solutions of L(y) = 0 form a linear subspace of F),(z) [102].
Niederreiter considers those solutions of L(y) = 0 with fixed denominator f: If we write y = h/f
with h € F)[z], the corresponding solution space defined by:

N = {h €T, : (9(,,1) + (;)p 0}

constitutes the so called Niederreiter linear space, which forms an IF)-vector space [102]. Ele-
ments of this set can be described explicitly as follows:

Theorem 3.1.1 [102] Let f = g1...g, be the decomposition of f into distinct irreducible factors

and let deg(f) =n > 0. The solutions to L(y) = 0 such that y = % are given by

g9; .
Y= Zajfg—g_ with ay, ...,a, € F,.
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If f is as above and h is an unknown polynomial of degree less than deg(f) = n, then the
polynomials on both sides of the equation

(p-1)
() ”

have degrees less than or equal to (n — 1)p, and both sides of the equation are polynomials in
zP. The major implications of this lead to the crucial result:

Theorem 3.1.2 [102] If y = % with f fized of degree n and h(zx) is an unknown polynomial in

F,[z] of degree less than n, then solving y®P=Y 4 yP = 0 reduces to solving an n x n linear system
over IF,,.

For the sake of clarity and illustration we shall replicate the proof of the above theorem from
[102]:
n—1
Proof: Write h(z) = 3 hpz®. Rewrite yP~D 4¢P =0 as
E=0

O

Since the polynomials on both sides of Eq. (3.1) are of degree less than or equal to (n — 1)p
and are polynomials in 2P, this indicates that (3.1) holds if and only if the coefficients of x/P,
(»—1)
0 < j <n—1, agree on both sides of the equation. Identifying the coefficients of fP (%)
with those of —hP results in an n X n system of linear equations in hg, ..., b, 1, the unknown

(p=1)
coefficients of h. Let Ny be the n x n coefficient matrix of f? (%) . Then since

n—1
h(w)? = h(z?) = hpa'?,
k=0

this system can be rearranged as
(Ny—I,)h" =0

where h = (ho, ..., h, 1) € Fj) and (Ny — I,) is an n X n matrix over I,

It can be shown, as a consequence of the above in relation to polynomial reducibility, that
Rank(Ny — I,,) = n —r, where n is the degree of f and r is the number of irreducible factors
of f. In particular, f is irreducible over I, iff Rank(N; — I,,) = n — 1 [102]. Upon reducing the
matrix (Ny — I,,), and if we find that its rank is n — 1, then f is irreducible and the algorithm
halts. So, we may assume that the rank is less than or equal to n — 2 or equivalently that
r > 2. Now let h be a solution of (3.1). By theorem 3.1.1, h can be expressed as y;_, aifi—i €
F,[z], for some ai,...,ar € F,. Let J(h) = {1 < j <7 :a; = 0}. One can then show that

ged(f,h) = [I gj, and that:
j€J (h)

Theorem 3.1.3 [102] The probability that a random solution h produces a nontrivial factori-
sation of f is approximately %, ifp>r.
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3.1.3 The algorithm

The following algorithm returns a monic nontrivial factor of f (or all factors of f if p and r
are not too large). In the former case, all irreducible factors can be found by recursing on the
output of the algorithm.

Algorithm 3.1.1 Input: f a square-free monic polynomial of degree n over I, and r the number
of its distinct irreducible factors.
Output: A nontrivial factor of f.

1. Determine the matriz Ny then calculate the rank of (Ny —Ip,). If the rank is equal to
n — 1, output f as an irreducible polynomial and halt the algorithm.

2. If r > 2, solve the linear system of equations

(Ny—I,)h" =0
over F,. Each solution h results in a polynomial h over I, whose coefficients are the coordinates
of h.
3. Consider a nonzero polynomial h produced in step 2 and calculate ged(f,h). Repeat until
ged(f,h) # 1 or ged(f,h) # f. Then, ged(f,h) is a nontrivial factor of f. If p and r are not

too large, then we can consider all p" polynomials h from step 2, so that ged(f,h) yields all
monic factors of f (with repetitions if p > 2).

3.1.4 Acceleration of Niederreiter’s algorithm over the binary field

We now discuss how Niederreiter’s algorithm can be extended to deal with the case when f is
not square-free and when the finite field is of order ¢ = 2. The approach taken here becomes
more complicated for fields of order ¢, for ¢t > 1, and we refer the reader to [41, 103, 104, 105]
for more details.

The algorithm lends itself to major simplifications in the case p = 2. Let us consider again

the differential equation
h (p—1)
f? (—) + h? = 0.

S
For p = 2, this simplifies to

f? (%>,+h2=0<=>(h’f—f’h)+h2=0

— (fh) = h%

Theorem 3.1.4 [103] Let ¥, be an arbitrary field of characteristic 2, and f € Fylx] a monic
polynomial such that f = gi'...gt", where the g;’s are distinct monic irreducible polynomials and
e; > 1, for 1 <i<r. Let b be a polynomial running through all square-free monic factors of f.
Then the polynomials h solving the differential equation

(Fh) = b (3.2)

are given by



Furthermore, different solutions h are determined for different choices of b, and hence the above
differential equation has exactly 2" distinct solutions.

Again, for the sake of continuity in further arguments, we shall replicate the proof from [103]:
Proof: Let b be a monic factor of f. Then
r
bzﬂgf", for0<c¢;<e;and1<i<r.

For h = (f/b)t/, we have

= _— = Zczgl.
i=1

Since F; has characteristic 2, the ¢;’s are either 0 or 1, and hence it suffices to let b range over the
square-free monic factors of f only. Let h be a solution to the differential equation (hf)’ = h2.
We can assume that h # 0, since the case h = 0 is obtained by choosing b = 1. Let a = ged(f, h).
Then we can find b and ¢ such that f = ab, h = ac, and ged(b,¢) = 1. Now

(hf) =h* < (f/h) =1 < (b/c) =1 <= bc—bd =

Hence, ¢ | b, and with ged(b,¢) = 1 we get that ¢ | ¢’. But this happens only when ¢ = 0.
Since we also have b'c — b = ¢?, we must have ¢ = b’ or equivalently h = %b’ )
On the other hand, if h = (f/b)b’ for some monic square-free factor b of f, then

(fn)" =

W+ (1) oy
2
2 ) o+ (£) o + o)

I
b
) ((b')2 +bb") (since all arithmetic is performed modulo 2)

where here we have used the fact that ¢” = 0 for all g € F;[z] when F, is a field of characteristic
2 (this can be seen as a result of the fact that the only nonzero summands appearing in ¢’ occur
at powers 2’ where i is divisible by 2). Thus, h satisfies (fh)’ = h?

To show that different choices of b result in distinct solutions h, we proceed as follows. Since
b is square-free, this is equivalent to ged(b,b’) =1, and so for h = (f/b)b we have

ged(f,h) = T gea(b, ) = L.

Thus, it is clear that different choices of b lead to distinct solutions h.
The above theorem provides an explicit description of elements that solve the differential

equation (fh)" = h?, and one can proceed as in the general case for F = F,. In particular, we
have:
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Theorem 3.1.5 [103] The differential equation (fh)' = h? results in a system of quadratic
equations in the unknown coefficients of h.

As a result of the above theorem, we have:

ed(f,h) = L gea(v, 1) =

where ged(b,b') = 1 since b is square-free. At this stage, the r irreducible factors can be
determined using any of the following strategies:

1. Choose any solution h of the linear system such that the corresponding polynomial whose
coefficients form the row vector h is not equal to zero or f’. If h # 0, then ged(f,h) # f
and if h # ' then b # f and so ged(f, h) # 1. We can apply the same factorisation again
to this non-trivial factor and its complement and call the procedure recursively on the
output. This may become inconvenient in practice, as it requires setting up a new matrix
and solving the associated system once again. For an input polynomial of degree n, there
will be about O(logn) irreducibles [83, 84, 100], each with multiplicity at most n. In
the worst-case analysis, one will have to call the Niederreiter algorithm about O((logn)™)
times.

2. Determine the 2" solution polynomials h. The corresponding polynomials m = b will

then cover all 2" monic factors of the square-free part g;...g, of f and in particular, all the

irreducible factors of f.

In this context, R. Gottfert introduced a third strategy leading to a polynomial time al-
gorithm for extracting all irreducible factors of f [59]. Perhaps more striking is that Gottfert
restricted his attention to the set of basis elements {hq,...,h,} spanning the solution set of
(fh)" = k2%, rather than an arbitrary solution of the linear system. In [59], Gottfert showed
how this can be used together with at most r? ged and division operations to obtain a complete
factorisation. We shall recall the algorithm briefly and refer the reader to the original paper for
details and proofs of the forthcoming results.

Consider the set of basis elements {h,...,h,} of the Niederreiter linear system and the
corresponding polynomials

__ I
ng(fa h’L)

representing monic square-free factors of f. Those factors are then listed in a collection of at
most r rows as follows. The first row contains only by. The second row consists of at most three
polynomials, specifically, the non-constant polynomials among

b; elF,z], fori=1,..,r

by by
gcd(bQ, bl) ’ gcd(bQ, bl) '

ged(be, by),
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The third row consists of

71
d(b _—
gc ( 3,7’1), gcd(b?),'f‘l),
T2
d(b _
sl r2) )’
r3
d(b _
ged(ba,7a), ged (b3, 3)’
b3
gcd(b3, 7"1) ng(b3, 7’2) gcd(bg, 7’3)
where
by bo
= ocd(bo. b L E— d L
r1 = ged(ba,b), 2 ged(be, by) amers ged (b, by)

In general, the polynomials of row k, for kK = 2,...,r, consist of the non-constant polynomials
among

PRt rs _be
17d17"'7 S,ds’dl---ds,

where 71, ...,rs are the polynomials in row k£ — 1 and d; = ged(bg, rj), for j =1,...,s.

Theorem 3.1.6 [59] Any polynomial row constructed in this way has the following properties:
i. The polynomials in any row are pairwise relatively prime monic square-free factors of f.
1. The polynomial by appears in row k, either in its original form or split up into some
non-trivial factors.
1. Bvery polynomial in row k — 1 also appears in row k, either in its original form or split
up into two non-trivial factors.

Theorem 3.1.7 [59] The irreducible monic square-free factors of f are determined once a row
containing T polynomials has been reached.

The following theorem shows that this procedure always results in a row with r elements:

Theorem 3.1.8 [59] The row of index at most r contains the polynomials gi...g,, the distinct
momnic irreducible factors of f.

Summarising all, Gottfert’s algorithm takes up the following form :

Algorithm 3.1.2 [59]
Input: A polynomial f of degree n over Fy where q = 2, for some t > 1.
Output: The r irreducible factors of f.

1. Set up the n X n matric Ny — I. By a rank computation, determine the number of
irreducible factors of f. If this is equal to 1, output f as an irreducible polynomial and halt the
algorithm.

2. Determine a basis {h1,...,h,} of the solution space of the system

(N; — I,)hT = 0. (3.3)
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3. Compute by, ..., b, defined as

.
b= ed(fo )

4. Set up a table of polynomials of at most r rows as has been described earlier. The rows are
set up inductively and non-constant polynomials are removed from each row. Stop the process
when a row containing r non-constant polynomials is obtained. This may be row r or any other
earlier one. The polynomials found on that row are the r irreducible factors of f.

fori=1,..,r

Since at most r rows have to be set up, each containing at most r polynomials, we need at
most r? ged operations and at most 72 division operations to find all irreducibles. Over Fy, this
brings the total cost of such computations to O(r2M (n)logn) bit operations, where logn is the
binary logarithm of n, M(n) is the time to multiply (or divide) two polynomials of degree at
most n over Ko, and O(M (n)logn) is the time to perform the ged of two such polynomials over

Fs.

Theorem 3.1.9 [59] Using Gotifert’s acceleration of Niederreiter’s algorithm, a polynomial f
of degree n. over Ty can be factorised using O(n“ + r2M(n)logn) operations in Fy.

3.2 Bivariate factorisation

In the multivariate case, algorithms have been concerned with two types of factorisations over
finite fields: Rational factorisation into irreducible factors over the ground field, and absolute
factorisation of the input polynomial into irreducible factors over the algebraic closure of the
ground field. In the former case, Lenstra, Lenstra and Lovész [91] gave the first polynomial time
algorithm for factoring univariate polynomials over rational numbers, through the so called
LLL lattice basis reduction. This was used later on by A. K. Lenstra [88, 89, 90], Chistov
[23, 24, 25], Grigoryev [63], and Chistov and Grigoryev [62], to obtain polynomial time algorithms
for multivariate polynomials over various fields, including finite fields. Kaltofen [75], and von zur
Gathen and Kaltofen [51], introduced polynomial time algorithms using Newton approximation
for multivariate factorisation over rational numbers and finite fields. Algorithms for factoring
multivariate polynomials using a black box representation were given by Kaltofen and Trager
[78], Diaz and Kaltofen [32], and Rubinfeld and Zippel [113]. The work in [78] and [113] also used
modular interpolation to reduce the problem to univariate factorisation. Bernardin developed a
polynomial time extension of Yun’s algorithm [133] for square-free factorisation of multivariate
polynomials over finite fields [11].

Among the well known algorithms for absolute factorisation are the following: Duval [34]
used special function spaces based on algebraic geometry to obtain an algorithm that is only
conjectured to run in polynomial time. Kaltofen proposed algorithms for absolute factorisation
also using Newton approximation [77, 80]. Gao obtained an algorithm for multivariate polyno-
mial factorisation over any field of characteristic zero or of relatively large characteristic that is
based on a simple partial differential equation [44]. All the above algorithms run in polynomial
time or are conjectured so. For instance, given a bivariate polynomial f € F,[z, y] of total degree
n, where the input size is of the order N = O(n?), Lenstra’s algorithm for rational factorisation
requires O(N*) field operations [89], ignoring logarithmic factors. The work of von zur Gathen
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and Kaltofen based on Newton approximation requires O(N®) field operations [51]. When ap-
plied to finite fields, Gao’s algorithm using PDE’s requires the characteristic of the field to be
at least 6mn, where m and n denote the upper bounds on the degrees in  and y respectively.
In that case, Gao’s algorithm has a cost of O(N?%) field operations [44].

Another special class of rational multivariate factorisation are Hensel lifting based techniques
which have been shown to be efficient in practice [13, 101, 128, 131]. Despite its worst-case
exponential running time, Gao and Lauder showed that the application of such algorithms to
bivariate polynomials over finite fields has an average running time that is almost linear in the
input size [46], which explains why they are fast in practice. Since this relates strongly to the
factorisation via polytopes algorithm in Chapter 6, we shall dedicate the rest of the discussion
to a summary of Hensel lifting.

3.2.1 Hensel lifting for bivariate polynomials

We recall briefly the main ideas behind this approach following the bivariate version in [46].
Let I, denote a finite field of order ¢ and let T'(n,q) denote the set of all polynomials in
F,lz,y] of total degree n that are monic in z and have degree n in z. As shown in [46], this
model of polynomials on which the Hensel lifting algorithm will be based is not trivial because
any polynomial of total degree n can be transformed into a polynomial in T'(n,q) that has
the same factorisation pattern. In particular, let h(y) = Y 7, c;y* where S0 c;z™ 'y’ is the
homogeneous part of f of degree n (in other words, each cj represents the coefficient of a term
a(j,j/)xjyjl in f such that j + 7' = n). Then g = f(z,y + az) still has total degree n and the
coefficient of z™ in ¢ is h(a). Since h is nonzero and has degree at most n, we only have to
choose a € [, such that h(a) # 0. When h(a) # 0, g can be made monic in z, and hence can
be viewed as belonging to T'(n, q). Obviously, the factors of f are easily obtained from those of
g by the inverse transformation (say f = g(z,y — ax)) [46].

Let f € T'(n,q) and suppose that f = gh, where f, g and h are all lying in F;[z,y]. Let
n = deg(f), r = deg(g), and s = deg(h), so that n = r + s. Write

n T S
F=> " g=> gt andh=> hyt,
k=0 k=0

k=0

where deg(gx) < r —k and deg(hy) < s —k, for k =0, ...,n (here we consider g; and hy to be
zero whenever r — k and s — k are negative). Equating the coefficients of y*, for k = 0,...,n, on
both sides of f = gh, we see that fy = goho and for k& > 1:

k
fe =" gihk—i,
i=0
or
k-1
gohi + grho = fr = Y _gihk i (3.4)
i=1

Let d = ged(go, ho) with v and v chosen so that

ugo +vho =d (3.5)
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and deg(u) < deg(hg), deg(v) < deg(go). Then d divides gohi + grho = fr — Ei-:ll gihk_;. By
(3.4) we have

k1
gkho = (fx — Y _gilu—i) mod go,
i=1

and by (3.5) we have
vhg = d mod gy.
Thus,

k—1
gkvho = v(fy — Y _gihk—;) mod go
i=1
or
k—1
grd = v(fr = Y _gihk—i) mod go.
i=1
Since d divides fj — Ei-:ll gihk—i, we can find wy, € Fy[z] such that

k—1
— S by
g = o1k ZZ; I 2 (3.6)

On the other hand, we have

k—1
goh'k = fk - Zi:l glhk—z — gkhU )
- h - '__1 1,h —i
fom T gy — o ST ) ot

— wy, 0;0

=S gihii
(d—’l)ho)fk Zl_dlg k
so that

k—1

ufk E’; gihi—i _ wk%. (3.7)

Turning this observation around, assume we have been given a polynomial f € F,[z,y] of
total degree n and a factorisation of the reduction of f modulo y given as fo = goho, where
I =>0r fey® and go, hg € Fy[z]. Assume further that f € T'(n,q) so that deg(fy) = n. Let
r = deg(go) and s = deg(hg), so that n = r + s. The question one seeks now is whether it
would be possible to use Equations (3.6) and (3.7) to define a sequence of polynomials {gx } x>0
and {hy k>0 such that g = > crc, Y%, b =Y g<p<, hey¥, and f = gh, under the restrictions
deg(gr) < r—Fk, deg(hy) < s—k, gp =0if r—k <0 and hy, = 0if s —k < 0. It turns
out that this is possible provided at each stage wy is chosen so that d divides the polynomials
fr — Z;:ll gihg_;. If d # 1, then the choice we make of wy may not be unique, resulting in
exponentially many choices for g’s and hy’s. If d = 1, however, there will be at most one way
of doing this, and the equations (3.6) and (3.7) uniquely determine g; and hy, for & > 1, as

hy =

k—1
gk = v(fx — Y _ gihk—i) mod go (3.8)
i—=1
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k-1
hi = u(fr — Zgz’hkﬂ') mod hyg (3.9)
i—1

and the lifting can be carried out uniquely as high as one wishes, after checking whether
deg(gr) < r — k and deg(hx) < s — k. In the parlance of Chapter 6, the Newton polytope
of f as given above lies in a triangle with vertices (n,0),(0,n), (0,0), and lifting is initiated
along the horizontal edge, since all terms in fy have a zero exponent in the variable y.

The algorithm

For n > 1, let M(n,q) C T'(n,q) denote the subset of all polynomials whose reduction modulo
y is square-free. The condition in the previous section requiring that d = ged(go, ho) = 1 shows
that Hensel lifting works for all polynomials in M (n,q). We shall first present a version from
[46] which accepts only polynomials in M(n,q). With slight modifications, this can later be
used to factor polynomials in T'(n, q).

Algorithm 3.2.1 (Hensel Factorisation)
Input: A polynomial f =3} _, fey® in M(n,q), where fr € Fy[z].
Output: All monic factors of f with total degree between 1 and |n/2|.

Step 1: Use a univariate polynomial factorisation algorithm to factor fo, a square-free polyno-
mial. If fo is irreducible, then halt the algorithm.

Step 2: List all pairs (go, ho) of monic factors of fo such that fo = goho, and deg(go) < deg(ho),
say. Let r = deg(go) (so that 1 <r < |n/2]). For each pair (go,ho), repeat Steps 3-5:

Step 3: Compute polynomials u and v with ugy + vhy = 1 and deg(u) < deg(hy), deg(v) <
deg(g0)-

Step 4: For k=1,...,r, compute

k—1
gk = v(fx — Y _gihk—i) mod go,

=1

and
k1
hi, = u(fi =Y _gih—i) mod ho.
i=1

In the case that r > k check whether deg(gr) < r — k and in the case that k > r check whether
gr = 0. Also, in the case that s > k check whether deg(hy) < s — k and in the case that k > s
check whether hy, = 0. If any of those two checkings fail, halt the computation for this pair of
(907 hU)

Step 5: Check whether g =Y, _, gry® divides f. If so, then output g.
Correctness of the above algorithm follows easily from the preceding discussion. The worst-
case running time is clearly dependent on the total number of pairs of monic factors (go, ho),

which is exponential in the total number of irreducible factors of fy;. The average such number
for a univariate polynomial of degree n is about O(logn) [83, 84, 100]. For each pair (go, ho),
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the inner-most computations of the algorithm is dominated by O(n) polynomial divisions in
F,. If d(n,q) denotes the bound on the worst-case number of I, operations required to factor
univariate polynomials of degree n over I, the above algorithm has a worst-case complexity of
the order O(d(n,q) + 2'°6™n?) field operations, assuming classical polynomial arithmetic.

In general though, fo = f mod y may not be square-free in [F;[z], and hence, cannot be
factorised using the above version of Hensel lifting. To this end, a randomisation technique is
introduced in [46] addressing square-free polynomials f in F;[z, y] whose reduction modulo y is
not square-free. In particular, it was shown the following:

Lemma 3.2.1 [/6] Let S be a subset of Fy and f € T(n,q) square-free. For random 3 € S, we
have g = f(z,y + ) € M(n,q) with probability at least 1 —n(2n —1)/|S].

Thus, if ¢ > 4n?, one can take S = F, and so the probability in the above lemma will be at
least 1/2. If ¢ is small, one needs to go to an extension of I, of sufficient size and factor f over
there, then combine the factors to go down to F,. For more details on this and on Hensel lifting
techniques in general, we refer the reader to [29, 101, 128, 130, 131, 134].

3.3 Polynomials and Newton polytopes

For an extensive review of the theory of convex polytopes we refer the reader to [64]. Let R
denote the field of real numbers and R" the Euclidean n-space. A convez polytope in R" is the
smallest convex set containing a given nonempty finite set of points in R”. A point of a polytope
is a vertez if it does not belong to the interior of any line segment in the polytope. A hyperplane
cuts the polytope if both of the open half-spaces determined by it contain points of the polytope.
A hyperplane which does not cut a polytope, but has a non-empty intersection with it is called
a supporting hyperplane. The intersection of a supporting hyperplane and a polytope is called
a proper face, and the union of all proper faces is the boundary. 1-dimensional faces are edges.
By proper we simply refer to the non-trivial case when the dimension of the face is less than the
dimension of the polytope.

Let F[X1, Xa,...,X,] be the ring of polynomials in n variables over an arbitrary field FF.
For any vector e = (ey,... ,e,) of non-negative integers, define X¢ := X7* ... Xt Let f €
F[Xy,...,X,] be given by

= Zane

where the sum is over finitely many points e in N" called support vectors of f, and a. € F. Let
Supp(f) denote the set of all its support vectors. The total degree of f when f is not a constant
is defined to be the maximum value of ), e; over all (ei,...,e,) € Supp(f). The Newton
polytope of f, denoted by Newt(f), is the polytope in R" obtained as the convex hull of all
exponents e for which the corresponding coefficient a, is nonzero. It has integer vertices, since
all the e are integral points. We call such polytopes integral. Given two polytopes ) and R,
their Minkowski sum is defined to be the set

Q+R:={q+r|qeQ,r € R}.

When @ and R are integral polytopes, so is Q + R. If we can write an integral polytope P as a
Minkowski sum @+ R for integral polytopes Q and R then we call this an integral decomposition.
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The decomposition is trivial if Q or R has only one point, and P is integrally decomposable if it
has at least one non-trivial decomposition. If a polytope has no non-trivial decompositions then
it is integrally indecomposable. The Minkowski sum of two convex polytopes is also a convex
polytope.

The following result, demonstrated in [36, 64, 117], describes how faces decompose in a
Minkowski sum of polytopes:

Lemma 3.3.1 Let Q and R be polytopes in R" and P = Q + R.
1. Each face of P is a Minowski sum of unique faces of Q and R.

2. Let Py be any face of P and vy, ...,v;m—1 be all of its vertices. Suppose that v; = q; + 1;
for some q; € Q, r; € R, and v = 0,....m — 1. Let Q1 and Ry denote the convezr hulls
of {qoy -y @m—-1} and {ro,...,rm—1}, respectively. Then Q1 and Ry are faces of Q and R,
respectively, and P, = Q1 + R;.

A polytope of dimension 2 is a polygon, where the only proper faces are edges and vertices.
The above lemma can then be rephrased as follows:

Corollary 3.3.1 [/5] Let P, Q and R be convex polygons in R? with P = Q + R. Then every
edge of P decomposes uniquely as the sum of an edge of Q and an edge of R, possibly one of
them being a point. Conversely, any edge of Q or R is a summand of exactly one edge of P.

Let P be a convex polygon in RQ, and let vy, ..., v, 1 denote its vertices ordered cyclically in
a counter-clockwise direction. The edges of P are vectors of the form E; = v;11 — v; = (a;, b;),
for 0 < i < m—1, where a;, b; € Z and the indices are taken modulo m. A vector v = (a,b) € Z*
is called a primitive vector if ged(a,b) = 1. If n; = ged(a;, b;) and e; = (a;/n;, bi/n;), then E; =
n;e;, where e; is a primitive vector, for 0 < ¢ < m — 1. The sequence of vectors {n;e; }o<i<m—1
is called the edge sequence or polygonal sequence and uniquely identifies the polygon up to
translation determined by vg. Since the boundary of a polygon forms a closed path, we have
that >y ,c,_1 niei = (0,0). For convenience, an edge sequence can be identified with that
obtained by extending the sequence by inserting an arbitrary number of zero vectors, and so we
can assume that the edge sequence of a summand of P has the same length as that of P. The
following lemma, gives an explicit description of edge sequences describing all possible summands
of a given integral polygon.

Lemma 3.3.2 [45] Let P be a polygon with edge sequence {n;e;}o<i<m—1 where e; € 72 are
primitive vectors. Then an integral polygon is a summand of P iff its edge sequence is of the
form {kiei}ﬂgigm—la 0 S ki S n;g, with Zogigm—l kiei = (0,0).

For proof, see [45].
We conclude with a final useful result describing the notion of the length of an edge of an
integral polygon, designating the number of integral points falling on the edge:

Lemma 3.3.3 [43] Given vo and vy two distinct integral points in R?, the number of integral
points on the line segment vovy, including vo and vy, is equal to ged(vg — vy).

For proof, see [43].
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3.3.1 Indecomposable polytopes and absolute irreducibility

Recall from the above discussion that f is absolutely irreducible over F if it has no non-trivial
factors over F, the algebraic closure of F. Absolute irreducibility forms a stronger irreducibility
criterion than rational irreducibility because f has no irreducible factors over I if it is ab-
solutely irreducible. The multivariate factorisation algorithms presented earlier can all serve
as irreducibility tests. The following theorem is at the heart of a different kind of absolute
irreducibility criterion:

Theorem 3.3.1 (Ostrowski) [108] Let f,g,h € F[Xq,...,X,]. If f = gh then Newt(f) =
Newt(g) + Newt(h).

Corollary 3.3.2 (Irreducibility Criterion) [43] Let f € F[Xy,...,X,] with f not divisible
by any non-constant X;, for 1 < i < n. If Newt(f) is not integrally decomposable, then f is
absolutely irreducible.

For proof, see [43].

We conclude this section with a brief discussion on a relevant concept of homothetic decom-
posability [42, 43, 64, 96, 99, 115, 121, 122] affecting integral decomposability. The relevance of
this will become clearer towards the end of this section.

Definition 3.3.1 Let P and Q be polytopes in R™ (not necessarily integral). We say that Q is
homothetic to P if there erxists a real number t > 0 and a vector a € R" such that

Q=tP+a={th+a:be P}.

Definition 3.3.2 A polytope P is called homothetically indecomposable whenever P = Py + Py
for two polytopes Py and Py implies that Py or P is homothetic to P. Otherwise, P is called
homothetically decomposable.

The following proposition outlines the relationship between homothetic and integral polytope
indecomposability:

Proposition 3.3.1 [/5] Let Q be an integral polytope in R" with vertices v;, where 0 < i < k.
If Q is homothetically indecomposable and ged(vy — v1,...,v9 — vg) = 1, then Q is integrally
indecomposable.

For proof, see [45]

Remark: Note that if () is integrally indecomposable, then @) is homothetically indecomposable.
To see this, write ) = T+ S for some integral polytopes T' and S. Then T, say, must be a
trivial summand consisting of one point, v, in which case T =0- Q + v.

3.3.2 Testing indecomposability of polytopes

Polygons

Following the discussion above, testing absolute irreducibility of multivariate polynomials over
arbitrary fields is thus reduced to deciding whether a given polytope is integrally decomposable.
Assuming that the polytope is given as a list of its vertices, the input size of this problem is the
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length of the binary representation of the coordinates of the vertices. It was established in [45]
that deciding polygon indecomposability (and hence indecomposability of higher dimensional
polytopes) is NP-complete, and thus it remains an open problem to develop an efficient, polyno-
mial time, deterministic or even randomised algorithm for testing general integral polytopes for
indecomposability. Gao and Lauder developed a pseudo-polynomial time algorithm (see [48])
with a run-time complexity that is polynomial in the lengths of the sides of the polygon, rather
than in the logarithm of the lengths [45]. We recall the algorithm and refer the reader to the
original paper [45] for more details.

Algorithm 3.3.1 Input: The edge sequence {nje;}o<i<m—1 of an integral convex polygon P
starting at a vertex vy where e; € 72 are primitive vectors.
Output: Whether P is decomposable.

Step 1: Compute the set IP of all the integral points in P, and set A; = 0, fori = —1,...,m—1.

Step 2: For i =0,...,m — 2, compute the set of points in IP that are reachable via the vectors
€0y vey €

2.1: For each k =1,...,n;, if vo + ke; € IP, then add it to A;;

2.2: For eachu € A; 1 and k=0, ...,n;, if u+ ke; € [P, then add it to A;.

Step 3: Compute the last set Ay, _1: For each u € A9 and k =0,...,np, 1 — 1, if u + kep
€ IP, add it to Ap_1.

Step 4: Return “Decomposable” if vy € Ajm—1 and “Indecomposable” otherwise.

Theorem 3.3.2 [/5] The above algorithm decides decomposability correctly in O(tmN) vector
operations where t is the number of integral points in P, m is the number of its edges, and N is
the maximum number of integral points on an edge.

For a detailed proof of the above theorem we refer the reader to [45] and we sketch only the
basic idea for the sake of clarity. All the points in A,,_; that are points in IP reachable via
the vectors eg, ..., e, 1 are constructed to be of the form vy + Z?:Ol kiei, 0 < k; < n;. If one
of the points in A4,,_1 is equal to vg, then Z?:ol kie; = (0,0), and so the sequence {k;e;} forms
the edge sequence of an integral summand ) of P. On the other hand, it can be easily shown
that the edge sequence of every proper integral summand of P will be detected by the above
algorithm.

Higher dimensional polytopes

Carrying this work further to deal with general polytopes in R", Gao and Lauder integrated
the above algorithm into a heuristic randomised test for higher dimensional polytope indecom-
posability. Their approach relies on the use of random integral linear maps which project a
given polytope into a polygon in a plane. If the projected polygon is indecomposable, and un-
der certain conditions presented in the lemma below, one deduces that the original polytope is
indecomposable.

Lemma 3.3.4 [}5] Let P be any integral polytope in R" and let 7 : R" — R™ be any integral
linear map which maps integral points in R™ to integral points in R™. If w(P) is integrally
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indecomposable, and each vertex of w(P) has only one pre-image in P, then P must be integrally
indecomposable.

For proof, see [45].

Corollary 3.3.3 [/5] Let Q be any integrally indecomposable polytope in R™ and = : R" — R™
any integral linear map. Let S be any set of integral points in 7' (Q) having exactly one point
in ™ '(v) for each vertex v of Q. Then the polytope in R™ consisting of the convex hull of all
points in S is integrally indecomposable.

The above results can be used in a multivariate polynomial absolute irreducibility test as
follows. Given a non-constant polynomial f € F[X1,..., X,,], let S = Supp(f), and let P denote
the convex hull of the finite set of points in S. We need to decide whether P is integrally
indecomposable. Note that P need not be computed at this stage, since the points of S that are
mapped to vertices of a polygon by a random integral linear map will be vertices of P, provided
each vertex of the polygon has only one pre-image in S.

To describe a suitable projection, we write the points of S in R" as column vectors. If S has
¢ points, then it can be represented as an n X ¢ matrix, where each column stands for a point.
For convenience, we shall also denote the matrix by S. Its columns are distinct since the support
vectors of f are so. Let u,v € R" be two integral points; then for any w € R", the matrix-vector
product (u,v)"w represents a point in R?. This defines an integral projection 7 : R" R?
where (u,v)T'S is the image of S under 7 in R%. The polygon defined by the convex hull of the
points in this image is called the shadow of P. The next statement is a special case of Lemma
2.9 in [44] and determines how likely it is that the projection is injective on the set S, where
elements of Supp(f) are viewed as vectors with entries from Q:

Lemma 3.3.5 [//] Let S be an n x ¢ matriz over Q with no repeated columns, and let K be any
finite subset of cardinality k of 7. Choose u; € K randomly and independently, for 1 <i < n,
and let

(ala "'7ac) = (ula 7““)‘9

Then the entries a1, ...,ac are all distinct with probability ot least 1 — 0(02;1).

The above lemma can be used to establish a lower bound on the probability that a randomly
chosen linear integral map satisfies the conditions in Lemma 3.3.4 above. In particular, if we
choose K = {—¢c?,...,—1,0,1,..,c?}, then K has k = 2¢% + 1 integers. If we further choose the
entries of u and v from K randomly and independently, then the points in (u,v)”S are distinct
with probability at least 3/4. In this case, each vertex of the shadow has only one pre-image
with the same probability, which can be increased arbitrarily close to 1 if one increases the
size of the set K [45]. The polytope decomposability test (and hence the multivariate absolute
irreducibility test) is now as follows:

Algorithm 3.3.2 [/5]

Input: f € F[Xy,...,X,] with no non-constant monomial factors, and Sy the set of exponent
vectors of nonzero terms of f of cardinality c.

Output: Absolutely irreducible or Failure, where the latter case means that decomposability of
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conv(Sy) (and hence absolute irreducibility of f) is not decided.

Step 1: Re-arrange the points in Sy as an n X c matriz S. If n =2, let A be the trivial projection
and go to Step 4. Else, choose positive integers b and e. Let M(b) denote the set of all 2 X n
matrices with integer coefficients bounded in absolute value by b. Repeat Steps 2-4 up to e times.

Step 2: Select a matriz A uniformly at random from M (b) and compute the set of points in R?
defined by A(S) := {As|s € S}.

Step 3: Compute the convex hull, conv(A(S)), of A(S) and check that each vertex of conv(A(S))
has only one pre-image in S under the projection A. If this condition is not met, return to Step

2.

Step 4: Call Algorithm 3.3.1 above using the edge sequence of conv(A(S)). If this polygon is
integrally indecomposable, output “Absolutely Irreducible” and halt. Else, if n > 2, return to
Step 2. Else, if n = 2, output “Failure”.

Step 5: Output “Failure”.

Theorem 3.3.3 [}7] Algorithm 3.3.2 works correctly and requires at most
eO(((nbd)? + c(c 4 n)) log?(nbd))

binary operations and O((nbd)?log(nbd)) bits of storage for a polynomial in n variables, with c
nonzero terms, and degree at most d in each variable. If f has no more that ¢ = O(nd) nonzero
terms, the run-time becomes cubic in the total degree of the input polynomial.

For proof, see [47].

Though promisingly efficient for polynomials whose number of terms is not much greater
than their total degree, the above method is still considered a heuristic for the following reasons:
Although the probability that the condition in Step 3 is satisfied can be determined, it still needs
to be determined how likely it is that the algorithm will show indecomposability if Newt(f) is
indecomposable, since it is possible that there are indecomposable polytopes whose shadow
polygons are always decomposable [45]. On the other hand, since it has been proven that most
polytopes in R", for n > 3, are homothetically indecomposable [117], a direct consequence of
Proposition 3.3.1 is that, most random integral polytopes may be expected to be indecomposable.
Algorithm 3.3.2 may detect these quickly in most of the cases, and hence should be particularly
effective for random sparse polynomials.

3.3.3 Constructing convex hulls in two dimensions

We now conclude with a discussion of a fast algorithm for computing convex hulls in two dimen-
sions, based on the pioneering work of R. Graham [60], who gave the first O(nlogn) algorithm
for computing the hull of n points in the plane. We shall give a brief description and refer the
reader to the comprehensive texts in computational geometry [35, 107].

The input to the convex hull algorithm will be a set S of n arbitrary points in the plane,
and the output we seek will be a subset of these points representing extreme points or vertices
ordered in a counter-clockwise direction around a chosen pivot. By vertices we refer to those
points of the hull at which the interior angle is strictly convex (less than x). Also, a point is
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extreme if and only if there exists a line through that point which otherwise does not touch the
convex hull. Alternatively, a point is non-extreme if and only if it is inside some triangle whose
vertices are points of S and it is not itself a corner of that triangle. An edge of a convex hull is
also called extreme if every point of S is on or to one side of the line determined by the edge.
We shall do this by treating the edge as directed, specifying the left side of a directed edge to
be the “inside”. As such, a directed edge is not extreme if there exists some point that is not
left of it or on it.

The above definition of extreme points and edges will be crucial to our understanding of the
simple Graham’s algorithm. In particular, the convex hull of points of S will be constructed
successively in a stack of points, each representing an extreme point. The stack is constructed
using a subset of S representing sorted points around a chosen pivot. The sorting rule is as
follows. The pivot, say pg, is chosen as the lowest rightmost point in S, which is clearly on the
hull. The remaining n — 1 points are then sorted around the pivot, according to “leftedness”
from py, or according to increasing values of their counter-clockwise angles from the horizontal
ray emanating from pg. If there exist two points forming the same angle with py, we define a
to be less than b if the distance from a to pg, defined by the euclidean distance |a — pol, is less
than |b— pp|. In that case, point a is deleted, since it belongs strictly to the interior of the hull.
Assume that the number of sorted points (after deletion) is s < n, and let po, ..., ps—1 denote the
ordered set of points around the pivot. The stack is now built iteratively as follows. As indicated
above, the first point is the pivot, since it belongs to the hull. The second point is p1, since it
forms an extreme angle with py (no point of the hull is to the right of the directed edge pop1).
The rest of the points are then processed in their sorted order incrementally around the set. At
any step, the hull will be correct for the points examined so far, but newly added points may
cause earlier decisions to be reverted. To illustrate, suppose that we wish to examine whether py
belongs to the hull. Since the edge pop; is extreme, the directed sequence of points (pg,p1,p2)
makes a strict left turn at pq, so that po is pushed to the head of the stack. Now, if p3 is also
such that the directed sequence of points (p1,pa, p3) forms a left turn, p3 is pushed to the head
of the stack. Else, the earlier decision (i.e. to add p9) is reversed, and py is deleted. One then
checks for the new directed sequence of points pg, p1,p3, and repeats the above process, for all
points p;, i = 3,..., s — 1. The algorithm can be simply stated as follows; for a detailed proof of
its correctness as well as several important implementation issues, we refer the reader to [107]:

Algorithm 3.3.3 (Graham’s algorithm for computing convez hulls)

Input: A set S of n points in the plane.

Output: conv(S), the conver hull of S, as a list of vertices ordered cyclically in a counter-
clockwise direction around a pivot.

Step 1: Find the rightmost lowest point and label it as the pivot py.

Step 2: Sort all other points angularly around po; if two points have the same angle with the
horizontal ray emanating from pgy, delete the point closer to py. Let s denote the total number
of sorted points.

Step 3: Set conv(S)  (p1,p0) = (pt,pi—1); t indezxes top.

Step 4: Set i + 2; while i < s do:
4.1: If p; is strictly left of ps—1p; then push p; to the top of the stack conv(S), and set
141+ 1.
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4.2: FElse, delete py.
Step 5: Output conv(S).
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Chapter 4

A new sparse (zaussian elimination
algorithm and the Niederreiter linear
system for trinomials over [

4.1 Introduction

Various methods have been used to solve the Niederreiter linear system using explicit and dense
linear algebra in [110] and implicit linear algebra in [39]. While those implementations have
achieved factorisation records for polynomials over [y, confirming the argument that the Nieder-
reiter algorithm is a very efficient linear algebra based algorithm for the factorisation of such
polynomials (see [8, 102, 103, 104, 105]), we attempt to investigate the sparsity feature of the
algorithm which renders it more efficient for sparse polynomials, and in particular, trinomials.
Trinomials are very sparse and hence provide a good model for investigating this aspect of the
Niederreiter algorithm. In this chapter, we prove the argument that the Niederreiter matrix is
sparse in the case of a trinomial, and establish the exact sparsity pattern and density of the
Niederreiter matrix. We also develop a new algorithm for solving the sparse linear system di-
rectly to produce a basis for the solution set through Gaussian elimination and using the data
structure of Gustavson [65]. The new algorithm is mainly aimed at circumventing the problems
that have always been associated with this data structure in terms of elbow space and compres-
sion (see Section 4.4). Although it can be easily modified to solve general sparse linear systems
over [F9, the algorithm proves to be very efficient when the matrix maintains a high level of
sparsity throughout the reduction phase. Our experimental results confirm that the Niederre-
iter matrix is initially sparse, and maintains its sparsity throughout the reduction phase. Our
results can then be incorporated into Gottfert’s acceleration of the Niederreiter algorithm over
Fy which uses all the elements of the basis set [59].

We refer to Chapter 3 for the earlier summary of the Niederreiter algorithm over the binary
field, and to [38, 41, 87, 102, 103, 104, 105] for an extensive review of the algorithm. In Section
4.2, we prove the assumption that the Niederreiter matrix is sparse for trinomials, and establish
that the initial number of entries in the sparse matrix of dimension d X d does not exceed 3d.
In Section 4.3 we review some of the widely used data structures for storing sparse matrices. In
section 4.4 we discuss the new algorithm for performing sparse Gaussian elimination with pivotal
ordering using the Markowitz strategy. In Section 4.5, we report on our experimental results,
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from which we conjecture that the Niederreiter linear system maintains a high percentage of
sparsity throughout the Gaussian elimination phase.

4.2 Setting the Niederreiter matrix over Fs

Let Fy be the binary field of order 2 consisting only of the elements 0, 1; it is thus understood
that all polynomials described in this chapter are monic. Let f be a polynomial of degree d over
Fy, and f = g7*...g5" be its canonical factorisation over the field. Let Ny denote the Niederreiter
matrix defined in Chapter 3. In [102], Niederreiter proposes that, due to the simple form of Eq.
(3.2), the system (3.3) has the form:

min(2j+1,d—1)

Z f2j+17k:hk = h]‘ for 0 Sj < d—1. (4.1)
k=max(2j+1—d,0)

The proof of this assertion can be sketched as follows:

First, we know that h?(z) = h(z?) in Fa[z] and so the coefficients of 2% in the right-hand
side of Eq. (3.2) are given by h; for 0 < j < d — 1. On the other hand, recall that the matrix
Ny is obtained by comparing the coefficients of z% for 0 < j < d—1in both (fh)" and h2. Let

and
d—1
h(z) = thxk.
k=0

The coefficient of 2/ in (fh)’ is the coefficient of 2/*1 in fh, and so the coefficients of (fh)’
can be expressed as

min(2j+1,d—1)

> foj+1-khe

k=max(2j+1—d,0)

for 0 <57 < d—1. The bounds on k follow because of the following facts:

a. Since deg(h) < d—1, hy =0 for all K > d — 1 and so k has to satisfy k < d — 1. Also,
since fo; 41—t = 0 for all 25 +1 — &k < 0, we have to maintain k£ < 25 + 1. As a result, an upper
bound for k& would be min(2j + 1,d — 1).

b. In a similar way, hy = 0 for £ < 0 and fyj41- =0 for 2 +1 — k > d (since deg(f) = d).
Therefore, k has to satisfy & > 0 and k > 2j+1—d and so a lower bound for %k is max(2j+1—d, 0).

The above proposition establishes a fixed structure for the Niederreiter matrix from which
the algorithm derives many of its attractive features over 5. The following result appears
originally in [102]. For a detailed proof of it, we refer the reader to our report in [3].
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Theorem 4.2.1 [102] Let f = fqz% + ... + fiz + fo be a polynomial of degree d over Fy. The
elements in the Niederreiter matriz Ny can be obtained as follows:
1. If d is even, then:

a. forr appears in rows i = k' + 1,....d/2 + k' and occupies column 2(i — k') in row i, for
K =0,..,d/2.

b. forri1 appears in rows i =k +1,...,d/2 + k' and occupies column 2(i — k") — 1 in row 1,
for k' =0,...,d/2 — 1.
2. If d is odd, then

a. for appears in rows i = k' + 1, ..., % + k' and occupies column 2(i — k') in row 4, for
K =0,..,%t

b. forr+1 appears in rows i =k +1,..., 5L + k' +1 and occupies column 2(i — k') — 1 in row
i, for k' =0,..., %.

