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Preface 

This thesis presents the results of a study of the topic of control structures for 

(large-scale) mesh connected networks. This topic is part of the wider issue of 

making large-scale parallel architectures efficiently programmable. 

The course of this study was from February 1987 to February 1990 at the 

Computer Sciences Laboratory of the Research School of Physical Sciences in the 

Australian National University. The work reported herein was supervised by Dr 

A-c>J Heiko Schroder; and Professor Richard Brent acted as an advisor. 
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Historical context 

The research presented herein began by making a case study of a boolean 

Instruction Systolic Array (ISA), considering the design issues for the ISA itself 

and its data and program interfaces. The results of this study eventually became 

Chapter 2. It became clear that a boolean ISA would be limited by the input 

bandwidth of the program information, from which came the idea of program 

compression to reduce this bandwidth. By considering run-length encoding rep

resentations of ISA programs, the ISAC method of program compression arose. 

Also, having fixed an instruction set for the boolean ISA, it became apparent 

that the flexibility and/or performance for some algorithms could be improved 

by using more powerful instructions. This led to application of microprogramming 

techniques to the ISA to provide this flexibility and program compression. 

Dr Schroder suggested that the already existing concepts of the Single In

struction Systolic Array and the ISA Subroutining high-level language could also 

be regarded as methods of ISA program compression. Based on these four pro

gram compression methods, a joint paper [57] was written with Dr Schroder, and 

became a prototype of Chapter 3. However, the non-program compression as

pects of ISA microprogramming required further development (Chapter 4). Also, 

an implementation of the Subroutining program cOII~pression method had to be 

developed, from which Chapter 5 arose. Application of (ISAC-like) program 
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compression methods to more powerful meshes than the microprogrammed ISA 

became the subject of Chapter 7. 

Dr Patrick Lenders suggested that the weakest precondition semantics for 

the ISA model that he developed jointly with Dr Schroder could be developed 

simila:rly for the more general microprogrammed ISA model. This resulted in 

a joint paper [36]. From this research, and the desire to develop a practical 

proof method for (microprogrammed) ISA programs, written in wavefront-based 

languages such as ISA Subroutining, Chapter 6 arose. 

Publications arising from this study 

Preliminary results from this study were presented at the 12th Australian 

Computer Science Conference ACS-12, Wollongong, February 1987 and at the 

22nd Conference on Microprogramming MICRO-22, Dublin, August 1989, and 

published in the respective conference proceedings [57,36]. 

Outline and main results 

A brief introduction to mesh-connected network issues is given in Chapter l. 

Chapter 2 provides motivations for development of control structures for pro

gram compression and ISA microprogramming. The main results of this chapter 

are the design of a boolean ISA instruction set and a modular and partitionable 

mesh data interface design which also supports partitioning. 

Chapter 3 introduces the concept of program compression for the ISA, and 

demonstrates that it can significantly reduce the overall system architecture's 

cost and the potentially performance-limiting program input bandwidth of an 

ISA. These methods may be used in combination to optimize compression rates, 

hardware overhead and flexibility, according to an ISA system's requirements and 

budgets. These techniques can also be applied to SIMD arrays using 'row/column 

vectors'. 

Chapter 4 develops the microprogrammed ISA as a generalization of the ISA, 

and practical algorithms are given to demonstrate its greater flexibility and/or 

efficiency than the ISA. The theoretical relationship of the microprogrammed ISA 
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and other models of meshes is formally established. General macro structures 

which enable a microprogrammed ISA to efficiently simulate an ISA with an 

(almost) arbitrary instruction set and communication power are also given. This 

enables an efficient and very flexible microprogrammed ISA implementation of a 

high-level ISA programming model. 

Chapter 5 demonstrates how 'optimal' ISA program compression can be made 

very efficient for moderate to large-scale ISA systems, by using the wavefront as a 

basis for program compression. This has the added practical advantage of being 

very compatible with high-level ISA languages, which are also wavefront-based. 

Chapter 6 gives a formal semantic definition of the microprogrammed ISA, 

together with a practical proof method for (microprogrammed) ISA programs 

written in wavefront-based languages. The method yields compact and rigorous 

proofs, whose size compares favourably with the proofs for corresponding unipro

cessor programs. Both the semantics and the proof method can be easily extended 

to deterministic and synchronous meshes using wavefront-based languages. 

Chapter 7 applies program compression techniques to Processor Arrays. The 

concept of wavefront interleavinfl is developed, which increases flexibility and/or 

decreases program memory size. An evaluation and analysis shows that these 

program compression techniques can reduce program memory area and the O( n) 

delays due to program loading. 

Chapter 8 draws conclusions from this work. 
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Abstract 

To date, control structures for mesh-connected networks have only been ade

quately developed for SlMD meshes or small-scale meshes. With the recent im

provements in VLSl, control structures for large-scale, powerful models of meshes 

must now be considered. 

From the context of confident and efficient programmabili ty, this thesis de

velops suitable control structures for large-scale, communication register-based 

Instruction Systolic Array (lSA) and Processor Array (PA) meshes. These struc

tures all match the (systolic) mesh's suitability for VLSl, have a modest area 

overhead, and can significantly improve overall mesh performance, reduce overall 

mesh hardware and/or improve mesh flexibility. 

Control structures to implement program compression are developed; these 

structures permit the efficient storage and loading of mesh programs. 

Various CIIpproaches for program compression are developed for n X n lSAs. 

These approaches can also be applied to SlMD meshes. The wavefront-based 

approach is not only compatible with high-level lSA languages, but also achieves 

generality, extremely high program compression rates and a high program loading 

performance with only a modest O(n) area control structure overhead. 

Moreover, combining this approach with microprogramming techniques IS 

shown to increase the lSA's flexibility on algorithms using nontransmittent data. 

For this purpose, a generalization of the lSA model, called the microprogrammed 

lSA, is developed. It permits abstraction from the lSA's instruction set and forms 

an important concept for high-level lSA programming. Techniques developed for 

the microprogrammed lSA demonstrate how to efficiently simulate, on a basic 

orthogonally-connected mesh, algorithms based on more powerful array topolo

gies. A formal definition of the microprogrammed lSA is given using weakest 

precondition semantics. From this, a proof technique is developed which enables 

convenient manual verification for microprogrammed lSA programs written in 

diagonal-based languages. The semantics and proof method can be extended to 
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other models of synchronous, communication register-based meshes. 

The application of program compression techniques to n x n Processor Arrays 

is shown to reduce the cell program memory area while also reducing program 

loading delays. These delays are O( n) due to mismatches between the propagation 

of the loading and execution 'activities' of PA programs. A vertical interleaving 

technique is introduced which can further reduce cell program memory area and 

improve PA flexibility with a small control logic overhead. These techniques are 

particularly suitable for fine to medium-grained PAs. 

This thesis develops various practical aspects of the ISA, and demonstrates 

that using a simple cell design, the ISA can efficiently implement large classes 

of algorithms. The contributions reported here reduce the attractiveness of the 

SIMD mesh model since they mitigate the ISA model's relative disadvantages of 

extra program input bandwidth and the critical nature of its instruction gran

ularity, while making the ISA model even more powerful. They also improve 

the programmability aspect of fine to medium-grained Processor Arrays, making 

them more attractive for constructing large-scale parallel architectures. 
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Chapter 1 

Introduction 

The advent of Very Large Scale Integration (VLSI) technology has provided vast 

improvements in digital computer performance over the last two decades. Some

what paradoxically, an ever increasing need for more computing power continues, 

since VLSI has allowed the processing of increasingly larger sets of data and 

has opened new computationally-intensive fields of research. Since the switch

ing times of transistors are now decreasing only moderately, large-scale paral

lelism will be the only way to gain substantial speedup , and this has-become 

feasible with the availability of low-cost, high-density VLSI devices coupled with 

computer-aided VLSI design facilities. Thus, an important problem is to design 

large-scale parallel computer architectures and corresponding algorithms that are 

realizable in present and near future technology, ie. VLSI and Wafer Scale Inte

gration (WSI) . 

At present, the applications demanding such computing power for the most 

part fall into two categories: scientific/engineering computations requiring the 

use of supercomputers, and digital signal })rocessing. Real-time processing is 

often important for the latter, and desirable for the former , placing a strict lower 

limit on acceptable computer performance. Flexibility (or programmability) is 

essential for the former and is often essential for the latter, ego real-time vision 

processing systems which call hundreds of subroutines during normal use [10 , pI]. 

A problem lies in designing computer architectures which can implement (large 

classes of) these applications with acceptable performance. 
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The mesh-connected network (also referred to more simply as a mesh or an 

array) [22, 26J is a promising solution to the compound problem of designing flex

ible, high performance computer architectures that are also suited to large-scale 

VLSI and WSI implementation. A mesh-connected network is a two dimensional 

array of identical processing elements, in which any processing element can di

rectly communicate only with its physically adjacent neighbours. 

However, even for meshes, the general parallel programming issue of confident1 

and yet efficient programmability remains. This issue is one of the most outstand

ing problems for parallel computing today [39][2, p2J [27, p1][26, p417J and can 

be divided into the following aspects: 

• what high level language concepts, including abstraction from parallel ar

chitecture details , should be used to ease programmability? 

• what control structures, ie. hardware inside and at the periphery of the 

mesh, are required to support flexible and efficient programmability? 

• what testing and verification techniques should be used to determine the 

correctness of parallel programs? 

Since few large-scale parallel architectures with significantly more flexibility than 

the SIMD approach have been built, the design of efficient control structures for 

systems of such size is only just being considered. 

This thesis deals with the above issue from the point of view of communica

tion register-based meshes (defined in Section 1.1), concentrating on the control 

structures aspect. It thus examines the question of how to design meshes to have 

high flexibility, with minimal overhead in terms of time and area, so that large

scale (ie. massively parallel) meshes may be used to very competitively implement 

supercomputing and digital processing applications in the future. 

Specifically, control structures refer to hardware components manipulating and 

determining the flow of an architecture's control (program) information. How

ever, in a broader sense, control structures may refer to hardware components 

supporting any (high-level language) programming feature. 

lie. parallel programs can be written and expected to exhibit their intended performance. 
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Section 1.1 discusses the merits of the mesh as a candidate for the most promis

ing semi-general to general-purpose architecture for massively parallel computa

tion. Section 1.2 introduces the Instruction Systolic Array (ISA), a programmable 

mesh used extensively in subsequent chapters. Section 1.3 discusses the themes 

of this thesis and Section 1.4 gives a reading guide. 

1.1 Why meshes for parallel computing? 

The subject of this thesis is mesh-connected networks, in particular orthogonally

connected meshes, such as the ISA. These meshes have interesting possibilities 

for control structures, and yet have an efficient VLSI implementation. A mesh of 

m rows and n columns will be called an m x n array. 

Included here in the concept of a mesh is a torus (a mesh in which the bound

aries 'wrap-around' to meet each other). This is because a torus can also be 

efficiently implemented in VLSI. 

The communication register-based model for mesh communication is assumed 

here. In this model, a mesh processing element or cell can communicate with 

adjacent cells only by reading their communication registers (see Section 1.2 for 

more details). This model is simple, read/write conflict-free and can model the 

higher-level message-passing concept of communication. Thus, it is sufficiently 

general for the discussion of mesh control structures. It is also convenient to 

assume synchronous communication is used, although most concepts presented 

in this thesis can be adapted for asynchronous communication. 

This thesis is concerned mainly with fine- to medium-grained meshes because 

they are (currently) better candidates for large-scale parallelism, and because 

their programmability issues (and hence control structures) are simpler. 

Before discussing the relative merits of meshes over other parallel architec

tures, the need for large scale parallelism should be reviewed. Quinn [44, pp18-21] 

gives a listing of popular arguments against the merits of large-scale parallelism, 

and provides rebuttals for these arguments. 

Only one such argument, Amdahl's law [44, pp45-47], is of particular signifi

cance to this thesis. Amdahl's law implies that even a small fraction f, 0 :::; f :::; 1, 
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of sequential operations can limit the overall speedup afforded by parallel com

putation. For a parallel computer of p identical processors, it states that the 

speedup S over a one-processor system is limited by: 

S < 1 
- f+(I-f)/p 

(1.1) 

While this law is useful in exploring whether a particular algorithm is suitable for 

parallelization, it does not imply that large-scale parallelism is not worthwhile, 

since parallelism enables computations to operate on larger and larger data sizes 

n (in proportion to p), and for many computations f- 1 = D(na
), where a > O. 

Amdahl's law has an important corollary: that any suocessful massively par

allel architecture needs a powerful (host) processor which is capable of extremely 

fast sequential computations. Such a host processor is implicitly assumed for the 

meshes discussed in this thesis. 

Meshes have an advantage over other candidates for massively parallel archi

tectures in that they exploit all of the VLSI architectural design principles [26, 

pl0] such as modularity, balance between I/O and computation (see also [25]), 

simple and regular data/control paths, and localized/reduced interconnections. 

This last principle is important since VLSI communication is restrictive, and is 

expected to become more restrictive with the scaling down of VLSI devices [40, 

pp35-37]. As long as this situation remains, meshes will continue to be a parallel 

architecture of great importance. 

For currently available commercial large-scale parallel computers, the main 

rival of meshes is the hypercube architecture. A hypercube of N cells requires 

log N steps for communication between arbitrary cells, whereas a square, two

dimensional torus of N cells requires VN steps. For N ~ 256, it can be seen that 

in terms of communication, the hypercube can give at most twice the performance 

(in terms of number of steps) and so its extra complexity over the torus is difficult 

to justify. For larger values of N, the delay and cost associated with the long 

wires of the hypercube, not to mention its lack of expandability (eaoh node of the 

hypercube requires log N connections) has led Fujitsu to choose the torus over 

the hypercube for its CAP array processor [19], and similarly the new generation 
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of Intel parallel machines2 are mesh-based. 

More powerful architectures than the hypercube (such as shared memory net

works) suffer even more seriously from these drawbacks when they are made 

large-scale. 

The above arguments justify choosing the mesh as a promising candidate for 

large scale parallelism, and hence as the subject for this thesis . Section 1.1.1 

discusses the issue of fine-grained meshes vs. coarse-grained meshes, and Section 

1.1.2 discusses how large a scale can we expect meshes to be implemented in 

current and near-future technology. Section 1.1.3 discusses various models for 

meshes that are relevant to this thesis. 

1.1.1 Fine-grained or coarse-grained meshes? 

Having focused on mesh architectures, what granularity of the mesh cells should 

be chosen? This issue is open, but it can be at least said that fine- to medium

grained meshes potentially offer more computing power and occupy a significant 

niche in supercomputing and digital signal processing applications. 

The finer the mesh, the more raw computing power is available, I/O limita

tions permitting. The argument runs as follows: while for a given cost (area) , a 

coarse-grained mesh's smaller number of cells may be compensated by its cells 

having more powerful instructions, the fine-grained mesh's cells are smaller and 

therefore have a shorter instruction cycle. A similar argument influenced the 

Connection Machine design to use fine-grained bit processors, even for typical 

use on 8 bit or 32 bit data [14, p50] . 

However, the finer the granularity, in general, the lower the flexibility. Thus, 

for example, high-level programming constructs which simulate various comput

ing topologies and algorithms requiring large amounts of local storage in each cell 

may be difficult or impossible to implement efficiently on a fine-grained mesh. 

Large amounts of local storage may also reduce I/O limitations of a mesh [25]. 

Generally, the applications intended for a mesh determine its granularity. 

Large classes of applications, particularly in the field of digital signal processing, 

2These machines can simulate hypercube and other topologies in software. 
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require only fine granularity. Implementing these applications on coarse-grained 

architectures can be wasteful in terms of area. 

1.1.2 Limitations to mesh size 

How large an n x n mesh (using local control and data paths, such as the Instruc

tion Systolic Array) can (feasibly) be constructed? This section gives an overview 

of this issue, and concludes that meshes whose dimensions are of the order of a 

thousand or more may indeed be feasible, provided the I/O bandwidth between 

the mesh and external (mass) storage can be made sufficiently high. Factors 

possibly limiting (systolic) mesh size include: 

• an o(n) I/O bandwidth3 (between mesh and external data memory). 

For matrix computations, the typical period is 0(n). If only an o(n) I/O 

bandwidth could be afforded for a mesh, the time to take to load an n x n 

matrix would exceed O(n), dominating the computational period. This 

means that increasing the array beyond a certain size will result in no more 

overall speedup. 

More generally, Amdahl's law states that in an algorithm has a fraction Iof 

sequential operations (eg. performed by the host machine or an I/O device), 

the maximum speedup achievable is I-1 (see equation (1.1)), even with 

unlimited mesh size. However, mesh applications using systolic algorithms 

on n x n matrices typically have O( n3 ) mesh operations, and might in the 

worst case have 0(n2 ) sequential operations (ie. for loading the matrices 

using an 0(1) I/O bandwidth), so that I-1 = O(n). In such a case, the 

overall speedup increases with at least the square root of the number of 

processors, rather than the number of processors, so that increasing mesh 

size eventually will have a diminishing return. 

However, it may still be that a 0(n) I/O bandwidth can feasibly (although 

perhaps expensively) be engineered, in which case the array size would not 

be limited. 

3See also Section 2.4. Note that 'o(n)' means 'O(n) but not 0(n)'. 
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• global clock skew constraints. 

Systolic systems, exploiting the efficiency of local signal propagation, still 

rely on a global signal: the clock pulse. For large meshes, the skew of a 

global clock signal may become a limiting factor [9][26, p301]. However, 

hybrid (localhlobal) synchronization schemes can avoid this problems for 

(two-dimensional) meshes [9], and also meshes can be implemented using 

the more expensive asynchronous communication as is used by Wavefront 

Array Processor (WAP) meshes [26] and asynchronous counterparts of the 

ISA [20, ch.6]. In either case, clock skew need not be a serious limitation 

to mesh size . 