In other words, the Niederreiter matriz over Fy can be written as

i fo 0 0 0 0 0 . o 0
s fa A fo 00 0
fs fa fs fo i fo O o 0
Fict facs e o
0 fi fus S X
0 0 0 fu far oo fa
0 0 et 00 fa far i
0 0 e 0y
if d is even, and
i fo 0 0 0 0 0o ... .. .. 0
fs fo fi fo O 0 . o o .. 0
fs fo f3s fo fi fo O .. o 0
fi Fit e R
0 0 f4 Fact o £y
0 0 0 0 fa fid oo fs
0 0 e 00 fu far fao
0 0 o 0y

if d is odd.

Theorem 4.2.1 is at the basis of the assumption that the matrix Ny is sparse if the polynomial
f is sparse. It also establishes that there is no cost associated with arithmetic operations for
setting up the matrix Ny, in the sense that the matrix coefficients can be read off immediately
from those of f. In this chapter, we support the main argument that the Niederreiter matrix
is sparse by determining exactly the percentage of sparsity of the matrix upon set-up. The
following theorem not only describes a consistent pattern of where the entries occur in the
matrix Ny — I if f is a trinomial over F, but also the exact number of entries that initially
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occur in Ny — I. By a simple abuse of notation, we define the length of a row to be the number
of nonzero entries appearing in it, rather than its actual length d. We then claim the following;:

Theorem 4.2.2 Let f(z) = fqa® + fox® + fo denote a trinomial over Fy. Let M = Nf—1
where Ny is the d x d Niederreiter matriz and I the d x d identity matriz over Fy. Then:

a. if d is even, the matriz M contains exactly one row of length 0, one row of length 1, %—1
rows of length 2, and % — 1 rows of length 3.

b. if d is odd, the matriz M contains exactly one row of length 0 and one row of length 1.
In addition, if s is odd, then M contains exactly ? rows of length 2 and % rows of length 3;
else, if s is even, then M contains % rows of length 2 and d;Q?’ rows of length 3.
Proof: Suppose that d is even and write + = j + 1. By Theorem 4.2.1, f, falls along rows
i=j+1of Ny, for j =0,...,d/2, and fq falls along rows i = j + 1 of Ny, for j = d/2,...,d.
Since f is a trinomial, Theorem 4.2.1 also implies that the maximum number of entries in any
row of Ny is two, those consisting of the pair (fs, fo) or (f4, fs), and so, the maximum number
of entries in any row of M is three. Let

Setp, ={j:0<j<d—1| row i of M contains h entries},

for h = 0,1,2,3. We aim to show that ||Setg|| = 1,||Set1|| = 1,||Set2|| = d/2 — 1, and
||Sets|| =d/2 — 1. Let

d
Riyy={j:0<j< §|f0 appears in row ¢ of matrix M},
d
Ry, ={j: 5 < j < d|fq appears in row 4 of matrix M},

d
Ry ={j:0<j< §|fs appears in row 7 of matrix M},

d
bo=1{J: 5 <i< d| fs appears in row i of matrix M}.
We first claim that fo can never appear as a diagonal entry in Ny; otherwise, if we write fo = foy,
for k = 0, and since fy occupies the position (7,2(: — k)) for some i = 1,..,d/2 (Theorem 4.2.1),
we must have i = 2(i — k) = 2i, a contradiction, since ¢ > 1. Thus, when computing row i in
M for i =1,...,d/2, fo in Ny is never cancelled out by a diagonal entry in I, or equivalently,
l|Rf || = %. Similarly, if we write fq = for for k = %, then for f; to be a diagonal entry, we
must have ¢ = 2(i — %) or that ¢ = d. It follows that f; appears as a diagonal entry of N; only
in the last row d, and so never appears in row d of M. This implies that

d
IRgll =5 -1,

Note that s # 0,d. For fs to occupy a diagonal entry in Ny, Theorem 4.2.1 implies that
i=20—t)i=2t
if s =2¢ for ¢ > 1, or that

i=20i—t)—1ei=2t+1
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if s =2t 41, for t > 0. It follows that f; is a diagonal entry of Ny (and hence disappears in M)
only in row s, which as such contains either fy or f; alongside f;. Also, by Theorem 4.2.1, f;
appears in % rows of Ny. As a result,

IRy ||+ 1Ry = 2 1.
2

Now, since fo is never a diagonal entry in rows ¢ = 1,...,d/2 of Ny, since fy is a diagonal entry
only in row d of the last d/2 rows, and since row d does not contain f;, it follows that Sety = {d}.
Since f, is a diagonal entry of Ny only in row s # 0,d (which also contains either fo or fq),
Set; = {s}. Also,

(Rfo — Rfs) U (Rfd — R;cs) = Seto U {i = s}
where Sety contains the diagonal entry and one of fy or f;. Thus,

|Seta|| = [|Rp, — Byl + || Ry, — R || — 1

= IRpll + IR |l = (IRp || + (IR I) — 1
d

ST
2

Since
|[Seto|| + [|Seti|| + |[Seta|| + [|Sets|| = d,

we have ||Sets|| =d/2 — 1.
A similar proof can be sketched when d is odd and we refer the reader to our report in [3]
for details.

4.3 Data structures for the sparse matrix M

In this section we describe briefly the data structures that are widely used to represent sparse
matrices. A major review of the subject can be found in [33] (see also [123]). Without loss of
generality we assume the matrix to be a square d X d matrix. Let 7 denote the number of nonzero
elements appearing in the sparse matrix, and entries refer to the nonzero elements. Initially, it
is always convenient to supply the matrix in a coordinate scheme, a set of triples containing the
value of each entry, together with its row and column indices. Since we are working modulo 2,
an entry can only have the value 1, hence our disposal of the data structure and algorithmic
details which deal with storing the nonzero values, modifying them, or maintaining the numerical
stability of the algorithm. The coordinate scheme is one favoured form of supplying the matrix
elements, but not for performing Gaussian elimination, for instance, since this would require
easy access to rows and columns. For this, two main data structures can be used. In [65], a
data structure which transforms the matrix into a collection of sparse row and column vectors
is introduced. For simplicity, we assume that the indexing of arrays starts at 1 (not 0). In the
collection of sparse row vectors, and for each row of the matrix, we store a pointer to its starting
entry and its length. For each entry in that row, we store its column location. For this, we use
two integer arrays (say, row_start and row_length) of size d, and one integer array (say jcn) of

39



size 7. The components in each row vector can be ordered or unordered. As such, all entries along
a particular row i have indices s = row_start[il, ...,row_start[i] + row_length[i] — 1. Setting
the row vector representation from the coordinate scheme can be established using O(7) + O(d)
operations (see [33]). The collection of rows allows access for entries along a particular row,
but not along columns. To perform this, a similar structure designating a collection of sparse
columns is established, with arrays col_start, col _length, and irn allowing access to the start of
each column and information about its length, as well as the row indices of entries found in the
column vectors. This data structure requires four integer arrays of size d and two integer arrays
of size 7 in total. One main difficulty associated with it arises when a new row becomes longer
as a result of row operations introducing new entries. In this case, the current space allocated
for the row vector has to be wasted temporarily, so that the new row vector is added to the
end of the structure. Subsequently, rows become disordered, and after several such additions
requiring what is called elbow room at the end of the data structure, one is forced to compress
the structure by re-ordering the rows to occupy the free space wasted previously, a process that
is known as compression. This constitutes the only major disadvantage of the data structure,
hence the alternative of linked lists.

A sparse matrix can be represented as a collection of rows, each in a linked list. For each
row we store a pointer to its starting entry, say in a one dimensional integer array of length
d, denoted by row_header. All subsequent elements in the row are forwardly linked by links,
stored in a one dimensional integer array of length 7, denoted by row_ fwd_link. The column
locations of all entries are stored in a one dimensional integer array jen of length 7. The fact
that the list can be updated without reference to the actual physical location of entries allows
proper insertion of new elements upon fill-in without having to have elbow room or perform
compression. The list can be ordered or unordered by increasing index of entries. To make
insertion or deletion easier and less expensive, the list can be modified into a doubly linked one
where entries in a particular row are further linked to their backward neighbors in the list (this
is made possible through the use of a one dimensional integer array row_backwd_link of length
7). Since the collection by rows allows only access to entries within a particular row but not a
column, a similar solution as above consists in establishing a collection of the matrix columns as
linked lists and storing the row indices of entries found along the columns. This transforms the
structure into a two dimensional list, whose elements can be singly or doubly linked, ordered or
unordered. However, this scheme results in large memory overheads by associating four integers
with each entry if the list is not doubly linked, and six integers otherwise. Curtis and Reid
[27] suggested that the arrays irn and jen can be discarded, so that the negation of the row
(column) indices of entries along a particular row (column) are stored in the last link of the row
(column). A basic difficulty associated with this data structure is that the integers stored can be
as large as 7, in contrast to the corresponding upper bound d associated with the Gustavson’s
data structure, which allows for the use of half-word storage if the array entries fit in 16-bit
(32-bit) computer words. Although the issues of elbow room and compression are circumvented,
the initial memory requirements can be larger than that of Gustavson’s if the doubly linked list
is used, consisting of two arrays of size d, and four arrays of size 7.

Summarising, the advantages and disadvantages of the data structures can be listed as
follows. The singly linked lists need the same amount of memory as that required by Gustavson’s
data structure at the time of set-up, but less memory than the doubly linked lists. However,
their use requires extensive searches as entries are added or deleted, and the alternative is at
the expense of increasing memory requirements through the use of doubly linked lists, or elbow
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room and compression through Gustavson’s structure. The sequential operational complexities
for performing sparse Gaussian elimination using all of the structures above are the same (see
[33]), although differences emerge for parallel applications, where the two dimensional unordered
double list is of lowest operational complexity (see [123] for a detailed account of complexities).
The decision as to which data structure to use becomes a problem-dependent choice which serves
the priorities of the application, those being either improvements on running time or savings in
memory.

4.4 A new sparse Gaussian elimination algorithm

Solving the linear system constitutes the bottle-neck in the Niederreiter algorithm for very large
polynomial degrees. As a result, the challenges in implementing polynomial factorisation consist
in first, performing the algorithm for as large an input size as feasible, and second, performing it
in the fastest possible way. Accordingly, our main interest in this chapter is aimed at achieving
savings in memory to deal with very large sparse linear systems over [Fy. These facts, coupled
with our interests in factorising as large a trinomial as our resources can afford, motivated us
to consider an effective data structure such as Gustavson’s and investigate how the problems of
elbow room and compression associated with it can be avoided to yield a more space-efficient
data structure. Our new algorithm for performing sparse Gaussian elimination using Gustavson’s
data structure consists of a series of major sub-tasks, each of which is described in due course,
together with its operational complexity. We first give a few definitions and notations. Recall
that we have to compute the left nullspace of the system (3.3), and as a result we have to perform
row operations consisting in interchanging two rows, adding a multiple of one row to another,
and multiplying any row by a nonzero field element. Since we are working over the binary field,
our algorithm consists of the first two operations only, where the second operation simplifies
to adding one row to another modulo 2. To further apply the pivotal Markowitz strategy, we
also have to perform column interchanges. To establish the representation of the matrix M as
a collection of sparse row vectors, we claim that this does not require that the matrix be given
in a coordinate structure. In particular, we have

Proposition 4.4.1 The matriz M for a trinomial over By can be represented as a collection of
ordered sparse row vectors without the use of a coordinate scheme.

Proof: By Theorem 4.2.2, entries along any row of M can be specified according to their column
location. This directly provides the information in arrays row_start, row_length, and jcn.

The collection of sparse column vectors can be easily set up by scanning the rows, in what
requires O(7) operations. We define A(a’ — V/,¢ — d’) to be the block matrix comprising
rows a’ to b’ and columns ¢ to d’' of some matrix A. We let . and +, denote the maximum
number of entries along a nonzero column or row respectively, M (@) the transformed matrix
corresponding to M during some stage of Gaussian elimination, and M’ the image of M@
under a transformation which involves any of the following;:

1. An interchange I. of columns.

2. An interchange I, of rows.

3. Replacing row ¢ with 7 + j where j is some other row in the matrix. Over o, this step
reduces to a process of adding and/or removing 1’s from row i wherever applicable, and hence
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constitutes a composition of a finite number of transformations of the form A, and R., where
A, and R, represent adding and removing an entry respectively.

The row and column operations in a sparse algorithm appear differently from what can be
seen in dense algorithms, where any of these operations is performed as in their literal definition,
such that elements of the dense data structure are interchanged whenever rows/columns are so,
or added together whenever a row is added to another. In our sparse algorithm, the operations
are achieved through a series of changes updating the information in the various arrays describing
the data structure, based on the assumption that the transformed matrix is still sparse and hence
can be represented by the same structure as that of the original matrix. The sequence according
to which the updates are performed is not arbitrary, in that some arrays need to be modified
before others. For instance, the lengths of rows and columns have always to be updated first,
affecting the pointers to the starts, which then affect the row or column indices of entries. Our
algorithm maintains this order of dependence among arrays and this is implicitly assumed to
hold in all forthcoming descriptions of the sub-tasks.

4.4.1 Accessing entries along a column

Often enough during any stage of Gaussian elimination one has to be able to locate entries
below the pivotal element. To check whether there exists an entry in some position (a,b), we
can choose to either access the row a looking for an entry whose column is b, or access the column
b looking for an entry whose row is a. If we know that this entry is likely to be situated in the
start of a column (for instance, if b happens to be a pivotal column), then accessing the entries
by columns would be more efficient. Locating an entry in some position (a,b) can be performed
by scanning all entries s € {col_start[b], ..., col _start[b] + col_length[b] — 1}. In the remainder
of this chapter we denote by Location_by_column(a,b) the sub-routine which when input the
length and starting index of column b, returns PASS if there exists an entry in location (a,b)
and FAIL otherwise. It can be seen that the sub-routine requires at most . field operations,
since in the worst-case analysis, one would have to scan an entire column before finding an entry
in location (a, b).

4.4.2 Implementing the Markowitz strategy

In our present implementation we use the Markowitz criterion [94] for locally minimising the
fill-in during each step of the Gaussian elimination, as opposed to other global methods which
preserve the general sparsity pattern of the matrix [33]. The Markowitz strategy consists in
locating good candidates for pivotal elements during each step of Gaussian elimination. By a
good pivotal candidate a;; we mean a nonzero entry in the active part of the matrix which
minimises the Markowitz count (r; — 1)(c; — 1), where r; and ¢; represent the lengths of row ¢
and column j respectively, and where the minimum is over all entries of the active sub-matrix.
Note that the Markowitz count represents the maximum amount of fill-in that could arise using
a pivotal entry a;;. The Markowitz criterion requires a further numerical stability test to be
satisfied by the pivotal candidate, but this is not of concern in our implementation over [y, since
all arithmetic is exact. A straightforward implementation of the Markowitz search is likely to
require scanning all entries in the active sub-matrix before a candidate is found. Curtis and Reid
(see [27]) introduced methods to avoid an expensively naive search. We describe the method
only very briefly here and refer the reader to [33] for more details. In principle, the approach
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consists of storing the various row and column lengths and searching for a pivotal candidate
through the rows and columns in increasing order of counts (i.e. number of entries). This can
be achieved by collecting all the rows (columns) in a set of doubly linked lists of rows (columns)
having the same count. The row (column) lists can be constructed using two integer arrays,
row_ fwd_link and row_backwd_link (or col_ fwd_link and col_backwd_link), each of size d,
and can be accessed through header pointers, stored in a one dimensional integer array of length
d and denoted by row_header (col_header). The search for pivotal elements begins along rows
and columns of least count, and progresses in increasing order, whereby the corresponding row
and column lists are scanned. For a fixed count w, one first scans all rows of length w, then
all columns of the same length. At any stage of the search, one can determine a bound on the
Markowitz count of all unsearched entries, which helps terminate the search before all rows and
columns are scanned. The following description can be found in [33] and we repeat it only briefly
here. Suppose that one is about to search rows with r; entries, so that all columns whose count
is less than r; have been scanned. This leaves only entries whose count is

(ri —1)(c; —1) > (r; = 1)(r; — 1) = (r; — 1)%

Thus, the first entry whose count is equal to (r; —1)? is chosen as pivot. If no such entry exists,
one simply chooses an entry having least count among all other entries in the active sub-matrix.
On the other hand, if one is searching columns with count c;, then, since rows of count c; have
already been scanned, the count of remaining unsearched entries along columns with count ¢; is

(ri—D(c; —1) 2 (¢; + 1 =1)(¢j = 1) = ¢j(c; — 1),

so that as above the search is terminated as soon as an entry whose count is equal to ¢;(¢; —1) is
encountered. Else, one again chooses an entry having least count among others in the active sub-
matrix. Although there is no theoretical justification that this method always improves upon
the O(T) process through a naive search, experience has shown that it is likely to be successful
after looking through only a few rows and columns (see [33] for experimental results).

Updating lists of columns having the same length

As before, all following arguments work for columns as well as rows, by replacing the arrays with
appropriate ones. A number of row and column operations may result in the column lengths
being changed, and as a result, the lists of columns having the same count must undergo a
corresponding modification. Suppose, for instance, that column i, of original length a, becomes
of a new length b. This corresponds to removing 4 from the list of columns of length a and
inserting it into the list of columns of length b. There are several positions into which one can
choose to insert the column, the most natural being the head of the list. Obviously, this does not
preserve the order of columns by increasing indices, something which, we argue, has advantages
in the following;:

1. Our application of the Markowitz strategy requires that we have an efficient way of deter-
mining the rows and columns of minimum count but only those in the active sub-matrix.
Ordering the linked lists allows for a quick way of locating the active rows and columns of
some particular count.

2. Interchanging columns takes place when a pivotal candidate is chosen having some mini-
mum Markowitz count ¢ and along a column 5 that is different from the pivotal column,
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say 7. As will become clearer later on, our algorithm for interchanging two columns 7 and
7 is most efficient when the total number of entries found along columns k =4, ..., 5 is the
least possible. All other columns containing entries whose count is ¢ and having the same
length as j belong to the same list, which when ordered in increasing order of column
indices helps that we choose column j such that 7 is closest to ¢ among all columns of its
list.

With these advantages, we are inclined to accept the extra cost of maintaining ordered linked
lists. We denote the sub-routine for updating the lists as a result of changes in column lengths
Column_chain(i,a,b)*, which updates the lists of lengths a and b as the length of ¢ changes
from a to b. This can be easily seen to require at most O(d) operations by considering the
worst-case analysis of inserting a column to the end of a list of d columns.

4.4.3 Interchanging columns

Because of the symmetry involved in exchanging rows and columns, we discuss only column
interchanges. For k = 1,...,d, let ¢; denote the vector occupying column k, L(k) the length
of ¢, in M@ and I(L(k)) its length in M’ = I.(M(9). Similarly, if s denotes the index of
an entry in the representation of M, then I.(s) denotes the index of that same entry in the
representation of M’, whether viewed as a collection of sparse rows or columns. We will further
require information about the greatest column index c less than &k such that column ¢ is nonzero.
This integer can be stored at location k of the integer array previous_column of size d.! If no
such integer exists, previous_column|k] is set to —1. The array previous_column can be set at
the start of the algorithm and later modified only when a zero column is displaced, a nonzero
column has become of length zero, or a zero column has become nonzero. This modification will
be assumed to hold implicitly in any of these cases and we leave it to the reader to verify that
this comes at a negligible cost. We note that, if ¢ # —1, then

column_start[k] = column_start[c] + column_lengthlc].

The interchange of columns forces us to keep track of the corresponding change in the order of
the coordinate entries of the unknown column vector hT solving the linear system (3.3). This
is necessary for the correctness of the final solution of the system after column interchanges
have been performed. For every column k = 1,...,d, we associate an integer y representing
the original index of ¢; in M and store it in original _column|k], where original _column is an
integer array of size d. The array can also be initialised at the beginning of the program such
that original _columnl[k] = k for k = 1,...,d and modified accordingly when two columns get
interchanged.

Now, let 7 and j denote the two columns to be interchanged such that 7 < j. The matrix M’ =
I.(M (‘1)) can be obtained through a series of changes affecting its column lengths and starts, as
well as the row and column indices of its entries appearing. The algorithm for interchanging
columns is presented as follows:

Algorithm 4.4.1 Interchange_Columns(i,j)
Input: The matriz M ;

*A similar algorithm, Row_chain, can be analogously constructed, by changing reference to the appropriate
arrays.
YA similar array, previous_row, can be used in the collection of rows.
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Output: The matriz M' = IC(M(‘I)), where I, represents the interchange of two columns i and j
of MW . Without loss of generality we may assume that i < j and that at most one of i or j is
zero.
1. Switch(original _columnli],original _column[j]);
2. y < col_lengthli], col_length[i] + col _length[j];
3. Column_chain(i,y, col _lengthli]);
4. col_length[j] < y;
5. Column_chain(j, col _lengthli],y);
for k € {i,...,5} do
If (col_lengthlk] = 0) do

6. col_start[k] « 0;
else do
7. ¢ < previous_columnlk];
If (c=-1) do
8. col _start[k] + 1;
else do
9. col_start[k] < col_length[c] + col _start[c];
end;
end;
end;

10. Initialise_to_zero(new_array), sum < 0;
forke{i+1,..,5—1} do
11.  sum < sum + col_length[k];
end;
If (col_length[i] # 0) do
12.  a < sum + col_length[j];

for y € {col_start]i], ..., col _start[i] + col _length[i] — 1} do
13. new_arrayly] < irnly + al;

end;
end;
14. a <+ col_length[j] — col_lengthli];
forke{i+1,..,5—1} do

If col_lengthlk] # 0 do

for y € {col_startlk], ..., col _start[k] + col _length[k] — 1} do
15. new_arrayly] < irnfy + a;
end;

end;
end;
If (col_length[j] # 0) do
16. @ < sum + col_lengthl[i];

for y € {col _start[j], ..., col _start[j] + col _lengthlj] — 1} do
17. new_arrayly] < irnly — al;

end;
end;
18. Copy(new—_array,irn), Initialise_to_zero(new—_array);
for ke {l,...,d} do
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If (row_length[k] # 0) do
19. sum < 0;
for s € {row_startlk], ..., row_start[k] + row_length[k] — 1} do
If (jen[s] > i) and (jen[s] < j) do

20. sum < sum + 1;
end;
end;
21. t1 < Location_by_column(k,i), t2 <— Location_by_column(k,j);
If (t1 = PASS) and (t2 = FAIL)
do
for s € {row_startlk], ...,row_start[k] + row_lengthlk] — 1}
do
If (jen[s] > 1) and (jen[s] < j) do
22. new_array[s — 1] < jenls|;
else if (jenls] = i) do
23. new_array[s + sum] < j;
end;
end;

end;
If (t1 = FAIL) and (t2 = PASS) do
for s € {row_startlk], ...,row_start[k] + row_length[k] — 1}

do
If (jen[s] > i) and (jen[s] < j) do
24. new_array(s + 1] < jen[s];
else if (jen[s] = j) do
25. new_arrayls — sum| < i;
end;
end;
end;

end;
end;
27. Copy(new_array, jen), Initialise_to_zero(new_array).

Proposition 4.4.2 Algorithm 4.4.1 performs correctly and requires O (d(~y, + v.)) field opera-
tions.

Proof: Steps 1-5 of the algorithm perform the initial changes that have to do with switching
the lengths of columns as well as the original indices of columns occupying positions 4 and j.
As a result of changes in column lengths, the corresponding lists of columns of the same count
have to be updated through calls to Column_chain, each requiring O(d) operations.

In steps 6-9 we perform the changes to the starting pointers of columns. We claim that
only columns i,...,7 of M@ can have the pointers to their starting entries changed in the
representation of M’. Let s denote the index of the starting entry of any column in the matrix.
Since columns less than ¢ — 1 retain the same number and distribution of entries, it follows that
all columns k € {1,...,i—1} retain the same pointers to their starting entries. Suppose k = i and
let ¢ = previous_columnli]. If 7 is a zero column in M’ (i.e. has no nonzero entries, something
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which, according to our original assumption, implies that ¢ is not a zero column in M (‘1)), then
I.(s) =0 # s. Else, if i is not a zero column, and if ¢ = —1, then I.(s) =1 = s; else, if 7 is not
a zero column and ¢ # —1, let S(c) denote the starting index of column c¢. We then have

Ie(s) = Ie(L(c)) + I(5(c))
= L(c) + S(c) since 1 <c <

= S.

Now suppose that & =i+1,...,7 and column £k is not zero. If I.(L(3)) # L(i), the start of column
k changes as a result. In particular, if ¢ = previous_column[k], then I.(S(k)) = L(c) + S(c)
if ¢ # —1, and I.(S(k)) = 1 otherwise. If & > j, then since the total number of entries in the
matrix block M'(1 — n;1 — j) is the same as that in the matrix block M@ (1 — n,1 — j),
the start of column k remains unchanged. The loop across steps 6-9 is iterated 7 — ¢ + 1 times,
involving only array accesses, so that it requires at most O(j—1¢) steps. In the worst-case analysis
when i =1 and j = d, the operational count is of the order O(d).

It is immediate to see that the lengths of rows in M’ do not change as a result of column
interchanges, and hence, the pointers to the starts of rows remain unchanged.

Steps 10-18 update the row indices of entries in the representation of M’ as a collection of
columns. When ¢ and j are interchanged, some entries in that collection will be displaced and
as a result, the values in irn will have to be updated accordingly to fit the new displacement.
Because of the dependence of the new values of irn on former values of the same array, the
updates on irn are copied first into the auxiliary array new_array which is then copied onto
irn when all necessary changes have been performed. Since only columns k& = 4,...,5 in M’ had
the pointers to their starting entries changed, it follows that only entries along these columns
undergo a shift in their indices which then affects the values in i¢rn. In particular, if s denotes
the index of an entry e in M9 as a collection of columns and I,(s) is its index in M’ then the
row index of s in M(® is equal to the row index of I.(s) in M’. To establish what the exact
changes to irn will be, it suffices to determine the exact value of I.(s) in each of the following
cases:

a. Suppose e € j in M@, then e € i in M. Since i < 7, and since the indexing of entries
along the collection of columns is ordered increasingly, the index of e in M’ decreases as e gets
displaced from j to i. Furthermore, the amount of reduction corresponds to the total number
of entries being moved ahead of e as 7 and j are interchanged. In particular, this amounts to
the total number of entries found on columns k£ = 1,...,5 — 1 in M. Summarising, I.(s) can be
written as I.(s) = s — a, where

a= Z L(l) = sum + L(i) = sum + I.(L(j))
i<l<j

and sum is as defined in the algorithm. Write s’ = I.(s). Then s’ € {col _start[i], ..., col _ start[i]+
col_lengthli] — 1}. Since new_array[s'] = irn[s], we have new_array[s'] = irn[s' + a]. Analo-
gously, it is easy to see that, if e € i in M@, then e € j in M’ so that I,(s) = s + a, where

a= Y L().
i<I<j

The loops in steps 13 and 17 cover all entries in columns ¢ and 7 and involve mainly array
accesses so that their total cost amounts to O(~.) field operations.
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b. Suppose e € k such that £k = ¢ + 1,...,57 — 1. Interchanging 7 and j would result in
decreasing the index of e by L(i) — L(j), since i < j, so that I.(s) = s — a, where

The loop covers all entries of indices s’ = I.(s) along k and assigns new_array[s'] = irn[s’ + al.
The iterations of the loop cover all entries e along columns k£ =i + 1, ..., 5 — 1 involving mainly
array accesses so that the total cost of step 15 is O ((j —i)7y.). When all the updates are
performed, we copy new_array onto irn and re-initialise new_array to zero. This requires
O(7) operations. In the worst-case analysis when j = d and 7 = 1, the total cost for updating
irn thus becomes O (7 + dv,).

Steps 19-27 aim at updating the columns of entries as their indices in the collection by rows
change. As before, we store the new values of jen in new_array. Upon interchanging columns
i and j, we have seen that only entries found along columns k' = i,...,j get displaced. Also, if
s denotes the index of an entry in the representation of M@ as a collection of rows such that
I.(s) is the index of that same entry in the representation of M’, then the column index of s in
M@ is equal to the column index of I.(s) in M'. For all rows k = 1,...,d we argue as follows:

a. If k has entries in both columns 7 and 7, or does not have entries in both columns ¢ and
4, then its representation in the collection by rows does not change as a result of interchanging
the two columns. As a result, the column indices of all its entries remain unchanged.

Let S denote the number of entries occupying position (k, k') for ¥’ =i+ 1,...,7 — 1 and let
sum = #8S.

b. If k has an entry e in column 7 but not in column j of M@, and since i < j, then
interchanging the two columns augments the index s of e by an amount equal to sum as a
result of displacing elements of S to the left. In other words, we have I.(s) = s + sum, and in
particular, new_array[I,(s)] = j. On the other hand, if ¢ is an entry along row k of M such
that jen[e’] =i+ 1,...,7 — 1, then switching columns 7 and j causes only e to be shifted to the
right ahead of ¢’. If s’ denotes the index of ¢’ in M9, we have

I.(s") = s’ — 1, and new_array[s’ — 1] = jen[s'].

c. In a very similar way, if there exists an entry e in column j but not in column i of M,
then I,(s) = s — sum where s is the index of e in M@ and sum is as above. In particular, we
have new_array[l.(s)] = i. Also, for ¢’ occupying (k, k') and &' =i+ 1,...,5 — 1, I.(s') = '+ 1
so that new_array[s’ + 1] = jenl[s'].

The updates on the column indices can thus be performed through a loop ranging over all
rows of the matrix. Each loop involves two calls of the function Location_by_column, whose
cost was seen to be O(7,), as well as a series of updates on entries falling between columns 7 and
7. In the worst-case analysis when j = d and ¢ = 1, steps 19-27 require d(y, + 7.) operations.

Summing up the sub-costs of this algorithm, and using 7. < d, it can be seen to require
O (d(yr + 7)) +O(1) = O (d(yr + 7v.)) field operations.

4.4.4 Adding rows

Let ¢ denote the pivotal row in a particular stage of Gaussian elimination. We choose to view
the process of replacing row j > ¢ with j 44 as a series of a composition of two sub-tasks which
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involve inserting a new entry to, or removing an already existing one from, row j, resulting in
fill-in and fill-out respectively. Since we are working with integers modulo 2, where an entry
is either zero or one, the fill-out becomes of considerable significance, for the zeros we obtain
as a result of elimination are not accidental zeros. In other words, if there exists some entry e
in the location (i, k) and another entry €’ in (j,k), then ¢’ is definitely (and not accidentally)
transformed to zero as a result of the operation j < j + i. Furthermore, our algorithm for
replacing row j with one that is probably longer than itself escapes previous restrictions in that
it does not require adding a fresh copy of the modified row at the end of the data structure. In
particular, our approach does not require the use of any elbow room beyond what is needed to
accommodate for only the extra number of fill-in - fill-out. In some cases when this quantity is
negative, the empty space is simply allocated at the end of the structure. Most of the updates
capable of achieving this involve a shifting procedure as described in the previous section, and
since this comes at a higher operational cost than using compression and elbow room, the trade
off we establish is between savings in memory versus increase in running time.
We first present the following two sub-algorithms:

Algorithm 4.4.2 Remove_entry(j, k)
Input: M9 where location (7,k) is occupied by a nonzero entry.
Output: M' = R,(M9)), where location (j,k) is empty.
1. 7+ 17— 1, x + row_lengthlj], row_length[j] + row_length[j] — 1;
2. Row_chain(j,z,row_lengthl[j]);
3. x < col_length[k], col_lengthlk] < col_length[k] — 1;
4. Column_chain(k, x,col_lengthlk]);
If (row_length[j] = 0) do
5. row_start[j] < 0;
end;
If (col_lengthlk] = 0) do
6.  col_start[k] < 0;
end;
forse{j+1,..,d} do
If (row_start[s] # 0) do
7. row_start[s| < row_start[s] — 1;
end;
end;
for se{k+1,..,d} do
If (col_start[s] # 0) do
8. col _start[s] < col_start[s] — 1;
end;
end;
9. new_array[t + 1] + 0;
If row_start[j] # 0 do
for s € {row_start[j], ..., row_start[j] + row_length[j] — 1} do
If (jen[s] > k) do
10. new_array[s] < jen[s + 1];
end;
end;
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end;
forte{j+1,..,d} do
If (row_start[t] # 0) do
for s € {row_startlt], ...,row_start[t] + row_length[t] — 1} do
11. new_array|s] < jen[s + 1];
end;
end;
end;
12. Copy(new—_array, jen), Initialise_to_zero(new—_array);
13. new_array[t + 1] + 0;
If (col_start[k] # 0) do
for s € {col_start[k], ..., col _start[k] + col_lengthlk] — 1} do
If (irn[s] > j) do
14. new_array|s] < irn[s + 1];
end;
end;
end;
while t € {k +1,...,d} do
If (col_start[t] # 0) do
for (s € {col_start[t], ..., col_start[t] + col_length[t] — 1} do
15. new_array|s] < irn[s + 1];
end;
end;
end;
16. Copy(new—_array,irn), Initialise_to_zero(new_array).

Proposition 4.4.3 Algorithm 4.4.2 performs correctly and requires O(d)+O(T) field operations.

Proof: As one entry is deleted, the total number of entries in the matrix and the lengths of
row j and column k are all decreased by 1. Any change in the lengths of rows or columns
has to be followed by the corresponding changes in the lists of rows and columns of the same
count. In total, steps 1-4 of the algorithm require O(d) field operations through the two calls to
Row_chain and Column_chain.

Steps 5-8 perform the updates on row and column starts. If row j becomes zero, we set its
row start to be zero. Else, let s denote the index of the starting entry of j in M@, If j = 1,
then R.(s) = s = 1. Now suppose that j > 1 and let M’ = R,(M(9). Since the total number
and distribution of entries in the matrix block M'(1 — j — 1;1 — d) is the same as that in
M(‘I)(l — 7 —1,1 — d), it follows that all rows less than or equal to j retain the same pointer
to their starting entries. If we further have 5 < d, we claim that, for rows r = 7 + 1,...,d,
R.(s) = s—1 (where s is the index of the starting entry of r) since removing one entry from row
j shifts all entries in the remaining rows one unit to the left. As such, the updates on row starts
require O(d — j) operations, which in the worst-case analysis (j = 1) require O(d) operations.
A similar argument holds for the updates on column starts and hence can be skipped.

Steps 9-12 perform the updates on the column indices of entries in the collection by rows.
As one entry e is removed from row j, the location at the end of the array jen is freed and the
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indices of all entries following e in the collection by rows are decreased by 1. As before, the new
updates are stored in new_array which is then copied onto jcn before being re-initialised to
zero. A very similar argument holds for the row indices of entries in the collection by columns
when an entry is removed from column k, and we leave the details to the reader. The updates
on jen and irn thus require at most O(7) steps, considering the worst case when j = k = 1.
This brings the total cost of the algorithm to O(d) + O(r) field operations.

Algorithm 4.4.3 Add_entry(j, k)

Input: M9, where location (j,k) is empty.

Output: M' = R,(MD), where location (j,k) is occupied by a nonzero entry.
1. 7+ 741, x + row_lengthlj], row_length[j] + row_length[j] + 1;

2. Row_chain(j,x,row_length[j]);

3. x + col_length[k], col_lengthlk] < col_lengthlk] + 1;

4. Column_chain(k, z, col_lengthlk]);

If (row_start[j] = 0) do

5. ¢ < previous_row[j|;
If (¢ # —1) do

6. row_start[j| - row_start[c] + row_length[c|;
else do

7. row_start[j] < 1;
end;

end;

forte{j+1,..,d} do
If (row_start[t] # 0) do

8. row_start[t] < row_startt] + 1;
end;

end;

forte{k+1,..,d} do
If (col_start[t] # 0) do

9. col_start[t] < col_start[t] + 1;
end;

end;

10. t « PASS:

If (row_length[j] = 1) do
11. new_array[row_start[j]] < k, t < FAIL;
else do

for s € {row_start[j], ..., row_ start[j] + row_length[j]) — 2} do
If (jen[s] > k) and (t = PASS) do

12. new_array(s| < k, t + FAIL;
end;
If (jen[s] > k) and (t = FAIL) do
13. new_array[s + 1] < jen[s];
end;
end;
end;
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If (t = PASS) do
1.  new_arrays] < k;
end;
forte{j+1,..,d} do
If (row_start[t] # 0) do
for s € {row_startlt], ..., row_start[t] + row_length[t] — 1} do

15. new_array|s] < jen[s — 1];
end;
end;
end;
16. Copy(new_array, jen), Initialise_to_zero(new_array);
17. t + PASS;

for s € {col _start[k], ..., col _start[k] + col _length[k]) — 2} do
If (irn[s] > k) and (t = PASS) do

18. new_array(s| < j, t + FAIL;
end;
If (irn[s] > j) and (t = FAIL) do

19. new_array[s + 1] < irn[s];
end;

end;

If (t = PASS) do

20.  new_array[s] « j;

end;

forte{k+1,..,d} do
If (col_start[t] # 0) do
for s € {col _start[t], ..., col _start[t] + col _length[t] — 1} do
21. new_array|s| < irn[s — 1];
end;
end;
end;
22. Copy(new—_array,irn), Initialise_to_zero(new_array).

Proposition 4.4.4 Algorithm 4.4.3 performs correctly and requires O(d) + O(7) operations.

Proof: When an entry is added to the location (7, k), the total number of entries in the matrix
increases by 1, and so do the lengths of row j and column k. The corresponding lists of rows and
columns of the same length are modified through the calls to Column_chain and Row_chain.
Steps 1-4 as such require O(d) field operations.

Steps 5-9 perform the updates on the row and column starts. As in algorithm 4.4.2, and for
rows r = 1,..., 7, we have A.(s) = s (where s is the index of the starting entry of a nonzero row
r -check proof of Proposition 4.4.3 above), unless j was originally a zero row, in which case we
argue as follows. If j becomes the first nonzero row of M’, then A.(s) = 1; else,

Ae(s) = row_start[c] + row_lengthc]

where ¢ = previous_row[j]. If we further have j < d, then for rows r = j+1,...,d, Ac(s) = s+1
since adding one entry to row j shifts the indexing of all entries in the remaining rows one unit
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to the right. A similar argument holds for the updates on the starts of columns in the matrix.
For column k, however, we argue that A.(s) = s, since the inserted entry will always appear
after the start of column k& when this is the pivotal column. It can be further established that
the operational complexity of the updates on the starts of rows and columns is of the order
O(d — 7) + O(d — k) field operations, which in the worst-case analysis (j = k = 1) becomes of
the order O(d).

Steps 10-16 perform the updates on the column indices of entries in the collection of rows.
Let €' denote the entry to be inserted. If row j becomes of length 1, then €’ is given the column
index k, and the algorithm skips to step 15 where updates on the column indices for entries
in rows r > j take place. Else, suppose that row j becomes of length greater than 1. Let e
denote an entry in j and of index s in M(9. If jen[s] < k, then e also represents an entry of
4 in M’ whose index is not affected, since it appears before ¢’. Else, if e is the first entry of
7 in M@ such that jen[s] > k, then ¢ takes up the index of e so that new_array[s] = k in
M. For all entries e in row j whose columns are greater than k in M@, A,(s) = s+ 1 so
that new_array[s + 1] = jen[s]. If no entry e of row j in M9 was found to have a column
index greater than k (step 14), then €’ is the last entry to appear in row j and hence has index
s = row_start[j]+row_length[j] — 1, which is achieved through exit of the loop in the preceding
step 12. For all entries e along rows r greater than j and of index s in M (9, Ac(s)=s+1asa
result of inserting €’ in j. When all updates are performed, new_array is copied onto jen and
re-initialised to zero. In total, and considering the worst-case analysis when 5 = 1, this step can
be seen to require at most O(7) field operations. A very similar argument can be established
for updating the row values of entries in M’ as a collection of columns and we leave the details
to the reader. Summing up the sub-costs of the algorithm, the total cost is O(d) + O(r) field
operations.

The algorithm for adding rows can now be described using the previous two sub-tasks. Our
discussion above also demonstrates that no compression or creation of elbow room is required to
accommodate for new copies of modified rows (or columns). Whatever extra space created cor-
responds only to the amount of fill-in minus fill-out, when this amount is positive. In particular,
the algorithm can be stated as follows:

Algorithm 4.4.4 Add_Rows(i, j)
Input: Rows i and j such that © is the pivotal row during one stage of Gaussian elimination and
j is some other row in the active sub-matriz of M(® .
Output: Row j such that j < j + 1.
for s € {row_startli], ..., row_start[i] + row_length[i] — 1} do
1. k< jenls];
If location_by_column(j, k) = PASS do

2. Remove_entry(j,k);
else do

3. Add_entry(j,k);
end;

end.

Proposition 4.4.5 Algorithm 4.4.4 performs correctly and requires O(dv?) field operations.
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Proof: Replacing j with 5 + ¢ modulo 2 can be performed in distinct steps as follows. If both
rows ¢ and j contain an entry in the same column k, then performing 5 + ¢ will cancel out this
entry in location (j,k); else, this will introduce a new entry in (j,%). The loop through steps
1-3 iterates v, times during which a call to Remove_entry or Add_entry is performed. By
Propositions 4.4.3 and 4.4.4, and since 7 = O(%,d), the total running time of algorithm 4.4.4 is
at most O(dy?2) field operations.

4.4.5 A complete sparse Gaussian elimination algorithm

The results of the previous subsections can now be used to construct a complete sparse Gaussian
Elimination algorithm. The forward sweep of the algorithm which reduces the matrix into
Echelon form consists of at most d pivotal steps. In each step, a Markowitz search is performed
to find a suitable pivotal element. Accordingly, an interchange of rows and/or columns is
performed, and/or an elimination of entries falling below the pivotal element is performed by
adding suitable rows. If we consider the worst-case analysis in which the Markowitz search
requires O(7) operations, and combining the costs in Propositions 4.4.2 and 4.4.5, we find that
the forward sweep is of the order

) (dQ(maX(7r77c))2) (4-2)

field operations. Our experience has shown that roughly speaking, the maximum number of
entries in a row or column is negligible compared to d (see table 4.1 below). In particular,
if @ denotes the maximum ratio 7/d attained during any stage of the reduction, we have a =
O(max(vy,7.)) and the cost in (4.2) is of the order O(a?d?). Tt can also be seen that the backward
sweep of the algorithm, which produces the basis elements once the matrix is reduced, requires
O(dry,) field operations, so that the total cost of the algorithm involving both its forward and
backward sweeps is bounded by O(a?d?). When compared with the dense and explicit Gaussian
elimination of order O(d?), our algorithm performs faster provided that a < v/d. In terms of its
memory requirements, we have shown that the algorithm requires twelve integer arrays of size
d, and three integer arrays of size 7 = O(ad). Compared to the spatial requirement d? of the
explicit methods, our algorithm is more memory efficient provided o < (d — 12)/3. Both upper
bounds hold easily in our implementations.

4.5 Implementation and run times

All programs were written in C. The work was carried out at Oxford University Supercomputing
center (OSC) on the Oswell machine. Only one processor of the Sun cluster was used to per-
form the serial work. The UltraSPARC III processors run at about 122.2 Mflop/sec each. We
generated a number of trinomials over F'9 completely randomly. Table 4.1 lists the run times in
minutes for setting up and solving the Niederreiter linear system for random binary trinomials
of degree d and having m irreducible factors over F5. As before, o denotes the maximum ratio
7/d attained at any stage, and max(y,,~,) denotes the maximum number of entries appearing
in any row or column during the entire Gaussian elimination phase. We note the negligible
values of max(v;,7.) compared to d. The run times verify the effect of increasing values of «
or d on the total execution time, and our findings assert that the matrix remains considerably
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| d | m | o = max(7/d) | max(v,,7.) | Time in minutes |

8000 6 6 253 39.4
8000 7 2 33 1.2
8000 30 4 150 7.5
16000 7 2 34 4.7
16000 | 10 9 430 258.5
16000 | 14 2 126 6.1
32000 | 31 3 240 54.9
32000 | 10 15 854 19400
64000 7 2 40 77.8
64000 | 10 3 248 215.7
128000 | 10 3 363 812.9
128000 | 14 2 178 343.5
256000 | 14 2 288 1896.1
300000 | 11 2 52 1634.3
400000 | 11 2 49 5061.1

Table 4.1: Run times for setting up the Niederreiter matrix and solving the associated system.

sparse throughout the reduction phase no matter how large the degree of the trinomial grows.
As a result, our sparse algorithm performs efficiently well without having to be transformed
into a dense algorithm towards the final stages of Gaussian elimination. Our impression is that
a similar behaviour might still be observed for sparse polynomials of more than three terms,
particularly because of the distribution of the Niederreiter matrix, which heuristically seems to
preserve its sparsity throughout the elimination phase.