• circuit board packaging constraints. 

Packaging technology requires that the circuit boards making up a parallel 

computer be packed into a three-<;limensional volume. In a large mesh, 

made up of a large number of circuit boards, configuring these boards so 

that logical nearest-neighbour connections are always implemented by short 

wires may be difficult. However, by choosing a (physically) cylindrical or 

toroidal configuration for the circuit boards, as is done for the PAX (mesh) 

computer [56, p64], this problem can be overcome. 

Wafer Scale Integration (WSI) is seen as a technology particularly suited to 

meshes [26, pp384-385][36], due to their local interconnection property. This is 

because in such levels of integration, long wires have propagation delays propor

tional to at least their length unless they are driven by large, power-inefficient 

fanout buffers [45]. Either way, long wires extending across a wafer would incur a 

high cost, making architectures such as hypercubes less suitable for WSI. Prob

lems of clock skew are also reduced using WSI. WSI allows an order of magnitude 

increase in chip packing densities, so that 512 x 512 or even 1024 x 1024 meshes 

can (feasibly) be constructed. However, major technical difficulties such as power 

dissi.pation and fault tolerance still need to be resolved for WSI to become prac

tical. 
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1.1.3 Approaches for meshes 

One approach for a mesh model suited to VLSI is the concept of the systolic array, 

introduced by Kung and Leiserson [22]. A systolic array is a synchronous system 

consisting of a large number of simple processing elements (cells) where one or 

more streams of data are shifted through with constant speed and direction. Each 

of the cells is capable of executing one function only on the data it receives from 

its direct neighbours. 

This leads to a significant drawback, ie. systolic arrays lack flexibility and 

are often referred to as "algorithms cast in silicon". On the other hand, their 

advantages include simplicity of cells, regularity of layout and locality of com

munication. This makes the systolic array suitable for VLSI implementation and 

results in extremely fast processing. 

Examples of systolic arrays are the well known hexagonal array for multipli

cation of band-matrices [37, pp69-74], a linear systolic array for pattern matching 

[12] and a mesh-connected: systolic array for sorting [28]. All these architectures 

look quite different and are only adequate to the special algorithm they realize. 

Other approaches, more flexible than the systolic array, include: 

• the SIMD mesh [26, pI47][17] , in which a single instruction is broadcast 

to all cells, which may be masked according to the cell's position and/or 

status registers. This approach, while simple and regular, requires non-local 

propagation of control signals, and so is not well suited to VLSI. They are 

also not convenient for implementing the propagation of skewed matrices 

required by many systolic algorithms . 

• the Instruction Systolic Array (ISA) [21], which is also a systolic architecture 

where the cells are programmable and instructions are provided to them in 

a systolic manner. Thus it is possible to execute different programs on 

ISAs. More flexibility is added by a masking mechanism which combines 

the stream of instructions with an orthogonal stream of selectors (a boolean 

matrix), so that an instruction is only executed if it meets a selector bit of 

value ' 1' (see Figure 1.1) . 
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The architectural concept of the ISA (presented in Section 1.2) preserves the 

advantages of the systolic array such as simplicity, regularity and locality, 

whereas its main disadvantage, its lack of flexibility, is overcome . 

• the Processor Array (PA), in which each mesh cell is independently pro

grammable (ie. a MIMD mesh). This is the most flexible of all models, and 

machines such as the CMU Warp processor [1] and CMU PSC computer 

[10] can successfully implement a large variety of systolic (and other) al

gorithms. However, this approach sacrifices simplicity for flexibility, with 

cells requiring individual program storage . 

• the Wavefront Array Processor (WAP) [26, Ch.5], which combines dataflow 

computing with systolic arrays. WAPs uses asynchronous communication 

which, while having a considerable overhead, eliminates the need for a global 

clock (required by systolic arrays). This makes WAPs attractive on very 

large sca.le systems. WAPs may be programmed like the ISA (except that in

struction propagation is now asynchronous), but are currently implemented 

using asynchronous Processor Arrays, such as Imnos Transputer arrays. 

1.2 The Instruction Systolic Array 

The ISA is a new architecture for parallel computation which meets the require

ments of VLSI [21] and is capable of efficiently executing a large variety of parallel 

algorithms, while having very simple cell control structures. 

An ISA is capable of executing a large variety of different algorithms (see [35 , 

Ch.5-6] for examples) , even if every processor can execute only a few different 

instructions. Thus the IS A-concept leads to greater flexibility then the systolic 

array concept. While it has somewhat less flexibility than the Processor Array, 

the ISA requires much smaller area per cell and therefore can provide a larger 

degree of parallelism on a fixed area. 

In [21] it has been shown that the ISA concept is equivalent to the (MIMD) 

Processor Array and ftlrthermore that arbitrary systolic arrays can be imple

mented on ISAs without loss of efficiency. Since then many different instruction 
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systolic arrays have been designed [49, 42, 32, 51] and some of them are under 

way to be realized in hardware. 

1.2.1 The structure of the ISA 

The structure of an m x n Instruction Systolic Array is depicted in Figure 1.1. 

The cells in the ISA have a very simple control unit and no storage space for 

programs. Instructions are pumped through the columns of the array of cells 

from top to bottom. This matrix of instruction codes is called the instruction 

part. In addition, selectors ('0' or '1') are pumped through the rows of the array, 

from left to right. The pumping of instructions and selectors is implemented 

by very simple control structures (ie. shift registers). This matrix over {O, I} is 

called the selector part. A '0' causes every cell in its row to stay passive (not 

identical to the 'NoOp'-instruction). A ' 1' causes every cell in its row to execute 

the instruction that has been provided to it. 

Every cell has some local memory including a designated communication reg

ister. The array is synchronized by a global clock, and the execution of every 

instruction is assumed to take the same time. 

Communication between cells is done in the following way. Each cell can read 

information from its four direct neighbours. To avoid read/write conflicts, the 

execution of instructions is done in two non-overlapping phases. If a cell needs 

data from one of its four direct neighbours, it reads that neighbour's communi

cation register during the first phase of the execution of an instruction. Thus at 

most five cells can read from a communication register simultaneously. During 

the second phase of the execution of an instruction, every cell writes into its own 

communication register or its own internal registers. The open ended data links 

of the cells at the boundaries of the array are used for external input and output 

of data. 

Let I be the set of instructions the cells can execute, including a 'NoOp' 

instruction which does not change a cell's memory contents. Alii. ISA program P 

of period [( consists of an instruction part, which is a sequence 'pI, p2, ... , p[(' of 

n-tuples over I , and also a selector part, which is a sequence 'S\S2, ... ,S[(' of 
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P64 

P63 PS4 

P62 P S3 P44 

P61 PS2 P43 P34 

PSI P42 P33 P24 

P41 P32 P23 PH 

P31 P22 P13 

P21 P12 

PU 
-

1 1 1 1 

861 851 841 831 821 8 U l ~ 1, 1 1,2 1,3 1,4 

862 852 842 832 822 812 ~ 2,1 2,2 2,3 2, 4 

1
863 853 843 833 823 813 ~ 3,1 3,2 3,3 3,4 

Figure 1.1: A 3 X 4 instruction systolic array (ISA) , with program, comprised of 

instruction part (top), and selector part (left), of period 6 
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m-tuples over {a, I}. For 1 :::; i :::; m, 1 :::; j :::; nand 1 :::; k :::; 1(, selector Ski and 

instruction Pkj are available at cell (i, j) at time t = k + (i -1) + (j -1) (see Figure 

1.1), where t is the global clock beat starting as the first instruction enters ISA 

cell (1,1) . Thus, the execution time T of program P is T = (m -1) + (n -1) + 1( 

(instruction cycles). 

1.2.2 Systolic concepts and terminology 

This section introduces (instruction) systolic concepts and terminology used in 

this thesis. 

It is convenient to call the top, left, bottom and right sides of an ISA (as 

depicted in Figure 1.1) as the north (N), west (W), south (S) and east (E) sides 

respectively. 

The rows of the instructions and selector parts of an ISA program are skewed 

(by a factor of 1), as shown in Figure 1.1. A pair of skewed rows from an ISA 

program's instruction and selector parts which meet inside the ISA (which share 

the first subscript , kj see Figure 1.1) is called a diagonal, which 'propagates' 

in a south-west direction (at constant speed) through the ISA. The concept of 

diagonal can be generalized to the concept of a wavefront, which has arbitrary 

skew, for architectures such as the microprogrammed ISA introduced in Chapter 

4. This is still less general to the concept of wavefront used for the Wavefront 

Array Processor [26, Ch.5], whose asynchronous nature permits the wavefronts 

to 'bend' due to local timing irregularities. 

Transmittent data [26, p1l8] is data that is passed (systolically) unchanged 

through a mesh. Nontransmittent data, strictly speaking, is data that is updated 

as it passes through a mesh. However, when the mesh is an ISA, nontransmittent 

willu.sua11y refer only to such data when it is flowing southwards or eastwards, in 

pace with the instructions or selectors. It turns out that one of the main advan

tages of the ISA over the SIMD array is its superior handling of nontransmittent 

data. 

Oontraflow occurs in a mesh when streams of (transmittent or nontransmit

tent) data flow in opposite directions. 
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A (parallel) algorithm is said to be compute bound [25] when the the order 

of the basic computational operations (asymptotically) exceeds that of the basic 

input/output operations. Otherwise, it is called I/O bound. There is a limit 

to the degree of parallelism that can be efficiently employed with I/O bound 

algorithms. 

Standard notations and concepts for asymptotic complexity of computer al

gorithms is used throughout this thesis. The relevant quantities are the area A 

required by the algorithm, the time T of execution of the algorithm, and the pe

riod P of execution of the algorithm4. For algorithms suited for implementation 

on an n x n mesh, bounds on these quantities are generally given as functions of 

n. For modular architectures suoh as meshes, the quantities A, P and AP are the 

most significant (in practice) measures of algorithm performance, and are used 

for algorithm comparison in this thesis. 

The quantity P is generally more significant than T because in practice the 

problem size typically exceeds the mesh size, and algorithm partitioning methods 

are used, in which the overall time and period is determined by the algorithm's 

period on a single partition (see Section 2.5.2). Also, in real-time signal pro

cessing applications, the period is generally the most important , determining the 

maximum sampling rate of the sensory input data. 

The quantity (AP)-l is generally regarded as the "figure of merit" for systolic 

devices, since it determines the architecture's performance (throughput, which is 

proportional to P-l) for a given cost (area of silicon). 

1.3 Themes 

This thesis addresses the issue of confident and efficient programmability for large

scale, fine- to medium-grained meshes, concentrating on the control structures as

pect. This is done with respect to an underlying wavefront programming model, 

which is motivated by the (instruction) systolic concept and elaborated in Chap

ters 4 and 7. In terms of the wavefront model, SIMD mesh and ISA programs use 

4 P is the minimum amount of time between consecutive executions of the algorithm. P 

never exceeds T . 
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fixed velocity wavefronts, microprogrammed ISA programs use wavefronts with a 

limited range of velocities, whereas Processor Array programs use combinations 

of arbitrary velocity wavefronts. The wavefront intuitively corresponds to the 

(simulated, in the case of the Processor Array) propagation of control informa

tion, ie. the propagation of a 'computational activity' or a 'sweep', through a 

mesh. Thus, the wavefront programming model has a natural relationship with 

the control structures required to support it. To demonstrate that this model is 

appropriate for high-level mesh languages and mesh program verification tech

niques is one aim of this thesis. 

More specifically, this thesis considers which control structures, of modest 

hardware costs (compared with the mesh's overall system hardware costs) can 

significantly: 

1. reduce overall mesh system hardware. 

ego reduce the size of external and internal mesh program memory. 

2. increase overall mesh performance. 

ego minimize delays associated with loading new programs. 

3. increase mesh flexibility. 

ego support a more general mesh programming model. 

Thus, a sub-theme of this thesis is to develop control structures which can sig

nificantly enhance the Instruction Systolic Array and (fine- to medium-grained) 

Processor Arrays, as these meshes efficiently support the wavefront programming 

model. 

As well as the control structures (which include the program interface) for the 

mesh itself, those of its data interface must also be considered. These must make 

the data interface sufficiently programmable to unburden the mesh from low-level 

functions such as the shuffling and formatting of data (and hence enhance the 

mesh's overall performance). 

Since each mesh cell may be independently programmable, the overall pro

grams for large-scale meshes are potentially large. As a result, issues of how to 

externally store and fetch these programs so as not to degrade mesh performance 
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must be considered, taking into account the fact that I/O bandwidth is already 

a limiting factor for such parallel architectures. In practice, this can be resolved 

by the use of program compression, which can achieve the advantages of Items 1 

and 2 above. 

The program compression-related concepts of (ISA) microprogramming and 

wavefront interleaving can achieve the advantages of Item 3 above. 

However, in the case of the wavefront programming model, the control struc

tures aspect interacts with the high-level language and verification aspects of 

confident and efficient programmability. 

Microprogramming can be also seen as a concept facilitating high-level mesh 

programming, since it provides abstraction from the instruction set and commu

nication details. It thus extends the the wavefront programming model to the 

'macro' -level. 

Languages for program compression may be related to high-level mesh pro

gramming languages, which also requires the concise expression of mesh programs. 

This particularly applies to wavefront-based languages. 

Applying the wavefront concept to verification techniques for meshes can also 

provide compact, ie. 'compressed', proofs of program correctness, with a structure 

reflecting that of the programs written in a wavefront-based program compres

sion language. 'Where verification techniques also involve semantic definitions, 

they can contribute in another way to the issue of confident programmability by 

specifying the (actual) behaviour of mesh programs. 

1.4 Reading guide 

In the design of control structures for high-performance meshes, area efficiency 

is a crucial goal. Thus, it is important to consider the 'in-practice' require

ments of mesh programmability, stemming from real-life examples (which are 

often non-trivial), so that extra area overhead is not introduced through unnec

essary generality, while important special cases can still be implemented. Also, 

for programmable meshes, the average case performance is more important in 

practice than the more easily determined worst case performance. Such consider-
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at ions should be reflected in the design, analysis and evaluation of these control 

structures. Insofar as it is feasible, these requirements are considered in this 

thesis. 

Furthermore, the control structures proposed here all extensively utilize the 

systolic concept, which yields hardware-efficient but often esoteric designs. This, 

combined with the requirements of the preceding paragraph, necessarily makes 

the subject matter of this thesis somewhat detailed and difficult to read. 

Through the case study of the boolean ISA, Chapter 2 introduces the ISA 

concepts and issues which motivate the central themes of this thesis. It also 

presents the design, with suitable control structures, for an ISA data interface. 

A basic understanding of these ISA programming and design issues will be useful 

for the reading of the remaining chapters. 

Chapter 3 is the key chapter for the program compression theme of this thesis, 

and presents four program compression methods for the ISA. Sections 3.5, 3.6 and 

3.7 respectively introduce Chapters 4, 5 and 7. 

Chapter 4 develops the microprogrammed ISA as an extension of the ISA 

model. Its basic concepts are required for a reading of its semantic modelling in 

Chapter 6. The microprogrammed ISA concepts of the wavefront and the macro 

are used in Chapter 7. 

Chapter 5 develops wavefront-based program compression for practical imple

mentation on a (microprogrammed) ISA. Chapter 6 gives a semantic definition 

of the microprogrammed ISA from which is developed a wavefront-based proof 

method - this effectively gives a semantic definition for wavefront-based (micro

programmed) ISA languages. Chapter 7 applies program compression techniques 

to Processor Arrays. 

Chapters 5 to 7 are not required for the reading of any other core chapters 

of this thesis. In particular, Chapters 5 and 6 discuss rather involved low-level 

details, and may be omitted. 

In summary, Chapters 3, 4 and 7 contain the central results of this thesis, and 

are the most important to read. 

In each of the following chapters, the introductory section contains a more 
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detailed reading guide for that specific chapter. Also, where necessary, reading 

guides are given for the major sections of the chapters. 
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Chapter 2 

General ISA Design Issues 

2.1 Introduction 

The Instruction Systolic Array (ISA), introduced in Section 1.2, is a flexible 

model of parallel computation suitable for efficient VLSI implementation [35, 21]. 

However, many papers on the ISA consider single problems or at most small 

classes of problems, and the issues of designing a general-purpose instruction set 

and suitable program and data interfaces for the ISA are left largely undevelopedl
. 

Thus, the potential flexibility of the the ISA has yet to be demonstrated. These 

issues must be dealt with if the ISA is to attain its full versatility as a model that 

can be used for general-purpose matrix computations. 

For this chapter, except where specified otherwise, the following program and 

data interface models for an n x n ISA are used (d. Figure 2.10): 

• The ISA data interface has data buffers (each of area 0(n2
)) at each of its 

(NEWS) sides connected to the respective communication registers of the 

cells of the boundaries of the ISA, ego the western input communication 

registers on the ISA's western edge can read from the western data buffer 

and the western data buffer can store the values of the output communica

tion registers of the ISA's western edge. These buffers are assumed to act 

as either queues or stacks and to be sufficiently programmable to interact 

1 An ISA instruction set suited for sorting algorithms and a design of an ISA data interface 

has been proposed by Lang [35, Ch.3]. 
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with the ISA in the desired way . 

• The ISA program interface has buffers storing instructions to its north (the 

instruction buffer), and selectors (the selector buffer) to its east. 

Section 2.2 describes a boolean ISA, BISA, which is used as a reference point 

for discussion for the rest of this thesis. The concept of the BISA, developed by 

the author, is of interest in its own right, being one of the first ISA cell designs 

intended to implement a wide variety of matrix algorithms and having flexible 

modes of communication. 