4.6 Conclusion

In this chapter we have investigated the initial and most limiting phase of the Niederreiter
algorithm for trinomials over the binary field and determined the exact initial sparsity level of
the associated Niederreiter linear system. A new sparse Gaussian elimination algorithm using
the Markowitz strategy was developed for producing a basis of the solution set of the sparse
linear system. The new algorithm exploits the Gustavson data structure but circumvents the
problems associated with it regarding creation of elbow room and compression. The problem of
requiring extra space and modifying the data structures is however shifted within the subroutines
for adding one row to another. Yet, our approach does not require the use of any elbow room
beyond what is needed to accommodate for only the extra number of fill-in - fill-out, which
in the case of Niederreiter’s linear system for trinomials over [Fy remains considerably small.
This was supported by our experimental results where the linear system remained considerably
sparse throughout the Gaussian elimination phase. The resulting algorithm is also more memory
efficient than the two dimensional doubly linked list which has been the most efficient structure
among linked-lists based data structures. The gains in spatial requirements come at the expense
of running time where our new algorithm requires O(a?d?) field operations, in contrast to the
O(a?d) cost of other sparse algorithms, where o = 7/d. Our algorithm was used in solving
very large sparse Niederreiter linear systems for trinomials over Fy, but can also serve as an
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irreducibility test for trinomials over o, where a trinomial is irreducible if and only if the rank
of the reduced Niederreiter system is such that m = d—rank =1 [102]. Although our algorithm
can be easily modified to become a general linear solver in various other applications, we expect
it to be particularly effective in solving the Niederreiter linear system for sparse polynomials over
Fy. Our work in this chapter can be combined with results of [1] where the irreducible factors of f
are extracted from a basis of the solution set using a parallel approach to the Gottfert algorithm
over [Fo. When compared with work in [110] for a dense explicit linear algebra approach to the
Niederreiter algorithm, the resulting hybrid algorithm is of a better spatial complexity for the
factorisation of large trinomials over Fy, provided o < (d — 12)/3, a criterion that is easy to
establish in the sparse Niederreiter linear system. Our algorithm achieves factorisation degrees
that are inaccessible to the dense implementation up to 16 processors (see [1]), and performs
the nullspace stage for d = 300000 in about 27 hours using only one processor in contrast to
the performance in [110] requiring about 10 hours and 256 nodes for a random (possibly dense)
polynomial of the same degree. Our algorithm also achieves factorisations beyond this degree.
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Chapter 5

A BSP model of the Gottfert
algorithm for polynomial
factorisation over [y

5.1 Introduction

The solutions of the Niederreiter linear system can lead to a complete factorisation in a variety
of ways, one of which was presented by Gottfert [59] for fields of characteristic 2, leading to a
simple and polynomial time algorithm for extracting the factors using only the basis elements
of the solution set of the Niederreiter linear system.

In this chapter, we develop a new BSP parallel approach to the Gottfert algorithm over Fs.
The BSP model offers simplicity in terms of its cost analysis and its clear distinction between the
three important phases of computation, communication, and synchronisation. It also has the
advantage of being independent of the underlying architecture of the machine, thus providing
portable software that can be used efficiently in a variety of applications (see [14, 71]). Our
algorithm achieves high efficiency in many of our test cases and can thus be used efficiently to
factorise very large polynomials over [y provided a basis of the solution set is given. For a brief
survey of the algorithms underlying our work and some background information describing the
BSP parallel model, we refer the reader to Chapter 3. In Section 5.2 we present our parallel
algorithm, prove its correctness and discuss its BSP cost analysis. In Section 5.3 we report on
our experimental results and discuss the scalability of the algorithm.

5.2 A parallel approach to Gottfert’s refinement of the Nieder-
reiter algorithm
As in the earlier chapter, let Fy be the binary field of order 2 consisting only of the elements

0,1; it is thus understood that all polynomials described in this chapter are monic. Let f be a
polynomial of degree d over o, and

f=91" 9w

be its canonical factorisation over the field. Let N; be the Niederreiter matrix of coefficients of
f. Let h = (hg,..., hq_1) denote the coefficient row vector of an unknown polynomial h over [y
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of degree less than d. In [102], Niederreiter establishes that the solutions h of the system (3.3)
form a linear subspace of the vector space Fo[z] of dimension m over Fy and that they are given
by

[
h="Lp
b
where b denotes a factor of g1 - - - g, Since b is square-free (so that ged(b,b') = 1), we have also
seen that

f

ged(f, h) = 7 ged(b, ) = !

E.
Let {hiy,...,hm} be a basis spanning the solution set of the system (3.3). The corresponding
polynomials

f .
bi= ———— € Fylz] fori=1,...,m
' ng(fa hl) 2[ ] T
are square-free factors of f. In the present chapter, all flops are considered as binary operations,
since we are working over the binary field.

5.2.1 Detecting parallelism in the Gottfert setting

Let #r, denote the maximum number of non-constant polynomials P;, for i« = 1, ..., #r,, that
can appear in any row n described in the Gottfert construction of Chapter 3. Each P; can be
the result of a ged or a division operation, in which case we denote it by a D-polynomial or an
R-polynomial respectively. Furthermore, we assert the following:

Claim 5.2.1 #r, =2"—1 forn=1,...,m.

Proof: We prove the claim by induction on n. For n = 1, we know that row 1 consists of the
polynomial b; only. Suppose the assertion is true for n. We know that any row n 4+ 1 has at
most one plus twice the number of non-constant polynomials in row n so that

Brue =2, £ 122 @~ ) 1= 2" 1

It is easy to see that there are at most (#r, — 1)/2 non-constant D-polynomials and at most
(#rn + 1)/2 non-constant R-polynomials in each row n. We denote D and R-polynomials in
row n by n; D; and n; Rj respectively, where j and j' are the polynomials’ indices along row
n. For consistency throughout the text, we can arrange the computations along rows so that
all the D polynomials are computed first, their corresponding R polynomials next, and the
polynomial b,/ [ | ;n; D (where the product is over non-constant polynomials n; D;) last. With
this notation, it is also easy to see that, if the polynomials in row n — 1 are written as

(n—1); D;, for some i = 1,...,(#rn—1 — 1)/2,
and

(n —1); R;, for some i = (#rp—1 +1)/2, ..., #rn_1,
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then row n consists of

n; Dz = . R

ged(bn, (n = 1); Ri—(#r,_—1)/2)s if (F#ra—1 +1)/2 < < #rpa,
n'R~—{ (n—1); D;/n; D;, if 1 <i<(#rp_1—1)/2,
T (n—1); Ry (gr,_—1y/2/7 Diy if (Frp—1 +1)/2 <i < #rppy,
and

by,

n By, 41 = o

[T nD;

i=1

n;D; #1

The first step in our parallel approach consists of studying the dependencies between the ged
and division computations and structuring these dependencies in a parallel hierarchy. Without
loss of generality we may assume that the number of threads coincides with the number of
processors available. We introduce the concept of a parallel queue, which consists of a list of
polynomials that can be computed independently by a number of p processors using a number
of supersteps. The queue comprises a set of jobs that are not necessarily performed in the same
parallel superstep; however, the jobs are entirely independent (and hence can be performed in
any order) and do not require that the processors synchronise at any point before the queue is
fully tackled. The first parallel queue consists of the polynomials b;, for « = 1,...,m, where m
polynomials can be computed simultaneously in parallel. The second parallel queue consists of
the polynomial 2; Dy only, since all other polynomials (in its row or in following rows) depend
on it. This constitutes the only queue where not enough distinct tasks are available to engage
all processors. In fact, the ensuing queues start filling up immediately according to an iterative
formula derived from the dependencies that we describe in the following algorithm:

Algorithm 5.2.1 Set_Queues(queuey, queuey)
Input: queuey, = {Py,..., Ps}, a list of non-constant polynomials from the Gotifert setting com-
puted in a parallel queue k > 2.
Output: queuey, a list of polynomials that can be computed in the parallel queue k' > k.
1. queuey = 0;
for 5 €{1,...,s} do
if Pj = n; D; for somen =2,...m and some i = 1,...,4r,_1 do

2. queuvey < queuer U {n; R;} U{(n +1); D;}.
end;
if Pj = n;D; for some n=2,...m and i = #r, 1 do
3. queuey < queuer U{n; Ry, 41}
end;
if Pj =n; R; for somen =2,....,m and some i = 1,...,#r,_1 +1 do
4. queuey < queuer U {(n +1); Dig ((4r,—1)/2) }-
end;
end.
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Theorem 5.2.1 The algorithm works correctly as specified, producing all the rows in the Gottfert
algorithm required to achieve a complete factorisation. As a result, the algorithm requires at most
3s steps for a list of size s.

Proof: We assume that the polynomials by, ..., b, are already computed. Correctness of the
algorithm follows as a result of justifying the steps 2-4:

Step 2: Suppose P; = n;D; for some n = 2,...,m and some i = 1,...,#r, 1. If 1 <4 <
(#71 — 1)/2, then

P, = ged(by, (n — 1): ;) and s By = 158
J
Since P; has already been computed in queue &, we know that (n—1); D; must be a non-constant
polynomial computed in queue j < k. As such, n; R; has both its components available and can
be assigned to queuey. Else, if (#r,—1 +1)/2 < i < #ry_1, then
(n = 1); Ry ((#r,, 1 —1)/2)

Pj = ged(bn, (n = 1); Ri (¢, 1 -1)/2)) and n; R; = > _
j

Again, (n —1); R;_((#r,_,—1)/2) must be a non-constant polynomial computed in queue j < k,
so that n; R; can be assigned to queueg. On the other hand, for i = 1,...,#r,_1 (or i =
1, ..., (##rn — 1)/2) we know that

(n+1); D; = ged(by41,n; D;).

The proof now follows as above.
Step 3: Suppose P; = n;D; for some n = 2,...,m and i = #r, 1. Since n; Dy, , is the
D-polynomial to be computed last in row n, and since

n;R#Tn—l‘}’l = #T'nfl 9

the proof follows as above.
Step 4: Suppose that P; = n; R; for some n = 2,...,m and some i = 1,...,#r, 1 +1. We
know that ¢ also satisfies i = 1,..., (#rp, + 1)/2 or

(#Tn2+ 1) <i+ (#rnQ_ 1)

< #ra.
Moreover, we have

o (#rn +1)

(n+1); D; = ged(bpt1,m3 By ((#r,—1)/2)) if ( 5 < i < Htra,

or equivalently

(#Tn‘l‘l) <i+ (#Tn_ 1)

(n+1); Dy g1 = gd(bngr, 15 Ry) if 5 5

< #rp.

The proof now follows as above.

With the correctness of the algorithm now established, it becomes immediate to see that
any polynomial in queue can lead to at most 3 polynomials in queuey (e.g. the polynomial
satisfying the conditions in steps 2 and 3 above).
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5.2.2 The parallel Gottfert algorithm

One major characteristic of the algorithm is that it consists of task parallelism, since distributing
the data would require much more synchronisation between processors in the inner loops than
would be the case in our present algorithm. To minimise the number of synchronisation barriers,
we choose to make all initial data available globally at the beginning of the algorithm and all
recently computed data available to all processors once they are obtained. The following details
are crucial in following up on the algorithm and describe some of the data structures as well
as the notations we adopt throughout this section. The polynomials are represented by integer
arrays whose entries are either zero or one. The coefficients are packed into bit-words (where
wy is the bit-size of the computer word being used). This not only speeds up the polynomial
arithmetic sub-routines but also minimises the number of messages to be transmitted among
processors, and hence the BSP cost of the algorithm. We describe several arrays that store
either the values of the polynomials or information about them. Unless otherwise stated, all
arrays are global.

We first define two copies of three integer arrays, T'ype; j/, Row; jr, and Index; ji, each of size
m. Those serve to hold temporarily information about a polynomial P; being computed in some
parallel queue. In particular, T'ype; j7[i] denotes the type of the polynomial (whether a D or an
R polynomial), Row; j[i] the row to which it belongs, and Index; ;[i] its index within that row.
Those arrays are embedded within two queues queue; and queue;. such that queue; is a sequence
of triples (T'ype;i], Row;[i], Index;[i]), for i = 0, ..., #(queue;) —1, and each such triple describes
a polynomial already computed in some parallel queue. On the other hand, queuej consists of
similar triples describing polynomials to be computed in a forthcoming parallel queue.

By a simple abuse of notation we also define what we call an array of polynomials Polyy,
of size [d/w;] (where w; is the bit-size of the computer word being used). By this we simply
mean a two dimensional array of integers Poly such that the k’th row of the two dimensional
array contains the coefficients of the polynomial Poly,. The array is used to store permanently
the values of all non-constant polynomials computed in the parallel process. Similarly, we
define an array of polynomials By of size [d/w;| containing the coefficients (in bit-words) of
the polynomials b; = f/ged(f, h;), for i =0,...,m — 1. We note that the polynomial indices are
global variables indicating that Poly; and By are global polynomials whose individual values are
computed by one particular processor then broadcast to all at one fixed location k independent
of the processor 7d. To keep track of the number of non-constant polynomials in each row,
we define the integer array Length of size m such that Length[i] denotes the total number of
non-constant polynomials located along row 4 during any phase of the parallel process. We also
define two dimensional arrays of pointers, D and R, of approximate sizes m x (2™ — 1). D[n][i]
points to null if the polynomial n; D; is constant; else, it contains the address of the row in Poly
where the polynomial n; D; is stored. A similar description holds for the array R. Finally, we
define two integer arrays sum, and local _sums, of sizes m and p X m respectively, that are used
to update the lengths of rows individually by each processor, as will be described later on.

All communication between processors is achieved through the bsp_put command [66, 67].
We use the short-hand of the function call as in

y <~ BSP_Put(s, N, z).

where N is an integer greater than or equal to zero. If N = 0, this indicates that the processor
meeting the command is sending its individual value of variable z onto variable y found on
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processor s. Otherwise, z denotes a polynomial whose coefficients form the first N entries of
array = and are being sent to processors s at the same corresponding locations in the global
array y. Signal is an indicator which controls the flow of the loops in that, if the length of any
row becomes equal to m, we set Signal to Stop, indicating that all irreducibles have been found
(see Theorem 3.1.7); else, we set it equal to OK in which case all loops continue to operate.
queue_length always designates the number of polynomials to be computed in a new parallel
queue, and total_poly designates the total number of non-constant factors determined during
any stage of the parallel algorithm. Our parallel algorithm now takes the following form:

Algorithm 5.2.2 Parallel_Gottfert(f,d, m,{hg,...hm_1},p,id)
Input: [ a polynomial of degree d over Fy, m > 1 the number of irreducible factors of f,
{hg, ...,hh;m_1} a basis for the solution set of (3.3), p the total number of processors operating in
parallel, and id the processor identification number ranging from 0,...,p — 1.
Output: the m irreducible factors of f and their multiplicities in f.
1. Signal + OK, k + id;
while (k < m) do
2. by« f/ged(f, hy), degree < deg(by);
fory € {0,....p — 1} do

3. by, < BSP_Put(y,degree + 1,by);
end;

4. k< k+p;

end.

5. BSP_synchronise().

6. PU «— gcd(bg,bl);

if (Po# 1) do

7. Polyy < Py, D[2][1] < &Polyy, total _poly < 1, Length[2] < 1;

else do
8. total _poly < 0;
end;

9. queuej < {Py}, Set_Queues(queue;, queuej ), queue_length < #queuej ;
while (Signal = OK) do

10. k « id, Set_to_zero(sum,local_sums);
while (k < queue_length) do
11. Type < Typeji k], n < Rowj k], i < Index; k],

Py, < Compute_Polynomial(Type,n,i);
if (Py # 1) do

12. POly(k:thotal_poly) — Py;
if (Type = D_type) do
13. D[n] [7’] A &POIy(kthotal_poly) ;
else do
14. R[n] [7’] — &POIy(kthotal_poly) ;
end;
15. sum[n] «— sum[n] + 1, degree < deg(Polyy);
fory €{0,....p—1} do
16. POly(k+total_poly) A BSP—PUt(ya degree + 1, POly(kthotal_poly));
end;
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if (Type = D_type) do
fory €{0,...p—1} do

17. Din][i] <~ BSP_Put(y,0, D[n][i]);
end;
else do
fory €{0,....p—1} do
18. R[n][i] «~ BSP_Put(y,0, R[n|[4]);
end;
end;
end;
19. k<« k-+p;
end;

forye{0,...p—1} do
forw € {2,....,m} do
20. local_sumsly|[w] < BSP_Put(y,0, sum|[w]);
end;
end;
21.  BSP_synchronise();
for (y € {0,....p — 1}) do
for (w € {2,...,m}) do
22. Length|w] < Length|w] + local — sums[y][w],
total_poly < total_poly + local _ sums[y][w];
if (Length[w] = m) do

23. Signal < Stop, last_row + w;
end;
end;
end;
if (Signal = OK) do;
24. queue; < queuej, queue_length < Sort(queue;), queuej < (),
Set_Queues(queuej, queuejr);
end;
end;
925 i id+1;

while (i < 2last-row=1y g,
if (D[last_row][i] # NULL) do
26. factor < xD[last_row][i], exp + Multiplicity(f, factor),
return (factor,exp);
end;
if (R[last_row][i] # NULL) do
27. factor < xR[last_row][i], exp + Multiplicity(f, factor),
return (factor,exp);
28. i i+p;
end.

The algorithm is called by all processors which implement the same copy of it for various
data, conforming to the SPMD model: A single program with multiple data is encountered by
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all processors, which then execute their own version of the program, distinguished by their own
identification number, id = 0, ...,p—1. In step 1 of the algorithm, few initialisations are set. The
first “while” loop is a parallel loop met by all processors which compute the square-free factors
b, = f/ged(f,hy), for k =0,...,m —1. k is a global variable which when first set to id and then
incremented by p guarantees that all processors compute almost an equal number of polynomials
b.. This constitutes the first parallel queue according to Algorithm 5.2.1. Every processor then
broadcasts its own value of by to all other processors, but no synchronisation barrier is met until
all the b;’s are computed, since they are not needed in any loop computation. A synchronisation
point in the loop as such would only incur an extra cost of synchronisation without actually
being required.

The second parallel queue consists of the polynomial 2; Dy (see Algorithm 5.2.1) which is
computed by all processors. Although this constitutes a sequential step, the processors start to
engage in distinct computations soon after the second queue is set up. If Py = 2; D is not trivial,
it is stored in a permanent location in Polyy, D[2][1] is set to point to the location of Polyg
(which we denote by & Polyy), and the length of row 2 and the total number of non-constant
factors computed so far are updated. We call Algorithm 5.2.1 to set up the ensuing queue; of
polynomials to be computed in parallel. queue length denotes #queue;:.

Thereafter, the main loop of the algorithm is iterated so long as Signal is not set to Stop
(indicating that none of the rows has attained m non-constant polynomials). The global variable
k loops over indices in queuejr, and as above, the increment it receives arranges for the processors
to compute almost an equal number of polynomials P in queuej. The processors receive
information about the polynomials they should compute through the global data found in T'ype =
Typej k], n = Rowj[k], and i = Indexj[k], and call the sub-routine Compute_Poly which
determines the polynomial Pj as defined in the Gottfert setting. If P is non-constant, processor
id stores it permanently in Poly(j totai_ poiy)» and sets D[n][i] (or R[n][4]) to point to the address
of Poly(xtotal_poly)- Because total_poly represents the total number of non-constant factors
computed so far, this particular index of Poly is such that all new polynomials do not overwrite
previous ones, and no two processors store their results in the same location. The local value
of the polynomial and its pointer are then broadcast by processor id to all processors, and
the total number of non-constant factors found along row n by processor id during the set up
of queuej is increased by 1 in the processor’s local copy of sumn| (it is assumed that sum
and local _sums are initialised to zero before every new iteration of the main loop of step 10).
When all polynomials in queuej have been computed, each processor id places its own copies
of sum[n], for n = 2,...,m in global locations at local_sums[id][n]. A synchronisation barrier
is now met, which updates the values of the non-constant polynomials, their pointers, and the
partial lengths of rows as computed by every individual processor. We note the absence of a
synchronisation point immediately after the broadcasting of Poly(yiotal_poly) and the pointer
to it, due to the fact that they were not needed in any computation within the loop of step 11.
We also note that, although updating the total row lengths inside the loop of step 11 (i.e. while
processors are still operating within the same parallel queue) definitely discards any unnecessary
ged or division operations remaining in the queue, our choice not to perform accordingly can
be justified by the fact that this will require a synchronisation point within the innermost loop,
one whose repeated application could prove to be costly. Each processor now has all the partial
sums available to it globally in local_sums[id][n] and can thus sum them all up into one global
quantity in Length[n]. The total number of non-constant factors is also updated as being the
sum of all row lengths. If any row length becomes equal to m, all processors are signalled to

64



stop. Else, queuej is transferred onto queue; (so that the most recent polynomials can help
determine what the new parallel queue will be), and queue; is sorted through a call to Sort.
Since some processors compute constant polynomials whose index k leaves the corresponding
location in the array Poly empty, the Sort sub-routine re-arranges the elements stored in Poly
(and their corresponding pointers in the arrays D or R) so that the non-constant factors are
stored consecutively after each other. Sort also returns the length of the sorted list. Finally, a
new queue;: is set according to Algorithm 5.2.1. The loop of step 10 can be shown to end, since
we are bound to reach a row containing m non-constant polynomials which constitute all the
irreducible factors of f (Theorem 5.2.1). At this point, last_row contains the index to that row.
All processors scan in parallel the non-constant D and R pointers to the polynomials found along
last_row (using our notation, the polynomials are accessed by applying * to a particular location
in the D or R arrays). By Claim 5.2.1, there is a maximum of #r45_row_1 = (2/%¥-7°~1_1) D-
polynomials and #7gst row—1 + 1 = 2/95t-700=1 R_nolynomials in last_row, which by Theorems
3.1.7 and 3.1.8 constitute the m non-constant factors of f. Each processor then determines the
multiplicity of that factor in f (by a call to the sub-routine Multiplicity). At this stage, we
can choose not to distribute the results globally so that each processor outputs its own set of
(factor,exp) pairs. The algorithm terminates with the last iteration of this loop.

5.2.3 The BSP cost of the algorithm

In this section we establish the parallel complexity of our algorithm. To this end, we first state
and prove several preliminary results.

Lemma 5.2.1 In the parallel setting described in Algorithm 5.2.1, every row n has its first
element n; D1 computed in the parallel queue n and its last element n; Ry, 41 computed in
the parallel queue 2n — 1.

Proof: We prove the result by induction on n. For n = 2, we know that queue 2 starts with
2: D1, and by Algorithm 5.2.1, queue 3 contains the polynomials 3; D1, 2; Ry and 2; Ry, where
2: Ry is the last polynomial to be computed in row 2. Suppose that n; D can be first computed
in queue n. Since (n+1); D1 = ged(by41,n; D1), the first queue which assigns the computation of
(n+1); Dy is n+1. Furthermore, suppose that queue 2n—1 contains the polynomial n; Ry, 41
which is computed last in row n. Since

(n+1); Dy, = ged(bpy1,n; Ry, 41),s

this polynomial can be determined at the earliest in the parallel queue 2n. But (n +1); Ry, 11
depends on the values of all polynomials (n 4+ 1); D;, for i = 1, ..., #r,, and hence can be can be
computed at the earliest when (n + 1); Dy, is available, which is in the parallel queue 2n + 1.

Corollary 5.2.1 It takes at most 2m — 1 parallel queues for a complete factorisation into irre-
ducibles to be established.
Proof: By Theorem 3.1.8 it takes at most m rows to compute all irreducible factors of f (see

[59] for proof). By Lemma 5.2.1, row m requires at most 2m — 1 parallel queues before all
non-constant polynomials appearing in it are computed. This concludes the proof.
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Lemma 5.2.2 Ifn is odd, then queue n contains polynomials belonging only to rows (n+1)/2+7,
for j =0,....(n —1)/2, if 2 <n <m, and for j =0,....m — (n+1)/2, if m < n < 2m — 1.
FElse, if n is even, then queue m contains polynomials belonging only to rows n/2 + 1+ j, for
j=0,.,n/2—1,if2<n<m, and for j =0,...m —(n/2+1), if m <n <2m — 1.

Proof:  For all queues n appearing in the parallel set-up, Corollary 5.2.1 maintains that 1 <
n < 2m — 1. Suppose now that n is odd. Let k be a row occupying queue n. By Lemma 5.2.1,
we must have n <2k —1 (or £ > (n+1)/2). Write k = (n+1)/2 + j for j > 0 (since n is odd,
this expression is an integer). For n = 2,...,2m — 1, we must have k <n (so that j < (n—1)/2);
otherwise, row k starts appearing in queues n + 1 onwards, a contradiction. If m <n <2m —1,
the upper bound on k can be strengthened to satisfy & < m (or j < m — (n + 1)/2), since the
last row to be set up in the Gottfert representation is row m.

If n is even, n < 2k — 1 implies that n < 2k — 2 since 2k — 1 is odd, or that k > n/2 + 1.
Write k =n/2 + 14 j for j > 0 (again, this expression is an integer since n is even). A similar
argument as above follows to establish the upper bounds on j, and we leave the straightforward
proof to the reader.

Lemma 5.2.3 Fach parallel queue consists of at most 2m ged and division operations and
contributes to at most m non-constant polynomials.

Proof: First, we note that, since each row k in the Gottfert representation requires at most
2m gcd and division computations and has at most m non-constant polynomials appearing in
it, and since each such row requires a number of at most k& queues to be fully set up, we would
expect, roughly and on average, each parallel queue n to require a number of 2m/k ged and
division operations leading to about m/k non-constant polynomials for each row k& assigned to
queue n. Let n be odd (the case when n is even can be proven similarly and hence can be
omitted). If 2 < n < m, Lemma 5.2.2 implies that queue n has polynomials belonging to rows
k= (n+1)/2+j, for j =0,...,(n — 1)/2, where each row k has roughly m/k non-constant
polynomials appearing in queue n. Thus, the total number of gcd and division operations to be
performed in queue n is approximately

(n—1)/2

—— =2m.
Pl e 2 (n+1)/2

Furthermore, if m < n < 2m — 1, this number is approximately
m—(n+1)/2

i 2 (n+1)/2

m+1 2m
_ 1) -
2 (m+1)/2
Using a very similar calculation, the total number of non-constant polynomials produced is easily
shown to be at most m.

2m.

< (m

Since the number of processors will be fixed throughout the text, we shall refer to the
communication and synchronisation BSP parameters as simply g and £ respectively, where it is
implicitly understood that the two parameters depend on p.
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Theorem 5.2.2 Assuming classical polynomial arithmetic with multiplication time M(d) =
O(d?), the BSP cost of Algorithm 5.2.2 is of the order

O <m?2M(d) log d + gm?( [ﬂ +p)+ me> flops. (5.1)

Proof: In our proof, we note the following remarks. Since all polynomials appearing in the
course of the algorithm are factors of f, their degrees are at most equal to d = deg(f). It is
also understood that any computational complexity is the maximum work load achieved by any
one processor. Sorting a list of size at most £ can be achieved in O(klogk) flops (e.g. see [26]).
Computing the multiplicity of a factor of f requires at most d polynomial multiplications over
Fy (and hence in our case, M (d) flops). We also assume that accessing an array entry requires
almost as much time as one flop. A message denotes one computer word (i.e. a message of
size 1). The total cost of the algorithm is the summation of the costs of its supersteps. The
individual BSP costs of the main supersteps (i.e. those whose cost is not constant) can be
detailed as follows:

Supersteps 2-4: we have seen earlier that this loop is divided almost equally among all
processors. As a result, the parallel loop is accessed at most [m/p] times. Each iteration of the
outer loop involves mainly one ged and one division computation, and an inner loop consisting
of a bsp_put operation, whereby each processor sends [degree/w;] < [d/w;] messages to all
processors (and hence p copies of these) and receives p[degree/w;| < p[d/w;| messages. Thus,
hmaz = p[degree/w;| < p[d/w;]. Superstep 5 is a synchronisation point, so that the total BSP
cost of supersteps 2-4 is at most

0 U%] [M(d) logd + gp [%H +e> flops. (5.2)

Supersteps 6-9: consist mainly of one gcd operation and a call to Set_Queues with input
queuej = {Py}, which according to Theorem 5.2.1 requires at most 3 steps. Thus, the BSP cost
of these supersteps is of the order

O(M (d)log(d)) flops. (5.3)

Supersteps 10-28: constitute the main body of the parallel algorithm. The outer-most loop
designates the total number of times the processors set up parallel queues before a complete
factorisation is achieved. This number has been shown in Corollary 5.2.1 to be at most 2m — 1.
Supersteps 11-19 are embedded within an inner loop ranging over all polynomials along queue;:.
The tasks within the queue, consisting mainly of gcd and division operations, are divided almost
equally among processors (check the initial value of the loop variable k£ and the increment it
receives). By Lemma 5.2.3, each queue consists of at most 2m gcd and division operations to
perform equally among all processors, and hence the loop is accessed at most [2m/p]| times.
The bulk of the work appears in the following: step 11 consists of either a gcd or a division
operation, step 16 consists of sending at most p[d/w;| messages and receiving at most p[d/wy ]|
messages (resulting in h,qe = p[d/w]), and step 17 or 18 consists of sending p messages and
receiving one message (resulting in A, = p). Within each inner loop iteration, the BSP cost
of supersteps 11-19 is at most

o (Mg +ap | 2] )
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which across both the outer and inner loops becomes of the order

0 <m [%] [M(d) log(d) + gp L%H) flops. (5.4)

Supersteps 20-28 are found outside the inner loop of step 11 but inside the loop of step 10. In the
communication superstep 20 each processor sends pm messages and receives pm messages (S0
that hpyee = pm). Superstep 21 is a synchronisation point, and superstep 22 consists of about
2pm additions. Superstep 24 consists mainly of a call to Sort with input list of size at most
2m (producing a list of size at most m by Lemma 5.2.3), as well as a call to Set_Queues with
input list of size at most m (this requiring at most 3m flops). Summing up, a single application
of supersteps 20-28 requires at most

O (m(p + logm) + gpm + )
flops which when iterated across the outer loop of step 10 becomes of the order
O(m?(p + logm) + gpm? + me) flops. (5.5)

Supersteps 25-28 consist of computing the multiplicity of all m factors in parallel, where each
processor takes up almost an equal number of D and R-factors. If each call to Multiplicity
requires about M (d) flops, the supersteps will require

m

0 (h] M(d)) flops. (5.6)

Summing up the individual costs (5.2), (5.3), (5.4), (5.5), and (5.6), the total BSP cost can be
found to be of the order

O <m [%-‘ M(d)log d + m?(p + logm) + gp(m L}%] [%-‘ +m?) + mﬁ)

flops. Since

m m = = 2) and m =
[ﬂ <2+ 1,p = O(d), M(d) = O(d) and m = O(d),

(where the second inequality easily holds in implementations involving large polynomial degrees —
see Table 5.2, the third estimate holds in our implementations of classical polynomial arithmetic
[55]), it follows that

m?(p + logm) = O(m2d) = O (m [%1 M(d) log d) :

from which the total BSP cost (5.1) can be derived.

Corollary 5.2.2 Assuming the given in Theorem 5.2.2 above, Algorithm 5.2.2 has low synchro-
nisation and communication requirements.
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Proof: We claim that our algorithm has very good synchronisation and communication re-
quirements, in that the number of flops required by both can be negligible compared to the
computation cost. In particular, and based on the values of the BSP parameters in table 5.2, it
can be easily attained that

dlogd

g=0( ), p=0(d), and £ = O(%M(d) log d)

for large values of d, so that

5.2.4 Reduction of the algorithm’s memory requirements

As defined in Algorithm 5.2.2, the two dimensional arrays D and R of size m x (2™ — 1) each
can be easily seen to constitute an infeasible (exponential) space requirement unless m is very
small. To this end, we describe how a linked-list structure can be adopted which reduces the
memory requirements to four integer arrays of size m each and four integer arrays of size 2m?
each, requiring only a polynomial order space complexity.

Recall that, for n = 2,...,m and i = 1,...,2™ — 1, D[n][i] represents a pointer which is NULL
if n; D; is a constant polynomial, and which points to the location of n; D; in the array Poly,
otherwise. Similarly for R[n][i]. We also note that there are many more constant polynomials
than there are non-constant ones, and hence, the distribution of non-constant polynomials among
all possibilities is a sparse one. Our algorithm in its present form contains many NULL pointers,
and a candidate for a more efficient method has to replace this structure with one which locates
only non-constant polynomials without any reference to the others.

The improvement can be described as follows. We first order the non-constant factors in a
list F, in which each factor occupies an index corresponding to its position in the array Poly.
For instance, if a non-constant factor is stored at location k in Poly, it would appear as the k+1
polynomial in F. In this way, a non-constant factor in the entire collection can be compared to
a nonzero entry in a collection of sparse row vectors (or columns) representing a sparse matrix.

We define four global integer arrays, D_header, D_tail, R_header and R_tail, each of size
m, and four global integer arrays, D_ fwd_link, R_ fwd_link, D_index and R_indez, each of
size 2m?. The aim would be to arrange polynomials in F in lists of polynomials of the same
type and row. The description below concerns only D-arrays but a very similar one holds for
R-arrays.

Suppose we want to link all D- polynomials in F appearing in row n. For n = 2,...,m,
D_header[n] represents the index in F of the first (non-constant) D-polynomial appearing in
row n. All ensuing non-constant D-polynomials in row n are adjoined to the list, and as such, we
need to preserve various information describing each one of them as they appear together. For
each row n, we keep track of the index in F of the last D-polynomial appearing in the row by
storing it in D_tail[n]. Thus, for a start, if one non-constant D-polynomial of row n appears in
F at location k, we set D_header|[n] = k and D_tail[n] = k. We also store its index along row
n in D_index[k], which completes all information about the polynomial. For each non-constant
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D-polynomial in row n and of index £ in F, we maintain a pointer to the index in F of the next
such polynomial and store it in D_ fwd_link[k]. If D_ fwd_link[k] = 0, polynomial k is the
last one in the list of non-constant D-polynomials belonging to row n, which can be generated
completely as follows:

Algorithm 5.2.3 Input: A non-constant D-polynomial of index i in some row n = 2,...,m and
indez k in F.

Output: The polynomial adjoined to the end of the list of non-constant D-polynomials belonging
to row n.

if (D_header[n] =0) do

1. D_header[n] < k, D_tail[n] < k, D_index[k] < i, D_ fwd_link[k] < 0;

else do

2. D_fwd_link[D_tail[n]] < k, D_tailln] < k, D_indez[k] < i;

end.

It is trivial to see that the call to this algorithm comes at a very negligible constant cost and
hence can be embedded within the estimate of (5.1). We now illustrate the use of this structure in
locating non-constant factors whenever required for new computations. Suppose, for instance,
that we need to compute n; D; for some n = 3,..,m and i = 1,...,(#rp—1 — 1)/2 (so that
n; D; = ged(by, (n — 1); D;)). Using the two dimensional array D, and if D[n — 1][¢] is NULL,
one concludes that n; D; is constant; otherwise, the polynomial pointed to by D[n — 1][i] is used
to compute the required ged. Using the linked list structure, the process can be described as
follows:

Algorithm 5.2.4 Input: A D-polynomial of index i in some rown — 1, n=3,...,m.
Output: The location of (n — 1); D; in the array Poly if it is non-constant or FAIL otherwise.
1. t + FAIL, x + D_header[n — 1];
if (D_header[n — 1] # D_tail[n — 1]) do
while (x #0 and t = FAIL) do
if (D_indez[x] = 1) do

2. t+ PASS;
3. k « z, © + D_fwd_link|z];
end;
end;
end;
else do
if (D—indez[x] = 1) do
4. t+ PASS;
end;
5. k <+ x;
end;

if (t = PASS), return (k—1);
else return FAIL.

If D_header[n — 1] # D_tail[n — 1], the list of D-polynomials belonging to row n contains
more than one polynomial and hence has to be scanned entirely; else, the list contains only one
element. z takes up indices in this list, starting with its header, and moving across the forward
links. t is an indicator which when set to PASS indicates that a non-constant polynomial
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(n —1); D; has been found whose location in F is k (or location in Poly is k — 1). If 2 becomes
zero, this signals the end of the list. Finally, the loop across the list ends either when ¢ becomes
PASS or z = 0. The algorithm demonstrates how checking D[n|[i] can be substituted with
scanning a list of size at most m. The increase in the total computational cost as a result of
using the improved data structure can be realised as follows. We have seen that the call to
Compute_Polynomial in step 11 of algorithm 5.2.2 is issued at most 2m - [m/p] times. Each
such polynomial computation will require two calls to algorithms 5.2.3 and 5.2.4, thus increasing
the total cost of Algorithm 5.2.2 by O(2m? - [m/p]) flops. Since m = O(M(d) log d), the upper
bound estimate given in (5.1) remains of the same order, and as such, the new improvement can
be introduced at little cost to the worst-case analysis initially provided.

5.3 Implementation and run times

Table 5.1: Parallel run times.

Processors
d m | maz seq. 1 | 2 | 4 | 8 | 16
8000 6 7446 2.37 2.32 1 0.8 0.2 0.6
(1) (1.2) (0.7) (15) | (0:2)
8000 7 3200 2.62 2.6 0.9 0.7 14 1.1
(1) (1.5) (0.9) 02) | (01)
8000 30 600 48.98 48.36 27 17.4 6.8 6.6
1) (0.9) 07 | 09 | (05)
16000 10 | 10224 29.9 29.9 14.2 10.4 10.4 3.7
1) (1.1) (0.7) 0.4) | (0%5)
16000 14 5600 8.78 8.74 4.7 2.4 2.6 1.4
(1) (0.9) (0.9) (0.4) | (0.4)
32000 31 | 19360 145.8 144.89 76.4 31.5 13.8 10.4
(1) (1) (1.2) 1.3) | (0.9)
64000 | 10 | 26400 82.6 82.01 64.2 29.3 27 | 29.05
(1) (0.6) (0.7) 0.4) | (0:2)
128000 | 14 | 44800 | 2629.62 2609 794.8 | 761.4 | 760.6 | 468.8
(1) (1.7) (0.9) 0.4) | (0.4)
256000 | 14 | 92800 | 6819.12 | 6761.89 | 2696.3 | 1420.4 | 1417 | 325.1
(1) (1.3) (1.2) (0.6) | (1.3)
300000 | 11 | 120000 621.8 621.32 | 408.68 | 242.2 51.2 57.6
1) (0.8) (0.6) .5 | (0.7)
400000 | 11 | 160000 | 1658.2 1658 829 592 188.4 148
(1) 1) (0.7) 1.1 | (07

Table 5.2: BSP parameters.

lp [ g | ¢ ]
1 0.34 5%

2 1.64 | 1496
4 2.48 | 1683
8 2.34 | 2562
16 | 4.83 | 3431
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All programs were written in C and extended using the standard BSP library [66, 67]. The
work was carried out at the Oxford University Supercomputing Centre (OSC) using the Oswell
machine. Oswell is a Sun cluster of 84 processors and a shared memory system where the
processors are arranged in three groups of 24 processors and a group of 12 processors (each
processor having 2 GBytes of memory). With this scheme, any work submitted to the machine
is queued to one of those four boxes, and the number of processors available for use by any one
job is at most 24. In practice, however, we had access to 16 processors only.

The various input data were taken from the results of Chapter 4 where the Niederreiter
linear system for a trinomial over Fy is solved and a basis for the solution set is produced. We
remark that, in spite of the input polynomial being sparse, the intermediary polynomials in the
Gottfert representation are not necessarily so, which renders such a case study for trinomials
not so special a case as it appears. The run times in table 5.1 represent the times in seconds
for producing the entire factorisation using our BSP parallel algorithm given a particular basis
set. The timings correspond to the sequential as well as the parallel results. max represents the
maximum over all i = 1, ...,m of deg(g;*), and d and m are as defined previously. The absolute
efficiencies are shown in parentheses. All polynomial arithmetic was performed using classical
algorithms so that the multiplication time for polynomials of degree at most d is O(d?) [55].

Let T}, and T denote the parallel run time using p processors and the sequential run time
respectively. Our run times suggest a speed gain in almost all cases, an outcome that is to be
expected according to our BSP cost (5.1), which roughly suggests that

m2
T, < Ty iff — <m?iff p > 1,
p

ignoring the negligible communication and synchronisation requirements of our algorithm as
well as any other parallel overheads associated with the creation and management of threads.
To measure the scalability of our parallel algorithm, we calculate the absolute efficiency E,, [86]
for all cases, where

T

B, =%,
p pr

which when achieving values close to one indicates a good parallel performance. Accordingly,
and upon examining our efficiencies, we note that almost all our experiments scale very well
for up to 8 processors. Thereafter, the efficiency remains very good for a fixed d either as m
increases (e.g. compare trinomials with m > 30 to others), or as max increases (for d = 8000,
compare the trinomials with maz = 7446 and max = 3200). We also note that efficiency remains
almost constant around 1 for d > 256000. We remark the absence of a sharp fluctuation in the
efficiency levels mainly because our algorithm does not involve data partitioning (but only task
parallelism), which results in the computation being either entirely in cache or out of cache
across all processors for the same d. This has the advantage of revealing the real scalability of
the algorithm and avoiding cache effects.

5.4 Conclusion

In this chapter we presented and analyzed a complete BSP algorithm for extracting the factors
of a polynomial over Fy using the Gottfert refinement of the Niederreiter algorithm, which,
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given a basis for the solution set of the Niederreiter linear system, performs the last phase of the
factorisation algorithm in polynomial time. Our BSP theoretical model resulted in an efficient
BSP cost requiring relatively small communication and synchronisation costs. The parallel
algorithm not only achieves considerable speed gains as the number of processors increases up
to 16, but maintains a moderate to very good efficiency that is better maintained as the degree of
the polynomial, the number of its irreducible factors or the maximum over its irreducible factors’
degrees increases. The algorithm can be applied over fields of characteristic 2 in general, provided
an input basis is available. When combined with our work in Chapter 4 which exploits sparsity
in the Niederreiter linear system, the hybrid algorithm provides a cheaper and more memory
efficient alternative to the factorisation of trinomials over Fo than the implementation in [110],
which uses dense explicit linear algebra and a maximum of 256 nodes to achieve a polynomial
record of degree 300000. When compared with the Black Box Niederreiter algorithm of [39], the
hybrid algorithm is a simpler approach for moderately high record factorisations of trinomials
over [Fy as those allowed by the use of implicit linear algebra, requiring reasonable running times
(see Chapter 4). Apart from the significance of its experimental results, our algorithm provides a
good model of how parallelism in general, and the BSP model in particular, can be incorporated
elegantly and successfully into problems in symbolic computation.
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Chapter 6

Factoring polynomials via polytopes

6.1 Introduction

This chapter is based on joint work with Shuhong Gao and Alan Lauder [2]. As mentioned in
Chapter 1, factoring multivariate polynomials is a fundamental problem in all major computer
algebra systems. There is an extensive literature on this problem — we refer the reader to
the references in [23, 44, 52, 63, 75, 78, 88, 89, 90, 101, 131, 130]. Most of these papers deal
with dense polynomials, two notable exceptions being [52, 78]. These two papers reduce sparse
polynomials with more than two variables to bivariate or univariate polynomials which are then
treated as dense polynomials. It is still open whether there is an efficient algorithm for factoring
sparse bivariate or univariate polynomials. The goal in this chapter is to study sparse bivariate
polynomials using their connection to integral polytopes.

Newton polytopes of multivariate polynomials reflect to a certain extent the sparsity of
polynomials and they carry a lot of information about the factorisation patterns of polynomials
as demonstrated in the recent work of Gao [43] and Gao and Lauder [45]. In this chapter the
focus is on the more difficult problem of factoring sparse polynomials. We do not solve this
problem completely. However, our approach is a practical new method which generalises Hensel
lifting; its running time will in general improve upon that of Hensel lifting and sparse bivariate
polynomials can often be processed significantly more quickly. As with Hensel lifting, it has an
exponential worst-case running time. Also, our method does not work for all polynomials, but
only for those that are square-free on certain subsets of the edges of their Newton polytopes (see
Theorem 6.6.1).

In Section 6.2 we present a brief introduction to Newton polytopes and their relation to
multivariate polynomials, and in Section 6.3 we state the central problem. Section 6.4 contains
an outline of our method, and highlights the theoretical problems we need to address. The
main theorem underpinning our method is proved in Section 6.6, after a key geometric lemma in
Section 6.5. Section 6.8 contains a detailed description of the algorithm. Finally in Section 6.9
we present a small example, as well as details of our computer implementation of the algorithm.

6.2 Newton polytopes and Ostrowski’s theorem

This chapter considers polynomial factorisation over a field F of arbitrary characteristic. We
denote by N the non-negative integers, and Z, Q and R the integers, rationals and reals. For
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an earlier introduction on polytopes and polynomials we refer the reader to chapter 3.
Let F[ X1, Xo,...,X,] be the ring of polynomials in n variables over the field F. We recall
the motivating theorem behind our investigation:

Theorem 6.2.1 (Ostrowski) Let f,g,h € F[X1,... ,X,]. If f = gh then Newt(f) = Newt(g)+
Newt(h).