In Section 2.2.2, examples of BISA programs are given, which also provide 

motivation for concepts such as microprogramming and program compression, 

which are dealt with in detail in the subsequent chapters. From considering the 

BISA, a discussion of the instruction granularity of the ISA is given in Section 

2.3. The overall memory size of an ISA is discussed in Section 2.4. The crucial 

problem of matching the problem size to the mesh size is addressed in Section 

2.5. From there, the design of ISA data interfaces is developed in Section 2.6, 

which includes a proposal of a partitionable mesh data interface design, with 

control structures enhancing overall mesh performance. The development of an 

ISA program interface is deferred to Chapter 3. Conclusions are given in Section 

2.7. 

The original results of this chapter are mainly confined to Sections 2.2 and 

2.6.3. Other parts of this chapter build largely on existing works. 

For reading subsequent chapters of this thesis, a familiarity of the basic pro

gramming concepts and notatons of Section 2.2 will be useful. This is because 

a BISA-like instruction set is used to express the ISA and Processor Array pro

grams appearing in this thesis. Section 2.3 provides motivation to Chapter 4; 

whereas Sections 2.4 and 2.6 are relevant to Chapter 3. 

2.2 Case study: the boolean ISA, BISA 

Boolean ISA implementations for graph algorithms have already appeared in 

the literature [32, 48, 49, 50j. These implementations are based on an ISA cell 
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designed for that particular application. This section presents the design of a 

boolean ISA (BISA) sufficiently powerful to efficiently implement these and other 

algorithms, with capabilities for bitwise arithmetic. 

A boolean ISA is chosen for this case study for the sake of simplicity of de

sign. It is sufficient for illustrating most ISA design and programming principles. 

Moreover, boolean ISAs have a particularly high ratio between the instruction 

and data lengths, and hence they can especially benefit from the program com

pression techniques introduced in Chapter 3. 

Section 2.2.1 gives the instruction set and describes the flexible communication 

modes of the BISA cells. A variety of new algorithms is then given for the BISA in 

Section 2.2.2, justifying the design decisions taken for the BISA. The limitations 

for the BISA are given in Section 2.2.3. A prototype version of BISA, designed 

for easy VLSI implementation, and yet still capable of implementing all but one 

of algorithms of Section 2.2.2, is given in Appendix 2.A. 

2.2.1 Instruction set and communication modes 

The BISA is reasonably modest in terms of its instruction set, communication 

capabilities and internal storage. However, these are sufficient to enable the BISA 

to implement most boolean ISA algorithms. 

The BISA has an instruction cycle based on a two phase clock, whose phases 

are denoted by <Pl, <P2 respectively. On <Pl, a BISA cell reads the operands (pos

sibly including one of the communication registers of its four neighbouring cells) 

for the current instruction. On <P2, a BISA cell writes the result of the instruction 

to its destination (possibly its own communication register). 

The instructions for an array of BISA cells are sent south through the array 

via 16-bit shift registers. While a 16-bit instruction code seems rather large, it 

has a RISC-like format which is very easy to decode. The efficiency of this scheme 

for the ISA is justified in Section 2.2.3. The selectors bits are passed east across 

the array via I-bit shift registers. 

A BISA cell has the following 16 memory locations, which are allocated ad

dresses from 0 to 15 in order of their presentation: 
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• Four registers, (Cs, CE, C~, C~), which may be used as output communica

tion registers or internal registers, according to which communication mode 

the BISA is currently in. 

• Four 'accumulator' registers (A, B, A', B'). 

• Four ring-shift registers (Rb R2 , R3 , Rt) which are bit arrays of length IR = 
O(log n). These registers may be rotated in either direction, and can be 

used for bitwise integer arithmetic, manipulating non-numeric data and as 

'secondary' storage. Only one, say the Oth, element of these registers is 

directly accessible. 

• Four read-only input communication registers (Cw , CN, CE , Cs). These 

store the previous instruction cycle's value of the appropriate output com

munication register of the respective (west, north, east, south) neighbouring 

cells. 

For the cells on the ISA boundaries, 'neighbouring cells' includes the appropriate 

data buffer cells. 

The BISA has two output communication register modes: 

1. One output register mode. 

Cs (here denoted C) is read by all four neighbours of the cell, while 

CE, C~, C~ (now denoted D, E, F respectively) are used as internal 

registers. This mode is used in the ISA literature, and is efficient for 

most ISA algorithms. 

2. Four output register mode. 

Here Cs, CE, C~ and Cw are read by the cell's south, north, north and 

south neighbours respectively. This mode is more powerful, although 

not always as convenient, and is useful when different sets of data are 

passed in different directions simultaneously. 

This last mode is useful to overcome the 'single communication register' bottle

neck which can limit mesh performance. 
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The syntactic form of a generic BISA instruction is (where immediately below, 

'[ ... j' represents an optional field): 

[C(src),]dst - dst()src [ifcond] [;(dsW-DP] [;(srcY-"P] 

where: 

() E {id, id, A, 7\, V, V, $, ffi} 

dst E {C~, C~, C~, C:.v, A, B, A', B', R1 [0], Rz[O], R3[0], R4 [0]} 

src E {C~, C~, C~, C:.v, A, B, A', B', RdO], Rz[O], R3[0], R4 [0], CN, Cw , cs, Cd 

cond E {A=1,B=1} 

r_op E {'+','-'} 

C(s) = 
{ addr-1 (addr(s) mod 16) if in one-output mode 

addr-1 (addr(s) mod 4) if in four-output mode 

Here 'addr' is the mapping between register names and their respective addresses; 

note that the output communication registers have addresses from 0 to 3. Note 

aIso that C (s) always selects a register that is being currently used as an output 

communication register. 

The semantics of the above generic instruction is reasonably self-evident, 

except for the optional ring-shifting fields of the form '(RY-"p' , where R E 

{~, Rt, Rz, R3 }, which have the following meanings: 

(R)+ (R[i] - R[(i + 1) mod lR] , for 0 ~ i < lR) 

(R)- (R[i] - R[(i - 1) mod lR] , for 0 ~ i < lR) 

These registers can be implemented efficiently in VLSI in a similar fashion to 

two-phase VLSI stacks (see [40, pp71-75]). 

The BISA instruction set has the following features: 

• an easily decoded 16-bit RISC instruction format. 

• support for the boolean operations of bit copy, 'and', 'or', 'exclusive or', 

and their negations. 

• an optional store to the communication register (corresponding to the source 

register), as well as the destination register. This simple and easily imple-
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mented feature helps to alleviate the 'communication register bottleneck' 

of such types of meshes . 

• a data-dependent masking feature (used also for ISA instruction set of [35, 

Ch.3], in which the result of the instruction is stored only if the specified 

accumulator (A or B) is set. This can considerably improve the flexibility 

of the ISA. 

• an optional rotation of any ring-shift operand of the instruction. The se

mantics suggests the rotation occurs after the execution of the main part 

of the instruction. 

To illustrate the utility of this instruction set, a list of commonly used in

structio~s, using convenient shorthands that will be used throughout the rest of 

this thesis, is given below. The list is put in two sections, corresponding to each 

of the BISA's communication modes: 

A .- A 
C .- C 
C .- 0 
R .- (R= C) 

C,A .- ACs 
C .- Cw ,if A = 1 
B .- R1 ; Rt 

R2 .- CN; R2" 

CE,B .- Cw 
Cs,A .- A + Cs 

[A.- AidA] 
[C.- CidC] 
[C.- C $ C] 
[R.- R$C] 
[C, A .- A /\ Cs] 

[B .- Rl [0]; Rt] 

(no-operation) 
(negate C) 

(clear C) 
(does R match with C?) 

(read from west if A is set) 

(copy RdO] to B then +ve rotate Rd 
[R2[O] .- CN; R2"] 

(copy CN to RdOj then -ve rotate R2) 

[Cs,A.- A V Csj 
(note: here C(Cw) = CE) 

(note: here C(A) = Cs) 

To support bit-wise integer operations, a 'half-add' instruction (used to per

form counting) is included: 

HA(S, C) : (S, C) .- (S $ C, SC) 

in which typically the sum bit S would be the Oth element of a ring-shift register. 

Although the half-add instruction can be implemented by a sequence of three 

already existing BISA instructions, a direct hardware implementation is worth

while if bitwise integer M"ithmetic is regularly used. A 'full-add' instruction can 

23 



II 

-
-

then be implemented as follows: 

FA(S, A, C): HA(S, A); HA(S, C); C +- C V A 

The use of bit-wise arithmetic on the BISA is illustrated in Section 2.2.2.6. 

Similarly, bit-wise comparisons can be performed by a sequence of existing 

BISA instructions (eg. performing a bitwise minimum operation on two integers 

requires approximately six BISA instructions per bit). If greater efficiency is re

quired, specialist bitwise comparison instructions may be added to the instruction 

set. 

2.2.2 Some boolean algorithms on the BISA 

This section presents some BISA implementations of boolean systolic algorithms 

taken from a variety of problem areas. These utilize most of BISA's instruction 

set. A program for solving the Red Squares problem is a typical boolean ISA 

application. The matrix multiplication and transitive closure programs demon

strate how complex communication patterns can be emulated on the one output 

communication register mode of the BISA, although in the case of matrix multi

plication, the four output communication register mode is superior. The pattern 

matching and associative memory search programs are examples of how non

numeric problems can be implemented bitwise on a boolean ISA. The median 

finding program demonstrates how to use BISA's ring shift registers for bitwise 

counting. 

For the purpose of reading the rest of this thesis, the Red Squares atnd matrix 

multiply programs (and to a lesser extent, the transitive closure and pattern 

match programs) are important. Examples of simpler ISA programs can be found 

in Chapter 3. 

The presentation of the ISA programs in this section is based on a simple, in

formal notation to specify the sequencing of the main sub-programs, together with 

the standard matrix representations of the ISA sub-programs. This arrangement 

is necessary for the handling of the more complex programs. While the matrix 

representation of ISA programs is cumbersome and only specifies the program for 
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a fixed ISA size, its use is adequate for this section. More concise and general 

notations for expressing ISA programs are presented in the subsequent chapters 

of this thesis. 

2.2.2.1 The Red Squares program 

The Red Squares problem is formulated as follows: 

Given an n X n boolean matrix A, compute S, the size of the largest 

square of 1 's (largest 'red square') in A. 

For implementing this algorithm on a boolean ISA, a unary representation of 

S is convenient. An equation giving the kth bit, 0 ::; k < n , of such a unary 

representation is: 
n-ln-l 

Sk = V V A~ · I , ) (2.1) 
i=O i=O 

where: 

AO = A 

A~k. { 0 if j = n 
= (A~.Ak '+1) otherwise I ,) 

I t) 1,1 

Aktl { 0 if i = n 
(2.2) = (A'k A'k ) otherwise I ,) .. '+1 ' I , } 1 ,1 

where 0 ::; k < nand 1 ::; i,j ::; n. Inspecting equation (2.2) , it is evident that 

A~ . is true if and only if there is a ' red square' of size k + 1 in A having its upper 
I,) 

left corner in position (i,j). Hence, Sk is true if and only if there is a red square 

of size k + 1 in A. Sk can be efficiently computed on an ISA using the following 

recursive formula: 

SI~k. { A~· if j = 1 
= I ,) 

I ,) A~ · V SI'k. 1 otherwise 
' ,J 1,1-

SI~ { SI~k if i = 1 
= I),n 

otherwise 1 SI~,n V SILt 

Sk = Slk (2.3) 
n 

where 0 ::; k < n and 1 ::; i, j ::; n. Equations (2.2) and (2.3) suggest the follow

ing algori thm: 
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RedSquares: 

ComputeSki 

ComputeAki } repeated n - 1 times 
ComputeSk 

where each of the n-l iterations here corresponds to one of the n-l values of k 

of equation (2.2). A pictorial representation of these sub-algorithms is presented 

in Figure 2.1. 

[!;] : C,A +- ACs 
r-

iA 

0 C, A +- 0 
iA 0 

i
A 0 0 

EJ C, A +- ACE iA 0 +-A 

0 : C +- A 
ComputeAk: 

0 +-A A 

+-A A lv 

[8 : C +- C V CN A -Tv 

EJ : C +- C V Cw 
A -Tv 

-Tv 

D : NoOp ComputeSk : 
-
111 1 

1 0 1 1 1 0 1 I 
1 0 1 1 1 1 1 

1 0 1 1 1 1 1 

I 0 1 1 1 1 1 1 

Figure 2.1: Sub-programs for program RedSquares on a 4 X 4 BISA 
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Assume that initially the AD matrix is stored in both the respective A and C 

registers of an n x n BISA using a one output communication register mode2• 

The ComputeSk sub-algorithm is derived from equations (2.3) : its kth itera

tion in algorithm RedSquares computes Sk . For its first diagonal, the C register 

of cell (i,j) already contains the value of AL, so that cell (i,j), for 2::; j ::; n, ex

ecutes the' -tv' instruction to compute Sli~i' whereas cell (i, 1) need only perform 

a no-operation. Similarly, cell (i, n), for 2 ::; i ::; n, executes the' tv' instruction 

to compute S17, whereas cell (1 , n) need only perform a no-operation. The nth 

column of the southern data buffer is assumed to read the value of Sk . 

The ComputeAk sub-algorithm is derived from equations (2.2): its kth itera

tion computes Ak+1. Firstly, the C register of cell (i,j) is loaded with A7j • Then, 

cell (i,j), for 1 ::; j < n, executes the '.-,,' instruction to compute Ai~i by reading 

from the east. This in turn requires cell (i , j + 1) to have completed loading its C 

register with Af.i+1; hence this instruction must be preceded by a no-operation. 

Cell (i, n) clears its C register, using a '0' instruction. Similarly, cell (i,j), for 

1 ::; i < n, executes the 'j ,,' instruction to compute At}l by reading from the 

south. This in turn requires cell (i + l,j) to have completed computing Ai~i+l: 

here again, a preceding no-operation is required. This time, the no-operation is 

implemented by a '0' instruction meeting with a 0 selector (for rows 1 to n - 1). 

However, on row n, this '0' instruction meets with a 1 selector, and clears the C 

registers there. 

2.2.2.2 The matrix multiplication program 

This program illustrates how an ISA algorithm, with a complicated (three-way) 

communication pattern can be implemented on a BISA using two of its output 

communication register modes. Computing the product of n x n boolean matrices: 

C=AB 

can be implemented easily on an n X n array of BISA cells. In [31J, such an 

algorithm is presented where A (B) is passed east (south) through the ISA from 

2Chapter 3 presents the simple ISA algorithm which loads a matrix into the ISA (see also 

[51]) . 
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the west (north) data buffer and Cij is accumulated in the respective C registers 

of the ISA. This algorithm is efficient for the BISA, since the matrix C can be 

computed and unloaded in 5n instruction cycles3• 

However, in [57, pp189-192]' an algorithm computing C on a n x (2n - 1) 

systolic array is presented. In this algorithm, A (Bt, the transpose of B) is 

passed east (west) through the ISA from the west (east) data buffer, and C is 

accumulated southwards through the ISA (see Figure 2.2(a)). This algorithm has 

the disadvantage of requiring extra processors and leaving the result matrix, C, in 

a scrambled form. However, it presents a challenge for BISA implementation. A 

straightforward ISA implementation is presented in Figure 2.2(b). This requires 

a powerful' M' instruction to perform the computation: 

using the four output communication register mode. Note that the instruction 

matrix has an inverted 'vee' shape, and the ISA selectors are not used. The 

'diagonals' and 'anti-diagonals' of no-operations (blank instructions) are inserted 

so that the 'diagonals' of 'M' instructions (passing A east) and the 'anti-diagonals' 

of 'M' instructions (passing Bt west) can coincide. This is the ISA equivalent to 

inserting corresponding diagonals and anti-diagonals of zeros in the initial value 

of the C matrix for the systolic array implementation. 

The'M' instruction is much too large to be implemented on a BISA directly4, 

but this surprisingly has a compensating factor. A consecutive 'M' and no

operation instruction sequence can be replaced by an east-west communication 

instruction sub-sequence and a compute/southward communication instruction 

sub-sequence, as is shown in Figure 2.3. For the one output register mode, the 

former sub-sequence requires two instructions more than that for the four output 

register mode. Note that in either case, the 'diagonal' and 'anti-diagonals' of 

the ea:st-west communication parts coincide naturally. Thus the no-operation 

3 A variant, in which A ([the initial value of] C) is passed east (south) through the ISA from 

the west data (north) buffer and B is stored in the respective B registers of the BISA. This 

variant, including the loading of B, has a period of only 4n. 
4Chapter 4 discusses how such instructions can be effectively microprogrammed in IS As such 

as the BISA. 
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e31 e22 e13 
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0 CI1 0 

0 0 

0 0 

! 

£113 £112 all -[§±§- bll ~1 b31 

£123 <122 <121 - ..... b12 ~2 b32 

<133 <132 <131 - ..... b13 ~3 b33 

(a) data flow 

Figure 2.2: Program MatMult for a 3 X 5 ISA 

o M 0 

o MOM 0 

MOMOM 

o MOM 0 

MOM 0 M 

o M M 0 

~r- -~ 

111 

m 
(b) ISA program 

instructions are no longer required. However, the skew of these 'diagonals' now 

exceeds one, which is rather irregular for the ISA 5 • The four output register mode 

program has a period of 4n, optimal fer the BISA provided matrix loading and 

unloading are taken into account. The one output register mode program has a 

period of 6n. 