An immediate result of this theorem relates to testing polynomial irreducibility: In the
simplest case in which the polytope does not decompose, one immediately deduces that the
polynomial must be irreducible. This was explored in [43, 45, 47]. In this chapter, we address
the more difficult problem: Given a decomposition of the polytope, how can we recover a
factorisation of the polynomial whose factors have Newton polytopes of that shape, or show
that one does not exist?

In the remainder of this chapter, we restrict our attention to bivariate polynomials, and f
always denotes a bivariate polynomial in the ring F[z,y]. For e = (e1, e2) € N, we redefine the
notation X¢ to mean z¢y°2.

6.3 Extending partial factorisations

Let Newt(f) = Q + R be a decomposition of the Newton polytope of f into integral polygons in
the first quadrant. For each lattice point ¢ € ) and r € R we introduce indeterminates g, and
hy. The polynomials g and h are then defined as

g = Xueq9qX?
hoi= Y,cphe X"

We call g and h the generic polynomials given by the decomposition Newt(f) = Q@ + R. Let
#Newt(f) denote the number of lattice points in Newt(f). The equation f = gh defines a
system of #Newt(f) quadratic equations in the coefficient indeterminates obtained by equating
coefficients of each monomial X¢ with e € Newt(f) on both sides. The aim is to find an efficient
method of solving these equations for field elements. Our approach, motivated by Hensel lifting,
is to assume that, along with the decomposition of the Newton polytope, we are given appropriate
factorisations of the polynomials defined along its edges. This “boundary factorisation” of the
polynomial is then “lifted” into the Newton polytope, and the coefficients of the possible factors
g and h revealed in successive layers. Unfortunately, to describe the algorithm properly we
shall need a considerable number of elementary definitions — the reader may find the figures in
Section 6.9.1 useful in absorbing them all.

Let S be a subset of Newt(f). An S-partial factorisation of f is a specialisation of a subset of
the indeterminates g, and h, such that for each lattice point s € S the coefficients of monomials
X* in the polynomials gh and f are equal field elements. (A specialisation is just a substitution of
field elements in place of indeterminates.) The case S = Newt(f) is equivalent to a factorisation
of f in the traditional sense, and we will call this a full factorisation. Now suppose we have
an S-partial factorisation and an S’-partial factorisation. Suppose further S C S’ and the
indeterminates specialised in the S-partial factorisation have been specialised to the same field
elements as the corresponding ones in the S’-partial factorisation. Then we say the S’-partial
factorisation eztends the S-partial factorisation. We call this extension proper if S’ has strictly
more lattice points than S.
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Let Edge(f) denote the set of all edges of Newt(f). Each edge 6 € Edge(f) is viewed as
directed so that Newt(f) lies on the left hand side of the edge, and this directed edge can
be defined by an affine function ¢ as follows. Suppose the edge ¢ is from (u1,v1) to (ug,v9),
vertices with integral coordinates; (u1,v1) is called the starting vertex of the edge. Let d =
ged(ug — up, v — v1), ug = (u2 — u1)/d, and vg = (va — v1)/d. Then (ug,vy) represents the
direction of § and the integral points on § are of the form

(ul,Ul)-l'i(Uo,Uo), 1 € 7.

Assuming the Euclidean plane is endowed with an orthonormal system of coordinates, let
(v1,19) := (—wvo,up) be a rotation of (ug,vy) by 90 degrees counter clockwise. For any edge
d of Newt(f), all integral points of Newt(f) lying on the left hand side of § are of the form

(u1,v1) + i(ug,v0) + j(—vo,up), for some integers j > 0,4 € Z.
Let n = vouy — ugvy. Define
l(e) =vieg +moes +1n, for e = (e1,eq) € R2.

Then ¢ has the property that £(e) > 0 for each point e € Newt(f), with the equation holding
iff e € 4, that is, Newt(f) lies in the positive side of the line £ = 0. We call this function £ the
primitive affine function associated with 0, denoted by £5.

The function /5 has another nice property: Since ged (v, v2) = 1, there exist integers (; and
(3 such that (11 + (s = 1, and they are unique under the requirement that 0 < (o < v.
Define the change of variables

z:= 2"y ¥ and w = 2%y, (6.1)

Then any monomial of the form zy®? can be written as ¢y = 2" w"2, where

)= ().
()= (2 &) ()

This change of variables has the nice property that when (e, es) moves along the direction
(ug,vg) of the edge d, then the exponent of w remains constant (as io = £5(e1,e2) — 1), while
the exponent of z strictly increases (by 1 = (oug — (1vg for each increment of (ug,vg)).

For each 0 € Edge(f), there exists a unique pair of faces (either edges or vertices) ¢’ and ¢"”
of Q and R, respectively, such that § = § + 6", and the lines supporting the edges §,d" and §”
are parallel (see [36] for instance). One can also show that there exists a unique integer cs such
that

Its inverse transform is

o' {e€ Q| ls(e) = cs}
8" = {e€ R|ls(e) =—cs + 1}
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where 7 is the constant coefficient of /5. In particular, let ¢5 be the unique positive integer such
that

§ = {reQ|ls(r) =cs}

For any r” € 0", we know that v/ = r — ¢/ for some r € § and v’ € §'. Write r = ' + 7" for
r' = (r,rh) € 0" and r"" = (r{,rl]) € §". Then

ls(r) = vi(ry +77) +va(ry +r5) +1n
nry + varh + vir! + verl + 1
Is(r") + vir] + vord

= c¢5+uir! +wrl.

But I5(r) = 0, and so
nr] +wvarf+n=n—cs
which gives I5(r") = n — ¢5. We then have
8" = {reR|ls(r) =—cs +n}.
Let T' C Edge(f), and let K = (k,)~er be a vector of positive integers labelled by I'. Define
Newt(f)|r,x := {e € Newt(f)|0 <I,(e) <k, for some y € I'}..

This defines a strip along the interior of Newt(f), or a union of such strips.
We denote by Q|r,x and R|p k the subsets of @ and R respectively given by

Qlr,k = {e€Q|0<Is(e) < ks+ cs for some § € T'}
Rirx = {e€ R|0<Is(e) < ks —cs + n for some § € T'}.

Once again these denote strips along the inside of  and R whose sum contains the strip
Newt(f)|r,x in Newt(f).
We now come to the main definition of this section.

Definition 6.3.1 A Newt(f)|r k-factorisation is called a (I', K;Q, R)-factorisation if the fol-
lowing two properties hold:

o FEzactly the indeterminate coefficients of g and h indezed by lattice points in Q|r x and
R|r K, respectively, have been specialised.

o Let K' = (k)yer be a vector of positive integers with ki, > k. for all v € T, with the
inequality strict for at least one v. Then not all of the indeterminate coefficients of g
indexed by lattice points in Q|r k' have been specialised.

The second property will be used only once, in the proof of Lemma 6.6.1.

In most instances @), R and I' will be clear from the context. If so we will omit them and
refer simply to a K-factorisation. Furthermore, if K is the all ones vector, denoted (1), of the
appropriate length indexed by elements of some set I', then we call this a (I'; Q, R)-boundary
factorisation. We shall simplify this to partial boundary factorisation or (1)-factorisation when
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I', @ and R are evident from the context. This special case will be the “lifting off” point for our
algorithm.
The central problem we address is

Problem 6.3.1 Let f € F[x,y] have Newton polytope Newt(f) and fix a Minkowski decom-
position Newt(f) = @ + R where @ and R are integral polygons in the first quadrant. Suppose
we have been given a (T'; @, R)-boundary factorisation of f for some set I' C Edge(f). Construct
a full factorisation of f which extends it, or show that one does not exist.

Moreover, one wishes to solve the problem in time bounded by a small polynomial function
of #Newt(f).

6.4 The polytope method

6.4.1 An outline of the method

We now give a basic sketch of our polytope factorisation method for bivariate polynomials.
Throughout this section I' will be a fixed subset of Edge(f) and Newt(f) = Q + R a fixed
decomposition. We shall need to place certain conditions on I" later on, but for the time being
we will ignore them. Since I', () and R are fixed we shall use our abbreviated notation when
discussing partial factorisations.

We begin with K = (1) the all-ones vector of the appropriate length and a K-factorisation
(partial boundary factorisation). Recall this is a partial factorisation in which exactly the
coefficients in the sets Q|r,x and R|r ik, subsets of points on the boundaries of ) and R, have
been specialised.

At each step of the algorithm we either show that no full factorisation of f exists which
extends this partial factorisation, and halt, or that at most one can exist, and we find a new
K'-factorisation with K’ = (kj) such that

> k5> ks

oer oer

(Usually the sum will be incremented by just one.) Iterating this procedure either we halt after
some step, in which case we know that no factorisation of f exists which extends the original
partial boundary factorisation, or we eventually have Newt(f) C Newt(f)|r x, for the updated
K (or just @ C Q|r,x or R C R|r i will do). At that point all of the indeterminates in our
partial factors have been specialised, and we may check to see if we have found a pair of factors
by multiplication. (In the case, say, that just () C Q|r x we only know that the partial factor g
has all of its coefficients specialised, so we may use division to see if this is a factor.)

Note that in the situation in which Newt(f) is just a triangle with vertices (0,n),(n,0)
and (0,0) for some n, our method reduces to the standard Hensel lifting method for bivariate
polynomial factorisation. As such, our “polytope method” is a natural generalisation of Hensel
lifting from the case of “generic” dense polynomials to arbitrary, possibly sparse, polynomials.

6.4.2 Hensel lifting equations

In this section we derive the basic equations which are used in our algorithm.
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For any § € Edge(f) recall that l5 is the associated normalised affine functional. For 7 > 0
we define

f{s = Z a. X,

Is(e)=i

Thus fi‘s is just the polynomial obtained from f by removing all terms whose exponents do not
lie on the “ith translate of the supporting line of ¢ into the polytope Newt(f)”. We call the
polynomials fg edge polynomials.

Given the decomposition Newt(f) = Q + R let ¢’ and §" denote the unique faces of @ and
R which sum to give d. As before assume I5(8') = ¢5 and I5(6") = —cs + 1. Let g and h denote
generic polynomials with respect to @ and R. For ¢ > 0 define

9 = Yo gXe

qeQ,ls (Q)205+7'

Bl = > he X"

reR,ls(r)=—cs+n+i

Once again gf and hf are obtained from g and h by considering only those terms which lie on
particular lines. The next result is elementary but fundamental.

Lemma 6.4.1 Let f € Flx,y| and Newt(f) = Q + R be an integral decomposition with cor-
responding generic polynomials g and h. Let Edge(f) denote the set of edges of Newt(f) and
d € Edge(f). The system of equations in the coefficient indeterminates of g and h defined by
equating monomials on both sides of the equality f = gh has the same solutions as the system
of equations defined by the following:

78 =gond, and gdhd + high = Zg _j for k> 1. (6.2)

Thus any specialisation of coefficient indeterminates which is a solution of equations (6.2) will
give a full factorisation of f.

Proof: In the equation f = gh gather together on each side all monomials whose exponent
vectors lie on the same translate of the line supporting §. We then have fo = g5 h‘S and

o= Yol fork>1
= ghhy + 2252 1g5h‘5 -+ higy

or that
gond + high = Zg ; fork>1,

where a sum over the empty set is understood to be zero.

These are precisely the equations which are used in Hensel lifting to try and reduce the non-
linear problem of selecting a specialisation of the coefficients of g and h to give a factorisation
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of f, to a sequence of linear systems which may be recursively solved. We recall precisely how
this is done, as our method is a generalisation.

We begin with a specialisation of the coefficients in the polynomials gg and hg which yields
a full factorisation of the polynomial fJ. Equation (6.2) with & = 1 gives a linear system for
the indeterminate coefficients of g0 and hJ. In the special case in which standard Hensel lifting
applies this system may be solved uniquely, and thus a unique partial factorisation of f is defined
which extends the original one. This process is iterated for £ > 1 until all the indeterminate
coefficients in one of the generic polynomials have been specialised, at which stage one checks
whether a factor has been found by division.

The problem with this method is that in general there may not be a unique solution to
each of the linear systems encountered. There will be a unique solution in the dense bivariate
case mentioned at the end of 6.4.1, subject to a certain coprimality condition. General bivariate
polynomials may be reduced to ones of this form by randomisation, but the substitutions involved
destroy the sparsity of the polynomial. Our approach avoids this problem, although again is not
universal in its applicability. As explained earlier, our method extends a special kind of partial
boundary factorisation of f, rather than just the factorisation of one of its edges. In this way
uniqueness in the bivariate case is restored.

6.5 A geometric lemma

This section contains a geometric lemma which ensures our method can proceed in a unique way
at each step provided we start with a special type of partial boundary factorisation. We begin
with a key definition.

Definition 6.5.1 Let A be a set of edges of a polygon P in R? and r a vector in R*. We say
that A dominates P in direction r if the following two properties hold:

o P is contained in the Minkowski sum of the set A and the infinite line segment rR>q (the
positive hull of r). Call this sum Mink(A,r).

e Each of the two infinite edges of Mink(A,r) contains exactly one point of P.

Thus Mink(A,r) comprises a region bounded by the interior strip between its two infinite
edges and all edges in A. This definition is illustrated in Figure 1 where A consists of all the
bold edges on the boundary indicated by T'.

We will call A an irredundant dominating set if there exists a vector r € R? such that A
dominates P in direction r and no two edges e;, e; in A, for ¢ # j, are such that

TR>O +e; C ’I"R>O + e;.

The edges in an irredundant dominating set are necessarily connected.
The next lemma is at the heart of our algorithm.

Lemma 6.5.1 Let P be an integral polygon and A an irredundant dominating set of edges of
P. Suppose A1 is a polygonal line segment in P such that each edge of Ay is parallel to some
edge of A. If Ay is different from A then A has at least one edge that has strictly more lattice
points than the corresponding edge of A;.
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Figure 1: Dominating set of edges

The lemma is illustrated in Figure 1, where T' denotes the union of the edges in A and T}
the union of the line segments in A;.

Before proving this lemma we make one more definition. We define a map m, onto the
orthogonal complement () := {s € R?|(s-r) = 0} of the vector r as follows:

(V) =v — (u) T
rer

We call this projection by r, and we have that m,.(P) = m.(A). To see this, it suffices to show
that 7, (v) € m.(A) for any v € P. Since P is contained in Mink(A,r), we can write v = r + A
for some point A € A. Then

m(v) = m(r+A)
— (rN) - ((r-l—)\).r) -

r.r

r.r r.r

)\—(M)r

r.r
= 71'1"()‘)
from which one concludes that m,.(P) C m,(A).

Now, notice that if e; and ey are edges in an irredundant dominating set, then the length
of the projection by r of the polygonal line segment ejes is just the sum of the lengths of
the projections by r of the individual edges e; and es. For otherwise, we would have, say,
mr(e1) € mr(e2) and hence rR>o + e; € 7R + ez, a contradiction, since e; and ez belong to
an irredundant dominating set. The same is true if we replace e; and es by any line segments
parallel to them — we still obtain an “additivity” in the lengths, which shall be used in the
proof of the lemma.

Proof: We assume that A dominates P in the direction r as shown in Figure 1. Let d,--- , dg
be the edges in A and §7,--- , 0}, the corresponding edges of A;. Let n; be the number of lattice
points on §;, and m; that on 0}, 1 <4 < k. We want to show that n; > m; for at least one i,
1 <4 < k. Suppose otherwise, namely

n; S mg;, 1 S 1 S k. (6.3)
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We derive a contradiction by considering the lengths of A and A on the projection by m,. Note
that if m; = 0 for some 4 then certainly n; > m; and we are done; thus we may assume that
m; > 1 for all 3.

First, certainly m(A;) C 7(A) as A is a dominating set. Since A; is different from A, their
corresponding end points must not coincide. Hence at least one end point of Ay will not be on
the infinite edges in the direction r. Hence m,(A;) lies completely inside 7,(A), so has length
strictly shorter than m,(A).

Now for 1 < i < k let ¢; be the length of the projection of a primitive line segment on d;
(which means that the line segment has both end points on lattice points but no lattice points
in between). Certainly ¢; > 0. Since the end points of §; are lattice points, the length of 7, (d;)
is exactly (n; — 1)¢; for 1 <4 < k, hence m,.(A) has length Zle(m — 1)¢;. (Here we need the
fact that the dominating set is irredundant, to give us the necessary “additivity” in the lengths.)
For 4}, since it is parallel to d;, the projected length of a primitive line segment on it is also ¢;.
Hence the length of 7,(A1) is at least Zle(mi — 1)¢; and from (6.3) we know that

k

k
Z(mz —1)e; > Z(nz — 1e;.
=1

=1

This contradicts our previous observation that (A1) is strictly shorter than 7, (A). The lemma
is proved.

6.5.1 On identifying irredundant dominating sets

Before concluding this section we describe an algorithm for identifying all possible irredundant
dominating sets of the polygon. This is preceded by some results which we present as follows:

Lemma 6.5.2 Let P denote a convex polygon with m wvertices in R? ordered cyclically around
a chosen pivot vy in a counter-clockwise direction. Let v;_1,v;, and viy1, for i > 1, denote any
three consecutive vertices, and let v denote an arbitrary point in R? different from v;_1,v;, and
vir1. Then the line (v;v) cuts P only at v; if and only if it does not lie in the angular sector
defined by the two vectors (v;vi—1) and (vivit1).

Proof: First, note that, since P is convex, the line segment joining v; 1 to v;11 is completely
lying in P. Suppose that (v;v) lies in the sector defined by the angle (v;v;—1,v;v;11). Then (v;v)
will necessarily intersect the line segment [v;_1v;41] at a point of P different from v;. Conversely,
suppose that (v;v) intersects P at a point v" different from v;. By convexity of P, an arbitrary
point of the plane is interior to P if and only if it lies to the left of the line supporting every
directed edge of P. As a result, v’ is to the left of the lines supporting e; and e;1, where
e; = v; —vij—1 and e;11 = v;11 — v;. Hence, the line (v;v) lies in the angular sector defined above.

Now, let v;—1,v;,v;+1 and v be as defined in Lemma 6.5.2. Let the range of admissible slopes
of v;, denoted by admiss(i), represent the union of all possible slopes of lines (v;v) such that
(v;v) does not intersect the angular sector defined by (v;v;—1,v;vi11).

Lemma 6.5.3 Let P be a polygon with m vertices in R? and let A denote a set of consecutive
edges of P connecting (either in the clockwise or counterclockwise direction) any two vertices v;
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and vj, fori,j =0,..,m —1, and i < j. Then A is an set of dominating facets if and only if
admiss(i) N admiss(j) # 0.

Proof:

1. Suppose that admiss(i) N admiss(j) # 0 and no two edges in A are parallel. Let a be an
element of the intersection. We can then construct two parallel lines r; and r; passing
through v; and v; respectively and having slope equal to a. Consider Mink(A,r), where
r is a vector in R? having the direction of the parallel lines. As such, each of the two
infinite edges of Mink(A,r) contains exactly one point of A. To show that P is contained
in Mink(A,r), it suffices to show that all vertices v, for K = j + 1,...,m — 1, belong to
Mink(A, 7). Suppose there is one such vertex vy not in the Minkowski sum. Then vy, lies
outside the interior strip bounded by r; and r;. But this implies that either segment [v;vy]
will intersect r; in a point v' # v;, vy or [vjvx] will intersect r; in a point v” # v, vj. Since
P is convex, v or v" is contained in P, a contradiction, by Lemma 6.5.2 and the fact that
r; and r; have admissible slopes.

2. Proof of the converse is immediate by noting that, since A is a set of dominating facets
connected by the two vertices v; and v;, we can construct two parallel lines r; and r;
through v; and v; respectively such that P is contained in Mink(A, ), where r is a vector
in R? having the direction of the two parallel lines, and each of the two infinite edges of
Mink(A,r) contains exactly one point of P, which implies that admiss(i) Nadmiss(j) # 0.

The algorithm for finding all possible irredundant sets of dominating edges can now be stated
as follows

Algorithm 6.5.1 Input: A polygon P in R? with m vertices v, for k=0,...,m—1.

Output: The collection D of all irredundant sets of dominating edges of P, in the form {(i,j,d)},
fori,j =0,...,m—1andi < j, where v; and v; are the first and last vertices to appear in any set
of dominating edges, and d is the direction (clockwise or counterclockwise) of the path connecting
the two vertices.

Step 1: S < 0, num_sets < 0.
Step 2: Fori=0,....m — 1 determine admiss(i) using Lemma 6.5.2 above.

Step 8: Fori=0,....m —1 do
Forj=44+1,....m—1do
If admiss(i) N admiss(j) # 0:
Set S <+ SU{(i,7)}, Tnum._sets < admiss(i) N admiss(j),
and num_sets < num_sets + 1.

Step 4: Repeat Steps 4.1-4.3 for d = clockwise and d = counterclockwise:
4.1: Consider the num_sets dominating sets found so far.
For k=0,...,num_sets — 1 do
Forh=Fk+1,...,num_sets — 1
If I, = I, and either the directed dominating set of index h is a subset of the
directed dominating set of index k or the converse is true:
Mark the larger set for deletion from S.
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4.2: Choose only the unmarked sets in S of the form (i,7) and store (i,7,d) in D.
4.3: Unmark all sets in S.

Step 5: Return D.

Proposition 6.5.1 Algorithm 6.5.1 works correctly as specified and requires O(m?) arithmetic
operations, where m is the number of vertices of the polygon P.

Proof: That Steps 1-3 above produce all sets of dominating edges is a direct consequence of
Lemma 6.5.3. Note that for a fixed pair of vertices (4, 7), both the clockwise and counterclockwise
paths of edges connecting them are dominating. In Step 4, we sort all such sets in order to keep
only the irredundant ones. The sorting rule is as follows. Suppose for instance that we are
given two dominating sets (i1,71) and (i2,72) such that the clockwise path of edges connecting
i1 to ji, say, is a subset of the clockwise path connecting is to jo. For (is, j2, clockwise) to be
irredundant, one must be able to find at least one direction r € R? such that P can be embedded
in a strip along the direction of r using (72, j2, d) as a dominating set, but not (i1, ji,d). This can
happen only when I; # I, where I} = admiss(i;) Nadmiss(j;) and I» = admiss(i2) Nadmiss(ja).
The same argument can be repeated for the counterclockwise direction along which the paths
are considered.

The cost can be easily established by noting the following. The loops in Step 3 iterate O(m?)
times in total, producing O(m?) dominating sets. These are then sorted in Step 4, where the
two loops iterate O((m?)?) times in total. All operations in the above algorithm require only
arithmetic operations for calculating and comparing slopes as well as intersection of rational sets.
We will see in Chapter 7 how the latter intersections can be made to involve strictly integral
values.

6.6 The main theorem

Let T be an irredundant dominating set of Newt(f). We call a (T'; @, R)-boundary factorisation
of f a dominating edges factorisation relative to I',QQ and R. A coprime dominating edges
factorisation is a (T'; Q, R)-boundary factorisation with the property that for each § € T' the edge
polynomials gg and hg are coprime as Laurent polynomials (see Definition 2.1.14 of Chapter 2),
up to monomial factors.

We are now ready to state our main theoretical result.

Theorem 6.6.1 Let f € F[z,y] and Newt(f) = Q + R be a fizred Minkowski decomposition,
where @ and R are integral polygons in the first quadrant. Let T’ be an irredundant dominating
set of Newt(f) in direction r, and assume that Q is not a single point or a line segment parallel
to rR>q. For any coprime dominating edges factorisation of f relative to T',Q and R, there
exists at most one full factorisation of f which extends it, and moreover this full factorisation
may be found or shown not to exist in time polynomial in #Newt(f).

We shall prove this theorem inductively through the next two lemmas.

Lemma 6.6.1 Let f,Q, R and I" be as in the statement of Theorem 6.6.1. Suppose we are given
a K -factorisation of f, where K = (kg)scr (more specifically, o (T, K; Q, R)-factorisation). For
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each § € T, denote by &' the face of Q supported by ls —cs. There exists § € T with the following
properties

o The face 0' is an edge (rather than a vertez).

e The number of unspecialised coefficients of 91(35 s nonzero but strictly less than the number
of integral points on §'.

o All the unspecialised terms of 925 have exponents being consecutive integral points on the

line defined by ls = (c5 + ks).
Proof: Let Q be the polygon
Q ={r e Q|ls(r) >cs+ksforall 6 € T'}.

Note that the lattice points in Q) correspond to unspecialised coefficients of ¢g. Let A denote the
set of edges 0 € I" of Newt(f) such that the functional £5 — c5 supports an edge of @ (rather
than just a vertex). Note that A # (), for otherwise Q must be a single point or a line segment
in direction r, contradicting our assumption. We denote the edge by §’, and write § for the face
of Q supported by £5 — (cs + k;). Note that each § contains at least one lattice point. (This
follows from the second property in Definition 6.3.1.) Certainly, § is parallel to §' for each § € A,
and the edge sequence {0}scy, forms a polygonal line segment in Q. Since T is an irredundant
dominating set for Newt(f), the set of edges {§'}sca is an irredundant dominating set for Q.
By Lemma 6.5.1, there is at least one edge § € A, such that §’ has strictly more lattice points
than 6. This edge 6 has the required properties. This completes the proof.

Lemma 6.6.2 Let f,Q,R and I' be as in the statement of Theorem 6.6.1. Suppose we are
given a K-factorisation of f, where K = (kg)scr. Moreover, assume this factorisation extends
a coprime dominating edges factorisation, i.e., the polynomials gg and hg are coprime up to
monomial factors for all 6 € I'. Then there exists § € I' such that the coefficients of g,‘zs are not
all specialised, but they may be specialised in at most one way consistent with equations (6.2).
This specialisation may be computed in time polynomial in #Newt(f).

Proof: The basic idea of the proof is to first transform the bivariate equation (6.2) into
equations of univariate polynomials determined by the individual edges, then to determine the
existence or uniqueness of solutions.

Select § € T such that the properties in Lemma 6.6.1 hold. Let ns and mg be the number of
integral points on the edges ¢’ and ¢ respectively, where ¢’ and § are defined as in the proof of
Lemma 6.6.1. Thus we have ms < ng and mgs > 1. With the notation from Section 6.3, write
l5(eq1,ea) = vier + vaey + 1, where vy and vy are coprime.

Let z and w be new variables. Using the transform (6.1), any monomial of the form x4y
can be written as

Ty° = 2w (6.4)
where
i1 = e1la — ex(1, io = e1vy + eavp = Ls(er, e2) — 1.
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Every monomial in ¢! is of the form z¢1y®2 where £5(e1, €2) = cs+i. Let the monomials s and ¢ be
the terms of g and h respectively whose exponents vectors are the starting vertices of the faces of
Q@ and R defined by £5—cs and £5+cs—n, respectively. Thus we have g?(z, w) = sw*G;(z) for some
univariate Laurent polynomial G;(z). Similarly hl(z,w) = tw'H;(z) and f{(z,w) = stw'F;(2),
where H;(z) and Fj(z) are univariate Laurent polynomials. With this construction, Go(z), Hy(z)
and Fj(z) have nonzero constant term and are “ordinary polynomials”, i.e., contain no negative
powers of z. For i < kj all of the coefficients in the polynomials G;(z) and H;(z) have been
specialised. Moreover G(2) is of degree ns, and all but m; of the coefficients of G (z) have been
specialised. Equations (6.2) with this change of variables may be written as Fy(2) = Go(z)Hy(z2),
and for k£ >1

k-1

G(2)Ho(2) + Go(2) Hi(2) = Fio(2) — 3 G(2) Hi—(2).
j=1

We know that all of the coefficients of G;(z) and H;(z) have been specialised for 0 < i < kj in
such a way as to give a solution to Fy = GogHy and the first k5 — 1 equations above. Thus we
need to try and solve

ks—1
Gk5H0 + GOH’CS = st — Z GijJ*j' (65)
=1

for the unspecialised indeterminate coefficients of G, and Hy,.
We first compute using Euclid’s algorithm ordinary polynomials U(z) and V(z) such that

where deg,(U(z)) < deg,(Ho(z)) and deg,(V (z)) < deg,(Go(2)). (Note that Go(z) and Hy(z)
are coprime since we have a coprime partial boundary factorisation.) Any solution Gy, of
Equation (6.5) must be of the form

ks—1
Gy = {V(Fr, — Y GjHp, ;) mod Go} + Gy (6.6)
j=1

for some Laurent polynomial ¢(z) with undetermined coefficients.
We rearrange (6.6) as

ks—1
Gkg —_ {V(st — Z Gij5—]) mod G[]} = €G0 (67)
7j=1

Let the degree in z of the Laurent polynomial on the left hand side of this equation be d. Now
the degree of the polynomial Gy(z) as a Laurent polynomial (and an ordinary polynomial) is
ng—1. If d < ny—1 then we must have d = 0. In other words, (6.6) has a unique solution, namely
that with e = 0. Otherwise d > ns — 1 and the degree in z of £(z) as a Laurent polynomial is
d — (ng — 1). Hence in this case we need to also solve for the d — ns + 2 unknown coefficients
of £(z). We know that all but m; coefficients of G}; have already been specialised, and these
unspecialised ones are adjacent terms. Hence exactly (d 4+ 1) — my coefficients on the left hand
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side of (6.7) have been specialised, which are adjacent lowest and highest terms. By assumption
we have that ms < ng, and hence (d +1) —mg > d —ng + 2.

All of the coefficients of the right hand side of Equation (6.7) have been specialised, except
those of the unknown polynomial £(z). On the left hand side all but the middle my coefficients
have been specialised. This defines a pair of triangular systems from which one can either
solve for the coefficients of ¢ uniquely, or show that no solution exists (this may happen when
ng > mg+1). We describe precisely how this is done: Suppose that exactly r of the lowest terms
on the left hand side have been specialised, and hence also (d + 1) — (mgs + r) of the highest
terms. We can solve uniquely for the r lowest terms of £(z) using the triangular system defined
by considering coefficients of the powers 2%, 20! ... 277=1 on both sides of Equation (6.6),
where 2z is the lowest monomial occurring on the left hand side. One may also solve for the
coefficients of the (d + 1) — (mg + r) highest powers uniquely using a similar triangular system.
(Note that to ensure the triangular systems each have unique solutions we use here the fact that
the constant term of G is nonzero, and the polynomial is of degree exactly ns — 1.) Noticing
that (d+ 1) — (mg+7r)+7r = (d+1—mg) > d — nsg + 2, we see that all the coefficients of ¢
have been accounted for. However, if d + 1 —mgs > d —ns + 2 (i.e. ng > mg + 1) there will be
some “overlap”, and the two triangular systems might not have a common solution. In this case
there can be no solution to the Equation (6.6). If an £(z) does exist which satisfies Equation
(6.7) then the remaining coefficients of G, can now be computed uniquely. Having computed
the only possible solution of (6.6) for G}, we can substitute this into Equation (6.5) and recover
Hy; directly. More precisely compute

(Fiy — 00" G Hy,y—5) — Gy Ho
Gy '

(6.8)

If its coefficients match with the known coefficients of Hj; then we have successfully extended
the partial factorisation; otherwise we know no extension exists.

These computations can be done in time quadratic in the degree of the largest polynomial
occurring in the above equations. Since all polynomials are Newton polytopes which are line
segments lying within Newt(f) this is certainly quadratic in #Newt(f). (In fact, the running
time is most closely related to the length of the side ns from which we are performing the lifting
step. We shall show in Chapter 8 that this number is of the order O(n), where n = deg(f).)
This completes the proof.

Theorem 6.6.1 may now be proved in a straightforward manner: Specifically, one first shows
that for any partial factorisation extending a coprime dominating edges factorisation, there exists
at most one full factorisation extending it, and this may be efficiently found. This is proved by
induction on the number of unspecialised coefficients in the partial factorisation using Lemma
6.6.2. Theorem 6.6.1 then follows easily as a special case.

6.7 On long division with remainder of Laurent polynomials

In this section we discuss in some detail how to perform long division with remainder for Laurent
polynomials. The set of all such polynomials forms a commutative ring R[z, z ], where division
with remainder between two Laurent polynomials is possible; however, this division is not a
unique operation [30]. Given two Laurent polynomials, say a(z) and b(z) # 0, there always exists
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a Laurent polynomial ¢(z) and a Laurent polynomial r(z) so that r(z) = a(z) — b(2)q(z) and
deg(r(z)) < deg(b(z)). Assuch, r(z) consists of deg(b(z)) terms or less (where some of the middle
terms can be zero), and hence b(z)q(z) has to match a(2) in at least deg(a(z)) — deg(b(z)) + 1
terms. However, since the remainder is also a Laurent polynomial, there exists more than one
choice for the integer pair (i,7) such that

J

r(z) =Yy 2,

k=i
where j — i1 = deg(r(z)). As a result, we are free to choose the matching terms of a(z) and
b(z)q(z) in the beginning, the end, or divided between the beginning and the end of a(z). For
each choice of terms, a corresponding long division algorithm exists.

Since division is not unique, this allows us to transform the modular operations in (6.7) to
that between two regular polynomials (see definition 2.1.16 in Chapter 2). We have seen earlier
that since GGy is an edge polynomial, it is a regular polynomial whose degree is equal to one plus
the number of integral points found on its corresponding edge. We can thus require that the
Laurent remainder be a strictly regular polynomial of degree less than that of Gy. As a result,
and to compute the quantity

ks—1
V(Fiy — Y GjHy, ;) mod Gy, (6.9)
j=1
where
ks—1
a(z) = V(Fy; — Z GiHg,—j)

is a Laurent polynomial, it suffices to rewrite a(z) = z27™reg(z), where —m is the lowest negative
exponent appearing in a(z), and to compute the inverse of z™ modulo Gy, called inv(z) (by
construction, we also know that GGy has a nonzero coefficient term, and hence is relatively prime
to 2™, which makes 2™ invertible modulo Gy, with inv(z) a regular polynomial). We then have
ks—1
V(Frs — Z GjHy;—j) mod Gy = inv(z).reg(z) mod Gy,
7=1
where the right hand side reduces to an ordinary modular operation over [ involving only regular
polynomials, and whose remainder, if nonzero, has degree less than deg(G)).
On the other hand, equation (6.8) requires that we compute the quotient of a Laurent
polynomial over Gg. Note that in this case
ks—1
[(Fs — Z G;Hys—;) — Gis Ho) mod Gy

should be zero; else, we know that no extension exists for the partial factorisation. The quotient
¢(z) can thus be found uniquely, by simply solving for ¢(z) in

ks—1
(Fjs — Z GiHy,_j) — Gr, Ho = q(2)Go.
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6.8 The algorithm
We now gather everything together and state our algorithm:

Algorithm 6.8.1 Input: A polynomial f € F[x,y] of total degree n, and a positive integer M.
Output: A factorisation of f or “failure” or “f is irreducible”.

Step 1: [Convex hull]
Compute a vertez-edge description of Newt(f) using a polygon convex hull algorithm. Let the
edges be 0y, ... ,0m—1, cyclically joining vertices vy, ... ,vm—1. So Edge(f) = {0;}.

Step 2: [Factor edge polynomials/
Compute a complete factorisation of all edge polynomials f3, § € Edge(f).

Step 3: [Admissible edge decompositions]

For each edge 6; € Edge(f) compute the set {mgl) |0<j < deg(fg")}, where mg-i) is the number

of monic factors of the edge polynomial fg" of degree j.

Step 4: [Dominating sets]
List all sets {T';} of square-free dominating facets of Newt(f) using algorithm 6.5.1. If there are
no such sets then fail.

Step 5: [Count coprime dominating facets factorisations]
For each set T';, count the number of coprime (I';; Q, R)-boundary factorisations, where Q and
R range over all integral decompositions of Newt(f).

Step 6: [Select a dominating set]
Select the dominating set I for which the number computed in Step 5 is minimal. If this number
is greater than M then fail.

Step 7: By repeatedly applying the method in the proof of Lemma 6.6.2, lift each coprime domi-
nating edges factorisation of f as far as possible. If any of these lift to a full factorisation output
this factorisation and halt. If none of them lifts to a full factorisation then output “irreducible”.

Proposition 6.8.1 Algorithm 6.8.1 outputs correctly.

Proof: The algorithm will always succeed when one finds a dominating set I' of Newt(f)
such that the polynomials fg, § € T, are all square-free (up to a monomial factor), provided we
take M “sufficiently large” (an upper bound on M is d™, where d is the maximum number of
integral points falling along any edge and m is the number of edges of Newt(f)). One might call
polynomials for which such sets exist nice. Suppose that the polynomial is reducible, and we have
a proper factorisation f = gh with corresponding non-trivial decomposition Newt(f) = Q + R.
This is a full factorisation extending a I'-boundary factorisation, which is necessarily coprime
by the assumption on I'. It will therefore be found during one of the liftings, by Theorem 6.6.1.

Prior to discussing the time complexity we shall discuss in details some of the steps above. In

the forthcoming discussion we shall treat [ as a finite field whose characteristic fits in a machine
word.
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Steps 1,2

Steps 1 and 2 can be classified as a pre-computation since they are performed only once for
each input polynomial. If s denotes the number of nonzero terms in f, the convex hull may
be computed in time O(slog(s)) (see [60]). Note that s < #(Newt(f)). Ignoring logarithmic
factors, Step 2 may be performed using a univariate factorisation algorithm over finite fields
in O(dM (d)) field operations, where d is the maximum degree of any of the edge polynomials.
Certainly d < #(Newt(f)).

Step 3

This is also another pre-computation step which is performed only once during the entire al-
gorithm. We refer the reader to the recursive counting Algorithm 7.3.4 of Chapter 7. Given a
univariate polynomial P(z) of degree d over [F and its canonical factorisation (not necessarily
square-free) into irreducibles, the algorithm returns the number of factors of P(z) of degree
k =1,...,d using O(d'*"h) bit operations, where h denotes the number of irreducible factors of
P(z). Obviously, h = O(d), although on average it is approximately logd [83, 84, 100].

Step 4

The maximum number of edges is certainly s, and thus one may easily find all suitable I' using
algorithm 6.5.1, which in this case requires O(s?) arithmetic operations.

Steps 5

For Step 5, one may use a modified version of the polygon summand counting algorithm in [45].
The modification needed is that one only considers summands of the polygon whose edges have
lengths matching the degrees of the known univariate factors of the edge polynomials. Also, one
counts two different factorisations of the edge polynomials on the dominating set separately even
if the decomposition of the polytope is the same in each case. It is easily seen that the algorithm
has running time polynomial in #(Newt(f)). More precisely the subroutine is as follows:

Algorithm 6.8.2 (Step 5) Input: The edge sequence {nlel}0<l<m 1 of the Newton polytope
of a bivariate polynomial, starting at verter vy where e; € Z? are primitive vectors (i.e. have
coprime znteger coordinates) and n; are positive integers, a set I’ of dominating facets of Newt(f),
and a set {m |1 <j <n;} of admissible edge decompositions lengths for each edge nje;.
Output: The number of coprime T'-boundary factorisations of Newt(f) and an array A. Each
cell in A contains a pair (u,S) where u is a non-negative integer and S is a subset of {(k,i) :
1<k<n;,0<i<m-—1}.

Step 5.1: Compute the set IP of all the integral points in Newt(f) (so vy € IP); say IP has
t(= #(Newt(f))) points. Initialize a t-array A indezxed by the points in IP. Set A_1[v] := (0, 0)
for all v € IP except the cell A_1[vo] which is set to (1,0).

Step 5.2: For i from 0 up to m — 1, compute the t-array A; from A;_1:

5.2.1 First copy the contents of all the cells of A;—1 into A; (this step is for k=0).
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5.2.2 For each v € IP with the first number of the cell A;_1[v] nonzero, and for each 0 < k < n;
for which mgj) > 0, if v = v+ ke; € IP then update the cell A;[v'] as follows: if (u1,S1) is
the value of A;—1[v] and (ug, S2) the current value of A;[v] then the new value of A;[v'] is
(u,So U{(k,7)}). Here we take u = ug + uy in the case nje; ¢ I' and u = ug + m,(j)ul in
the case nje; € T.

Step 5.3: Return the number u and the array A = A,,, where (u,S) is the content of cell
Amfl[’vg].

Proposition 6.8.2 The above algorithm works correctly, producing the total number of integral
summands in time polynomial in #(Newt(f)).

Proof: Correctness of the algorithm follows by a suitable modification of Theorem 18 in
[45]. By Lemma 13 of [45], the number of integral summands of Newt(f) corresponds to the
total number of closed paths ) ;.. ; kie;, such that k; # 0 for all ¢ and ky,—1 # np—1. We
shall show that this number is the integer stored in A,, 1[vg]. Since the length of an edge is
defined to be the number of integral points lying on it, which in turn corresponds to one plus
the degree of the edge polynomial associated with it, the condition mg) > 0 guarantees that
we count only those summands whose edges have lengths corresponding to degrees of “known”
univariate factors of the original edge polynomial in Newt(f). Now, as seen in the original proof,
we suppose that v = vy + kgeg + ... + k;e;, for any v € IP. We can then view the vector sum
as a path from vy to v, so that the number of such paths is equal to the sum of the number of
paths from vy to v — ke;, for 0 < k < n;, using eg, ..., e;_1. However, if we further know that n;e;
belongs to I', then for each & = 1,...,n;, we should count all possible factorisations of the edge
polynomial corresponding to the same edge, as indicated by the number of factors of degree k
of the edge n;e; polynomial. As a result, and for each admissible & = 1, ..., n;, the value of u in
A;[v] is incremented as follows: by the number of paths from vy to v — ke;, using eq, ..., e;—1, if
n;e; is not in I', or by m,(;) times this number, otherwise. The loops in the above process can be
easily seen to be of the order O(#(Newt(f)).md), where d is the maximum number of integral
points on any edge. The innermost loop computations involve updating the integer w through
integer addition and updating the set S through the set union operation. Since u requires an
upper bound of M < d™, its update has an upper bound of O(mlogd) bit operations. If we
further consider set union to require a single bit operation, the complexity of the above algorithm
becomes of the order O(#(Newt(f)).m?d), ignoring logarithmic factors.

Step 6

Having selected a dominating set, one can recover all coprime dominating facets factorisation
in the array output by Algorithm 6.8.2. We describe how one such factorisation can be found.
Suppose the cell Afvg] contains the pair (u,S). Choose any (k,i) € S. The line segment ke;
will be the “final edge” in our summand of Newt(f). Since by assumption mg) > 0, we can
also choose a factor gg" of the edge polynomial of §; which has degree k. This is the “final edge
polynomial” in our dominating facets factorisation. Let (u’, S") be the contents of cell A[vy—ke;].
Pick any (k',4') € S’ with ¢/ < 4. The line segment k’e; will be the “penultimate edge” in our
summand of Newt(f), and we can further choose a “penultimate edge polynomial” if n;e; € T.
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As our sequence of i’s is decreasing we shall eventually return to the cell A[vg]. At that point
we will have recovered one summand in a decomposition of Newt(f).

The complexity of the above process is M times the time required to find one dominating
facets factorisation, which is linear in the number of edges m. Certainly m = O(Newt(f)).

Step 7

Now one lifts each coprime dominating facets factorisation using the method described in Lemma
6.6.2. Using Theorem 6.6.1, lifting from each coprime dominating edges factorisation can be
done in time polynomial (in fact cubic) in d, which itself is bounded by Newt(f). However,
although one can find such a dominating edges factorisation efficiently, the number of them
may be exponential in the degree. In practice we recommend that a relative small number of
dominating edges factorisations are tried before the polynomial is randomised and one resorts
to other “dense polynomial” techniques.

Time complexity and comments

Proposition 6.8.3 Assuming Step 3 above is performed as a precomputation, Algorithm 6.8.1
halts in time polynomial in M and #(Newt(f)).

Proof: Steps 1, 2, 4, 5, and 6 are performed in time polynomial in #(Newt(f)). In Step 7
one performs at most M liftings. The result now follows using the estimates discussed above.