2.2.2.3 The pattern matching program 

The pattern matching program efficiently solves on a boolean ISA the following 

non-numeric (textual problem): 

Given some boolean text t1..n2, and a pattern P1..m, where m = !l(n) 

and m < n 2 /2, find the position of all occurrences of p in t, ie. find 

a1..n2 such that: 

ai = { 
o if 1 ::; i < m 
(t(i-m+l) .. i = p) if m ::; i ::; n 2 (2.4) 

5 However, this is quite natural for the more general microprogrammed ISA introduced in 

Chapter 4. 
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r---

~ 
* r-- I-

1 -i -
* 1 I- 1 

1 - 1 * +- * 
* - * -i - -i 

1 - 1 - 1 i l- i l- i 

* - * - * IT]: C-C+CN * - * .... * - 1 - 1 - -i - -i - -i 

- * - * - GJ: C ..... CA l- i l- i I-

1 - 1 - 1 - * - * +--

[!J: CS-CS+CN * - * - * GJ: C-B - -i - -i -- 1 +-- 1 - i l- I- i 

GJ: cs- cscE - * - * - ~J: C_A * +-- - * 
1 - - 1 -i - - -i 

EJ: C:.v.cS- CE * - - * EJ : B-CE I- -i 
i-- -

B : cE - cw 
+-- -- -- - B : A- Cw 

- -r-- -- -'--- -- -

(a) four output mode (b) one output mode, 2 iterations only 

Figure 2.3: Program MatMult for a 3 X 5 BISA 

30 



u 

Given the row-major matrix representations of t and a: 

Ti,j = t(i-l)n+j 

Ai,j = a(i-l)n+j where 1 ~. i,j ~ n 

this algorithm is now developed for m ~ n on an n x n BISA, and then it will be 

indicated how it can be generalized for larger values of m. Defining: 

A? = 1 ' ,] 

A~ . = { (Pk = Ti,j) if j = 1 
' ,] (Pk = Ti,j)Atj~l otherwise 

(2.5) 

for 1 ~ k ~ m, one can observe that: 

AL = (P(k-l) .. k = Ti ,U-l) .. j) 

where 1 = min(j, k) - 1. Hence: 

Ai,j = Ai,jA~_l,j (2.6) 

'Yj:tere: 

A ' Am-j 
. l ' = . 1 t - ,1 ;- ,n 

The algorithm assumes that initially in cell (i,j) the C register is set and 

the B register stores Ti ,j. It also assumes that P is stored in row 1 of the west 

data buffer (to emerge in order PbP2 , P3,'" ,Pm)' The algorithm consists of the 

following sequences of sub-algorithms which are given in Figure 2.4: 

Matchm
: 

Match' } repeated m times; 

ReadEmA'; 

CombineA m A'; 

The Match' sub-algorithm is in turn composed of the three smaller sub-programs: 

Match': 

ShiftEAk- 1; 

ScatterSEpk; 

ComputeAk 
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A 
A 1" 

0 : C~A 

[I;J : A~ACN 
CombineA mA' 

A 1" 
A 1" 
1" 

EJ : C~CE 
~ ~ ~ ~ 

~ ~ ~ 

0 : A~AC ReadEA' : ~ ~ 

G : C ~ (C = B) 
~ 

1\ 

[I] : C~CN 1\ = 

EJ : c~cw 

Ej .: A~Cw ComputeAk 

1\ - 1 -
1\ = 1 -+ 

= 1 -+ ~ 

IT] : A~1 ScatterSEpk : 1 -+ ~ 

-+ ~ 

D : NoOp ShiftEAk- 1 : 1 
'---

! ! ! ! 

0 1 1 I 
1 0 1 

1 0 1 

11 0 1 

Figure 2.4: Sub-programs of program Match4 on a 4 x 4 BISA 

(selectors are l's unless otherwise stated) 
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Consider the kth iteration of Match'. ShiftEAk-l shifts A7,]l east one unit 

from cell (i , j) to (i,j + 1), for 1 :::; j < n. On this iteration, the east data buffer 

is assumed to store the contents of the C register of cell (i , n), which contains 

At~l. ScatterSEpk broadcasts Pk east and south through the array. ComputeAk 

performs the computation of equation (2.5), leaving AL in the C register of cell 

(i , j). After the execution of Match', the C registers concatenated with the east 

data buffer contents (in order of arrival) of row i contain the values: 

Am Am Am Am- l Am- 2 AD il i2 · · · in in in ... ," n 
" " 1 I 

The ReadEmA' sub-algorithm reads the n x m matrix A' from the east data 

buffer (which is assumed to be behaving as a queue), so that the computation of 

equation (2.6) can then be performed by sub-program CombineAmA'. Here, the 

north data buffer is assumed to contain zeroes to be read by CombineA m A' on 

row 1 of the BISA. 

For a general value of m, ie. m = qn + r, 1 :::; r :::; n, assume that P initially 

resides in the east data buffer as follows (rightmost values to emerge first): 

{rowl :} Pn Pl 
{row2 :} P2n Pn+1 

{rowq+l :} Pqn+r ' " Pqn+l 

The pattern match algorithm now consists of q sequential instances of program 

Matchn followed by Matchr (except that sub-program ScatterSEpk is selected for 

the k'th row, where k' is number of the instance). The result matrix lies in the 

C registers of the BISA at the completion of Matchr
• 

The period of this algorithm, for m = n(n), is O(n), a 0(n2
) speedup of 

an equivalent serial algorithm. Note that this problem is compute-bound for 

m = 0(1), and hence is not suitable for parallel implementation for such small 

m. This algorithm can be extended for pattern matching of strings comprising 

of b = 0(1) bits, ego for bytes b = 8, by holding all b bits of each element of 

T locally in a BISA cell (ie. in ring shift register Rl , provided lR ~ b) and by 

modifying sub-program Match' to perform a b-bit broadcast and comparisons. 
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2.2.2.4 Transitive closure program 

The systolic transitive closure algorithm of Kung-Gubias-Thompson [57, pp189-

197] for an n x n boolean matrix A can be implemented on an n x n BISA. 

This algorithm reqmres a two-way communication pattern, which, because of the 

computations involved, presents a challenge because of BISA's simple instruction 

set. The initialization step of this algorithm is: 

A~. = 0 
'] 

A /O 
ik = Aik + Dik 

A" ° ki = Aki + Dki 

for 1 ~ i.j, k ~ n, where Dii is 1 if i = j, and 0 otherwise. One pass of the 

algorithm is expressed as: 

A~. = A k-l + A' i-I A" i-I 
'] ii ik ki 

A'i { A,i- 1 if i i k = ik 
ik A~· if i = k 

'] 

Alii { A" i-I if j i k 
= k ki kj k · if j = k 

'] 

for 1 ~ i,j, k ~ n. After three consecutive passes of this algorithm, the transitive 

closure of A is in the matrix corresponding to An. 

To implement this algorithm on the BISA, the matrix Ak can be stored inter

nally in the BISA, whereas the other two matrices can be passed systolically east 

and south through the BISA, and be updated as they are passed. Thus, initially, 

A/O (A"O) is stored in the west (north) data buffer, and AO can be stored in the 

BISA, as is shown in Figure 2.5. The algorithm then consists of n repetitions; on 

the kth repetition, cell (i, j) reads A' {k 1 (A" ijl) from cell (i, j -1) (cell (i -1, j)) 

and A7Tl from its own A register. It then computes At, storing it in its own A 

register, and makes available A'{k (A"~i) in its communication register [at sepa

rate times] to be read upon the next repetition by cell (i,j + 1) (cell (i + 1,j)). 

The matrix A'n (A"n) can then be returned from the east (south) data buffer to 

the west (north) data buffers for the next pass. 

The BISA program to implement a single pass is given in Figure 2.6, using the 

one output communication register mode. For the sake of brevity, the 'e', ',*' 
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A" ° 44 

A" ° 43 A" ° 34 

A" ° 42 A" ° 33 A" ° 24 

A" ° 41 A" ° 32 A" ° 23 A" ° 14 

A" ° 31 A" ° 22 A" ° 13 

A" ° 21 A" ° 12 

A" ° 11 

AIO 
41 A IO 

31 
AIO 

21 A IO 
11 

A101 A1~ A1~ A1~ 

A IO 
42 A IO 

32 
AIO 

22 AIO 
12 A2°1 A2~ A2~ A 2°4 

AIO 
43 AIO 

33 A IO 
23 AIO 

13 
A301 A3~ AO 

33 A~4 

A IO 
44 A IO 

34 AIO 
24 A IO 

14 A~l A4~ A4~ A4°4 

Figure 2.5: Initial data configuration for transitive closure program on a 4 x 4 

BISA 

and '0' macros each represent a sequence of three BISA instructions. Consider 

the kth iteration of this program for cell (i,j). For columns j ::; k, A~t-1 = A~f 

is passed east by a diagonal of k '-jo' instructions. At column j = k, A~{ receives 

a new value. Columns j > k must wait for this updated value before performing 

their computations, with A~1-1 = A~{ being passed to the remaining columns by 

a diagonal of (n - k) '9' 'instructions'. For rows i ::; k, A~t1 = A~l is passed 

south by the 'e t-- eN' component of the first 'e' 'instruction', which meets with 

a diagonal of k '1' selectors. At row i = k, A~/ receives a new value. Rows i > k 

must wait for this updated value before performing their computations, with 

A~t1 = AZ/ being passed to the remaining rows by the 'e t-- eN component of 

the second 'e' 'instruction' which meets a diagonal of (n - k) '1' selectors. The 

period for a single pass is 13n on the BISA. 