This algorithm should be compared with the standard method of factoring “nice” polyno-
mials using Hensel lifting [46]. Precisely, in the literature a bivariate polynomial of total degree
n which is square-free upon reduction modulo y is often called “nice”. The standard Hensel
lifting algorithm will factor “nice” bivariate polynomials, on average very quickly [46], although
in exponential time in the worst case. Notice that a “nice” polynomial would be one whose New-
ton polytope has “lower boundary” a single edge of length n which is square-free. The above
algorithm factors not just these polynomials, but also any polynomials which have a “square-free
dominating set”. In the case of a generic dense “nice” polynomial, it reduces to a modified form
of standard Hensel lifting. (The algorithm also includes as a special case that given in Wan
[128], where one “lifts downward” from the edge joining (n,0) and (0,n))

6.9 Examples and implementation

6.9.1 Example

Suppose we want to factor the following polynomial over [y

f — 3312 +$19 + (1710 -I-ZEH +$13)y + ($8 +$9 +$12 +$17)y2 +$7y3 + ($4 +$11)y4

+($2+$5+$10)y5+y6+$10y8+($8+$11)y9+$6y10+$9y12+$15y16

with Newton polytope pictured in Figure 2 where a star indicates a nonzero term of f.
Newt(f) is found to have three non-trivial decompositions, and eight irredundant dominating
sets. None of these sets have edge polynomials which are all square-free; however, fortunately
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Figure 2: Newton polytope of f
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Figure 3: Newton polytope @) of the generic polynomial g
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Figure 4: Newton polytope R of the generic polynomial h

we are still able to lift successfully from one of the coprime partial boundary factorisations.
Specifically, consider the decomposition Newt(f) = @ + R, where Q and R are the convex
hulls of the sets {(0,2),(4,0),(11,0),(9,8)} and {(0,4),(8,0),(6,8)} respectively (see Figures
3 and 4). The generic polynomials for this decomposition are as usual denoted g and h. The
dominating edges of Newt(f) which allow a coprime edge factorisation are given by

51 = conv{(0,6), (12,0)}, s = conv{(12,0), (19,0)}

and the corresponding edge polynomials are

651 — y6+x2y5+x4y4+x8y2+x10y1+x12
g2 = 212 4 419,

The coprime factors from which the lift begins are

ot =12+ 22y + ', A =yt 4 28
932 =zt + 2!, th =1

The lifting process is then initiated; Figures 3 and 4 help illustrate the process in that the
lines drawn in the interior of the polygons indicate the first few layers of coefficients which are
revealed during the lifting, and the lines in the interior of Newt(f) the known coefficients of f
which are used to do this. We recall some notation defined earlier in the chapter. For ¢ = 1 and
2, the normalised affine functional of §; is denoted I5,. In this case l5 (r1,72) = 11 + 2r9 — 12
and ls,(r1,72) = r2. The constants cs, such that [5, — ¢s5, defines a face of @ are ¢5, = —8 and
¢5, = 0 respectively.

We start then with a K-factorisation where K = (ks,,ks,) and ks, = ks, = 1. At this
stage, we would like to extend this partial factorisation to either a (2,1)-factorisation, or a
(1,2)-factorisation. By Lemma 6.6.2 we are guaranteed that it will be possible in at least one
of these two cases. (We shall borrow notation from the proof of Lemma 6.6.1 for the next few
paragraphs.) The polygon Q is that obtained from @ by moving the two lower facets “one step
in” as indicated in the diagram. Examining () we see that the edge supported by ls, — cs,,
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namely the line joining (4,0) and (11,0), has 8 integral points. The edge of Q supported by
ls, — (cs, + 1) (this is the line joining (3,1) and (10, 1)) also has eight integral points. Thus we
cannot lift from do. So Lemma, 6.6.2 assures us we must be able to lift from ;. Indeed, the edge
of Q supported by Is, — cs5, has three points, and the corresponding edge of @ only two points.

We now describe explicitly the first lifting step from d;. To simplify notation let §; be
replaced simply by §. We shall now also use notation from the proof of Lemma 6.6.2. We have
ls(r1,m9) = 171 + 1919 + 1 where vy = 1,19 = 2,p = —12. Also (11 + (ove = 1 where (; = 1 and
¢y = 0. Thus the change of variables is z := 2%y~ and w := 2'y". The monomials s and ¢ are
y? and y* respectively. Hence we have that ¢g§ = 4> +xy +2* = y?(1 + +(z%y™ 1) + (2%~ 1)?) =
sw’Go(z) where Go(z) = 1 + z + 22. Also, ¢ = g(1,2)azy2 + 9(3’1)5173’!/ + g(5,0)3:5 where the g; ;)
are indeterminates. The indeterminate g5 ) has already been specialised to the value 0 in our
partial factorisation. We thus have ¢} = swl(g(m) + 9(3,1)2), and so G1(2) = ga,2) + 9(3,1)%-
Similarly, Hy(z) = 1+ z* and Hqy(z) = haay + hagyz + h(5,2)z2 + h(7,1)z3; and Fy(z) =
L+z+224+ 20+ 25+ 25 Fi(z) = 23 + 2 + 25

The equation we shall use in the lifting step is

Go(2)H(y)(2) + G1(2)H (2) = Fi(2).
The polynomials U(z) and V(z) such that
U(2)Go(2) + V(2)Hy(2) = 1
are U(z) = 1+ 22 + 23 and V(z) = 2. Thus
G1(2) + (V(2)F1(2) mod Go(z)) = £(2)Go(2)

for some polynomial (z) = ¢y with undetermined coefficients. Now the second term on the left
hand side is just 0 and hence the degree of the left hand side as a Laurent polynomial is 1. This
is less than the degree of Gy, and so the only solution is that with ¢ = 0. Thus G1(z) = 0.

Fy — HiyGh
Go

= 23,

and we deduce that H(l)(z) = 22, Thus h(7’1) = 1 and h(1’4) = h(3’3) = h(5’2) = 0. This
completes the first lifting step.

At this stage one may continue to lift from §;, or alternatively start to lifting from ds.
The latter has the advantage that more coefficients will be revealed at each step; however, the
computations required involve higher degree polynomials and as such it may be preferable to
keep lifting from the shorter edge. We do this and next obtain a (3, 1)-factorisation of K, with
92,2) = 9a,1) = h(2,4) = h3) = h(s2) = 0. Notice that this lifting step is somewhat easier since
Fy — GlH(l) = 0 which again results in G5 = H(Q) = 0. One may continue lifting from d; to
obtain a (4, 1)-factorisation. In this we find g(5,) = 1 and g(32) = hz4) = hs3) = hr2) = 0.
At this stage lifting further from §; becomes impossible. Thus one must now lift from do to get
a (3,2)-factorisation. We explain briefly how this step is performed as it illustrates somewhat
the role of the triangular systems.

So let ¢ := do. The change of variable is now 2z := 2 and w := y and we have the equation

G1(z) — (V(2)F1(z) mod Gy) = €(z)G).
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Here
-2 -1 2 3 4 5 6
Gi(z) =127+ 0z +0+ 12+ g612° +97,1)2" + 98,02 + 90,02 +9(10,1)2

and Go(z) = 1+ 2. Also V is the inverse of Hg)(2) = 1 modulo Gg(z), which is just 1. The
polynomial Fy(z) = 272 + 2z~ + 2. We first compute (V F; mod Gy) as

272142+ 2%) mod (14 27) = 2z + 2° + 2°.
Hence the left hand side is
272+ 9(6,1)Z2 + 9(7,1)33 + 9(8,1)Z4 +(1+ 9(9,1))25 +(1+ 9(10,1))26-

This has degree 8 as a Laurent polynomial, and hence the degree of our unknown polynomial
e(z) is 8 —7=1. Let e(z) = (e_12~ ' + e_22 2). Then equating the powers of 22 and 2! we
get the triangular system

le_o4+0e_qy = 1
O 9o+1e 41 =

which has solution e_5 =1 and £; = 0. Hence we get that

Gi(z) = z+25+20+272(1+27)
= 2242425

This completes the lifting step.

Now one may once again choose to lift from ¢; another few steps to get a (7, 2)-factorisation.
Then one may lift for two steps from Jy to obtain a (7,4)-factorisation. One continues in this
manner until all the indeterminate coefficients in one of the two generic factors g and h have been
specialised. (Of course, if we are not lifting an actual full factorisation, we may have to abandon
the lifting at some stage because either our triangular systems have no common solution, or the
computed coefficients in H do not match with the known coefficients.)

It is perhaps appropriate at this stage to make a few observations on how sparse polynomials
may be factored more quickly using Algorithm 6.8.1. Using standard Hensel lifting the polyno-
mial f above would first be randomised to obtain a dense polynomial of total degree 31. It could
have as many as (32 x 33)/2 = 528 nonzero terms, and heuristically around half this many since
f is over the binary field. The factor g we found above would then correspond to a “dense”
factor of our original polynomial of total degree 17. It would be found by Hensel lifting a degree
17 factor of the reduction modulo y of our randomised version of f, and (17 x 18)/2 = 153 terms
(heuristically half of them nonzero) need to be determined. In our algorithm, one restricts at-
tention to unknown terms in possible factors whose exponents lie within certain polygons. Thus
for the factor ¢ we found we only need to determine 57 coefficients. Moreover, if the polynomial
f is sparse, there is good chance that most of these terms, and those in h, will be zero and so one
can exploit sparse data structures (see Chapter 7). The main benefit, though, of our approach
appears to be for very sparse but composite polynomials of very high degree. In this case, one
expects few coprime partial boundary decompositions, and as one can try and lift each one to
a full factorisation, the algorithm will succeed (or fail) relatively quickly. If one randomises the
polynomial by substitution of linear forms, the special sparse structure is completely lost. To
factor the randomised polynomial using Hensel lifting, for example, one expects to have to try
a large number of lifts. Thus, as demonstrated in the next chapter, our algorithm can be used
to factor very sparse polynomials of degree beyond the reach of classical Hensel lifting.
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6.9.2 Implementation

We have developed a preliminary implementation of the algorithm with the aim of demonstrating
how it would work for bivariate polynomials over F'o. The work was carried out at the Oxford
University Supercomputing Centre (OSC) on the Oswell machine. The implementation was
written using a combination of C and Magma programs, and was divided into three phases.
In the first phase, the input polynomial is read and its Newton polytope computed using the
asymptotically fast Graham’s algorithm for computing convex hulls [60]. In that phase we also
compute all irredundant dominating sets, and output the edge polynomials. In the second phase,
a Magma program invokes a univariate factorisation algorithm to perform the partial boundary
factorisations, and the results are directed into the third phase program. In this last phase,
a search for coprime dominating edges factorisations is performed, and when appropriate, the
lifting process is started. The polynomial arithmetic was performed using classical multiplication
and division, and the triangular systems were solved using dense Gaussian elimination over [Fs.

We generated a number of random experiments as follows: The input polynomial f was
constructed by multiplying two random polynomials g and h of degree d/2, each with a given
number of nonzero terms. Specifically, for each polynomial the given number of exponent vectors
(e1,ea) were chosen uniformly at random subject to 0 < e; + e3 < d/2. These vectors always
included ones of the form (e;,0), (0,e2) and (es, (d/2) — e3) to ensure the polynomial was of
the correct degree and had no monomial factors. As the polynomials chosen were sparse the
corresponding Newton polytopes had very few edges. In all these cases, the components of
edge vectors of Newt(f) had a very small ged, so that the edges had few integral points and
consequently the polygon itself had very few summands. The table below gives the running times
(in seconds) of the total factorisation process to find at least one non-trivial factor involving all
three phases described above. Here s is the number of nonzero terms of the input polynomial f;
#Newt(f), #Newt(g), and #Newt(h) are the total number of lattice points in Newt(f), Newt(g)
and Newt(h) respectively; and ¢ is the total running time in seconds. The actual polynomials
f,g and h in each of the five cases are also listed.

Table 6.1: Run time data for random experiments.

d s | #Newt(f) | #Newt(g) | #Newt(h) t
50 14 061 166 50 2.3
100 | 16 2234 472 222 11.6
o500 | 15 52940 12758 11282 21.5
1000 | 30 206461 28582 56534 42.9
2000 | 28 848849 133797 132932 619.7

d = 50:
x1y32 _|_y36 +x4y37,
9=z + 213 4 21Ty8 4416,

h= a5+ zly'® 4 20 4 giy2L,
d = 100:
F=a2 228 1 gBlyb 4 gBhyB 4 20013 | 2518 4 619 4 (49 4 48)22 4 5327 |32 4

$28y41 +$11y45 +$14y48 +$5y58 +$33y67,

g= £E20 + £E25y5 + y19 + x5y45,
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h= 28+ 2993 + 228y22 1 13
d = 500:

f =11399+£B151y30—|—£L‘176y130+£L‘151y142+$228y160 +$99y181 —|—£L‘56y220+$43y223+$108y250+
$228y272+$176 311 +$120y353+$108 362+$56 401 -I-y443

g= £E56 +$108y30 +£L‘108y142 +$56y181 +y223,

h = $43 +$120 130 +y220‘
d = 1000:

f _ $727 +$678 3 +$935 13 +$886 16 +$679 67+$600 79 +$887 80 +$551 82 +$469 86 4
420y89+$448y93+$399y96+£B279y136+£B636y143+£B552y146+£B487y149+£B421y153+$844y156+

400y160 _|_$152 215+($21 +$509)y222+(1 +$378)y229 +$357y236 +$611y251 +$562y254+$563y318+

33163’!/387 + $520 y394

g= £C448 4 x399y3 4 £L‘400y67 4 y136 4 x357yl43
h:$279+$487 13+$152 79+$21 86+y93+$163 251
d = 2000:

f — 517875 +$856 6+$1469 18 +$1450 24+$776 66 +$1370 84+$722 157+$703 163 +$963 190+
944y196+$623y223+$864y256+$487y291 +$468y297+$647y334 +$628y340 +$982y375+$548y400+
235 514 +$476 547+$769 619+$1363 637+$0y648 +$160 691+$616 776+$857 809+$381 910+
541 953

Yy
_$487+$468 6+$388 66+y357+$381 619

g
h = £C388 + x982y18 + x235y157 + $476y190 + x160y334 + y291_

6.10 Conclusion

In this chapter we have investigated a new approach for bivariate polynomial factorisation based
on the study of their Newton polytopes. The approach combines results on polytopes with
generalised Hensel lifting. In standard Hensel lifting, one lifts a factorisation from a single edge,
and uniqueness can be ensured by randomising the polynomial to enforce coprimality conditions
and make sure the edge being lifted from is sufficiently long. However, this randomisation is
by substitution of linear forms which destroys the sparsity of the input polynomial. We show
how uniqueness may be ensured in the bivariate case without destroying the sparsity of the
polynomial, only under certain coprimality conditions, and without restrictions on the lengths
of the edges. For certain classes of sparse polynomials, namely those whose Newton polytopes
have few Minkowski decompositions, this gives a practical new approach which greatly improves
upon Hensel lifting. As with Hensel lifting, our method has an exponential worst-case running
time; however, we have demonstrated the practicality of our algorithm on several randomly
chosen composite and sparse binary polynomials of high degree.

98



Chapter 7

An efficient sparse adaptation of the
polytope method over [, and a
record-high binary bivariate
factorisation

7.1 Introduction

In the previous chapter, we examined polynomial factorisation through a generalisation of Hensel
lifting as applied to the Newton polytope of the input polynomial. Despite its worst-case ex-
ponential running time, the polytope method has been associated with a number of advantages
promising to make it very efficient in practice. First, when applied to the special category
of sparse polynomials whose Newton polytopes have very few Minkowski decompositions, one
would expect to have a small number of edges to lift from. Although we do not yet have a
heuristic estimate of the frequency with which this can happen, experiments reported in the
earlier chapter clearly reflected this observation, whereby most random input polynomials had
Newton polytopes with the above property, and the bulk of the work was spent in the lifting
stage. However, the implementation used there was dense, where the total amount of work is
of the order O(d*) for a bivariate polynomial of total degree d, and requiring an order of O(d?)
bits of memory, which prompts us to investigate further advantages resulting from the sparsity
of the input polynomial. Since the polytope method has been shown to preserve the sparsity of
the polynomial by avoiding the randomisation and substitution of linear forms in the classical
Hensel lifting method, one natural question to answer is how to describe the sensitivity of the
polytope method with respect to the number of nonzero terms of the input polynomial. We are
equally motivated to investigate how exploiting this aspect can possibly increase the problem
sizes which the polytope method can handle for the special class of sparse polynomials. The
approach we present produces a sparse factorisation algorithm per se, where the operational and
spatial complexities become dependent on both the degree of the input polynomial as well as
the number of nonzero terms of its possible factors which the polytope method can detect. The
aspects we exploit are that the input polynomial and its factors have many zero coefficients, and
that most of the lifted polynomials are zero, or at worst very sparse. As in the original algorithm,
this method works only under certain coprimality conditions governing the edge factorisations
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along a special subset of edges of the Newton polytope (see Chapter 6).

The rest of this chapter is organised as follows: In Section 7.2 we describe the model of sparse
polynomials to which this algorithm is best suited. In Section 7.3 we describe the implementation
in C and the sub-routines comprising the pre-lifting stages. In Section 7.4 we present our sparse
adaptation which affects the polytope method at the lifting stage. In Sections 7.5 and 7.6 we
analyse the complexity of the sparse method, and in Section 7.7 we report on the run times of
our experiments producing high record degree factorisations over Fs.

7.2 Input model

We choose to investigate the performance of the sparse adaptation when the input polynomial
belongs to IF,[z,y], for a finite field IF, with prime order. As previously reported in the dense
implementation of [2], the random experiments are generated by constructing a degree d input
polynomial f using two random polynomials g and h of degree d/2 each, with a given number
of nonzero terms. Let ¢, and #;, denote the number of nonzero terms in g and h respectively,
and let ¢ = t4t;. The number of nonzero terms in f is thus O(t). For reasons that will become
apparent later on, we will assume the condition

3 < d>.

This will make up our definition of a sparse polynomial f, where d? is an upper bound on the
number of nonzero terms that can appear in a degree d polynomial in Fy[z,y]. Note that one
of t4 or ¢, has to be at most t1/2 and hence we can assume that g and h have t¢ terms each,
for some constant 0 < ¢ < 1. In the remainder of this chapter, we shall omit the reference to
“nonzero terms” and refer to these as simply “terms”. Also, when analysing the complexity of
the sparse method with respect to an integral decomposition

Newt(f) = Q + R,

we will restrict our attention to the case when ) and R correspond to the sparse factors g and
h as defined above; i.e, when Q = Newt(g) and R = Newt(h). By this, we understand that an
extension of a coprime dominating edges factorisation using our sparse method should be aborted
once the number of specialised coefficients corresponding to @ or R exceeds max(t4,t,) = O(t°),
for 0 <e < 1.

Generic shape of Newt(f)

We now describe few aspects characterising the generic shape of Newt(f) for a non-trivial input
f- By non-trivial we refer to the case when f is non-constant and not known to be divisible by
any monomial of the form f,, .,)z°y°, for some integers ey, ez > 0, and fe, ¢,) € Fy.

Lemma 7.2.1 Let f € F,[z,y] be of total degree d. Then f has at least one term with degree
zero in y and one term with degree zero in x if and only if the corresponding exponent vectors of
those two or more terms are vertices or form edges of Newt(f) that lie on the z-axis and y-axis
respectively.

Proof: Recall that for a bivariate regular polynomial f, Newt(f) lies entirely in the quadrant
of positive coordinates. Suppose that Newt(f) has at least two vertices lying on the z-axis and
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y-axis respectively. Since Newt(f) is the convex hull of all exponents of f whose corresponding
coefficients are nonzero, f should have at least two terms which have a zero exponent in y
and x ‘respectively. Now suppose that f has at least two such terms denoted by f(i,o)xi and
fo,5)y’, fori,5 =1,...,d. Then the points (i,0) and (0,7) belong to Newt(f). We want to show
that p = (4,0) cannot but be a vertex or lying on an edge of Newt(f) (the case for (0,7) is
established similarly and so are the cases when there are more than one term in f of the form
f(i,o)xi or f(o,j)yj). Suppose to the contrary that p is a strictly interior point of the polytope. By
convexity of Newt(f), p should lie strictly in the interior of every angular sector formed by any
three consecutive vertices. But then the z-axis would intersect at least one edge of the polytope
in one point different from the two endpoints of the edge, so that Newt(f) contains points in
the half-plane

{(z,y) € R?|y < 0},

a contradiction, since Newt(f) lies entirely in the quadrant of positive coordinates.

Corollary 7.2.1 Let f € Fy[z,y] be of total degree d. Then f has no trivial monomial factors
of the form f(i,j)aziyj for some integers i,5 > 0, f(; jy € Ky, if and only if Newt(f) has at least
two of its vertices on the x-axis and y-axis respectively.

Proof: Suppose that f has no trivial monomial factors of the form f(i,j)ziyj for some positive
integers ¢ and j. Then f must have at least one term that has zero degree in z and one term
that has zero degree in y. By the lemma above, Newt(f) would then have at least two vertices
on the z and y axes. The converse is immediate to establish.

7.3 Pre-lifting stages

The pre-lifting sub-routines all require a non-trivial implementation touching upon issues about
proper data structure and careful manipulation of geometric data. In the course of this descrip-
tion we explore the primary data types representing the geometric structures such as edges,
vertices, straight lines, and dominating sets of edges. We also address how operations involving
geometric structures with integer coordinates can be performed correctly, under the restriction
that all such computations should involve input and output integer values only.

7.3.1 Floating-point operations and integer overflow

As will be seen shortly, many aspects of our C implementation are designed so as to avoid both
instances of floating-point operations (unless the result can be guaranteed to be exact) and
integer overflow. Because one can predict the possible occurrence of a floating-point operation
before such an operation is carried out, this type of problem is easier to handle than integer
overflow. On most current machines, signed integers use 32 bits which represent numbers in
the range +2.10°. This sets the first restriction on the size of the input data representing the
exponent pairs (e, es) of terms of f. However, when operations such as addition or multiplication
of signed integers produce an output that exceeds this range, standard C gives no error upon
integer overflow. In the absence of a multi-precision package for dealing with arbitrary sizes
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of signed integers (see for e.g. [53]), one may opt to use doubles to represent integers, so that
integer calculation can be performed accurately with floating-point numbers. This, combined
with tests to depict the safe range of any computation prior to its execution, makes up a good
strategy for avoiding integer overflow. In doing this, one has to consider possible cancellations
of even incorrect calculations of the generic form ab + cd. There, for instance, it suffices to test
for the sizes of ab and cd prior to cancellation (addition) and decide whether or not the upper
bound on the size of the final sum exceeds the allowed bound.

Assuming the order of the finite field in question fits in a machine word, all field operations
will be referred to as bit operations, and the spatial complexity will be measured in bits.

7.3.2 Computing Newt(f)

The first phase of the algorithm consists in computing Newt(f) using a convex hull algorithm.
We choose to use Graham’s fast algorithm of complexity O(tlogt) for an input of size ¢ (see
[60]), despite the fact that slower algorithms of quadratic time in ¢ would still be efficient in the
sparse case. We also adopt the efficient variant of Graham’s algorithm found in [107]. The input
polynomial f is given as a collection of points P representing the exponent vectors of terms of
f. Graham’s algorithm above produces a stack of vertices of Newt(f), which uniquely describes
the entire polytope, since it is sufficient to store information about the vertices of a convex set to
retrieve any further information about its edges or interior lattice points. The stack of vertices
is built in a counter-clockwise order around a fixed pivot, chosen to be the lowest rightmost of
all input points. If m denotes the total number of vertices of Newt(f), the stack is represented
by a singly linked list of pointers to the vertices Vj, ..., Vj,—1. In turn, each vertex is a structure
containing information about the index of the vertex in the stack, as well as the = coordinate
(abscissa) and the y coordinate (ordinate) of the vertex. For further uses in the algorithm, we
also store the edge description of Newt(f) as follows. For i = 0,...,m — 1, let E; denote the edge
defined by V;11 — V;. If n; denotes the gcd of the two components of the edge vector, then FE;
can be written as n;e; for a primitive vector e; whose components (a;, b;) are relatively prime.
We shall adopt this notation throughout the text.

Representing terms of f

Since terms of f (and thereafter specialised terms of g and h) will have to be accessed during
every lifting step, one has to modify the representation of f, originally given as an arbitrarily
ordered collection of points, to allow quick accessibility. Ideally, this would be through the use
of a dense representation, whereby the nonzero coefficient of a term f;, ¢,y y* of f is stored
in the array location (e, e2). A possible solution would be to balance the time it takes to search
for a particular term and the total memory required for storing all of them, through the use of a
“semi-sparse” representation, so long as this requires no more than the largest structure used in
the entire algorithm, which will be shown later to be O(¢°d) bits of memory, for some constant
€, 0<e< .

To illustrate, suppose that ymer and z,e, denote the largest degree in y and z respectively,
and Ypin and T, denote the smallest degree in y and x respectively, among all terms of f. By
Corollary 7.2.1, we know that y,,;, and z,,;, are both equal to zero when f is a “non-trivial”
polynomial. We then have 9,00 < d and e, < d. Without loss of generality we shall always
assume that Ymaer < Tmaz, and that all arrays have starting index equal to 0 (rather than 1).
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We can now define a recursive structure as follows. Let fterms denote an integer array of size
Ymaz Such that each entry fterms[k — 1] denotes the number of terms of f whose degree in y
is k. Although this makes the array fterms a dense one, it can now be used to incorporate a
sparse data structure as follows: for £ = 0,...,ymer — 1 and 57 = 0,..., fterms[k] — 1, define a
list of integers fabsi such that the j'th element in the list contains the degree in z of the j’th
term of f belonging to the list of terms of degree k in y. A similar list can be constructed to
store the coefficients of terms over [Fj,. In the worst-case analysis, all terms of f will have the
same degree in y, and we can allow the above sparse structure to occupy at most O(td) bits of
memory. Assuming that the coordinates of the input polynomial are no larger than a machine
word size, and combining the requirements for storing the output in Graham'’s algorithm above,
where the number of vertices of Newt(f) is of the order O(¢) [35], the total spatial complexity
of this stage is dominated by O(¢d) bits. With this structure, we can decide for the existence
of a term f(,, o,y y® of f through a simple scan of the list fabse,—1 which contains at most
O(t) elements, so that a naive search is of the order O(t).

7.3.3 Finding all irredundant sets of dominating edges

For determining all irredundant sets of dominating edges we use the algorithm reported in
Chapter 6. Recall that the procedure depends on the notion of admissible slopes associated with
a vertex V;, and denoted by admiss(7), which designates the range of slopes of all straight lines
that can be drawn through V; such that their intersection with the polytope is only one point. It
was shown that such straight lines have to be lying in the angular sector defined by the two edges
vi—1v; and v;v41, and that a necessary condition for any set of edges connecting two distinct
vertices v;, v; to form an irredundant set of dominating edges is that admiss(i) N admiss(j) # 0.
The input to this sub-routine are the vertices of Newt(f) as computed above. The process can
be achieved through several implementations of the following:

Slopes of edges

We first need a careful manipulation of slopes which avoids any instances of floating-point
operations while performing simple tasks such as determining and comparing slopes of lines
supporting edges. In our implementation, slopes are always integral ratios a/b, which is one
good property to start with. If £ € Z and a,b # 0, any equality of the form a/b = k(a/b) is not
guaranteed to hold for floating point division in C. As a result, we have to treat this quantity
as a discrete one. Using a recursive structure we define an array of pointers, Slope, indexed by
the edges E;, for i = 0,...,m — 1, such that the entry Slope[i] points to a list of two elements:
the numerator and denominator of the slope of E;, in normalised form (having ged equal to 1).
When computing admiss(i) we are concerned with characterising all straight lines that fall in
the angular sector whose vertex is V; and whose rays are with endpoints V;_; and V4. Let sy
and s denote the slopes of lines (V;_1V;) and (V;V;11) respectively. Obviously, any straight line
falling in the interior of the angular sector defined above has to have slope in the range

I = (min(s1, s2), mazx(sy, $2))
if s1 and sy are of the same sign, or in the range

I = (—oo,min(s1,s2)) U (max(sy,s2),+00)
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otherwise. The set admiss(i) is then simply the complement of I, which can be a single interval
or a union of two intervals. This can be represented by a structure of intervals of the form AU B,
for two continuous intervals A and B, where only B can be empty. A continuous interval then
extends recursively into a two dimensional array Component of pointers such that Component|0]
and Component[1] point to its lower and upper bounds respectively. In turn, such lower and
upper bounds represent slopes of edges, and are hence represented by a two dimensional integer
array bound, such that bound[0] and bound[l] denote the numerator and denominator of the
quantity denoting slope. Of course, by this we understand that bound[l] = 0 whenever the
corresponding slope is infinite.

Complements and intersections of sets

At this point we have at hand a representation of rational intervals that will allow us to perform
the set operations of taking complements and of intersecting sets. If I denotes an interval or a
union of two intervals as encountered previously, then R\ I can be trivially determined and must
have the same representation of I as defined above. Furthermore, we will need to determine
whether or not the intersection of two intervals I = AU B and I' = A’ U B’, for continuous
intervals A, B, A" and B’, is empty. That reduces easily to finding whether A” N B” # () for some
A" = (a,b) and B" = (d', V'), where a,a’,b,b' € ZU{+o00}. To do this, it suffices to compare the
corresponding lower and upper boundaries of the continuous intervals (a,b) and (a’,b"), whose
intersection is non-empty if and only if any of the following holds:

e both a and o’ are —oo,

e both b and o’ are +oo,

e only a is —oo, b is finite, and a’ < b,
e only a’ is —oo, b’ is finite, and a < ¥/,

only b’ is +o00, a’ is finite, and a’ < b,

only b is +o00, a is finite, and a < b'.

e a,b,a’ and b’ are finite, and b < o’ or V' < a.

According to our representation above, a,b,a’ and b’ are stored as rational quantities, where
comparison of two such fractions n/d and n’/d’ reduces to comparing the product nd’ and n'd.
Even though the numerators and denominators are bounded by the coordinates of exponent
vectors of terms of f, performing the above integer products may result in overflow. For this,
a possible test can be inserted at the beginning of each such multiplication to ensure that the
size of any of the intervals boundaries are bounded by at most square root of +2.10°.

When admiss(7) Nadmiss(j) # 0 fori =0,...,m—1and j =i+1,...,m —1, we conclude that
the edges connecting the two vertices V; and V; form two dominating sets of edges comprising
the counter-clockwise and clockwise sequence of edges connecting them. A further condition
that examines the difference of two intervals representing intersections of admissible slopes of
various dominating sets is required to select the irredundant ones (see Chapter 6. All such sets
are represented by a singly linked list Dominating_set ordered according to increasing values
of i. The k’th element of the list points to the two integers ¢ and j such that V; and V; form
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the k’th irredundant dominating set, and to the direction of the set connecting the two vertices
(whether clockwise or counterclockwise). In Chapter 6, the entire procedure has been shown to
require an order of O(m?) operations of set intersections and complements. From the discussion
above, these require no more than integer multiplication and comparison. Assuming all such
integers and intermediary products fit in a machine word, the total cost of this stage is of the
order O(m*) bit operations (see Chapter 6). We have also seen that the amount of storage
needed does not exceed eight integers per vertex (representing the total number of numerators
and denominators of rational boundaries of intervals representing admiss(z) for some i), as well
as three integers per dominating set, whose number itself is dominated by m. As a result, this
sub-routine requires at most O(m) = O(t) bits of storage.

7.3.4 Determining univariate edge polynomials

At this point, we shall make the distinction between a sparse and dense polynomial representa-
tion as defined throughout the text. In particular, we denote by a sparse polynomial structure
any such structure where only information about the exponents of the terms is available, even
when the corresponding polynomial is not sparse enough. In the rest of the text it will be as-
sumed that all entries in a sparse polynomial representation are ordered according to increasing
values of exponents. For simplicity, we shall also always assume that the coefficients of terms
in a sparse representation are stored in a structure matching the one used for exponents, and
it will be implicit everywhere in our discussion that coefficients of terms are retrieved whenever
their exponents are so.

On the other hand, we denote by a dense polynomial structure any such structure where
information about the (zero and nonzero) coefficients of the corresponding polynomial is avail-
able, as indexed by the degrees of their terms. In the worst-case analysis, both sparse and dense
representations will require the same amount of storage for dense polynomials.

When f is sparse, so are the corresponding univariate edge polynomials along Newt(f).
Thus, we require that they be represented using a sparse data structure. The entire process of
determining these polynomials depends on a number of sub-tasks, such as identifying integral
points belonging to the edge, choosing only those points (e, es) corresponding to a term of f,
and determining the corresponding term in z as defined by the change of basis in Step 4 of
Algorithm 6.8.1.

Identifying integral points

Let § € Edge(f) where 6 = n;e; = Vi1 —V; for some i = 0,...,m — 1, so that ¢ has n;+ 1 integral
points lying on it. To identify each of these points, one can start from one of the endpoints, say
Vi = (zi,v;), and use the gradients as defined by the slope of the line supporting the edge. Recall
that the normalised slope s = a/b of the line supporting ¢ can be retrieved using the pointer
stored in Slope[i], and hence, all integral points on the line supporting J can be described by

T =z +kby =y + ka,

for k € Z. In particular, points (e, e2) lying between V; 1 and V; are defined by k = 1,..., k' — 1,
where k' = (241 — x;)/b. One can then test whether (eq,e2) is an exponent corresponding to a
term of f by scanning the list fabse,—1, this requiring no more than O(¢) bit operations. By
Corollary 26 of Chapter 8, we know that, for a polynomial f € F)[z,y] of degree d, each edge of
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Newt(f) will have at most O(d) integral points lying on it. Throughout the text, we shall refer
to this number as maz_int_pts.

Change of basis

To determine the change of basis associated with & one first has to determine its associated
primitive affine function as defined in Chapter 6. Given only the slope and two end points of
d, one can first derive the equation of its supporting line. If (x;,v;) and s = a/b are as defined
above, then the equation of this line is given by

Yy—yi _a

rx—zx; b

To avoid any floating-point operations associated with the right hand side division, we view this
as

—ax + by — (by; — az;) =0,

where we are faced with a possible integer overflow upon the calculation of by; — az;. This, of
course, can be avoided through a pre-test on the sizes of by; and ax; as mentioned previously.
The primitive affine function l5 = v1x + 1oy + 1 can now be derived from the equation of § in a
straightforward way. Since Newt(f) should lie in the non-negative halfplane {r € R?|l5(r) > 0},
one can simply choose any vertex of Newt(f) different from the two endpoints of §, and substitute
its coordinates in the equation of the line computed above. If the result is positive, we set

vi = —a,vp =b, andn=—(by; —ax;).
Else, we set
vy =a,vy =—b, andn= (by; —ax;).

These coefficients can now be stored in an integer array indexed by the position of § in the stack
of edges. Finally, we call the Extended Euclidean algorithm to compute the integers (; and (s
such that

G+ G =1,

and we store (; and (o contiguously next to v, and 1. Assuming all input and intermediary
integer values do not exceed the required bound, the above process per edge is dominated by a
constant number of bit operations.

The change in basis as described in Step 4 of Algorithm 6.8.1 can be retrieved using the
coefficients vy, 19, (1, and (a. Let (€], e}) denote the coordinates of the starting vertex of §. For
each integral point of § corresponding to a term f(,, ¢,)z°'y®? in f, a univariate term in f(, 0,)2“
can be found using

a=(ey—ehy)/(—1n)if1 #0, ora=(e;—e))/(n)if s #0,

and every such exponent is stored in the sparse data structure representing the sparse edge
polynomial. Since all coordinates of points in Newt( f) are assumed to fit in a machine word, this
requires no more than O(1) bit operations per term. Combining the costs of the previous tasks,
the whole process of constructing the univariate edge polynomials is of the order O(md) = O(td)
bit operations, and requires no more than O(mt) = O(¢?) bits of memory.
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7.3.5 Intersecting arbitrary lines with the polytope

In many of the sub-routines to follow it becomes essential to investigate how a geometric in-
tersection between arbitrary straight lines and Newt(f) can be performed under the restriction
that all computations have to receive and produce only integer values. Determining the inter-
section between an arbitrary straight line ¢/ and the polytope reduces to finding the intersection
between ¢’ and all edges € Edge(f). The main problem then lies in that the intersection points
between any two lines may not be lattice points. But then, they would simply not contribute
to any terms in the lifted polynomials and hence the algorithm as a whole, which makes them
dispensable for our application. A possible solution resides in considering other suitable points
which can still serve the same purpose, that of identifying all possible points of the polytope
corresponding to terms in particular lifted polynomials. For this, we alternatively introduce the
notion of a mear intersection point, to be that lattice point (common to the line and the edge
of the polytope) that is closest (or at best identical) to the real intersection point. The crucial
idea behind our approach depends on that if ¢ intersects an edge of Newt(f) in some point,
this should lie in the smallest rectangle R containing Newt(f) and whose edges fall on the lines
of equations £ = 0,2 = Zpee,¥ = 0 and ¥y = Ymae- That this can be found is a result of the
fact that the convex hull computed above is the smallest convex polygon containing all points
corresponding to terms of f. The entire sub-routine is then as follows:

Algorithm 7.3.1 Intersection(Newt(f),u,v,w)

Input: The vertex description of Newt(f) and an arbitrary line £' of generic equation

uzr + vy +w = 0.

Output: The near intersection points of £’ and Newt(f), or the empty set (where the latter
implies that the line does not contribute to any terms in the lifted polynomials).

Step 1: Set k' + 0, and i',i" + —1;

repeat
1.1: If (vk' +w) mod u =0 and —(vk' + w)/u € {0, ..., Tmaaz }, set i’ < —(vk' + w)/u.
1.2: If (', k') € Newt(f) then exit the loop;
1.3: Set k' + K' + 1.

while k' < Ymaz;

Step 2: If k' < Ymaz, set k" < yYmaz and repeat:
2.1: If (vk" +w) mod u =0 and —(vk" + w)/u € {0, ..., Tmaz }, set " < —(vk' + w)/u.
2.2: If (i" k") € Newt(f) then ezit the loop.
2.3: Set k" «+ K" — 1.

while k" > k';
Step 3: If i' £ —1 output (', k"), and if i" # —1 output (i",k").

Correctness of the algorithm can be shown as follows. If uz + vy +w = 0 denotes the generic
equation of ¢, we know that all lattice points (a,b) of ¢ and lying in R have a y coordinate
in the range {0, ..., Ymaz } such that (—vb — w)/u is an integer between 0 and Z,q;. A possible
approach to finding near intersections consists in identifying (and then excluding) lattice points
that belong to /MR but not in Newt(f). By convexity of Newt(f), the latter collection of points
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are non-adjacent, and form lower and upper lattice points in #/ N R, whose ordinates belong to
the union of the two intervals

[07 kl] U [k”a ymaz]

for some integers k¥’ and £”.

Before establishing the cost of the above algorithm, we need to discuss how to decide whether
an arbitrary lattice point of the plane belongs to Newt(f). In a rather straightforward approach
one would just compute the set of all points belonging to the polytope, so that testing an
arbitrary point for inclusion becomes almost an immediate task. However, this requires about
#Newt(f) = O(d?) bits of storage, which is highly restrictive for high degree factorisations.
Furthermore, our upcoming sub-algorithm for computing all integral points of Newt(f) requires
that we perform intersections between arbitrary lines and the polytope, so that a more efficient
test for inclusion in Newt(f) is needed. The test we propose works best when the number
of edges is significantly less than #Newt(f). Recall that, in Graham’s algorithm above, we
constructed the vertices and edges in a counter-clockwise direction around the pivot. A simple
consequence of this and the fact that Newt(f) is convex is that an arbitrary lattice point belongs
to the polytope if and only if it belongs to one of its edges, or it lies to the left of the directed line
of each edge d € Edge(f). For this, we adopt the test for “leftedness” suggested in [107]: Given
three arbitrary points A = (a1,a2), B = (b1,b2), and C = (c1,¢2), C' is to the left of the directed
line AB if and only if the signed area of the counterclockwise triangle ABC is positive. The
formula we use, derived from the cross product of the two vectors B — A and C — A, produces
twice the value of the above area, and is given by

(b1 — al)(CQ — 02) — (61 — al)(bQ — ag).
Combining, we have the following:

Algorithm 7.3.2 Input: An arbitrary point C' = (c1,c2), and the vertex description of Newt(f).
Output: PASS if C € Newt(f), FAIL otherwise.

Step 1; For i =0,...,m — 1 do
1.1: Retrieve Vizq1 = (b1,b2) and V; = (a1,a2); compute
E = (b1 — al)(CQ — ag) — (61 — al)(bQ — 02).
1.2: If E <0 return(FAIL).
Step 2: Return(PASS);

Proposition 7.3.1 Algorithm 7.53.2 works correctly and requires O(t) bit operations.

Proof: Correctness of the above procedure relies on that of the signed area test as discussed
in [107]. It suffices for an arbitrary point to fail the test for only one edge of Newt(f) for us to
conclude that it does not belong to the polytope. The run time of the algorithm is dominated
by the cost of computing the signed area for every edge of Newt(f). Assuming the integer
computations in E are all correct and fitting in a machine word, this brings the total cost to
O(m) = O(t) bit operations.
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Corollary 7.3.1 Algorithm 7.3.1 for computing the near intersection points of an arbitrary
straight line with Newt(f) requires O(td) bit operations.

Proof: The two major loops in Algorithm 7.3.1 iterate at most O(d) times, during which
one multiplication, one addition, and one division operation of integers are performed, along
with a test for inclusion in Newt(f). The cost of the inner loop computations is dominated by
that of testing for inclusion in Newt(f), which is of the order O(¢). The claim now follows.

7.3.6 Computing the set of all integral points in Newt(f)

Often throughout the rest of the algorithm, we will need to test for inclusion of arbitrary points
in the polytope. Although the test in Algorithm 7.3.2 is crucial for the Intersection sub-routine,
it can be costly to invoke this test very frequently. Hence, we introduce a more efficient method
for identifying all integral points in Newt(f), which uses the above version of Intersection only
once, but which can later be used as a less expensive test for inclusion.

Let 1P denote the set of all integral points in Newt(f). The solution we provide is enhanced
by the fact that nowhere in our sparse adaptation will we need to have all elements of IP
available at one and the same time. Accordingly, it is sufficient to store a significantly smaller
subset of I P that still allows us to either retrieve all of its elements or check whether an arbitrary
point of the plane belongs to it. As discussed previously, one possible idea is to examine lattice
points of the polytope that lie on every horizontal line y = k, for k = 0, ..., Ymaz- This can be
done by computing the near points of intersection between all such horizontal lines and Newt(f).
Since these can be either actual integral points of intersection or integral points that are closest
to the intersection, we are sure that all elements of IP falling on the line y = k should lie
between the two near points of intersection. Repeating the procedure for all y = 0, ..., Ymaz
labels in this way all elements of TP, and more. Given an arbitrary point of the plane (a,b), we
can define a boolean function which returns whether (a,b) € I P or not, by simply retrieving the
near intersection points between Newt(f) and y = b. Obviously, a is an integer lying between
the abscissas of the two near intersection points if and only if (a,b) € IP.

The data structure we define for this sub-routine will be a recursive one, where an ar-
ray of ymqr pointers Int_pts is such that Int_pts[y] points to another array of two integers,
Int_coordinates,, representing the x coordinates of the two possible points of intersection with
ordinate equal to y. Since we know that the line y = k intersects the polytope for k£ =0, ..., Ymaz
in at least one near point, the first entry of Int_coordinates, contains its coordinate. If there
exists another near point of intersection, we use the remaining entry of Int_coordinates,; else,
we set this to be —1.

Algorithm 7.3.3 Input: The vertex description of Newt(f).
Output: The set IP of all integral points in Newt(f).

Step 1: For y =0, ..., Ymax do

1.1: Call Intersection(Newt(f),0,1,—y); store the x coordinate of the first near point of
intersection in the corresponding location of Int_coordinates,;

1.2: If there is another near point of intersection store its coordinates in the corresponding
location of Int_coordinates,, and output all points lying between the two intersection
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points.
1.3: Else, output the only near point of intersection.

Proposition 7.3.2 Algorithm 7.5.3 works correctly as specified and produces a description of
IP in O(td?) bit operations and O(d) bits of memory.

Proof: Correctness follows easily from the discussion above. The run time depends on the
size of the range y = 0, ..., Ymaz as well as the cost of one call to the function I'ntersection, which
is of the order O(td). In total, this brings the cost of finding all integral points to O(td?). Since
at most two integers less than or equal to d (and hence fitting in a machine word) are stored for
Yy =0, ..., Ymaz, Where yyq = O(d), the spatial complexity follows.

Assuming this subset of points in I P is produced only once at the beginning of the algorithm,
testing for inclusion of an arbitrary point in the plane comes at no cost beyond that of referencing
two array entries. In the remainder of this chapter, we shall denote by In(IP,a,b) the function
call which tests whether a point (a,b) belongs to IP. Moreover, we can now obtain a more
efficient procedure for determining the intersection of an arbitrary straight line with Newt(f).
In particular, we have:

Corollary 7.3.2 Assuming that the above representation of I P is obtained as a precomputation,
Algorithm 7.3.1 for finding the intersection of an arbitrary straight line with Newt(f) can be
modified to require O(d) bit operations.

Proof: The proof is immediate to establish, by noting that Intersection can replace its
sub-routine for testing inclusion by the test In(IP).

Here and hereafter, we shall refer to the modified intersection sub-routine as Intersection'.

7.3.7 Counting factors of univariate factorisations

Once the edge polynomials have been stored in univariate form, we are ready to perform the
factorisations over the defining field. For simplicity of code we choose to make use of the
computer algebra package MAGMA *, whereby the output of all previous stages is directed
to a file that can serve as a MAGMA code file within which lies its input. The input in this
case comprises the following: all pieces of data previously computed and that will be needed in
the lifting stage, among which are the vertices of Newt(f), and the list of sets of dominating
edges. Also available are the univariate polynomials which MAGMA has to factorise using its
built-in function (based on the Berlekamp algorithm [8]) for univariate polynomial factorisation
over finite fields. The output of the MAGMA code is now directed into a file which has, in
addition to the original information above, the full factorisation of univariate edge polynomials
into powers of irreducibles, and which can be fed into the following sub-routines forming the
third phase of the implementation.

In all what follows let Féé) denote the univariate edge polynomial associated with § and let ds

denote its degree. Assuming that irreducible factors of FO((S) are stored in sparse representation,
we define a list ¢rreds of integer pointers such that element s of irreds points to the address

*See http://magma.maths.usyd.edu.au/magma/
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in memory of the s irreducible factor of féd) produced by the MAGMA code above. We also
define an integer array head_irred of size at most O(d) such that head_irreds[j] points to the
location in the list irreds of the first irreducible polynomial of degree j, for 7 = 0,...,ds. Let h
denote the total number of irreducible factors of FO((S). We define two integer arrays, muls and
degg, of size h each, such that muls[s] denotes the multiplicity in FY, and deg[s] denotes the
degree, of the s irreducible in irreds. The crucial idea behind our approach is that any degree

j factor R; of Féé) has to satisfy the following:

1. R; = (irredgo))po . (irredgl))pl e (irred((ss))pS, where {irredgk)}kzo,m,s represents the set of

all irreducible factors of Fo(d) of degree less than or equal to 7,
2. pr < mulglk], for £ =0,...,s,

3. > k=o,...s degs[k] - pr = J.

Using this notation, counting the number of all possible polynomials R; reduces to counting all
possible ways one can construct an object with s + 1 spots, each of which can be occupied by
some integer flag py, for p; = 0, ..., muls[k], and then to excluding those choices of R; which
fail condition 3 above. We restate this simple counting problem through the following recursive
procedure:

Algorithm 7.3.4 Input: A degree ds univariate polynomial FO((S) factorised completely into pow-
ers of irreducibles.
Output: the number m;&) of degree j factors of Fé‘s), for 5 =0,...,ds.

Part I:

Count_divisors(dy)
Step 1: for j =0,...,ds, do
1.1: Let tail denote the address in memory of the last irreducible factor of Féék) of degree
7, and set
spot < tail.
1.2: Vary_count(spot, j, tail).

Part II:
Vary_count(spot, j, tail)

Step 1: Set popor < —1;
repeat

1.1: Set pspot < Pspot + 1;

1.2: If (spot =0) do

. 0 0
If Zk:o,...,miz degs[k] - pr = 7, set mg ) mg ) +1.
1.3: Else if (spot > 0), call Vary_count(spot — 1, j,tail).

while (pspor < muls[spot]).

Proposition 7.3.3 Algorithm 7.3.4 works correctly as specified. When used to determine the
number of factors of all possible degrees, the algorithm requires at most O(d'"h) bit operations
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and O(td) bits of memory, where h denotes the maximum number of irreducible factors of edge
polynomials F0(5) over all § € Newt(f)T.

Proof: For a fixed j = 0,...,ds, Part I invokes the recursive function Vary_Count using
all irreducible factors of the edge polynomial of degree less than or equal to j. Those factors
have indices 0,...,%ail in the list irreds, so that each occupies a “spot”. We shall establish
correctness of the recursive function by induction on the number of spots. Let N denote this
number. If N = 1, the call to the recursive function determines the number of ways one can
form factors of Fo(d) using only the first irreducible factor, irredy. All such possible factors are
of the form irred}’, for py = 0, ..., muls[0]. Now, suppose that the algorithm is true for N — 1.
The call to Vary_count(N, j,tail) lists all possible powers that can occupy spot N, and hence
all possible powers of the irreducible having index N in the list irreds. For each such choice, a
call to Vary_count(N —1, j) is assumed to have produced all possible ways to form products of
powers of irreducibles occupying locations 0, ..., N — 1 in the list irreds. Combining, this results
in new ways to form products of powers of irreducibles occupying locations 0, ..., N in the list.
When each such product has total degree j, a suitable factor would have been found, and mg.&)
is incremented by 1.

For a fixed j, 1 < j < d, since h denotes the maximum number of irreducible factors of edge
polynomials FO(‘S) over all 6 € Newt(f), there are O(h) irreducibles (or spots) for every edge,
and each spot k can have at most muls[k] < O(d) choices. When each choice is made a test is
performed involving at most O(h) multiplications and additions of integers bounded by d. Since
j < d, the total run time now follows.

It can be easily seen that the list irreds has size at most O(h). The array head_irreds is
of size O(d) since each of its entries points to locations in memory of the first irreducible factor

of Fo(d) of some degree less than or equal to d. Hence, its entries are also bounded by O(h) in
value and thus fit in a machine word, as h < d. Since multiplicities and degrees of all irreducible
factors are bounded by d, the arrays muls and degs are of size O(h) and have entries which fit
in a machine word. In total, the algorithm will require O(d) bits per edge polynomial, and so
O(td) bits in total.

7.3.8 Summand counting and recovering algorithm

The summand counting algorithm used in Chapter 6 requires all elements of I P to be available
in about O(d?) bits of memory, which makes it one of several bottlenecks we would like to
address before attempting very high degree factorisations. Since our application is designed
so as to specifically target sparse polynomials, we allow again the use of a “naive” summand
counting algorithm, which, despite its being exponential in the number of edges m of Newt(f),
requires negligible storage. Since m = O(t), we expect this trade-off between memory and run
time to be effective only for significantly sparse polynomials. The process can be described in
very similar terms as in the counting procedure in Algorithm 7.3.4. By Lemma 13 of [45], an
integral polygon is a summand of Newt(f) if and only if it has an edge sequence of the form c;e;,
for 0 < ¢; < ny, for some ¢; # 0 and ¢;p—1 # np—1, and Y, ,, cie; is the zero vector (the other
summand is understood to have the edge sequence {(n; —¢;)e;}, for i = 0,...,m — 1). Hence, we

fNote that although h < d, it has been shown in [83, 84, 100] that h is approximately log d, so that in practice,
the counting algorithm achieves its output in a reasonable amount of time
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can view any possible summand of Newt(f) as an object consisting of m spots, each of which
has a vector e; associated with it, and can be occupied by a component ¢; = 0, ..., n;, such that

Z c;e; = 0.

1=0,...,m—1

This again entails a recursive procedure examining all possible choices of a summand with m
edges, each of which has a possible length in the range ¢; = 0, ...,n;. The extra restrictions we
place over the ¢;’s are that they should match the degrees of the known univariate factors of
the edge polynomials fg such that 0 = n;e;. In particular, we exclude any value for ¢; such that
mg) = 0. Once a complete choice using some combination of scalar multiples of vector edges
has been formed, we check if the resulting vector sum is zero, in which case a summand would
have been found.

Since the above approach uses information about the edges rather then the vertices of
Newt(f), any of its possible summands will be produced using an edge sequence description.
The data structure we use for edges is a circular doubly linked list of pointers: Each element
of the list links to previous and following neighbours, and the last element links to the first.
Each pointer is associated with some edge ¢’ in the summand, and points to an array Edge of
integers such that Fdgey[0] and Edgeg[1] denote the respective z and y components of §'. The
algorithm can now be described as follows:

Algorithm 7.3.5 Input: The edge description {nje;}i—o,. m—1 of Newt(f), the set {mgl) |0 <

j < deg(ng)}, where mg-i) 1s the number of degree j factors of ng, and an upper bound M on

the total number of summands.
Output: The edge description of all possible pairs Q, R such that Newt(f) = Q+ R, or “failure”
if the number of such decompositions exceeds M.

Part I: Count_summands()
Step 1: Set spot <+ m — 1, first_spot < 0.
Step 2: Call Vary_choice' (spot, first_spot);

Part I1: Vary_choice' (spot, first_spot)
Step 1: Set cspor < —1; repeat

1.1: cspot < Cspot +1;

1.2: Ifm(smt) >0 do

Cspot
1.2.1: If spot = first_spot, check if the chosen edge sequence forms the zero vector and
that the sequence cie;, for i =0,...,m — 1, is not trivial. If so, output this summand.

1.2.2: Else, if spot > last_spot, call Vary_choice' (spot — 1, first_spot).
while (Cspot < nspot)'

Step 2: If total number of summands exceeds M, halt the polytope algorithm.

Proposition 7.3.4 Algorithm 7.3.5 works correctly and requires O(td') bit operations and no
more than O(t) bits of memory to list all pairs of summands.
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Proof: Correctness follows similarly as in the proof of Proposition 7.3.3 above, and we leave
the details for the reader. To establish the running time, we first know that the maximum over
all n;’s, denoting the maximum number of integral points along any edge of Newt(f), is O(d).
The naive method has to count over O(d™) = O(d!) different summands of Newt(f), where
every count is accompanied by O(m) additions and multiplications of vector coordinates, each
of which is an integer less than or equal to d, and hence can fit in a machine word for values of
d used in our application. If the number of all possible pairs of summands is larger than some
large parameter M, the entire code is halted producing Failure as in Algorithm 6.8.1 above.

Note that we do not need to keep information about more than one pair of summands at a
time. For each such non-trivial pair, we can carry out further computations including the lifting
stage. If unsuccessful, the process can be repeated using a different pair of summands which
occupies the space of its predecessor. As such, the amount of storage needed is O(m) = O(t)
bits of memory, where we understand that the component vectors describing the edges of any
summand are bounded in size by the component vectors of edges of Newt(f).

Recovering a vertex description of the summands

In the above algorithm, we obtained only the edge sequence describing a pair of summands
and R of Newt(f), which describes a unique decomposition up to translation with an arbitrary
vector in R?. However, it is essential that we identify which of these translated summands will
correspond to possible factors of f. In particular, the following consequence of Corollary 7.2.1
requires that we seek a vertex description allowing the proper translation of () and R according
to the fact below:

Corollary 7.3.3 Let f € Fy[z,y] be of total degree d such that f has no trivial monomial factors
of the form f(i’j)xiyj for some positive integers i and j, f(; ;) € F,, and let Q be any summand
of Newt(f) that corresponds to a possible factor g of f. Then QQ must have at least two vertices
or edges on the x-axis and y-azis respectively.

Proof: Suppose @ is a summand of Newt(f) corresponding to a possible non-trivial factor
g of f. For f as above, g must have no trivial monomial factors of the form f(; yz'y’. By
Corollary 7.2.1, () must have at least two vertices on the z and y axes.

The data structure we use for the vertex description of the summands is the stack of points
as used in the representation of Newt(f). For consistency, we will always assume that each of
the summands has m vertices and edges, though some of the edges may be trivial, in which case
we also define appropriate trivial vertices with coordinate values (—1,—1), as we show in the
following procedure.

Let {¢; = ¢ie;}i=o,...,m—1 denote the edge sequence of a summand of Newt(f). We first choose
an arbitrary point to be the pivot Vj, such as the origin of coordinates (0,0) for instance, and
then define an auxiliary vector sum, sum, initialised to zero. We then build around the pivot by
adding to sum the vector edges given one at a time. Since the edges are directed in a counter-
clockwise fashion around the pivot as in Newt(f), we expect to build the vertices in a stack
structure. If some edge ¢; = Vi1 — V; is trivial, we insert a trivial vertex at the appropriate
index of the stack as follows. If g; is followed by a non-trivial edge ¢;, for some j = i+1,...,m—1,
then V11 is a trivial vertex. Else, if ¢; is not followed by any non-trivial edge, then, since the
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last non-trivial edge of the summand is ¢;_1, it must connect V; to Vp, so that V; coincides with
the pivot, at which point the edge sequence forms a closed zero sum. Accordingly, we define
all the remaining vertices Vj, for 7 > ¢, to be trivial. When all non-trivial vertices have been
determined with (0,0) as the pivot, we translate the polytope so that the following is satisfied:

1. @ lies completely in the positive quadrant {(z,y)|z,y > 0},
2. @ intersects the z-axis and y-axis in at least one point respectively.

In simpler terms, the lowest abscissa and ordinate among all coordinates of vertices should be
zero. As a result, it suffices to determine

a = min(x;)i=o,..m—1 and b = min(y;)i—o,....m—1

for V; = (z;,y;) and to translate each of the vertices of @ by the vector (—a, —b). The procedure
can now be summarised as follows:

Algorithm 7.3.6 Input: The edge sequence q; = {cie;}i—o,...m—1 of a summand Q of Newt(f),
where not all the ¢;’s are zero and where ¢p—1 # Npy—1-
Output: The vertices Vy,...,Vim—1 of Q.

Step 1: Set sum + (0,0), Vo « (0,0);

Fori1=0,....m—1 do
1.1: If q; is not trivial, set Vi1 < sum + q; and sum < sum + ¢;;
1.2: Else, if q; is followed by a non-trivial edge, set Vi1q < (—1,—1);
1.8: Else, for j =1,...,m — 1, set Vj < (=1,—1).

Step 2: Let a and b denote the lowest abscissas and ordinates among all coordinates of the
non-trivial vertices; translate all non-trivial vertices of Q by (—a,—b).

The proof of correctness and that the algorithm requires O(t) bit operations is immediate,
bearing in mind that m = O(t) and that a vector sum in our application reduces to the addition
of two integers which do not exceed d, and hence which fit in a machine word.

Computing the integral points belonging to () and R

Once a vertex description of the appropriate translated images of summands has been computed,
we can determine the sets of integral points I P, and I P}, belonging to @ and R respectively, as we
have seen earlier in the case of Newt(f), in O(td?) bit operations. We further keep track of two
indices, denoted by rem, and remy, and initialised to #1P, and #1 P}, respectively. The indices
are decreased by 1 every time a new coefficient is specialised, so that a total specialisation
of coefficients of g or h is reached when any of rem, or rem) is zero. For future use, we
also determine the number of integral points gny falling on every edge d; of @, using the O(d)
technique of Subsection 7.3.4. We also note that the location in memory used to store information
about the summands can be reused upon each new choice.
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7.3.9 Choosing coprime dominating edges factorisations

As a result of the changes we have introduced to the summand counting algorithm recommended
in Chapter 6, the procedure with which we choose a coprime edges factorisation has to be mod-
ified as well. Given a fixed pair of summands of Newt(f) and a set of all irredundant sets T of
dominating edges, we want to identify all resulting coprime dominating edges factorisations. For
every pair of vertices V; and V; such that ¢ < j and whose connecting edges form a dominating
set, we can choose I' to be the (forward) sequence of edges n;e;,...,nj_1e;_1 or the (backward)
SeqUeNce 1€, ..., Ny —1€m—1,M0€0, ..., N;—1€;—1. Let I' denote a fixed irredundant set of domi-
nating edges of cardinality m/, and suppose that all edges in T' have been relabelled to occupy
an index in {0,...,mm' — 1}. We can generate a sequence of coprime edges factorisations by ex-
amining all possible ways we can form a m’ sequence of polynomials Gé‘si), fori =0,...,m' — 1,
each satisfying the following;:

1. G(()Ji) =irred])’ - - -irreds’, where {irredy}r—o, s denotes the list of all irreducible factor

of Fo((si) of degree less than or equal to length of §;.
2. pr =0 or py = muly, k], for k=0, ..., s.

3 2k=0,..,sPs - degg, [K] = |]di]].

Here, ||d;|| denotes the length of edge d;. The second condition above guarantees a coprime
edges factorisation, since

8 . mulgs . [0]—p . muls, [s]—ps
Hé’)— 0_ = irred, 2 [0 . irreds 9] ,

so that Gé&-) and Hégi) have a non-trivial factor in common if and only if there exists at least

one k such that irredy has a non-trivial multiplicity different from 0 and muls, [£] in both Gé&-)

and Hédi). Since we need only one edge polynomial decomposition ng = Ggngi at a time to
make a sequence of factorisations using all §; € I', and only one sequence of edges factorisations
at a time to initiate lifting, we can interleave the two processes as follows:

Algorithm 7.3.7 Input: A fized integral decomposition Newt(f) = Q-+ R and all factorisations
of the edge polynomials into powers of irreducibles.
Output: All possible coprime dominating edges factorisations associated with @ and R.

Part I: Choose_coprime_ factorisations
Step 1: For all pairs of vertices (V;,V;) of Newt(f), wherei =0,...,.m—1 and j =i+1,...,m—1,
and where the edges connecting V; and Vj form an irredundant set of dominating edges:
while no factorisation has been achieved and any of the irredundant sets has not been used, do:
1.1: Consider the edge sequence comprising I':
1.1.1: Set m' < #T and perform a change of index so that the edges
in T' are relabelled as {0, ..., O —1}-
1.1.2: Let {6, ...,0! , ,} be the corresponding set of edges in QQ such
that 0}, is a summand of oy, for k=0,..,m' — 1.
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1.1.3: Let tail denote the address in memory of the last irreducible factor of FO(J’“) of
degree equal to ||6}.||.
1.1.4: Setk <— m'—1, and spot < tail, and call Vary_choice_across_edges(dy, 9}, spot, tail).

Part II: Vary_choice_across_edges(dy, 0y, spot, tail)

Step 1: Set power(gyop <= —1;
repeat
1.1: If power (gpopy = —1, set power gy, <= POWET (spopy + 1.
1.2: Else, set power gpoy  mulg, [spot].
1.3: If spot = 0, check if a coprime edges factorisation corresponding to the lengths of the
summand edges has been found:
1.3.1: If |63 || = 0, set

G =1 and H{Y = F)

and go to 1.3.5.
1.3.2: FElse, find the product Poly of all polynomials poly,, for r =0, ..., tail,
such that poly, = irreds, [r]P°¢ ™). If deg(Poly) = ||d; ||, set

G «— Poly and HY® « F) jG{™

and go to 1.3.3. This will constitute the coprime factorisation associated with edge 0),.
1.8.8: If by is the first edge in T, all edges now have a coprime factorisation associated
with them, and we start lifting using all dominating boundary factorisations.

1.8.4: Else, repeat Step 1 in Part 11 above for the preceding edge 0p_1:

k—1

Let tail denote the address in memory of the last irreducible factor of FO(J ) of degree

equal to ||0}, ||, set spot < tail, and call Vary_choice_across_edges(dx_1,0},_,, spot,tail).

Step 1.4: Else if spot > 0, we still need to choose powers of irreducible factors of FO((S’“)
of index spot — 1, spot — 2, ...,0: Call Vary_choice_across_edges(0y, 0y, spot — 1, tail).

while (power g,y < mulg, [spot] and factorisation still not achieved).

Proposition 7.3.5 Algorithm 7.3.7 works correctly and requires O(t>d'T"h) bit operations and
O(td) bits of memory, where h denotes the maximum number of irreducible factors of edge

polynomials F0(5) over all § € Newt(f).

Proof: We establish correctness by induction on the number of edges in I'. If m' = 1, the
procedure above reduces to finding all possible factors of FO((SO) of degree |[0(||. Correctness in this
case can be proven by induction as in the proof of Proposition 7.3.3 above. Now, suppose the al-
gorithm is correct when the number of edges in I is less than m/. For the fixed edge 6,y _1 € T', the

main loop in Part IT examines all possible factors of Fo(gm'_l) of degree ||d] ,_, ||, which is correct
as shown in Proposition 7.3.3. For each such factor whose degree matches the length of 8/ , |,
and by the induction hypothesis, the call to Vary_choice_across_edges(dm 2, 0),_o, spot, tail)
determines all possible coprime edges factorisations along edges iy, for k = 0, ..., m' —2. But now

a full choice using one factor of Fo(gm'_l) and all possible factors of Féé’“ ), for k=0,...,m' — 2,
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has been made. At this stage, one can then initiate lifting using coprime factorisations for all
edges in I'.

The worst-case run time of the algorithm can be derived from the fact that one would have to
try all possible coprime factorisations using I'. By Proposition 7.3.3, finding all possible choices
of polynomials per edge is of the order O(d'™"h). Across all edges of T, this becomes of the order
O(md'*"h). Assuming that there are at most O(m) pairs of vertices (V;, V;) connecting two sets
of dominating edges, the total worst-case complexity is of the order O(m?2d'*"h) = O(t?d'*"h).

Now, since any of the summands @ and R will have at most #Newt(f) = O(d?) integral
points, the maximum number of integral points found along any edge of () or R is bounded by
that same number found along any edge of Newt(f), which is O(d). The amount of storage
needed in the above algorithm is for one coprime edges factorisation only, where the univariate
edge polynomials corresponding to Q@ or R have degrees bounded by O(d), so that the memory
needed is about O(td) bits.

Once a coprime dominating edges factorisation has been chosen, we can perform further
characterisations of the corresponding edge polynomials in (Q and R. First, and for all pairs of
coprime edge polynomials Gy and Hy, we compute the unique polynomials U and V such that

UGo+VHy=1

and deg(U) < deg(Hp),deg(V) < deg(Gp), using the Extended Euclidean algorithm for polyno-
mials. Even though Gy and Hj are sparse, the polynomials U and V' may be dense themselves,
having about O(d) terms. However, we shall store these in a sparse data structure whereby only
information about the terms is available. We also determine other edge characteristics, such as
the primitive affine function associated with every edge of the summands. Given § € Edge(f)
and ¢’ its summand in ), we have that

ly(z,y) =15(z,y) —cs =iz + oy +n—cs

for some unique integer ¢y [2]. Since v1,v2 and n have already been computed, it suffices to
determine and store only c;, by finding the equation of the straight line with slope —v4 /15 and
passing through one of the vertices of ¢’, as shown in Section 7.3 above. This immediately
determines the primitive affine function of the edge ¢” = § — ¢§’. Furthermore, we can now use
the coprime dominating edges factorisation chosen above to specialise a subset of the coefficients
of the possible factors g and h corresponding to the fixed pair of summands we have used above.
In particular, if we write

Gé(s;c) = Z gszsa

§=0,..0, ][0 | 1

and if (a,b) denotes the coordinates of the head of the edge ¢}, then, by Lemma 9 of [2], each

é . . T . . P
term g42°% of Gg ) will result in the specialisation of a coefficient of a term g;z'y’ in g, such that

1=1w.5+a andj=-—-vi.s+0b,

where (a,b) denote the coordinates of the starting vertex of §’. As in the sparse representation
of terms of f, we store only these terms of g and h specialised so far. The data structure is
identical to the one described in Section 7.3 for representing terms of f, with gymaer and hymaz,
9Tmaz aANd hZpee, gterms and hterms, and gabs and habs the analogous terms of Ymaz, Ymin,
yterms, and fabs respectively. This would require at most O(¢d) bits of memory.
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7.4 The sparse lifting algorithm

With the exception of the summand counting algorithm and the corresponding subroutine for
determining dominating coprime edges factorisations, all the previous tasks comprise the pre-
computation phase, whose complexity bounds are dominated by O(d'*"h) bit operations and
O(t? + d) bits of storage. As noted in [2], the summands and boundary factorisations need not
be all computed at once. Lifting can be initiated for each coprime edges factorisation one at a
time until a factor is found or the lifting procedure fails. Our empirical findings in Tables 7.1
and 7.2 demonstrate that in practice, and given very sparse polynomials such as those defined
in Section 7.2, the total number of dominating coprime edges factorisations is considerably less
than the total degree of the input polynomial. For such class of polynomials, we will consider
that the sparse lifting procedure will be invoked a number of times that is bounded by some
small constant M. It is recommended that the polytope method be discarded once the number
of coprime edges factorisations attempted exceeds this bound, and one revert to other “dense”
methods [2].
The main sub-routine of the polytope lifting stage is as follows:

Algorithm 7.4.1 Input: A (T, K;Q,R) coprime dominating edges factorisation, where K =
(l)(S,EF; fOT i =0, "'7ml -1
Output: A factorisation of f, or “failure”.

While a factor of f has not been found and not all coefficients in Q@ and R have been specialised,
do:

Step 1: For every 6; € T do
1.1: Retrieve its summand 6, € Q and the corresponding primitive affine function lg .
1.2: Count the number of unspecialised terms ug on the ks, +1 translate of the suppo;tz'ng
line of & into Q, and whose equation is deﬁnedl by ls, = (ks; +1).
Step 2: Choose one edge §; whose summand satisfies:
. u(;; < gn(;;
- uy = max(uy, ) s=o,...,m'—1
Step 3: Set ks, < ks, + 1 and perform a K lifting of the given partial factorisation. If this
extension produces failure, exit the loop and choose a new coprime edges factorisation.

End.

The pseudo-code above mostly reflects the operations in Step 4 of Algorithm 6.8.1, which has
been proven to terminate either with a failure or with a factor of f (see [2] for full details). The
only slight modification is in choosing the suitable edge to lift from. Primarily, one has to choose
0" such that the number of unspecialised terms on its ks + 1 translate is less than the number
of integral points on ¢’. In the dense implementation of [2], preference was given to “shorter”
edges even though lifting from these edges revealed a smaller number of coefficients of g and A,
since their corresponding lifted univariate polynomials had smaller degrees, and hence could be
processed faster by polynomial arithmetic sub-routines. However, this argument does not hold in
our sparse adaptation, where the complexity of sparse polynomial arithmetic becomes dependent
on the number of terms in a polynomial rather than its degree. Also, since we expect many of
the lifted univariate polynomials to be zero, non-trivial polynomial arithmetic is performed only
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very rarely. Preference is thus shifted to longer edges which reveal more coefficients per lifting
step.

To establish the run time and spatial complexity of the above lifting module, we shall need
to investigate each of its inner sub-routines, for which the rest of this section is dedicated.

7.4.1 Detecting specialised coefficients

A crucial aspect of our sparse adaptation consists in that only nonzero terms of g or h get
stored as they are revealed during the lifting stages. Consequently, it becomes essential to find
efficient ways of identifying whether or not an arbitrary point in  (or R) corresponds to a
specialised term of g (or h), a task which is otherwise immediate in a dense implementation,
where information about all the lattice points is stored. For this, we propose the following
algorithm:

Algorithm 7.4.2 Input: An arbitrary point (i,7) of Q, and a partial (T, K)-factorisation ex-
tending a coprime dominating edges factorisation.
Output: PASS if (i,7) corresponds to a specialised coefficient of g, and FAIL otherwise.

Step 1: For every § € T, let &' denote its summand in Q, let ks denote the entry in the K vector
indexed by &, and let g denote the primitive affine function associated with ¢§'.

Step 1.1: If Iy (i,7) < ks return(PASS).
Step 2: Return(FAIL).
Proposition 7.4.1 Algorithm 7.4.2 works correctly and requires O(t) bit operations.
Proof: The input to the algorithm presupposes a partial (I, K') factorisation, where exactly
the coefficients of g indexed by lattice points in Q|r x have been specialised [2]. But these are

precisely the points given by:

Q

rx ' ={e€Q]0<ly(e) < ks where ¢§' is a summand of some § € '},

which establishes correctness. Assuming that no integer overflow occurs as a result of computing
ls(4,7), the main loop of the algorithm iterates at most O(m) = O(t) times, during which only
multiplication and addition of bits is performed.

The algorithm above still does not produce whether (7,j) corresponds to a nonzero term
of g, if at all specialised. However, this can be readily checked by a simple scan of the list of
nonzero terms of g that have already been specialised, so that in general, the following scheme
would work best:

Algorithm 7.4.3 Specialised(i, )

Input: An arbitrary point (i,7) of Q, and a partial (T, K)-factorisation extending a coprime
dominating edges factorisation.

Output:

e The coefficient of g(i,j)xiyj in g, if (i,7) corresponds to a nonzero term of g,
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e 0 if (i,7) corresponds to a zero term of g,

o and —1 otherwise.

Step 1: Scan the list gabsj_1; if there exists an element with value i, return the value of its
coefficient.

Step 2: Invoke Algorithm 7.4.2 with input (i,7); if output is PASS, return (0), else return (-1).

It is trivial to see why the above algorithm works correctly and requires an order of O(t) bit
operations, the cost for both scanning the list gabs;_; and calling Algorithm 7.4.2.

7.4.2 Counting unspecialised terms

In this section we discuss another frequently used procedure for counting unspecialised terms on
translated edges of ). The approach mirrors in many aspects that of identifying integral points
interior to Newt(f), and is described as follows:

Algorithm 7.4.4 Input: 6 in T, §' its summand in Q, and a partial (T, K)-factorisation ez-
tending a coprime dominating edges factorisation.

Output: The number of unspecialised coefficients corresponding to integral points on the ks + 1
translate of the supporting line of 0" into Q.

Step 1: Retrieve the primitive affine function ly = vix 4+ 1oy +n — c5, and consider the equation
of the line £ given by lg = ks + 1; set num + 0.

Step 2: Call Intersection' (1P, v1,v2,n — (c5 + ks + 1)).

Step 3: For every integral point (i,j) between and including the two near points of intersection
produced in Step 2 above, if Specialised(i,j) = —1, set num < num + 1.

Step 4: Return num.

Proposition 7.4.2 Algorithm 7.4.4 works correctly as specified and requires at most O(td) bit
operations.

Proof:  Given a partial (I', K)-factorisation, the algorithm aims to count the number of
unspecialised terms of the polynomial G,(c?ﬂ, for all § € T'. This is done by examining the
corresponding number of integral points on the ks + 1 translate of ¢’ into @, such that ¢’ is a
summand of §. By Lemma 8 of [2], if Gi,; 41 has a nonzero number of unspecialised terms that
is strictly less than the number of integral points on ¢’, then all of these have exponents which
are adjacent integral points on the ks + 1 translate of the supporting line of ¢’ into the polytope,
whose equation is defined by lfs — (ks +1) =0, where 1’5 =ls—cs = vix+12y+n—cs. The above
algorithm calls the intersection function Intersection’ to determine integral points on this line
which are then tested for specialisation.

Intersection’ with the given input requires O(d) bit operations, while a call to Specialised
requires O(t) bit operations. Since there are about O(d) integral points lying on ¢ and inside
@, the total amount of time required by the above algorithm is at most O(td) bit operations.
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7.5 Investigating one lifting step

The following section is dedicated to analysing the complexities of a number of major sub-
routines used per one step of lifting from a fixed edge in T". Tt is in these tasks that other strong
aspects exploiting sparsity will be highlighted.

Sparse univariate polynomial arithmetic over I,

The most basic of these tasks is related to sparse arithmetic of univariate polynomials over F,,.
Assuming that terms of sparse polynomials are stored in increasing order of their exponents,
the following algorithm performs the summation of two sparse polynomials in time linear in the
input size; in particular, we have:

Algorithm 7.5.1 Sum(fo, f2)

Input: Two polynomials fo, f1 € IFplz] in sparse format such that f;[i] represents the exponent
of the i’th term in f;, 7 = 1,2. Also given are tg and ty, the total number of terms in fy and fi
respectively. We may also assume that fy and fi are nonzero.

Output: fo + f1 in sparse format.

Step 1: index < 0, indexqy < 0, index; + 0;
Step 2: while (indexy < ty and indexy < t1) do

2.1: If folindexo] > filindez1] and index; < ti do
2.1.1: Set sumlindex] < fi[index].
2.1.2: Set indexy + indexi + 1.
2.1.3: Set index + index + 1.
2.2: Else, if folindexg] < fi[index1] and indexy < ty do
2.2.1: Set sumlindex] < folindexy).
2.2.2: Set indexy + indexy + 1.
2.2.3: Set index + index + 1.
2.3: Else, if folindexo] = fi[index;] do
2.3.1: Let ¢y and ¢y denote the coefficients of terms whose exponents are folindexy| and
filindex1] respectively.
2.3.2: If ¢+ c1 # 0 mod p, set sumlindex] < folindexy|, and index < index + 1.
2.3.8: If indexg < tg set indexg + indexg + 1.
2.8.4: If index1 < t1 set indexy < index; + 1.

Step 3: If indexy < ty set the remaining terms of sum to be the remaining terms of fo; else, if
indexy < t1, set the remaining terms of sum to be the remaining terms of fi.

Proposition 7.5.1 The above algorithm works correctly as specified, requiring O(t) bit opera-
tions and O(t) bits of memory, for input polynomials in sparse format with at most O(t) terms.

Proof: The algorithm is based on a comparison procedure whereby terms of fy and f; are
collected together in increasing order of exponents, such that any two terms from fy and f;
respectively and having the same exponent are added modulo p. When any one summand is
examined entirely, the remaining terms in the other polynomial will all belong to the sum. The
sub-routine above is linear in the number of comparisons it makes between exponents of terms,
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so that it requires no more than O(t) bit operations for input polynomials with at most O(t)
terms, whose exponents do not exceed a machine word. The sum produced has at most £y + #;
terms, and hence requires O(¢) bits of memory.

Note: The product of two polynomials with O(ty) and O(#1) terms respectively can now be
achieved using repeated calls, say O(ty) of them, to the function Sum, using input of at most
O(t1) terms. This costs O(tot1) bit operations, and requires O(tot1) bits of memory for storing
the final product.

7.5.1 A complete description of a sparse lifting step

The most computationally extensive part of a single lifting step consists in solving for the known
polynomial e(z) such that

ks—1
Grs — VI(Fiy = > GjHg,_j) mod Go] = e(2)Gh, (7.1)
7=1

where G4 (or Hy), for s = 1,....,ks — 1, are fully specialised univariate polynomials. In the
worst-case analysis, one would expect to lift at most O(d) times from any edge of Newt(f) (a
number we will denote by max_lift), where this measure is derived from the dimensions of the
d x d square embedding Newt(f). Consequently, we would require to preallocate a region of
memory sufficient to hold about O(d) polynomials per edge, each having degree bounded by
O(maz_int_pts) = O(d). But this amounts to O(d?) bits of memory, despite the fact that
many of these polynomials may turn out to be zero. A crucial modification to the above dense
scenario caters not only to the fact that these polynomials would at worst be as sparse as g or
h, but that very few of them will be nonzero. Particularly, we have the following:

Lemma 7.5.1 Let f € )z, y] be a polynomial of total degree d and at most t nonzero terms.
Let r be a vector in R? and let T' be an irredundant dominating set of Newt(f) in direction r.
Assume furthermore that f = gh for two non-trivial monomial factors g, h € ¥, [z, y| with t, and
ty terms respectively, such that max(ty,tp) = O(t°) for some constant € satisfying 0 < e < 1.
Then, given the decomposition Newt(f) = Newt(g) + Newt(h) such that Newt(g) is not a single
point or a line segment parallel to rR>q, and for any coprime dominating edges factorisation of
[ relative to T',Newt(g) and Newt(h), there will be at most O(t°) non-constant polynomials gy,
and hy, relative to any § € T, for ks > 0, and satisfying the Hensel lifting equations in (6.2).

Proof: Consider all possible liftings from some edge § € T", and let ¢’ denote its summand
in Newt(g). Since g has O(t°) nonzero terms, Newt(g) will have O(t€) lattice points which
correspond to specialised nonzero terms of g. In the worst-case analysis, none of these points
will fall on the same translate of the supporting line of §’ into Newt(g). In that case, the lifted
polynomials whose terms correspond to lattice points of Newt(g) on these translates will be
nonzero, and there will be at most O(t¢) of them. An identical argument applies for the lifted
polynomials in Newt(h).

The discussion we shall present below applies for the representation of both G and H poly-

nomials. The data structure we choose treats the distribution of the G’s as a sparse one, from
which information can be derived only about the nonzero lifted polynomials. We define a singly
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linked ordered list G, whose elements point only to nonzero polynomials G, ordered in increas-
ing order of their translate index s. Another integer array, Ghead, of size O(maz_lift) = O(d),
is used to provide quick access to the list as follows. If Ghead[s] = —1, for some s < maz_lift,
then G is understood to be zero; else, if Ghead[s] > 0, then G is nonzero and occupies position
Ghead[s] in G. Furthermore, each polynomial in the list is represented by a sparse array, Gpory,
whose entries contain the exponents of its nonzero terms only. As before, we make implicit the
construction of a similar structure for obtaining the coefficients of terms whose exponents are
stored. The cost for updating G is constant, due to the fact that it’s ordered in the same order
in which nonzero polynomials appear during the entire lifting stage, so that new elements are
appended to the end of the list. The total memory required per edge for this entire scheme is
O(maz_lift) = O(d) bits of memory for Ghead, t bits of memory for G, and O(t¢) bits for the
array Gpopy. For all edges, this amounts to O(m(d+t)) = O(t(d+1t)) bits of memory. With this
structure, the sub-routine for computing Zfi Il GjHy,_j is as follows:

Algorithm 7.5.2 Form_sum/(ks)

Input: A partial (T, K)-factorisation extending a coprime dominating edges factorisation, a
fized edge § to lift from, and all univariate polynomials G5 and Hg, for s=1,....ks — 1, as fully
specialised polynomials.

Output: 255:_11 GjHys—j in sparse format.

Step 1: Set sum + 0; for j=1,....ks — 1 do
If Ghead[j] # —1 do
If Hhead[ks — j] # —1 do
1.1: Retrieve the polynomials in G and H pointed to by Ghead[j] and Hhead[ks — j|;
1.2: Invoke a sparse multiplication sub-routine to form their product prod;
1.3: Invoke a sparse addition sub-routine to form the summation of sum and prod;
1.4: Store the result in sum.

Proposition 7.5.2 Algorithm 7.5.2 works correctly as specified, and requires at most O(t) bit
operations per any lifting step and O(t) bits of temporary storage.

Proof:  Correctness of the use of the data structure is an immediate consequence of the
discussion above. To establish the run time cost, we know that the main loop iterates at most
O(maz_lift) = O(d) times. However, since there are at most O(t°) nonzero polynomials G;
or Hj, for 5 = 1,...,ks — 1, we know that in many cases the procedure will never perform the
inner-most arithmetic polynomial computations. Hence, we need to redefine what a worst-case
scenario will be. By Lemma 7.5.1, there will be a collection G’ of at most O(t) polynomial
pairs (G, Hy;— ) per any lifting step such that both polynomials are nonzero. In the worst-case
analysis, there will be one pair (G, H, ;) in G’ with O(¢°) terms per polynomial. The product
of one such pair requires O(t) bit operations. The remaining pairs in G’ — (G, Hy;_;) will have
O(1) terms per polynomial, so that the product of one such pair requires O(1) bit operations,
and the sum of products of pairs in G’ — (G, Hy; ;) requires O(t) bit operations. Adding this
sum to Gy Hy;—j is dominated by O(t) bit operations, and produces a polynomial of at most
O(t) terms.
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Unlike the lifted polynomials G and Hy, the polynomial Fj; is used only once in a partic-
ular calculation and so need not be stored for any edge. Hence, we represent this polynomial
temporarily in a sparse data structure that can be reused by any edge from which one is lifting.
The procedure for determining Fj, is as follows:

Algorithm 7.5.83 Input: A partial (T, K)-factorisation extending a coprime dominating edges
factorisation, and o fized edge § € T to lift from.
Output: The univariate polynomial Fys stored in sparse format in array Fpopy.

Step 1: Set index < 0; retrieve the primitive affine function ls = viz + vy + 1 and consider
the equation of the line 0' : 15 = ks.

Step 2: Call Intersection' (IP,vy,v9,m — kg).

Step 3: For every integral point (i,7) lying between the two near points produced in Step 2 above
do:

8.1: Scan the list fabs;_1; if there exists an element i in this list, do
. Let (a,b) denote the coordinates of the starting vertez of edge §. Compute

exponent = (j — (b+ ((2.ks)))/ —v1, if 1 #0

or

exponent = (i — (a + ((1.ks)))/ve,  if va #0.
. Set Fypopylindex] < exponent and index + index + 1.

Step 4: Rearrange the entries in F,oy in increasing order of exponents and return Fop .
Proposition 7.5.3 Algorithm 7.5.3 works correctly and requires at most O(td) bit operations.

Proof: The above algorithm determines all possible integral points found along the k;
translate of the supporting line of § into Newt(f), using O(d) bit operations. The maximum
number of such integral points is O(d), and for every integral point, we scan the lists of terms
of f in no more than O(¢) bit operations to see if the point corresponds to some nonzero term
of f. If such a term f(i’j)xiyj is found, a corresponding z term is formed using integer addition,
multiplication, and division, all of whose input does not exceed a machine word size. Finally, the
terms of the produced polynomial are rearranged in increasing order of exponents, to conform
to the representation required by sparse polynomial arithmetic sub-routines. In total, the cost
of the above algorithm is at most O(¢d) bit operations.

Now that we have computed Fj;, we can form

ks—1
Fiy = ) GiHyy-j (7.2)
7=1
using sparse addition over [F), and
ks—1
(Fis — > GjHg;—j) mod Gy (7.3)

i=1
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using division with remainder for Laurent polynomials (see Chapter 6). Note that the num-
ber of terms in Gy is bounded by the number of terms in ¢, and its degree is bounded by
O(max_int_pts) = O(d). Also, the dividend in (7.3) has at most O(t) terms and has degree
at most O(d). Despite that both dividend and divisor are sparse, the intermediary remainders
may not be necessarily so. The above will then require O(d?) operations over F,, producing a
remainder with degree at most O(d) and that has up to O(d) terms. Finally, we can compute
the product

ks—1
V[(F]% — Z GijJ,j) mod Gg] (74)
j=1

using O(d?) bit operations, since deg(V) < deg(Go) = O(d). From the discussion on Laurent
polynomial division with remainder in Chapter 6, the result is a regular polynomial of degree
O(d) and is stored temporarily in sparse format using an integer array, say temp, of size O(d).

7.5.2 Representing unknown polynomials and expressions

All the computations so far have involved fully specialised polynomials, which led us to exploit
commonly known data structures in their representation. We now discuss the more complex
symbolic representation of polynomials with unknown coefficients and systems of equations
involving several unknowns. The first such example is in representing the polynomial G, whose
coefficients are not all known at the time we start performing a partial (I, K)-factorisation. We
represent G, temporarily using an array, tempg, of which one copy can be used by any edge
during any lifting stage. The array will have size bounded by maxz_int_pts = O(d), and the
entries of the array will contain the exponents in z of every possible term (whether zero, nonzero,
or simply unknown) in Gj,. In a standard sparse polynomial structure, one can initialise the
entries of the corresponding array to some negative number, assuming that the polynomial is
regular and hence cannot have negative exponents. However, since Gy is a Laurent polynomial
whose terms can have negative exponents, it becomes essential to keep track of the maximum
possible number of terms in Gj;, in order to avoid accessing unwanted entries in temp, that
may contain information from previous computations. If b and ubs denote the respective
lowest and highest exponents among terms of Gy, that are either nonzero or unspecialised,
and assuming that entries in temp, are stored in increasing order of exponents, we define the
possible degree of the unknown polynomial G, to be the difference ubg — lbg. Gy, can then be
represented using at most O(td) bit operations as follows:

Algorithm 7.5.4 Input: A partial (T, K)-factorisation extending a coprime dominating edges
factorisation, and o fized edge § € T to lift from.
Output: The polynomial Gy stored in sparse format in array tempg.

Step 1: Set index < 0; retrieve the primitive affine function ly = vz + vy + n — c5, and
consider the equation of the line £ : ly = kg.

Step 2: Call Intersection'(I1P,,v1,v2,n — (c5 + ks))-

Step 3: For every integral point (i,7) lying between the two near points produced in Step 2 above
do
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3.1: Call Specialised(i,7); if this returns 1 or —1, do
3.1.1: Let (a,b) denote the coordinates of the starting vertex of edge d'.
Compute

exponent = (j — (b+ ((2.ks)))/ —v1, if 1 #0

or

exponent = (i — (a + ((1.ks)))/ve,  if va #0.

Set tempg[index] < exponent, and index « index + 1.

Step 4: Rearrange the first index entries of tempg in increasing order of exponents, and return
array tempg.

Data structure for expressions using unknown polynomials
Another example of an unknown symbolic entity is the expression

ks—1
Gk,s — V[(st - Z G]‘H]%,j) mod Go] (75)
j=1

where as we have seen above, G is a polynomial whose coefficients are partially specialised, and
where the second summand is a fully known polynomial. Let this quantity be denoted by LH S,
representing the left hand side of the main lifting equation (7.1). Because we need a symbolic
structure matching the nature of LHS before the unknown coefficients are specialised, this has
to deal with its two separate summands, the first of which is treated as a dense polynomial.
Suppose we choose to use an array [hs: Two issues to resolve are the size and nature of [hs.
We have seen that G; and the polynomial in (7.4) both have degree at most O(d), so that in
total LHS will have at most O(d) terms. We store these in sparse format and only temporarily.
Furthermore, the expression in (7.4) is a regular polynomial, but since G}, can be a Laurent
polynomial, LH S inherits the same structure. Let [bg and ubg be as defined above, and [b and
ub denote the smallest and largest exponents of terms appearing in (7.4), so that ub—1b = O(d).
Then [hs should have entries whose exponents range from min(lbg, [b) to max(ubg,ub), which
we shall denote by low,s and highj,s respectively. As such, highyns — low,s represents the
highest possible degree that LH.S can attain after being fully specialised.

Because we have to use LHS in a process which involves comparing coefficients of terms on
both sides of equation (7.1), it will be more convenient to store LHS in dense format, whereby
information about the coefficients of terms rather than their exponents is revealed. Accordingly,
the entries of [hs should point to the coefficients of the polynomial expression in (7.5). Since lhs
represents a Laurent polynomial whose terms can have negative exponents, we have to discuss
not only the dense structure of coefficients but also their address in the memory locations, which
are always labelled by indices starting from zero. In particular, since the lowest term of LHS
has exponent low;,,, and as its coefficient has to be stored in the zero location of the array [hs,
all remaining coefficients ¢; of the left hand side, for ¢ = low,s + 1, ..., highps, have to be stored
in locations 7 — low;,s. Now, since the coefficients can inherit two pieces of input, one from Gy,
representing an unknown, and one from (7.4), which is fully specialised, we allow each coefficient
to reflect this structure, by associating with the ¢ — low;,s entry of [hs two integers: the first
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containing the coefficient of 2% in Gy;, and the second containing the coefficient of 2% in (7.4).
In total, this requires that we treat [hs as a double array of size 2 x O(d). We now have the
following;:

Algorithm 7.5.5 Input: A partial (T, K)-factorisation extending a coprime dominating edges
factorisation, and a fized edge 0 € ' to lift from. Also given is the representation of Gy, in
array temp, with ind, entries, the representation of (7.4) in temp with ind entries, and lowyps
and highys designating the lowest and highest exponents in the unknown expression:

ks—1
Gk5 — V[(F]% — Z GijJ,j) mod Gg]
j=1

Output: The dense representation of the expression LHS in the array lhs.

Step 1: Initialise array lhs to zero.

Step 2: For i =0,...,indy — 1 do
2.1: Set e < tempy[i], and use the change of basis in Step 4 of Algorithm 6.8.1 to determine
the integers a and b such that g(a,b)x“yb is the bivariate term in gy, corresponding to z©
mn Gks .
2.2: Set Ihse—_jou,,, [0] < Specialised(a,b).

Step 3: For i = 0,...,ind — 1, set e < templi] and lhsc_iow,,,[1] to be the coefficient of 2° in
(14).

The above procedure is obviously correct, as it reads from locations of the sparse arrays
temp and temp, and writes to proper data locations of the dense array lhs. Data found in
temp, represents powers of univariate terms of G, that are then transformed into equivalent
powers (a, b) of bivariate terms, whose coefficients are determined by a call to Specialised(a,b).
Data in the array temp however is simply translated into l[hs at the proper locations, as it
represents exponents of terms that are known to be nonzero. Since the number of terms in [hs
is bounded by O(d), and since each call to Specialised requires O(t) bit operations, the entire
process requires O(td) bit operations and O(d) bits of temporary storage.

We now need to discuss how to make use of all the above representations to solve for the
unknown polynomial e(z) in (7.1). The trivial case when deg(Gy) is greater than the highest
possible degree of the left hand-side results in e(z) being the zero polynomial, so that LH S itself
is zero. The unknown coefficients of 2’ in G'; can then be specialised as follows:

Algorithm 7.5.6 Input: A partial (T, K)-factorisation extending a coprime dominating edges
factorisation, and a fized edge § € T to lift from. Also given is LHS as a fully specialised poly-
nomial in the form > ;100 pighy, Ci%'s for some known values c; € Iy,

Output: Gy as a fully specialised polynomial, and the specialisation of the corresponding coeffi-
cients of the polynomial g.

Step 1: For i = lbg, ...,ubq, if Lhs;_jow,, [0] = —1 do
1.1: Set lhsi_iow,,, [0] <= (IhSi—iow;,,[1] + ¢i) mod p and tempgy[i — lbg] < lhs;—jou,,, [0].
1.2: Use the change of basis in Step 4 of Algorithm 6.8.1 to determine the integers a and b
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such that g(a,b)x“yb is the bivariate term in gi; corresponding to 24 in Gl -
1.3: If Specialised(a,b) = —1

1.3.1: If Ihs;i 10w, [0] # 0, add g(a’b)x“yb to the list of nonzero terms of g, and reduce

remg

by 1.
1.4: Else if Specialised(a,b) is not equal to the coefficient of the term in g whose exponent
is tempgli — lbg|, output “failure” for this choice of coprime dominating edges
factorisation.

Step 2: For i = lbg, ..., ubg, form the polynomial in z whose nonzero terms have exponents stored
in tempy; if this polynomial is nonzero, add it to the end of the list G, store it permanently in
sparse format in the array Gpey, and let Ghead[ks] point to its location in the list.

Proposition 7.5.4 Algorithm 7.5.6 works correctly as specified and requires O(td) bit opera-
tions.

Proof: The above procedure identifies those entries in LHS whose partial summands are
terms in Gy,. For all unspecialised terms giz* of G'is, the corresponding coefficients are deter-
mined such that the coefficient of 2% in LHS is zero. This specialisation of terms in G, leads to
a specialisation of g coefficients, among which only the nonzero elements are added to the sparse
representation of g. A check is made so that g coefficients match previously known values, if
those exist. Finally, if the polynomial G}, is nonzero, the polynomial (in fact, its address in
memory) is appended to the end of Glist, with Ghead[ks] pointing to its position in the list.
Obviously, the above process requires O(td) bit operations, since only O(d) terms of G}, require
a call to Specialised.

If deg(Gy) is greater than highy,s — lowyys, we know from the discussion in Lemma 9 of [2]
that each triangular system arising from comparing coefficients on both sides of LHS = e(2)G|
can be solved uniquely. We now claim the following;:

Lemma 7.5.2 The triangular systems resulting from equating coefficients of polynomials on
both sides of LHS = e(z)Gy are sparse linear systems with at most O(t°d) nonzero elements
over IF,,, for some constant € such that 0 < e < 1.

Proof: Write

j=0,...,deg(Go)

where at most t(1) number of the gj’s are nonzero over [, and write

LHS = Z cjzj,

J=lowips,...,highips

where not all of the ¢;’s are specialised. We know that e(z) is a Laurent polynomial satisfying
LHS = e(2)Gy. Let low, and high, denote the respective lowest and highest exponents of terms
of e(z). Then, since G is a regular polynomial with a nonzero constant term over ,,, we have

lowe = lowys  and highe = highyps — deg(Go).
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Write e(2) = > i _jou..... high. e;z*. Using our data structure for LHS above, there exist two inte-
gers, say low_range and high_range, such that the known lower and higher terms of LHS
have exponents lying in the two intervals [lows,low_range] and [high_range, highy,s] re-
spectively. Suppose, for instance, that we wish to solve for the unknown coefficients of e(z)
using the lower known terms of LHS. Let B be the matrix of coefficients of terms ¢;z* in
LHS, for i = lowys, ...,low_range, such that each ¢; occupies row i — low, in the column
vector B. Let A be the matrix of coefficients in e(z)Gy corresponding to coefficients ¢;, for
1 = lowyys, ..., low_range. We then have

i = E €jgi—j>

j=lowe,...,high.

so that row 7 — low, of A contains e;g;—; in column j — low,, for j = low,, ..., high.. Since at
most O(t¢) coefficients of G are nonzero, for 0 < e < 1, it follows that each row of A contains
at most O(t°) nonzero entries over IF),. Since the number of specialised lower terms in LHS is
bounded by O(d), the system

Axr =B
contains at most O(d) columns and so O(t°d) nonzero entries in total.

Assuming the entries of any of the triangular systems belong to a finite field with prime order
which fits in a machine word, one can now obtain a solution using O(tt°d) = O(t%d) bit opera-
tions with no more than O(¢¢d) bits of temporary storage memory using any of the well known
sparse direct methods (see for instance [33] on a broad survey of data structures and algorithms
for sparse Gaussian elimination). When one or two of the triangular systems have been solved
uniquely, and assuming the results of the two triangular systems have been consistent, one can
then immediately retrieve e(z). Note that Algorithm 7.5.6 above can be applied in the general
case when LHS is a fully specialised, not necessarily zero polynomial, and hence can be invoked
to determine the polynomial G; and the corresponding g coefficients when e(z) is not zero.

7.5.3 Recovering Hy,

Invoking Algorithm 7.5.4 using the polynomial Hj, and the summand (), we can set up a
representation of Hj; using a temporary array tempy, and solve for the unknown coefficients of
Hj,; using the equation

F.. Skl H ) — G H,
Hkgz( ks — 20521 éo ks=i) = Gs 0. (7.6)

Note that the only new computations are for determining the product GjHy;_; if G} is nonzero,
and finding the quotient over Gy, with both divisor and dividend having at most O(t) and t*
terms respectively. The intermediary remainders have degree at most O(d), and hence at most
O(d) terms. When the numerator is non-trivial, this will require at most O(d?) bit operations
and O(d) bits of temporary storage. The unknown coefficients of tempy, are matched with their
corresponding coefficients in the quotient, and the corresponding coefficients of h are specialised
through a process similar to Step 2 of Algorithm 7.5.6, using at most O(td) bit operations.
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7.6 Total run time and memory

We are now ready to establish the total complexity of the sparse adaptation, combining the
above subcosts across all possible liftings per one coprime dominating edges factorisation. In
particular, we shall distinguish between two categories of sub-tasks, those that will be carried
out during every possible lifting step, and those which will be performed a number of times that
is dependent on the sparsity factor ¢ of f. We have the following concluding result:

Theorem 7.6.1 Let f € F,[z,y] be a polynomial of total degree d and at most t nonzero terms
such that t < d. Letr be a vector in R? and let T be an irredundant dominating set of Newt(f) in
direction r. Assume furthermore that f = gh for two non-trivial monomial factors g, h € Fp[z, y]
with tg and tj, terms respectively, such that max(ty,ty) = O(t°) for some constant € satisfying
0 < e < 1. Then, there exists an integral decomposition Newt(f) = Newt(g)+Newt(h) such that
Newt(g) is not a single point or a line segment parallel to rR>q. Furthermore, for any coprime
dominating edges factorisation of f relative to T',Newt(g) and Newt(h), there exists one full
factorisation of f which extends it in O(td?) + O(t3d) bit operations and O(t¢d) bits of memory,
assuming that d and p fit in a machine word.

Proof: That there exists an integral decomposition of Newt(f) into two Newton polytopes
corresponding to g and h, and that the algorithm can recover the two factors using any coprime
dominating edges factorisation is a result of Ostrowski’s theorem and Theorem 6.6.1 of Chapter
6. We now establish the total running time and memory required by the sparse method. In the
following, d denotes an edge in T" from which lifting can take place, and ¢’ denotes its summand in
Newt(g). During a single lifting step, one first has to determine the fully specialised polynomial
F,; and construct the unknown polynomials G, and Hy,, all using at most O(td) bit operations
and O(d) temporary bits of temporary storage. Hence, the total cost of representing the lifted
polynomials is maz_lift - O(td) = O(td?) bit operations and a temporary O(d) bits of memory.
We have also shown that computing the quantity in (7.2) requires in the worst-case analysis
O(t) bit operations and O(t) bits of temporary storage, so that the total cost is max_lift- O(t)
= O(td) bit operations and O(t) bits of memory. Computing the polynomial in (7.4) may in the
worst-case require O(d?) bit operations and O(d) bits of temporary storage per any lifting step.
However, we claim that this need not be done during every lifting step. In particular, and since
the modular operation is non-trivial only when the polynomial (7.2) is nonzero, it suffices to
determine the maximum number of times that the latter can happen in order to obtain the total
cost of long division throughout the lifting stage. Note that the polynomial (7.2) is nonzero in
at most one of these cases:

e F}, is nonzero,
e or > iy k1 GjHks—j is nonzero.

However, there are at most O(t) nonzero polynomials Fy, for all ks < maxz_lift, since at most ¢
lattice points in Newt(f) correspond to nonzero terms of f. By Lemma 7.5.1, there exist at most
O(t) nonzero polynomials G; and H;, fori,j = 1,...,ks—1, where i+j = ks < maz_lift, and so
there will be at most O(t) nonzero polynomial expressions of the form G;H;. In the worst-case
analysis, no two such products G;jH; and G Hy will be such that j + 14 = j' 4+ i’ = ks, so that
Zj:l,...,k(g—l GjH}s—; is nonzero whenever one pair G;Hy;_; # 0 for some fixed j. Hence, there
will be at most O(t) nonzero sums of the form >, , | GjHy,j, for all ks < maz_lift. This
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implies that the polynomial (7.3) is nonzero in at most O(t) of the total number of lifting steps,
which brings the total cost of computing its remainder modulo Gy to O(td?) bit operations, and
O(d) bits of temporary storage.

The quantity in (7.4) has been shown to require at most O(d?) bit operations and O(d) bits
of temporary storage. But as seen above, this should only be performed when the polynomial
in (7.3) is nonzero. In the worst-case analysis, this in turn is nonzero whenever the polynomial
(7.2) is nonzero, which has been seen to happen in at most O(t) of the total number of lifting
steps. Hence, computing the polynomial in (7.4) requires at most O(td?) bit operations and
O(d) bits of memory in total.

The sparse triangular system(s) for solving for the unknown coefficients of e(z) in LHS =
e(2)Gy have been shown to require at most O(t2d) bit operations and O(#‘d) bits of temporary
storage. However, we now claim that one does not require to set up and solve a triangular
system when

e The polynomial in (7.4) is zero, and
e G, has no specialised terms.

To see this, let us and gngs denote respectively the number of unspecialised terms on the ks + 1
translate of the supporting line of ¢’ into Newt(g), and the number of integral points on §' of
Newt(g). We know that if G}, has no specialised terms, the possible degree of Gy, is given by
ug — 1, which is less than deg(Gy) = gns — 1, because of the inequality us < gng. This, combined
with the fact that (7.4) is zero, results in the degree of LH S being less than deg(G), from which
one concludes that e(z) is zero. Consequently, one has to set up a triangular system in at most
one of the two following cases:

e the polynomial in (7.4) is nonzero, or
e G}, has at least one specialised term.

Since the first condition can happen in at most O(¢) of the cases, and the second can happen
in at most O(t¢) of the cases, one has to set up and solve a triangular system at most O(t)
times. The total cost for solving any of the triangular systems is hence O(t3d) bit operations,
and O(t°d) bits of temporary storage, throughout the entire lifting stage.

Determining Hy, per one lifting step has been seen to require O(d?) bit operations and O(d)
bits of temporary storage. Similarly as above, the long division to be performed in (7.6) is
non-trivial only when the numerator is nonzero. This, in turn, happens in at most one of the
two cases:

e The polynomial in (7.2) is nonzero, or
e Gy, Hy is nonzero.

This can be easily seen to happen in at most O(t) of the cases, which brings the total cost of
determining an expression of Hy, to O(td?) bit operations and O(d) bits of temporary storage.

When fully specialised, only the nonzero polynomials among all G;’s and Hy;’s ought to
be stored in sparse form. Specialising the coefficients of these polynomials during one lifting
step and using Algorithm 7.5.6 requires at most O(td) bit operations, so that in total this will
be at most maz_lift - O(td) = O(td?) bit operations. Since the total number of terms of all
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such polynomials should not exceed O(t¢), the total amount of memory for storing the lifted
polynomials is of the order O(¢?) = O(td), for t < d.

Combining all of the above, any coprime dominating edges factorisation associated with the
decomposition Newt(f) = Newt(g) + Newt(h) can be extended using at most O(td?) + O(t3d)
bit operations and O(td) bits of memory.

The above result helps justify the earlier conditions we imposed on ¢ as follows: Since the
lifted polynomials are bounded in degree by O(d), and since Newt(f) = O(d?), the standard
polytope method requires O(maz_lift - d3) = O(d*) bit operations in total and O(d?) bits of
memory. When

3 < d?,
we certainly have that ¢ < d, and hence
O(t*d) + O(t*d) c O(d®).

By Theorem 7.6.1, the sparse adaptation outperforms the dense one in both the operational and
spatial complexity.

7.7 Computational results

The work was carried out at the Oxford University Supercomputing Centre (OSC) on the Os-
well machine, using an UltraSPARC III processor running at about 122 Mflop/sec and with 2
GBytes of memory. All experiments were carried out over Fy. The input polynomials have been
constructed as explained in Section 7.2 above. For each of the random polynomials g and h the
exponent vectors (eq, es) were chosen uniformly at random such that 0 < e; + ey < d/2, and at
least three of them are of the form (e, 0), (0,e2) and (es, (d/2) — e3), so that f was of degree
d and had no monomial factors. The table below gives the running times (in seconds) of the
total factorisation process to find at least one non-trivial factor f. In the following, ¢ denotes
the number of terms of the input polynomial f, T.Sum. denotes the total number of non-trivial
integral decompositions Newt(f) = @ + R, s denotes the run time in seconds of the sparse
method, corresponding only to the successful liftings which produce at least one factor of f, and
84 is the corresponding run time in seconds of the dense method wherever applicable (as allowed
by the machine’s memory resources). Also, T.Bd.F. denotes the total number of coprime edges
factorisations associated with all possible summands and irredundant set of dominating edges of
Newt(f), whereas A.Bd.F. denotes the number of coprime edges factorisations attempted before
a successful extension produces the two factors g and h. Finally, #Ny, #N,, and #N}, denote
the number of lattice points in the Newton polytopes of f, g and h respectively.

The run times in Table 7.1 indicate that the sparse algorithm is faster than the dense one for
input polynomials which can be handled by both methods. Obviously, the run times also increase
for increasing input degrees. For larger degree polynomials where the dense algorithm no more
applies, we monitor the variations in running times by fixing all parameters apart from the
number of terms of the input. For this, we construct families of random polynomials having the
same Newton polytope as well as the same boundary factorisations along a fixed dominating set
of edges. Different polynomials with varying number of terms can then be chosen by randomly
selecting the appropriate number of lattice points in the interior of the polytope. As predicted
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earlier, the run times in Table 7.2 increase upon incrementing either the degrees or the terms
of the input polynomials. Note that in almost all cases Newt(f) has extremely few non-trivial
integral decompositions, as predicted earlier in [2] for sparse polynomials. Although the number
of all possible coprime edges factorisations is not small in all cases, it is still significantly smaller
than the input degree of the polynomial, and hence the size of Newt(f).

Table 7.1: Smalll degree polynomials

d t | s, | sq | T.Sum. | T.Bd.F. | A.Bd.F.| #N; | #N, | #N,
50 | 14| 4 | 3 1 8 2 561 166 50
100 [16] 8 | 12 2 15 0 2234 | 472 222
500 | 15| 13 | 22 1 25 17 52940 | 12758 | 11282
2000 | 28 | 540 | 620 1 21 9 848849 | 133797 | 132932

Table 7.2: Large degree polynomials

d ¢ Ss T.Sum. | T.Bd.F. | ABd.F.| #N; #N, #N,

6000 | 36 | 23'50” 3 36 16 8496181 | 502330 | 2615634
6000 | 100 | 28'28"
6000 | 196 | 59’51’
10000 | 12 | 22'57" 1 15 7 15521707 | 2417337 | 3063179

10000 | 60 38'36"
20000 | 16 | 48hr 4'53" 1 42 18 39374376 | 5716256 | 9914429

7.8 Conclusion

It has been previously shown that, despite the fact that a randomly chosen bivariate polynomial
over a finite field is unlikely to be reducible, there is still a significant number of bivariate
polynomials that are reducible [46], which justifies continuing efforts in developing efficient
factorisation algorithms. Of particular interest in real life applications are sparse polynomials,
for which no well defined ‘sparse’ factorisation algorithm has still been devised. In this chapter
we have attempted to address the open question of finding such an algorithm by investigating
potentially strong areas of the polytope method in application to sparse bivariate polynomials
over I,. In addition, we have been able to address another significant aspect in which the
algorithm can be adapted so that the run time of the lifting stage is made dependent on the
number of terms belonging to the input polynomial, rather than its degree only. Assuming
an upper bound on the sparsity of the possible factors of the input polynomial, the gains for
sparse polynomials that are a product of sparse factors are demonstrated not only through the
improved run time of the algorithm during its lifting stage, but also in the reduced memory
requirements, so that the sparse adaptation requires O(td?) + O(t3d) bit operations and O(td)
bits of memory, 0 < € < 1, compared to the corresponding dense costs of O(d*) and O(d?).

In addition to the above, this chapter has covered complete details of the implementation we
have carried out, where problems related to computing with geometric structures and maintain-
ing correct exact arithmetic have been highlighted. The combination of our sparse adaptation
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has led to a very fast and high record in sparse binary bivariate factorisation of degree 20000,
which we believe has not been previously achieved using any other different algorithm. We ex-
pect our adaptation of the polytope method to perform equally well for sparse and high degree
bivariate polynomials over fields of other prime orders. To the best of our knowledge, the high-
est dense bivariate factorisation to date achieved using Hensel lifting techniques is for a dense
polynomial of degree 2000 over Fy7 [13].
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Chapter 8

Parallel absolute irreducibility
testing via polytopes

8.1 Introduction

Absolute irreducibility testing of polynomials is of importance in various fields in algebra and
geometry (see for instance [6, 68, 92, 124, 125]). Convex polytopes have been studied in con-
nection with multivariate polynomials over arbitrary fields. We have seen how recent work has
examined the connection that convex polytopes bear to factorising bivariate polynomials [2],
and to testing absolute irreducibility of multivariate polynomials [43, 45], over arbitrary fields.
In the latter case, the problem of testing indecomposability of Newton polytopes formed part of
a pseudo-polynomial time algorithm (see [48]) for bivariate absolute irreducibility testing, and
of a heuristic and randomised algorithm in the multivariate case. The fact that the nonzero
coefficients of the input polynomial do not matter in the testing process makes it possible to
show absolute irreducibility of families of polynomials, rather than single polynomials [45]. The
empirical sequential tests and timing results reported in [47] indicated a high success rate for a
large class of low degree and sparse multivariate polynomials, whose number of terms is bounded
by O(nd), where n is the number of variables and d is the upper bound on the degree in each
variable. In the instances when the algorithm is highly successful and the input polynomials
have a number of nonzero terms bounded by a constant multiple of their total degree, the run-
times have been shown to be at most cubic in the total degree of the input polynomial [47]. For
a degree ¢ polynomial with n variables and coefficients from a finite field, for instance, the input
size of the irreducibility problem is N = O(q"), ignoring logarithmic factors. Expressing the
complexity of Gao and Lauder’s algorithm [45] in terms of the input size, this requires O(N %),
which for polynomials with more than 3 variables implies a run time that is almost linear in the
input size. As such, the algorithm can be used as a fast pretest before any of the infallible yet
slower irreducibility tests are invoked [34, 44, 51, 63, 75, 89, 90].

Motivated by these original findings and the special feature which makes absolute irreducibil-
ity testing dependent in large upon the shape and the size of Newton polytopes, we investigate
a parallel scheme mainly set to widen the range of applicability of the algorithm, by making
it possible to tackle significantly higher degree, sparse polynomials, and by allowing a more
efficient performance for low degree yet denser polynomials. We show that the algorithm can
be efficiently parallelised, thanks to some of its inherent features: First, we discuss a balanced
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load scheme which can be constructed using the pattern of computations in the sequential case
in [45]. Second, we discuss how a corresponding data distribution representing lattice points
inside polytopes in R? can be constructed, adhering to the balanced load scheme, and allowing
a scalable parallel algorithm aimed at high degree irreducibility testing. We adopt the BSP
model for parallel computation [15, 66, 67, 127], and we analyse the conditions necessary for
an efficient parallel performance in the bivariate case. This then serves as a sub-problem for
the multivariate case, where a model involving parallelism at two different levels is described.
The BSP algorithm makes it possible to test significantly higher degree polynomials than can
be allowed in the sequential case in [45], and hence, to the best of our knowledge, using any
other known absolute irreducibility testing algorithm. We further study both parallel models
for issues relating to efficiency, and establish some conditions under which a good performance
is guaranteed. Our empirical results agree closely with the theoretical estimates, and we report
on our implementation in this respect.

The reader may wish to recall some terminology and results relating to polynomials and
polytopes from Chapter 3. In Section 8.2 we study a parallel scheme for bivariate polynomial
irreducibility testing, and in Section 8.3 we address the multivariate case. Finally, empirical
results are presented and analysed in Section 8.4.

8.2 Parallel bivariate absolute irreducibility testing

In all the following we shall assume that nd fits in a machine word for an input polynomial
with n variables and upper bound d on each variable. We will thus measure run-time in bit
operations and space in bits.

Since the Newton polytope of a bivariate polynomial already lies in R2, a strong feature of
Algorithm 3.3.2 is that it will always decide indecomposability of polygons, and hence will always
establish absolute irreducibility of the input bivariate polynomial f if Newt(f) is indecomposable.
Initial empirical results in [47] indicate that the algorithm has a high success rate when the
number of terms is bounded by a constant factor of the total degree, and that the probability
of success increases with increasing degrees of input polynomials. While these observations
still stand as conjectures based on empirical results, it is important to extend the range of
applicability of the algorithm for higher degrees, and to support initial arguments related to the
rate of success of the algorithm. However, as degrees of the input bivariate polynomials increase,
so do the sizes of their Newton polytopes, and hence one major difficulty limiting attempts to
improve the performance of Algorithm 3.3.1 becomes the space requirement. Yet, the fact that
one can shift the focus from a data structure and distribution representing bivariate polynomials
to one that represents shapes of Newton polytopes in R? suggests that a parallel re-construction
of the irreducibility testing algorithm which exploits the shapes of the polygons can achieve
considerable improvements, both in the operational and spatial complexities. In the remainder
of this section, we discuss our first BSP model for a bivariate absolute irreducibility testing
based on a parallel polygon indecomposability testing algorithm.

Let f € [z, y| be of total degree ¢ with no non-constant monomial factors and let I P denote
the set of integral points belonging to Newt(f). Since all vectors in Supp(f) have positive integral
coordinates that are at most equal to ¢, Newt(f) can be embedded within a square of dimension
O(q?). Moreover, Algorithm 3.3.1 requires a description of IP in two different ways. First, one
has to have, at the beginning of the algorithm, a structure by which one can test an arbitrary
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point for inclusion in IP. Second, the algorithm re-constructs integral points in IP following
paths of the form vy + Zo<i<j kie;, for 0 < k; < n; and 5 = 0,...,m — 1. In the following
discussion, we aim to show how the problems associated with each of the two representations
can be circumvented by reducing the quadratic spatial factor.

8.2.1 Computing the set of all integral points in a polygon

Often in the innermost loops of Steps 2 and 3 of Algorithm 3.3.1, one will have to test for inclusion
of arbitrary points in IP. Computing and then storing the set of all integral points belonging
to the polytope requires about O(g?) bits of storage, which can become highly restrictive even
for moderately large input degrees. As has been already noted in Chapter 7, the alternative
approach which does not require that we store any lattice points but performs a test of inclusion
based on the “leftedness” of an arbitrary point with respect to all directed edges of the polytope
has a cost of O(m) integer operations. In our application, it can be costly to invoke this test
very frequently, incurring a cost of O(m?) for each loop iteration in Steps 2 and 3 of Algorithm
3.3.1 above, and hence a cost of O(#m3N) integer operations in total, where #' is the total
number of lattice points in Newt(f) and N is the maximum number of integral points along any
edge of Newt(f). We hence adopt the strategy earlier introduced in Chapter 7 which requires
that we store only a “useful” subset of IP with no more than O(q) points. Let Zpin, Tmaz,
Ymin aNd Ymaer denote respectively the lowest and highest x coordinates, and the lowest and
highest y coordinates, of all e € Supp(f). We then store only the intersection points between
all horizontal (or vertical) lines y = k, for k = ymin, -, Ymaz, uSing only Ymaz — Ymin + 1 = O(q)
bits of memory. However, unlike the case in Chapter 7 where computations are performed such
that all output is integral, we need a weaker condition affecting the following. The intersection
of the polytope with a horizontal straight line is obtained by intersecting the line with at most
all of the polytope’s edges (until two points of intersection are found, not necessarily distinct).
If ux + vy + w = 0 denotes the generic equation of a line ¢’ defining an edge of Newt(f), then
finding the intersection of ¢/ with y = k requires that we solve for z in
—w — vk

ur +vk+w=0o0r xr = ——,
u

when u # 0. Although this division operation involves only integral values, the quotient itself
may not be an integer, in which case x has to be declared as a float or a double, for otherwise, the
division might produce a rounded-off integral value |z], which may not correspond to a lattice
point in I P. Note that computing this subset of I P must be performed as a pre-computation,
requiring at most O(gm) floating point operations, where m is the number of edges in Newt(f).

8.2.2 Constructing sets of points along paths of edges

Obviously, the above strategy of reducing the description of IP by preserving only a smaller
subset of it cannot be extended when dealing with the main computations of Algorithm 3.3.1.
Specifically, one needs to have all points of I P that are reachable via a subset of edges ey, ..., ;,
for 0 <i <m — 2, in order to find a larger subset reachable via ey, ..., e;+1. Eventually, the last
path requires that one has available almost all of the points in 7P, and hence, the best that
one can attempt is to distribute the points in IP among a fixed number of processors. Since
this task is never so immediate, we need to address several of the following issues: Whether
there exists at all any potential parallelism in the main computations of Algorithm 3.3.1 that
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can make such an approach possible, whether there exists a balanced load scheme that ensures
all processors are almost equally engaged in the independent computations, and finally, whether
there exists a data distribution which not only ensures that a given number of n, processors,
say, store at most O(q?)/n,, lattice points in I P, but also adheres to the pattern of the proposed
balanced load scheme.

8.2.3 Detecting independent computations

Recall that the main computations in Algorithm 3.3.1 build up iteratively by constructing subsets
of IP in each step of the iteration. However, it is almost immediate to see that the inner-most
computations of the iterative loop can themselves be independent, generating a “horizontal”
inherent parallelism across each iteration of the main loop over edges of the input polygon. In
particular, we have:

Lemma 8.2.1 Algorithm 3.3.1 for polygon indecomposability testing contains two patterns of
computations, one which describes a sequence of inter-dependent iterative steps for constructing
new subsets of I P using previous subsets, and another pattern describing completely independent
tasks for vector operations across a fixed iterative step.

Proof: During a fixed stage i = 0, ...,m — 2 of the main loop iteration (Step 2) of Algorithm
3.3.1, one finds all points v’ € A; satisfying the following:

1. v = vy + ke;j, for 0 < k < n;, in which case the computations over all k£ require no
information from the previous loop iteration of index 7 — 1, and each computation per
fixed k requires no information apart from e;.

2. u' =u+ke;, for 0 < k < n;and for allu € A; 1, in which case the computations over all u
require information from the previous loop iteration of index 7 — 1, each computation per
fixed u and over all k = 0,...,n; requires no information apart from n; and e;, and each
computation per fixed u and fixed k requires no information apart from e;.

For i = m — 1, one finds all points v’ € A; satisfying v’ = v + ke, 1, for 0 < k < n,, 1 and
u € Ay—_9, which involves the dependencies described in 2 above.

8.2.4 Constructing a balanced load scheme

We will now attempt to examine the geometric pattern of the computations above, on which we
can base a possible load balancing scheme. To this end, we will consider a slight modification
of Algorithm 3.3.1 to produce sets of points B; in R?, for 0 < i < m — 1, constructed as follows:

1. Initialise B; < 0, for i = —1,...,m — 1.

2. For 1 =0,...,m — 1, compute the set of points of the plane that are reachable from vy via
the vectors ey, ..., e;, and store them in B;:

3. For each u € B; 1 and k =0,...,n;, add u + ke; to B;.
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The differences between the sets A; (defined in Algorithm 3.3.1 in Chapter 3) and B; are
that vg is in every single set B;, that B; contains points reachable via e, ..., e; which are not
necessarily in I P, and that the points vg+kep,—1, for K =0, ...,ny,_1, do lie in By,_1. As such, it
is clear that A; C B; for every i. Note that Newt(f) C B,,_1 by construction of By, ;. Because
the sets B; have weaker conditions characterising their points, it will be simpler to describe
the geometric pattern they follow. Since A; C B; for every i, any such pattern will apply to
elements of A;. Moreover, we will define every region B; to be an active region in the sense
that all computations and possible communications across a main loop iteration of index 4 in
Algorithm 3.3.1 are restricted to only those points belonging to B;, but not to R? — B,.

Let P denote a convex polygon and w a vector in R?, and let Try(P) denote the image of
P under translation by w. The following result gives an explicit geometric description of B;, for
0<i<m-—1.

Lemma 8.2.2 Let P be a convex polygon with vertices vy, ...,um—1 and edge sequence {n;e;},
for0<i<m-—1, wheree; € 72 are primitive vectors. For each iterative step 1 =0,....m —1 of
the polygon indecomposability test in Algorithm 3.53.1, the computations are restricted to active
regions B; of the plane representing points reachable from vy via eg,...,e;. Furthermore, the
regions can be defined inductively as follows:

1. Fori=0, By = conv(vg,v1),

2. For 1 <i<m—1, B; = conv(U{Trke,(Bi—1) }o<k<n,)-

Proof: We prove the assertion by induction on 4. For i = 0, By consists only of the points
vy + keg, for £ = 0,...,ng. But this spans all integral points along the first edge FEy = ngeq, so
that By = conv(vp,v1). We now assume the assertion is true for i < m — 2, i.e., that the set of
points in B; of the form vo + > ., .. 5 ki€i, for k; = 0,...,n;, constitutes a convex polygon as
defined in 2 above. Since all the points u € B; lead to points 4’ in B;,1 obtained as

v =u+ Jjeéit1 = (’UO + Z kiei) + j€it1, (8.1)
0<i<m—1

for k; =0,...,n; and 7 = 0,...,n;41, this reduces to translating all points of B; by je;;1, for all
j. Since B; is convex, its image is also a convex set, whose vertices are defined by the images
under the translation T'rje,,, of vertices of B;. Let C denote the convex hull of all vertices in
the union of the sets T, (B;) over all j = 0,...,n;1. We shall show that C'= B; . Since C
contains all possible points in the sets T'rj,, , (B;), we have that C' C B;1. On the other hand,
and by Eq. (8.1) above, any point in B;;; belongs to some set Trj,,,(B;), so that B;1; C C.
This establishes our inductive proof.

8.2.5 Constructing a balanced data distribution

The above lemma provides the general guidelines under which a balanced load scheme can be
chosen. In particular, it is immediate that the bulk of the work during any iterative step of
Algorithm 3.3.1 takes place in well-defined active zones of the plane. One should thus avoid
any form of data distribution whereby the polygon is triangulated into zones and each zone
is exclusively assigned to one single processor. Specifically, this risks having some processors
completely idle when others are engaged in the active zones. Instead, we propose the following:
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Lemma 8.2.3 Let B;, for 0 < i < m — 1, denote an active region of the plane as defined in
Lemma 8.2.2 above, and let b; denote the total number of lattice points belonging to the smallest
square containing B;. Let n, denote the total number of processors operating in parallel such
that 1 < n, < v/b;. The data distribution of integral points in IP which allocates every point
(k,k") € B; to the processor with identification number id = (k+k') mod n, allows for a balanced
load scheme as required by Lemma 8.2.2 above, and assigns to each processor O(b;)/n, integral
points, where b; represents an upper bound on the number of integral points in B;.

Proof: Consider each of the convex active regions B; of the plane, for ¢ = 0,....,m — 1,
defined in Lemma 8.2.2 above. Let x1, y1, 2 and yo denote respectively the lowest = and y
coordinates and the highest x and y coordinates appearing in any point in B;. Assume without
loss of generality that B; is translated so that ;1 = y; = 0. Then an upper bound on (k + k')
over all k = z,...,29 and k' = y,...,yo is equal to /b;. Let t;, denote the total number of
lattice points of B; assigned to a processor with identification number id = 0, ...,n, — 1. For any
integer z > 0 define the class associated with z:

[2] = {(z,y)|z,y € Z,z,y > 0, and z +y = 2},
and let #[z] denote the number of elements in this class. Then #[z] = z+ 1. Given an arbitrary

point (k, k') of B; and 0 < id < ny, the distribution which maps (k, k') to processor id = (k+£')
mod n,, assigns to it all classes of the form [id + hn,] such that

id < id + hny < \/b;.
Since n, < v/by, we have that n, < /b;, for i = 1,...,m — 1, and we can require
0<h< L(\/b_i—id)/an :
Hence, the total number of points in B; that are assigned to processor id is at most

| (VBi=id)/ny |

ty= > (id+hn,+1).
h=0
For 0 <id <mny, — 1, we have
(Vb;i—id)/n
fa < iy Gy 4 hny)
< ﬁig_/ ”}J(np + hny)
wp || | D) :
= —{pJ{pJ np—l—([\,{—f?J—i—l)np
Vi (/%
(Yt .
< St (\7{? + )y
_ Vbi(Whitnp)+2ny(vhit+1)
- ‘ 2nyp
< ADPEVRBED  for n, < /B0 =0,.om — 1
\2 \2
< W since\/b_i>np21
3b;
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O(bi)
np

This establishes ¢}, =

In practice, and even though the condition n, < /by may not easily hold (as By is simply
the first edge of Newt(f), in which case by denotes the number of integral points on that edge),
we note that the sizes of the sets B;, for + > 0, start growing fast immediately afterwards;
specifically, since the number of lattice points in B is at least four, we expect many more
processors to be engaged in their assigned computations as soon as the first edge of the input
polygon is examined. Another similar result affecting the data distribution is the following:

Lemma 8.2.4 Let f € F[z,y] be a non-constant polynomial with no non-constant monomial
factors and IP denote the set of integral points in Newt(f). Let Tumin, Ymin, Tmaz 014 Ymaz
denote respectively the lowest x and y coordinates and the highest x and y coordinates appearing
in any point belonging to Newt(f), and write v = max(Ymaz — Ymin, Tmaz — Tmin)- Let n, denote
the total number of processors operating in parallel such that 1 <n, < 2v. The data distribution
of integral points in IP which allocates every point (k,k") € Newt(f) to the processor with
identification number id = (k + k') mod n, assigns to each processor O(y?)/n, integral points,
where v2 is an upper bound on the number of lattice points in Newt(f).

Proof: Assume without loss of generality that Newt(f) is translated so that Zmin = Ymin =
0. Note that an upper bound on (k + k') over all k = Zyin, - Trmaz and &' = Ymin, s Ymaz 18
equal to 2v. Let ¢/, denote the total number of lattice points of Newt(f) assigned to a processor
with identification number ¢d = 0, ...,n, — 1. For any integer z > 0 consider the class associated
with z defined in the proof of Lemma 8.2.3 above. Given an arbitrary point (k, k") of Newt(f)
and 0 < id < n,, the distribution which maps (k, k') to processor id = (k + k') mod n,, assigns
to it all classes of the form [id + hny] such that

td <id + hny < 27.
Since n, < 27, we can require
0<h<|(2y—id)/ny].
Hence, the total number of points in Newt(f) that are assigned to processor id is at most

[(2y—id)/np ]

tig= Y. (id+hn,+1).
h=0
We can now proceed similarly as in the proof of Lemma, 8.2.3 above and we obtain ¢}, = %f).

8.2.6 Removing repetitions in computation

Recall that in Algorithm 3.3.1 above, one has to test for repetitions in appending points u to each
set A;. The reason that this needs to be done is that it may be possible to find two points u and v/
in A;_1, and two positive integers k, k' < n;, such that u+ke; = v’ +k'e; € IP. If left unchecked,
this may produce up to O(N) copies of the same point, so that in the worst-case scenario, each
multi-set A; will have O(#'N*) points, and the run-time of polygon indecomposability testing
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will become exponential in the edges of the input polygon. Checking for repetitions in the
sequential case can be made at a cost not exceeding that of an integer operation per point. In
particular, one can use a double array of integers, say Flag, of total size ', and whose entries
are all initialised to PASS. Flag[k][k'] is then set to FAIL when a point (k, k') is first added to
A;, so that any future attempts to add another copy of the point are halted upon a simple check
of the value in Flag[k][K'].

The above strategy, however, can become extremely inefficient in the parallel setting as
follows. Let A;(id) denote the set of points in [P that are reachable via ey, ...,e; and that are
assigned to processor id. Assume that ¢ < m — 1 and that some processor p, computes the
vector operation v = u + ke;, for some u € A;(a), and some k = 0, ...,n;. Suppose further that
all processors have their own copy of a Flag array, Flag(id), labelling points that have already
been added to their sets A;(id). If v € TP and v has to be assigned to some other processor py,
then p, has to read the information in the entry of array Flag(b) corresponding to point v. This
involves a communication step for every such point v. Moreover, reading from remote locations
requires a synchronisation barrier for all processors to update their communicated values. This
also requires a synchronisation step for every such point v. Consequently, a process like the
above will require extremely expensive communication and synchronisation costs which can
even overwhelm the computational cost of the sequential algorithm. Alternatively, we introduce
the following iterative strategy that will later be shown to come at a very modest cost: For any
processor id = 0,...,n, — 1, we know that Ag(id) does not contain any redundant points. For
1 > 0, we proceed as follows:

e Start with a set A;_1(id) that contains no repeated occurrences of points in IP.

e Add all relevant points to their corresponding locations in A;(id’), for some processor id’
different from or equal to id, without any check on repetitions.

e When the computations across the iterative step of index ¢ are over, remove all repetitions
in A;(id).

More details illustrating where communication and synchronisation steps should be invoked in
the above will be given next in our parallel algorithm for polygon indecomposability testing.

8.2.7 A BSP algorithm for testing polygon indecomposability

We are now ready to present our parallel algorithm based on the BSP model for parallelisa-
tion. The algorithm is designed as an SPMD model, where a single program with multiple
data is encountered by all processors, which then execute their own version of the program, as
distinguished by their own identification number, id =0, ...,p — 1.

Algorithm 8.2.1 (Parallel Polygon Decomposability Test)

Input: The edge sequence {nje;}o<i<m—1 of an integral convex polygon P starting at a vertex vy
where e; € Z* are primitive vectors, and a number n, of processors such that n, > 1. Let ymin,
Ymazs Tmin 0Nd Tmaes denote the respective smallest and largest y coordinates, and the smallest
and largest x coordinates, of vertices of P, and assume further that

ny < 27,
where y = max(xmax — Tmins Ymax — ymin)-
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Output: Whether P is decomposable.

Step 1: Define a double integer array Int of size 2(Ymaz — Ymin +1). Let id denote the processor
identification number, and N denote the maximum over all n;’s, for 1 =0,...,m — 1.

Step 2: Set h < Ymin + id, and while h < Ypmaz, do:
2.1: Compute the points of intersection of the line y = h with P.
2.2: Broadcast the x coordinates of the points of intersection to all

processors at the entries Int[h][0] and Int[h|[1] respectively.
2.3: Set h < h 4+ ny.

Step 3: bsp_sync().
Step 4: Set A;j «+ 0, for i = —1,...,m — 1, and Result < Indecomposable. Define an auziliary
array of integer vectors, Auz, of size O(y?>N)/ny, an index array of integers, Index, of size n,,
and a flag double array of integers, Flag, of size O(y?)/n,.
Step 5: For i =0,....,m — 2, compute the set A;(id) of points (k,k') in IP that are reachable via
the vectors ey, ..., e; and satisfying (k + k') = id mod ny:
5.1: For h=0,...,n, — 1, set Index[h] < 0.
5.2: Set | + id + 1, and while (I < n;) do:
5.2.1: If vg + le; = (k, k') € IP, set id' < (k + k') mod n,, and send (k,k') to
processor id' in the array Aux at location Index[id'].
5.2.2: Set | < 1+ ny and Index[id'] < Index[id'] + 1.

5.3: For each u € A; 1(id) and 1 =0,...,n;, if u+le; = (k, k") € IP, set
id' < (k + k") mod n,, send (k,k') to processor id' in the array Auz at location
Indez[id'], and set Index[id'] < Index[id'] + 1.
5.4: bsp_sync().
5.5: Initialise all flags in array Flag to PASS. For each u = (k,k') € Aux do:
5.5.1: Find the smallest integer j > Ymin such that k + j = id mod n,,.
5.5.2: Set h < (k' — j)/np; if Flaglk — zpmin][h] # FAIL, add u to A;(id) and
set Flaglk — zpmn][h] to FAIL.
Step 6: Compute the last set Ap,—1(id):
6.1: For h=0,...,n, — 1, set Index[h] < 0.
6.2: For each u € Ap—o(id) and 1 =0,...;npm—1 — 1: if u+lepm—y = (k, k') € IP,
set id' < (k + k') mod n, and send (k,k') to id' in the array Aux
at location Index[id'], and set Index[id'] + Index[id'] + 1.
Step 7: bsp_sync().
Step 8: Remowe the repetitions in Aux as described in 5.5 above and store the unique points in
Ap,1(id).
Step 9: Let vy = (k,k'"). If id = (k + k') mod n, and if vy € A,_1(id), set Result «
Decomposable and broadcast Result to all processors.

Step 10: bsp_sync().
Step 11: Return “Result”.
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Theorem 8.2.1 Let Ymin, Ymazs Tmin ANd Tmar denote the respective smallest and largest y
coordinates, and the smallest and largest x coordinates, of vertices of P, and assume as above
that n, < 27y, where v = max(Tmaz — Tmin, Ymaz — Ymin)- Then the above algorithm works
correctly as specified, has a BSP cost equal to

O(’mN) (0(72mN)

ny +0(y + np)> g(np) + (m +2) - £(ny)

Tp

2
flops, and requires 0(’:2 M) bits of storage per processor, assuming that the mazimum of absolute

values of all coordinates of vertices of P fits in a machine word. Here, m denotes the number
of edges in P, N denotes the mazimum number of integral points along any edge in P, and >
denotes an upper bound on the total number of integral points in P.

Proof: The algorithm is executed by all processors which implement their own copy of the
ensuing instructions. In the first step, all processors define a global array that will be used
to store the x coordinates of points of intersection between horizontal lines ¥ = Ymins ---s Ymaz
and P. We assume that there are always two points to be stored even if they were identical,
in which case they designate a vertex. The amount of memory required to keep this global
information about IP is 2(Ymaz — Ymin + 1) bits. Step 2 is done in parallel where processors
perform almost an equal number of intersections between horizontal lines and the polygon. Since
each such intersection consists of at most m(Ymin — Ymae + 1) floating point operations followed
by a communication of two integers to n, processors, the computation and communication costs
for this step are

|—m(ymin — Ymazx + 1)/np-| + an |—(ymzn — Ymax + 1)/np-| g(np)

flops. Step 3 is a synchronisation point needed for all processors to update the values of the
above points of intersection and hence for each to have a complete description of IP. Note that
Ymaz — Ymin + 1 < v+ 1 and hence Steps 1-3 require

O(my)/np + 0(7)g(np) + £(ny)

flops and O(7) bits of storage.

In the remaining steps, each processor ¢d computes its own subset of A;, for i =0,...,m — 1,
denoted by A;(id). According to our data distribution in Lemma 8.2.4, each processor will
be in charge of O(?) /n, points, but makes use of a private copy of an auxiliary array, Auz,
which temporarily stores the points as they build up in one iterative step, even when they occur
redundantly up to N times. The inner-most computations in each iteration in Steps 5 and 6
require that each processor id performs a vector sum (finding a new point v = u + le;), two
integer comparisons (checking for inclusion of v in IP), an integer division (determining the
relevant processor id’), and a communication of two machine words representing the coordinates
of the communicated point. Note that the communication is done only to the relevant processor
id’ in the auxiliary array Auz, and that processor id keeps an updated index on the address
in Auz(id') where it can communicate v to its relevant processor id’. By Lemma 8.2.1, all the
computations within a single iteration of the loops over the edges of the polygon are independent,
and hence, a synchronisation barrier is needed only at the end of the sequence of computations
and communications detecting paths along e, ...,e; for i = 0,...,m — 1. This ensures that all
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processors update the values of the newly added points in the array Auz. When this is done,
each processor can then remove the repetitions in its storage as follows. For k = Zyin, vy Tmaz,
processor id stores all points (k, k') such that k + k' = id mod ny, and ymin < &’ < ymez. In
removing repetitions, each point (k,%’) has to have a flag associated with it, which is initially
set to PASS but then permanently set to F'AIL signalling that it has been copied from Auzx
to A;(id) exactly once. We have seen in Lemma 8.2.4 that this distribution allocates O(y?)/n,,
integral points per processor, hence the size of the array Flag. The flag of (k, k') has to occupy
an address in Flag that is dependent solely on both the order of the entries and their values
in the pair (k,k'). Flags also have to occupy entries in the double array successively starting
from the location (0,0). This justifies the index k — z,ip, specifying the row in which the flag
of (k, k") will be found, where k — Zin, = 0, ..., Tynaz — Tmin < 7. For a fixed such k, the choice
of the integer j such that j is the first integer greater than or equal to ¥, (and of course less
than or equal t0 Ymag since ny < Ymaz — Ymin + 1 a0d ymin < 7 < Ymin + np — 1) and satisfying
k + j = id mod n, implies that any £’ such that (k,k') € A;(id) has to satisfy

Ymax — ]J

k' = j+ hn,, for some integer h =0, ..., {
Np

(note that j < k' < s for (k, k') to belong to IP). For h = (k' — j)/n,, we have that h
uniquely identifies £’ such that k + k' = id mod n, and that the flags of (k, k') for a fixed k and
increasing values of k' occupy columns h = 0, ..., | (Ymaz — j)/np| of array Flag. Since j > Ymin,
this ensures that the number of columns per row of the array Flag is at most O(y)/n,, and
hence the total size of the array does not exceed 7 - O(y)/n, = O(y?)/n,.

The BSP cost of Steps 5-8 can then be computed as follows. The loop over all edges of the
polygon iterates m times. In each iteration, every processor performs at most O(y?N)/n, vector
operations, communicates a set of possibly redundant O(y?N)/ n, points, each to one processor
only, removes the repetitions in its auxiliary array using at most O(y2N)/n,, integer operations,
and synchronises with other processors once. The BSP cost of Steps 5-8 is then

O(v*mN) O(?*mN
(vm)Jr (vm)g
Np Np

(np) +m - £(ny)

flops.

By the end of all computations, the processors assume the result to be “Indecomposable”.
The processor which is assigned the pivot vy checks whether vy is in its copy of A,,_1(id). Only
then does it broadcast to all other processors the result “Decomposable” (say in the form of a bit
word FFAIl =0 or PASS = 1). A synchronisation barrier is finally met to update the ultimate
result. The total cost of this superstep is n,g(n,) + 4(n,). Summing up the above sub-costs, the
final estimate in the theorem is established. Since n, < 2, the spatial complexity is dominated
by the space required by the array Auz, which is O(y2>N)/n, bits, assuming that the maximum
over absolute values of all coordinates of vertices of P fits in a machine word.

Corollary 8.2.1 Given a bivariate polynomial f over F of degree q with no non-constant mono-
mial factors and with ¢ nonzero terms, absolute irreducibility testing can be performed in parallel
using

O(cq?) N (0(6q3)

Tp p

+O0(q+ n,,)) g(ny) + O(c)l(ny)
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flops and %‘f) bits of storage, assuming q fits in a machine word, and 1 < n, = O(q).

Proof:  Let Ymin, Ymazs Tmins Tmaz and v be as defined above. Since Ymaz — Ymin < g and
Trmaz — Tmin < ¢, Newt(f) can be embedded in a ¢ x ¢ square whose lowest leftmost vertex is
the origin of coordinates. Let u denote some unit of length on the horizontal or vertical axes.
Then, the longest edge of Newt(f) will have length that is bounded by v/2qu representing the
length of the diagonal of the square, and hence will have O(q) integral points so that N = O(q).
Moreover, since ¥ = max(Ymaz — Ymins Tmaz — Tmin), We have vy < g. We also know that the
number of edges of Newt(f) is bounded by the number of terms ¢ of f. Summarising, the input
to Algorithm 8.2.1 will then satisfy N = O(q), v*> = O(¢?) and m = O(c), and by Theorem 8.2.1
above, the result follows immediately.

Let T denote the sequential run time in flops of Algorithm 3.3.1 and T;,, denote the parallel
run time in flops using n, processors of the parallel version 8.2.1. We have seen that T =
O(y?>mN) where 72 represents an upper bound on the number of integral points in P. Let Ey,,
denote the absolute efficiency (see [86]) defined by E,, = Ti/(n,T,,), measuring the scalability
of the above parallel algorithm. The following result establishes the conditions under which our
BSP algorithm can achieve linear speed-up, where efficiency approaches 1.

Corollary 8.2.2 Then Algorithm 8.2.1 for testing indecomposability of a convex polygon P in
parallel achieves efficiency E, > 1/2 under the conditions

1. g(ny) = O(1), (see note below)
2. nyp < ymN,
3. np <7 (721]\7 - 1),

4. nyl(ny) = O(y?*mN).

Proof: Recall from Theorem 8.2.1 that
T, = Ts/np + (O(Y’mN) /n, + O(y +1p)) g(ny) + (m + 2)€(ny).
For g(n,) = O(1) we have
T, =Ts/np + O(y + np) + (m + 2)l(ny).

If n, <ymN, 1mN _ 1 > 0 and hence we can require ny <7y <7mN — 1) or y+mny < v*mN/n,,

np Np
so that

Tn, = Ts/np + (m + 2)€(ny).
If we also have n,¢(n,) = O(y?>mN), then (m + 2)¢(n,) = O(y?>mN)/n, and

T, = 1+ 0(1)

p
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from which one deduces that

T
E,=——>1/2.
nPTnp

Note 1:

Although the first condition in the corollary above poses a heavy requirement on the communi-
cation parameter, we note that the experimental results obtained later on benefit mainly from
the low synchronisation cost, which is dependent on the number of edges of the input poly-
gon. In the case of sparse polynomials, this number is usually very small, hence the speed-up
we report in our experiments. Furthermore, we view our communication cost as an affordable
requirement in practice, especially that the parallel algorithm promises absolute irreducibility
testing of polynomials with significantly higher degrees than can be tested using a sequential
version of the polygon decomposability testing algorithm.

8.3 Parallel multivariate absolute irreducibility
testing

As discussed earlier, multivariate polynomial absolute irreducibility testing through polytopes
can be performed only heuristically with varying rates of success. For a multivariate polynomial
of n variables and degree bound equal to d on each variable, the empirical results in [47] reflect
a very high probability of success for polynomials whose number of terms is O(nd). For poly-
nomials whose number of terms exceeds this bound, the probability of success can be increased
by loosening the bound on the absolute values of the randomly chosen matrices, or the bound
on the number of projections that one can try before the algorithm outputs success. The first
strategy obviously comes at the expense of a larger running time, since it implies increasing
the sizes of the shadow polygons and hence the run time of the polygon indecomposability test.
The second option also increases the run time of the algorithm, simply because it involves many
more shadow polygons (of roughly the same size) to be tested for indecomposability. Unlike the
case for bivariate absolute irreducibility testing, improving the sequential algorithm not only in-
volves extending the range of success for higher degree polynomials, but also investigating how
parallel techniques can improve upon the performance when any of the two above strategies is
invoked, with the aim of increasing the chances of success even for polynomials that are denser
than those for which the randomised algorithm is generally successful. A parallel approach to
multivariate absolute irreducibility testing will naturally depend on the parallel bivariate case
as a sub-problem; however, we shall emphasise the role that a parallel environment can have in
the interplay between the number of projections and their “size”, as one manipulates the two
parameters to improve the success rate.

8.3.1 A BSP algorithm for testing polytope indecomposability

In the following, let n, denote the maximum number of processors that can be made available,
and let p denote the number of processors that are actually invoked. We then have p < n,.
As sizes of shadow polygons may change (according to the matrix bound one chooses in Step
2 of Algorithm 3.3.2), so can their numbers, and accordingly we identify the two parameters
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governing the behaviour of our parallel algorithm: First, the number p, of processors that we
assign for testing indecomposability of one common shadow polygon using the parallel bivari-
ate version, and the total number j of shadow polygons to which one applies Algorithm 8.2.1
simultaneously in parallel. Since p, < p, one will have 7 > 1 blocks of p, processors, each block
performing a parallel polygon indecomposability test, resulting in a “doubly” parallel scheme
aimed at improving the sequential performance at the two levels of size and number of projec-
tions. Before presenting our algorithm, we shall need a few more notations. Let p,,;, denote
the minimum number of processors required to test indecomposability of one shadow polygon

using the parallel algorithm in 8.2.1. For every shadow polygon P;, let y,(f;)ax, y;i)m, x%)ax, and

(2)

Yprin denote respectively the largest and smallest y coordinates, and the largest and smallest

2 coordinates, among all lattice points in P;. Let ; = max(y,(ﬁ)az — yg)m,x,(f?az — $£7Zz)m) and
define ;0 = max(y;), where the maximum is taken over all possible shadow polygons P;. The
number p,,;, thus corresponds to the minimum number of processors required to store a number
of integral points that is bounded by +2,,, using the data distribution in Lemma 8.2.4. Note
that, given a polynomial f with total degree at most nd, the projections of the support vectors
of f into the plane using a matrix whose entries are bounded by b have coordinates that are
equal to at least —2nbd and at most 2nbd, and we consequently have yp,q, = O(nbd).

Let ny,, p and p, be as defined above, and assume in the following that more than p,,

processors can be allowed to test one shadow polygon. In particular, let u € {0, ...,n, —ppmin} be
such that p, = ppmin +u, and let j € {1, ..., L#J} be such that jp, = p. With this structure
we can have blocks of j shadow polygons, each of which is tested for indecomposability by
Algorithm 8.2.1 using j(pmin + ©) = jpr = p < n, processors. Taking the maximum over all
shadow polygons, let N denote the maximum number of integral points along any edge, E denote
the maximum number of edges, and 7,4, be as defined above, denoting the maximum number
of integral points belonging to any shadow polygon.

Algorithm 8.3.1 (Parallel Polytope Indecomposability Test)

Input: Let f € F[Xy,...,X,], with n > 2, be a polynomial with ¢ terms and no non-constant
monomial factors, and let Sy denote the set of exponent vectors of nonzero terms of f.

Output: Absolutely irreducible or Failure, where the latter case means that indecomposability of
conv(Sy) (and hence absolute irreducibility of f) is not decided.

Step 1: Re-arrange the points in Sy as an n X ¢ matriz S. Choose positive integers b and e. Let
M(b) denote the set of all 2 X n matrices with integer coefficients bounded in absolute value by

b.

Step 2: Determine the minimum number of processors pmin necessary to test indecomposability
of a shadow polygon of size O((nbd)?).

Step 3: Choose a parameter u € {0,...,np — Pmin} such that any shadow polygon is tackled by
Pmin + U processors. Set pr = Pmin + .

Step 4: Choose a parameter j € {1, ..., L%J} such that jp, < mny.
Step 5: Invoke p = jp, processors to operate in parallel. If e mod j # 0, set e — e+j—(e mod j).

Step 6: Define an auziliary array of integer vectors, Auzx, of size O(y2,,.N)/pr, an index array
of integers, Index, of size pr, and a flag double array of integers, Flag, of size O(Y2,4.)/Pr-
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Step 7: Processors are divided into j blocks according to indices as follows:

blocky = {id|id =0, ...,p, — 1},
block, = {id|id = py,...,2p, — 1},

block;—y = {idlid = (j — 1)p, + jpr — 1}.

All processors in block w, for some w = 0,...,5 — 1, perform Steps 8-18 repeatedly up to e/j
times:

Step 8: Select a common matriz Mat,, uniformly at random from M (b) and compute the set of
points in R? defined by Mat,,(S) := {Maty.s|s € S}.

Step 9: Compute the convex hull and the edge sequence {n;e;}o<i<m—1 of Maty(S). Check that
each vertex of conv(Mat,(S)) has only one pre-image in S under the projection Mat,,. If this
condition is not met, all processors in block w return to Step 8.

Step 10: bsp_sync();
Step 11: Compute a description of the set IP of all the integral points in Mat,,(S) as described
in Steps 1 and 2 of Algorithm 8.2.1. Let Agw)(id) denote the set of points in conv(Mat,(S))

that are reachable via e, ..., e; and that are assigned to processor id in block w. Set Az(w) =0, for
i=—1,...m—1, and Result™") < Indecomposable. Let id denote the processor’s identification
number.

Step 12: Fori=0,...., E —2 do:

12.1: If i < m — 2, compute the set Al(w)(id) of points (k,k') in IP that are reachable via
the vectors eq, ..., e; and satisfying (k + k') = id mod p,:
12.1.1: For h = w.py,...,(w + 1).p, — 1, set Index[h] + 0.
12.1.2: Set | < id — (w.p,) + 1, and while (I < n;) do:
. Af vy +le; = (k, k') € IP, set
id + [(k + k') mod p,] + w.p,, and send (k, k")
to processor id' in the array Auz at location Index|id'].
. Setl < |+ p, and Index[id] < Index[id'] + 1.
12.1.3: For each u € Agf)l(zd) and 1 =0,....,n;, if u+le; = (k, k") € IP, set
id + [(k + k') mod p,| + w.p,, send (k, k') to processor id' in the array
Auz at location Index[id'] and set Index[id'] < Index[id'] + 1.
12.2: bsp_sync();
12.3: Initialise all flags in array Flag to PASS. For each v = (k,k") € Auzx do:
12.8.1: Find the smallest integer j > Ymin Such that k + j = id mod p,.
12.8.2: Set b (K' — j)/pr; if Flaglk — Zmin][h] # FAIL, add u to A" (id) and set
Flag[k — xmin|[h] to FAIL.
Step 13: Compute the last set Aglull(id):
13.1: For h = wpy, ..., (w + 1)p, — 1, set Index[h] + 0.
13.2: For each u € AE;UEQ(id) and 1 =0,...;npm—1 — 1z if u+lep—1 = (k, k') € IP, set
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id + [(k + k') mod p,] + w.p,, send (k, k') to id' in the array Auz at location
Indez[id'], and set Index[id'] < Index[id'] + 1.

Step 14: bsp_sync().

Step 15: Remove the repetitions in Aux as described in 12.3 above and store the unique points
in A™ (id).

Step 16: Let vg = (k,k'). If id = [(k + k') mod p,| + w.p, and if vy € Af;fll(id), set Result <
Decomposable and broadcast Result to all processors.

Step 17: bsp_sync().

Step 18: If this polygon is integrally indecomposable, output “Absolutely irreducible” and halt.
Else, all processors return to Step 8.

Step 19: All processors output “Failure”.

Theorem 8.3.1 Let f € F[Xy,..., X,], with n > 2, be a polynomial with ¢ terms and no non-

constant monomial factors. Let d denote the upper bound on the degree in each variable of f,

and let b denote the upper bound on the absolute values of integer coefficients of 2 X n matrices

representing random projections. Let ppi, denote the minimum number of processors needed to

store O((nbd)?) integral points using the distribution in Lemma 8.2.4. Let k € {0,...,np — Dmin }
"p

and 7 € {1,..., [p—MJ} such that p = j(pmin + k) processors are operating in parallel and

p < np, ny, = O(nbd). Then Algorithm 8.3.1 can decide absolute irreducibility of f correctly or
else produce “failure” using at most

e 2 e 2 .
T, = 7 <O(c2 +cn) + w> + 7 (w +O0(p+ 7ma$)> g(p) + ;O(E)f(p)

flops, and requires %;”N) bits of storage per processor, assuming that nbd fits in a machine
word. Here, E denotes the mazimum over all shadow polygons of total number of edges, N
denotes the mazimum over all shadow polygons of number of integral points along any edge, and
V2. denotes an upper bound on the total number of interior integral points belonging to any
shadow polygon.

Proof: The first four steps of the algorithm are performed sequentially, whereby a matrix
bound b is chosen, which determines p,,;, according to the data distribution in Lemma 8.2.4.
The two parameters u and j are also chosen such that p,,;, + v = p, < n, processors can be
assigned for any shadow polygon, and j shadow polygons can be tested simultaneously. The
algorithm then invokes p = jp, < n, processors to operate in parallel. The minor modification to
the value of the number of projections e ensures that j divides e, so that all processors are made
to enter the loop starting at Step 8. The reason we enforce such full participation of processors
is that synchronisation barriers will be met throughout that particular loop, which causes a
run-time error if any of these supersteps is not met by all processors. In Step 6, all arrays that
will be used for removing repetitions in the upcoming computations are declared. Note that the
amount of memory per array is dependent on the number of processors p, operating in one block
rather than the total number of processors. This is because only p, processors will be allowed
to share the work in the parallel polygon indecomposability testing. In Step 7, all p processors
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re-cluster into j blocks as determined by their identification number. This re-grouping ensures
processors within one block w =0, ..., j — 1 compute the same random projection Mat,,(S), and
perform the rest of the Steps 8-18 using this common input.

The loop starting at Step 8 iterates at most e/j times. We analyse each step in the itera-
tion as follows. Step 8 is only a computation whereby all processors perform ¢ matrix vector
multiplications using their assigned matrix Mat,,. Each such multiplication requires 2n mul-
tiplications and 2(n — 1) additions of integers bound in absolute value by nbd, and so Step 8
has a BSP cost of O(cn) flops. In Step 9, all processors in block w compute the edge sequence
of the shadow polygon conv(Mat,(S)). This is only a computation step with BSP cost O(c?)
flops. A synchronisation barrier is met at Step 10 to ensure that processors in a particular
block w which have found a successful projection wait for others in different blocks still search-
ing for a good candidate projection. Without this barrier, one risks having some but not all
processors entering the loop of the parallel polygon indecomposability testing phase (which in
turn contains a synchronisation barrier that should be met by all p processors). In Steps 11-17,
each processor joins the others in its block to test indecomposability of their common shadow
polygon. In Step 12, we enforce an upper bound of E — 2 rather than m — 2, since F is a global
maximum of the number of edges belonging to any shadow polygon, whereas m is a private copy
representing the number of edges of conv(Mat,,(S)). This is again to ensure that all processors
enter the loop within which a synchronisation barrier is to be met in Step 12.2. However, the
relevant computations and communications are performed only when the processors in block w
can do so (as indicated by the condition ¢ < m — 2 in Step 12.1). The vector computations
and the repetition checkings in Steps 12.1, 12.3 and 13 are similar to those in the parallel poly-
gon indecomposability testing algorithm. However, we note the following essential differences.
Note that any processor in the above scheme has two labels attached to it, one describing its
identification number id = 0,...,p — 1, and another describing its index ind within its block,
for ind = 0,...,p, — 1. Moreover, a processor id operates within block w = |id/p, ], and has
index ind = id mod p, in that block. Conversely, a processor with index ind in block w has id
equal to w.p, +ind. The data allocation in the present algorithm should assign arbitrary points
(k, k') of the polygon conv(Mat,(S)) only to p, processors. Thus, one checks for the value of
(k 4+ k') modulo p, rather than p, the total number of processors in action. But this gives the
index of the processor to which (k, k") should be allocated. The actual id can then be retrieved
as [(k + k') mod p,] +w.p,. As seen previously, the BSP cost required by Steps 11-15 is at most

0(73,mEN)) N (0(73,sz1\7)
Dr Dr

T owmax)) o(p) + (B +2)0(p)

flops and O(v2,,,N)/pr bits of storage. Note that we make explicit the dependence of g and ¢
on p, since their cost depends on the total number of processors invoked despite the fact that
the computations and communications are shared between blocks of p, processors only.

In Step 16, all p processors resume contact to be able to know which of the w shadow
polygons have been shown indecomposable. The processor in block w which is in charge of the
pivot vy of Conv(Mat,(S)) decides whether the polygon is indecomposable, and if so, signals
to all processors in its block and other blocks to halt the algorithm. Else, all processors repeat
Steps 8-18 choosing a different projection Mat,,. This involves p communications of a boolean
representing “Indecomposable”, and brings the total cost of the entire algorithm to

2 e 2 e
M) L (M F oW+ m)) (o) + SO(E)(p)

T, = ° <0(02 +cn) +
J pr J Pr
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flops. The memory requirement is dominated by O(v2,,,N)/p, bits needed per processor to
store its subset of integral points belonging to any shadow polygon.

Corollary 8.3.1 Algorithm 8.3.1 for absolute irreducibility testing of multivariate polynomials
achieves efficiency

under the conditions

2. p< 2 +en+ (7,2naxEN/pr) — Ymaz;

24 Yooz N
3. L(p) < = + Tmar =

Proof: Recall that the sequential time for testing absolute irreducibility of a random mul-
tivariate polynomial is given by
Ty = eO(c® 4+ cn + Y20 EN)
bit operations, assuming nbd fits in a machine word. Rewrite this as
T, =T +T5

where T = eO(c? + cn) denotes the cost of that part of the algorithm in which the projected
points and their convex hull are computed, and Ty = eO(72,,, FN) denotes the cost of testing
integral indecomposability of the shadow polygons. We also have

— E 2 O(’Y?naxEN) E O(’Y?naxEN) E
7, = (0 4 on) 4 0z ) 1 & (OB 4 0y 4 3,00) ) )+ S0(ENID)
flops. For g(p) = O(1),

T, = 5 (O(C2 +cn) +

Oy EN)

S ) + 50(17 + Ymaz) + EO(E)K(p)-

By the condition p < ¢ + cn + (Y2, EN/pr) — Ymazs P+ Ymaz = O(¢® + en) + O(v24,.EN) /p,
and so

e

2
T, = ; (O(c2 +cn) + O0mar EN)

Pr

)+§mEmm,

3 2+ 772na,a:N
and if £(p) < &2 + i,

(0(02 Fem)+ 70(”2”;:” )>
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or

| =

T
T, = - (T1 +—2>
Pr

<

for T7 and Ty as defined above. We then have

pr g (Tl + %)
o1 + T
pr(Th + 1)

prTs

A 1l

from which one concludes that

T, 1
> .
L, — pr

The above discussion investigates the parallel efficiency for an increasing number of proces-
sors. However, the implications play an important role in the choice we have to make of the
parameters v and j. In particular, the lower bound on E, can be improved for decreasing values
of p,, which indicates that the best realistic performance is achieved by choosing u = 0, so
that p, = pmin- Since one cannot invoke Algorithm 8.3.1 without less than p,,;, processors per
shadow polygon, we expect this to be the best case scenario describing the parallel scalability
of the algorithm.

8.4 Implementation and Run Times

All programs were written in C and extended using the standard BSP library [66, 67]. The
work was carried out at the Oxford University Supercomputing Centre (OSC) using the Oswell
machine. In practice, we had access to 16 processors only.

In the following, n denotes the number of variables in the input polynomial f, D denotes its
total degree, d denotes the upper bound on the degrees in each of its variables, and ¢ denotes
the number of its terms. Also, F and N denote the number of edges and the maximum number
of integral points along any edge of Newt(f) if f is bivariate. If f is multivariate, £ and N
denote the maximum over the number of edges and the maximum number of integral points
along any edge over all shadow polygons of Newt(f). S denotes the number of cases (out of
100) in which Newt(f) is integrally indecomposable. In the case that n > 2, M B denotes the
matrix upper bound on absolute values of random coefficients of the projections, PB denotes
the upper bound on the number of projections per polytope, AP denotes the average number of
projections required to show that the input polynomial is absolutely irreducible, and p, denotes
the number of processors allocated per shadow polygon in the parallel multivariate algorithm.
T denotes the sequential running time in seconds, and T}, for p > 1, denotes the parallel running
time in seconds using p processors, to show absolute irreducibility successfully for one case that
uses about the average number of projections. An empty column location appearing before
the first reported running time 7}, indicates that there is not enough memory using less than p
processors to tackle the input polygon or shadow polygons of the input polytopes. An empty
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column location appearing after the last reported running time 7}, indicates that there are no
more processors available in the system for our use. The absolute efficiencies £, are shown in
parentheses below their corresponding parallel times. Note that when the algorithm cannot be
run using one processor for memory constraints, we are contended with calculating absolute
efficiency using p processors as p'T, /pT,, where T is the first reported parallel running time.

The input to the two parallel algorithms is generated as follows. A choice is first made
on the parameters n, D or d, ¢, E and N. A hundred random polynomials satisfying the
above parameters are then chosen: In the bivariate case, those polynomials should also satisfy
the conditions governing their Newton polytopes (in terms of the number of edges E and the
maximum number N of integral points appearing along any of their edges). In the multivariate
case, the projections chosen for these 100 polynomials should produce shadow polygons satisfying
the parameters E and N. In the process of generating the random polynomials, we exclude all
cases where the corresponding input polygons or shadow polygons of the corresponding input
polytopes have parameters E and N that do not satisfy the imposed restrictions.

In Table 8.1 we examine relatively small degree bivariate polynomials with 300 terms and
whose Newton polytopes have no more than 6 edges, and we study the effect of variations in the
average number N of integral points along any edge of the polygon. The performance generally
has good efficiency up to 4 processors, but it can be improved for more processors by increasing
the degree (and hence the total number of integral points in the polygon) or increasing values of
N for a fixed degree. Specifically, and according to Corollary 8.2.2 and the values in Table 5.2,
we see that the first three conditions are easily satisfied. For small degree polynomials whose
Newton polytopes have a small value for the parameter N, the fourth condition might not hold
as we increase the number of processors. In this case efficiency can be improved by increasing
the maximum number of integral points along any edge of Newt(f). The rate of success is
generally high, since as indicated previously in [47], one expects the algorithm to perform well
for sparse polynomials whose number of terms is O(nd). However, we note that the rate of
success decreases with increasing values of V.

In Table 8.2 we examine larger degree bivariate polynomials with varying numbers of terms.
Mostly, efficiency improves significantly for larger degree polynomials. As noted above, and for
a fixed degree polynomial whose Newton polytope has a fixed number of edges, the run-time
increases and efficiency improves when N increases for a fixed D or when D increases. Unlike
the examples in Table 8.1 though, varying the number of terms c¢ indicates that the rate of
success decreases for increasing ratios N/c rather than simply for increasing values of N. Fixing
the degree, the number of terms, and the parameter N, we also note an increase in the run-time
and improvement in efficiency when the number of edges increases, which is to be expected from
Corollary 8.2.2.

In Table 8.3 we study the performance of the parallel algorithm in the multivariate case
and for small degree polynomials. The number of edges belonging to the shadow polygons is
fixed. For all unstarred rows, the number of processors in each block is set to be the minimum
required. Efficiency improves for a fixed degree as the number of terms increases. This relates to
conditions 2 and 3 of Corollary 8.3.1. For a fixed degree and a fixed number of terms, efficiency
improves when the matrix bound increases, since this implies larger shadow polygons and hence
larger values for ., and N in conditions 2 and 3 of Corollary 8.3.1. In the starred rows
we compare the performance of the algorithm when only p, is increased beyond the minimum
required, but all other parameters remain fixed. As predicted at the end of Section 8.3, and for
a fixed total number of processors p, efficiency is better maintained when p, = pn. As earlier
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noted in [47], the success rate decreases with increasing numbers of terms, and can be improved
by either increasing the projection bound or the matrix bound.

In Table 8.4 we examine the performance for large degree trivariate polynomials. Here, the
number of terms is fixed, and is significantly less than the total degree of the input. Also, E¥ and
N are fixed for all shadow polygons, and so are the matrix bound and projection bound. We
note a much better parallel performance than in the case of small degree trivariate polynomials
in Table 8.3. This also improves upon increasing degrees (as indicated by conditions 2 and 3 of
Corollary 8.3.1). The algorithm has never failed for examples using only one projection per case
and a very small matrix bound. This emphasises the expected high success rate of the algorithm
for sparse polynomials [47].

Finally, in Table 8.5, we examine the performance for multivariate polynomials all with the
same small bound on the degree in each of their variables. Also fixed are the number of terms,
E and N of the shadow polygons, and the matrix bound and projection bound. Here, p, is
set to be the minimum number of processors required to tackle a shadow polygon. We increase
the number of blocks to be tested in parallel by increasing the number of processors available.
Efficiency is very good in all cases, even for polynomials whose total degree is less than others.
This is to be expected since the sizes of shadow polygons are relatively large (conditions 2 and
3 of Corollary 8.3.1). The success rate is also high for these sparse polynomials, and so are the
number of projections needed to produce a successful experiment.

Recall that:

e n = the number of variables in the input polynomial f

e D = the total degree of f

e d = the upper bound on the degrees in each of the variables in f
e ¢ = the number of terms of f

e F = the number of edges of Newt(f) if f is bivariate, or else the maximum over the number
of edges over all shadow polygons of Newt(f)

e N = the maximum number of integral points along any edge of Newt(f) if f is bivariate,
or else the maximum number of integral points along any edge over all shadow polygons
of Newt(f)

e S = the number of cases (out of 100) in which Newt(f) is integrally indecomposable

e M B = the matrix upper bound on absolute values of random coefficients of the projections
e PB = the upper bound on the number of projections per polytope

e AP = the average number of projections required to show that f is absolutely irreducible

e p, = the number of processors allocated per shadow polygon in the parallel multivariate
algorithm

e T, = the parallel running time in seconds using p processors, to show absolute irreducibility
successfully for one case that uses about the average number of projections
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Table 8.1: n =2, ¢ =300, £E =6

Input

D N|S|T | Do | .| T | T

1500 [ 10 [100 ] 11 [ 7 9 [ 14 ] 15

(0.7) | (0.3) | (0.1) | (0.1)

1500 | 50 | 100 | 68 | 42 | 24 | 16 | 10

(0.8) | (0.7) | (0.5) | (0.4)

1500 | 100 | 97 | 83 | 46 | 26 | 1 10

(0.9) | (0.8) | (0.6) | (0.5)

1500 | 900 | 89 | 828 | 427 | 216 | 115 | 52

W | @ |9 ] ()

2500 | 10 | 100 | 35 | 20 | 12 | 7 4

(0.9) | (0.7) | (0.6) | (0.5)

2500 | 50 | 100 | 185 | 94 | 58 | 37 | 19

(1) | (0.8) | (0.8) | (0.6)

2500 | 100 | 100 | 240 | 122 | 67 | 37 | 25

(0.9) | (0.9) | (0.8) | (0.6)

Table 8.2: n =2
Input

D [ ¢ JE[N | S ||| Ty Ts | Tl Te
3000 | 1000 | 7 [2000| 72 [ 108 | 56 | 30 | 17 | 10 | 7
(1) | 0.9) | (0.8) | (0.9) | (1)
3000 | 1000 | 7 | 3000 | 6 |129| 65 | 36 | 18 | 12 | 9
(1) | (0.9) | (0.9) | (0.9) | (0.9)
5000 | 500 | 6 | 10 |100 | 72 | 37 | 20 | 13 | 9 8
(1) | 0.9) | (0.7) | (0.7) | (0.6)
5000 | 500 |10 | 10 | 98 | 168 | 84 | 47 | 24 | 18 | 15
(1) | (0.9) | (0.9) | (0.8) | (0.7)
5000 | 2000 | 10 | 4000 | 81 115 | 60 | 37 | 27 | 25
(1) | (0.8) | (0.7) | (0.6)
5000 | 2000 | 8 | 5000 | 5 230 | 117 | 64 | 48 | 37
(1) | (0.9) | (0.8) | (0.7)
10000 | 500 | 6 | 100 | 100 60 | 32 | 22 | 18
(0.9) | (0.9) | (0.8)
10000 | 500 | 10 | 100 | 100 190 [ 95 | 79 | 50
(0.8) | (0.8) | (1)
10000 | 1000 | 8 | 3000 | 96 133 | 73 | 55 | 40
(0.9) | (0.8) | (0.8)
10000 | 3000 | 8 | 5000 | 86 371 | 206 | 155 | 116
(0.9) | (0.8) | (0.8)
20000 | 2000 | 8 | 1000 | 100 131 (uz)
0.9
20000 | 5000 | 8 | 7000 | 90 177 342)
0.9
30000 | 3000 | 8 | 3000 | 100 329 2(3)5
1
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Table 8.3: £ =8, N = 50

Input
n D] c [p
3 | 75| 100 1
3 | 75| 100 1
3 | 75]100 | 1
3| 75| 100 | 2
3 | 75]200 | 1
3 | 75]200 | 1
3 | 75]200 | 1

31 75| 200 | 2

<
=

PB|S|AP| T\ | T | Ty | Ts | T

100 | 61 | 16 7 6 4 5 3
(0.6) | (0.4) | (0.2) | (0.1)

200 | 82 | 80 49 33 20 13 31
0.7) | (0.6) | (0.5) | (0.1)
100 | 80 | 14 | 127 | 74 33 24 17
0.9 | (1) | (0.7) | (05
100 | 80 | 14 74 66 29 26
0.9) | (0.5) | (0.5) | (0.3)
100 | 30 | 18 7 5 5 6 4
(0.7) | (0.4) | (0.1) | (0.1)
200 | 45 | 127 | 232 | 129 | 72 41 24
0.9) | (0.8) | (0.7) | (0.6

)
100 | 51 8 51 25 18 12 7
1) | (0.7) | (05) | (0.5)

100 | 51 8 26 19 22 15
1) | (07) | (0.3) | (0.2)

SO NN Y NN

Table 8.4: n =3, c =500, E =8 N =100, MB =1, PB =100

Input
D S \ AJD\ T, \23 \ Ty \ Ty \ Tie
1500 [100] 1 [19]10] 6 3 2
(1) | (0.8) | (0.8) | (0.6)
3000 [ 100 | 1 | ..|65] 28 | 16 | 8
O ||
15000 [ 100 | 1 | ... | ... | 138 | 74 | 39
(0.9) | (0.9)
21000 | 100 | 1 | ... | .. | 150 | 83 | 47
(0.9) | (0.8)
30000 | 100 | 1 | ... | .| .. |237 %%§

Table 8.5: d = 10, ¢ = 500, E =8, N =50, MB = 1, PB = 100

Input

n | S | Pr AP ‘ T1 ‘ T1~p,~ TZ-pr T3-pr ‘ T4'pr T5-pr T6-pr Tg.pr

500 | 100 | 2 | 20 | ... | 2460 | 1250 | 828 | 617 | 517 | 410 | 313
(1) (1) (1) ) ) )

1000 | 100 | 3 | 24 | ... | 3004 | 1501 | 885 800 | 680
1) (L.1) (1 (L

2000 | 100 | 5 | 24 | ... | 854 4(%7 2(%0

3000 | 100 | 6 | 26 | ... | 3224 1(514%3

Note 2:

The efficiencies noted in Table 8.5 seem over-optimistic, but this can perhaps be attributed to
the fact that E, was not calculated using a sequential time but rather using the ratio p'T, /pT),,
for p’,p > 1. In the cases when it is almost impossible to get a sequential time reference, this
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slightly imprecise measurement of parallel performance is the best available in practice.

Note 3:

Although both our parallel algorithms have computation and communication costs growing al-
most together, the very efficient parallel performance can perhaps be a result of a constant factor
within the computational complexity that is larger than the one in the computational estimate.
In practice, this can happen when the computations within the inner-most loops produce many
more lattice points that do not belong to the given polygon (or shadow polygon) than lattice
points which do (and which hence have to be communicated). In this case, there is more com-
putation that is performed and then discarded without being matched with a corresponding
communication.

8.5 Conclusion

In this chapter we have revisited a fast irreducibility testing algorithm for multivariate poly-
nomials over arbitrary fields. The algorithm works deterministically in the bivariate case but
heuristically and randomly for polynomials with more than two variables. Although finding a
polynomial time algorithm for multivariate polynomial irreducibility testing remains an open
problem, the work in [45] gives a pseudo-polynomial time algorithm, which can be applied as
a fast pre-test before any of the rigorous yet slower algorithms are invoked. Motivated by the
original empirical findings in [47] which provide various ranges of applicability of the heuristic
algorithm, we investigated potential parallelism with the aim of extending these ranges, both
for large degree bivariate polynomials and for multivariate polynomials of all degrees. A crucial
aspect of our work exploited the fact that absolute irreducibility testing can be reduced to poly-
tope indecomposability testing in R". For n = 2, we addressed the two important issues of load
balancing and data distribution. Having set the parallel framework we provided an algorithm
whose communication cost can be easily bounded by the computation, and whose synchronisa-
tion cost has a factor that is a constant multiple of the number of edges in the polygon. This
immediately implies highly efficient parallel performance for sparse bivariate polynomials whose
Newton polytopes have few edges. Empirical results in this case achieve overall efficiency under
reasonable parametric conditions that are implied by our theoretical analysis of the algorithm,
and by significantly higher degree absolute irreducibility testing up to degree 30000.

We incorporated the above for the parallel multivariate case into a doubly parallel scheme
where several shadow polygons are tested in parallel by blocks of processors. This was done
by identifying two parameters reflecting the size as well as the number of the shadow polygons.
Conditions under which this algorithm achieves good efficiency were also studied, and reflected
in the empirical results for the multivariate case. Those exhibited a good efficiency for both small
degree polynomials and for high degree polynomials, where parallelism could be exploited not
only for speeding up computations but also for increasing the rate of success of the algorithm.
The algorithm was used to test absolute irreducibility of trivariate polynomials with degree up
to 30000 and of low degree multivariate polynomials with up to 3000 variables.
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Chapter 9

Conclusion

9.1 Discussion and future work

The various algorithms for polynomial factorisation over finite fields and many other related
algorithms in symbolic computation have flourished under the assumption that better algorithms
are those which tackle larger input sizes and achieve better running times. Thus, continuity in
such a domain does not rely solely on progress in asymptotic analysis, and some other aspects
of symbolic computation have to be investigated.

Over the past thirty years, the theory of polynomial factorisation over finite fields has been
largely exhausted from a mathematical point of view; nevertheless, this progress has yet to be
fully matched with advances concerning the machinery originally designed to foster such algo-
rithms. A lot of challenge lies not only in coming up with faster sequential algorithms, but also
in trying to increase the problem sizes for the already existing algorithms, and in comparing the
various algorithms when one actually embarks on their implementation. A sequential algorithm
may outperform another one simply because it requires a smaller number of operations; however,
much else has to be said, for instance, when the algorithms are approached from a parallel point
of view.

Among the many approaches in a computer algebra system are the following. Primarily,
introducing new mathematical algorithms gains most credit for the creativity that this entails,
obtaining better complexity bounds. However, there comes a time when these need to be tested
in practice, before they can be branded as efficient as they are claimed to be. Heuristics can
play an important role in bringing about improvements, especially in special cases like sparse
or binary polynomials. The disadvantage of this approach is that heuristics still need to be
proven to work before they can be generally accepted by the mathematical community. Data
structures also have an important role in improving existing mathematical algorithms. These
are the basic building tools whose careful manipulation can have a decisive factor in determining
the efficiency of a particular algorithm. Parallelism is an active area of research and it becomes
almost immediate to try and incorporate this whenever possible. Apart from the inherent
interest in parallel design, this can help when either run time or memory is a problematic issue
in a particular sequential algorithm. The risk involved is that, unless problems are big enough,
parallel performance can in fact be worse than the sequential one.

Based on the above, we have discovered an interest in tackling such algebraic problems from
a computational point of view. In this thesis, we have focused on two recent algorithms in the
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field of polynomial factorisation algorithms over finite fields. The focus of interest in the earlier
chapters was on Niederreiter’s algorithm and its applicability over the binary field. We developed
a new sparse binary linear solver based on the Gustavson data structure, aimed at avoiding elbow
room and compression. The method can be easily generalised to deal with arbitrary prime fields.
This was incorporated in the linear algebra part of Niederreiter’s algorithm, and helped assert
that the algorithm performs favourably in the case of sparse polynomials, specifically trinomials.
We conjectured that the system remains considerably sparse over [Fs.

The results of the first chapter were used in the following work on a BSP model for the
Gottfert algorithm. An example where the BSP model can be used in computer algebra, the
parallel algorithm was used in that phase of Niederreiter’s algorithm where the factors have
to be extracted using a basis of the linear system solution set. We demonstrated efficient and
scalable parallel performance, thanks to the algorithm’s low communication and synchronisation
costs. The empirical results show that the algorithm can perform favourably in comparison with
previous parallel implementations of Niederreiter’s algorithm.

In later chapters we helped develop the polytope factorisation method with S. Gao and A.
Lauder as a novel method for bivariate factorisation. Apart from the mathematical foundations
of this algorithm, the challenges in that respect have been to develop those areas of the method
that helped make it practically computable and accessible for use, and demonstrate through
preliminary examples over the binary field that it can compete with the standard Hensel lift-
ing method for bivariate factorisation. As a follow up, we developed a sparse variant which
confirmed the original arguments in [2] that the method can work well for sparse polynomials.
The complexity of the new variant was determined using the number of terms of the input
polynomial and its degree rather than the degree only, so that both the run time and memory
requirements are made dependent on the sparsity factor of the input. Although it works under
specific conditions governing the sparsity of the expected factors of the input, we believe that
the factorisation record achieved through this method could not have been achieved using any
other algorithm.

We concluded with another instance of where parallelism can be used to achieve competent
results in testing absolute irreducibility of multivariate polynomials. Investigating a new method
based on the use of polytopes, we exploited the geometric features of the algorithm in a BSP
parallel method based on a well defined load balancing scheme and data distribution. The
parallel algorithm exhibited a scalable and efficient performance, also resulting in very high
absolute irreducibility testing records.

We would always be interested in questioning some of the theoretical assertions labelling
one algorithm as “better” than another, determining cross over points between the versatile
approaches, and many other tasks that would not be possible to achieve without the computing
tools available at the hand of a computer scientist. In relation to our previous work on univariate
factorisation, it would be interesting to seek theoretical arguments why the Niederreiter linear
system remains considerably sparse throughout the reduction phase, or else refute our conjecture
that it does. It would also be interesting to investigate the usage of the Block Lanczos method in
solving the linear systems associated with either Berlekamp’s or Niederreiter’s algorithm, and to
compare this to previous versions which make use of black box methods like the Wiedemann’s
method. In relation to our work on bivariate factorisation, we first need to perform ample
code optimisation of the polytope method (both dense and sparse), as the software available is
still in preliminary form. We are also aiming at generalising our code for the sparse polytope
method to deal with arbitrary fields of prime order rather than the binary field exclusively.
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We will be interested in investigating whether an average case analysis can be developed for
the polytope method, to help explain why this performs well in practice despite its worst case
exponential running time. We will also be interested in investigating whether any of the previous
improvements to Hensel lifting, such as quadratic Hensel lifting, can be used to improve on the
present complexity of the polytope method. An empirical study comparing Hensel lifting and the
polytope method and determining the cross-over points between the two methods is necessary
before the latter can be widely made available. Last, it would be of great use to determine
whether a theoretical justification can be found at all, explaining why the probability of success
of the absolute irreducibility testing via polytopes is best when the number of nonzero terms of
a multivariate polynomial is bounded by a constant multiple of its total degree.
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