Here, the instruction and selectors themselves, as opposed to systolic control 

bits, determine where to update the AI and A" matrices. Since BISA's instruction 

set is limited, a repetition cannot be implemented by a single BISA instruction 
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1-

-

~ NoOp; NoOp; NoOp 

El NoOp; NoOp; C, A' ~ Cw 

@] C~CN; C~CA'; C, A~AVC 

EJ C,A' ~ Cw 

o NoOp 

-o 
00 

o 0 C 
o 0 C C 
o C C 

C C - C 

C - 0 c 
- 0 0 * 

o 0 C * 
o C C 

C C - C 

C - C C 

-oc* 
o 0 * * 
o C * 
C C C 

C - C C 

-cc* 
oc** 
0** 

c* 
.E..._ 
-
! ! ! ! 

o 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1111 - m 
o 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1J -

~+-+-+-~~~-r-+-+~~~~~+-+-+-~~~-r~ 
10 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 _-

lOll 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 

Figure 2.6: Transitive closure program on a 4 x 4 BISA 
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(even using the four output communication register mode). A single update of 

AZi at row k produces a replication of the 'c' 'instruction'. Similarly, a single 

update of A~k at column k introduces no-operations. While this is undesirable, 

this program demonstrates that communication patterns occasionally involving 

large computations, ie. requiring more than one instruction, can be implemented 

on an ISA of limited instruction set. However, a simpler (and more efficient) 

ISA transitive closure algorithm based on Warshall's algorithm has already been 

proposed by Lang [32], for which the total algorithm has a period of Un on the 

BISA. 

2.2.2.5 Associative memory lookup program 

This program illustrates how an n x n BISA array can perform a bitwise asso

ciative memory matching and lookup, which requires the BISA cells to perform 

data-dependent operations. The program is parameterized by a word length m , 

where m = n(n) and m divides n. The program performs the following task: 

Given the (n2 /m) x m key matrix K, an (n2 /m) x m lookup matrix L 

and an m x 1 pattern vector p, return, if it exists, the value L i f where 

(i' is the largest integer such that) Kif = p. 

Since m = n(n), each word in the lookup or key matrices is distributed over m 

BISA cells. Thus, the program assumes that K is stored bitwise in row major 

order in the array, ie. K i f ,l,"" Kif ,m, where 1 :::; i' :::; n2/m, is stored in the 

respective A' registers of cells (i,jl),"" (i,jm), where i = l m(i~-l)J + 1 and 

jk = m(i' - 1) mod n + k. A similar case exists for L, except that it is stored in 

the B' registers of the BISA. For the sake of simplicity, the program also assumes 

that the pattern vector p is stored in each row of the western data buffers. The 

program outputs whether the lookup is successful in column n -1 of the south 

data buffer. It also outputs the lookup value (if any) in the last m columns of the 

south data buffer. The program uses BISA's one output communication register 

mode and may be expressed by the following sequence of sub-programs: 

6 A simple O(m) EISA program can be found to read in p from a single row of the west data 

buffer, and then write it to all rows. 
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AssocMem: 

Scatterp; 

Match; 

Scatter Match; 

Gather RowsMatch; 

GatherArrayMatch; 

GatherRowsL; 

GatherArrayL 

These sub-programs do not use the ISA selectors and their instruction matrices 

are illustrated for m = 3 and n = 9 in Figure 2.7. The most interesting features of 

this program are contained in sub-program GatherRowsL; only this sub-program 

will be explained in detail. 

Consider the case of key Kil, 1 ~ if ~ n2 jm. The first five sub-programs place 

the result of the match (Kil i= p) in the A registers of cells (i,jl) to (i,jm) and 

reset the B register of a cell iff a match has already occurred in that row. 

Sub-program GatherRowsL gathers bitwise across each row the (rightmost) 

lookup value corresponding to a matched key. On its kth iteration, 1 ~ k ~ m, 

the C register of cell (i,jk) is loaded with Lil,k. If Kil = p, then the A register of 

cell (i,jk) is 0 and the '.1' instruction is not executed, allowing Lil,k to be read 

by the cell to the east. Otherwise, this instruction is executed and the kth bit of 

any matched lookup values from the west is sent eastwards. 

These lookup values are gathered row-wise in the C registers of their respective 

cells; sub-program GatherArrayL ga.thers them column-wise in a similar way, 

using the'!B' instruction. The lookup value Lil of the largest if such that Kil = p 

can be then read by the last m columns of the southern data buffer. 

The period of the algorithm is O(m), an O(n2 jm) speedup on an equivalent 

serial algorithm. 

2.2.2.6 Median finding program 

An efficient (O(Llog L)) systolic implementation of finding the median matrix 

M, using an Lx L window, where L = 2kf + 1, of the boolean n x n image matrix 
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Figure 2.7: Instruction part for (the sub-programs of) program AssocMem for 

m = 3 for a 9 X 9 BISA 
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P can be derived from the following set of equations: 

The image matrix is first summed along each set of L consecutive columns, and 

these 'column sums' are summed along each set of L consecutive rows: 

R~ . = p, .. 
' ,1 ',1 

R~tl = R7.i + Pi,i-k ' ,1 
(2.7) 

MI. = RL . 
' ,1 ' ,1 

M~tl = M~ . +R~ k · ' ,1 I ,) t- ,) (2.8) 

where 1 ~ i,j ~ n and 1 ~ k < L. Here, Pi,2-L, ... , Pi,o and RLL,i"'" Ri,i are 

unspecified 'boundary values' - convenient values for these might correspond 

to a 'grey' colour. For the sake of simplicity, Mi,i is the median of the square 

of side L in P whose bottom right corner is at position (i, j). While this may 

be unsatisfactory for real applications, it is not difficult to extend this algorithm 

(and hence the following program) so that Mi,i corresponds to a median centred 

on position (i,j). 

On an ISA capable of adding L-bit integers within a single instruction cycle, 

the above algorithm can be implemented by a simple program of period 3L + 2. 

For boolean ISAs, the added complexities in implementing this algorithm are 

illustrated below. 

The program implementing this algorithm on an n X n BISA again does not 

need to use the ISA selectors. The matrices P and RL are shifted east and south, 

respectively, across the BISA, with the appropriate results being accumulated in 

the BISA's ring-shift registers. The program is expressed as follows: 

MedianFind: 

AddPixelw1(k) (Rl); } 
R tC l(k)(R R) repeated for k := 1 to L - 1; 

ese 0PYW 1, 2 

L' } 
AddRowN (Rll R2 ); 

Carries1(k) (R2)' 

ResetL'+l(k) (R:); repeated for k := 1 to L - 1 

ResetL' (Rd 
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where l(x) = flog(x + 1)1 and L' = l(L - 1). Here, the 'repeated for k := 1 

to L - l' construct means that L - 1 repetitions of the associated sub-programs 

are performed, with the kth repetition being dependent on the value of k. The 

instruction parts of these sub-program are presented in Figure 2.8 for a 4 x 4 

BISA. 

B : B +- RI; Rl 

B : B +- R2; R2 r--
-I 

rx ~ : HA(R2, D); Rt -I -2 bx 

B 
-I -2 1H+2 bx 

: FA(R2, B, D); Rt 
Resetb (Rl) : IH+ F+2 -I -2 

B : Rl +- B; Rt Resetb(R2 ) : -2 1H+2 1F+2 +1 
bx 

~ 
Carriesb(R2) : 1H+2 F+2 +1 lB 

: B +- CN 
F+2 +1 lB Rl 

~ : C +- Rl +1 lB Rl -1,2 }bX 

1-1,21 
AddRoWNb(R2) : lB RI -1,2 1H+1 

}bX 
: R2 +- RI; R2"; Rl 

Rl IH+I D -1,2 

~ : HA(R1, D); Rt Reset Copyb (RI , R2) : -1,2 1H+1 D D 

1H+1 D -
0 D 

: C +-D 
AddPixelwb(Rl) : D D 

W : D +- CW D 
'----

Figure 2.8: Instruction part for (the sub-programs of) program MedFind for a 

4 x 4 BISA 

The program uses the one output register mode of the BISA. It assumes that 

initially the pixel Pi,j is stored in both the C register and the current bit of the RI 
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register of cell (i,j). Consider the execution of this program on cell (i,j). The can 

of AddPixelwl(k)(Rl) implements the kth instance of equation (2.7). Here, Pi,i-k 

is read from the west and stored in the carry register D. It is then transferred 

to C in preparation for the next iteration. Then, l( k) half-add instructions are 

performed to implement the addition of a this pixel to register Rl (which currently 

contains an integer not exceeding k). Upon each half-add, Rl is shifted so that 

the carry can be propagated as far as it can possibly go (in this case, l(k) bits). 

The call of sub-program ResetCopYw1(k)(R1 , R2) is needed to reset R1 , ie. select 

its least significant bit. It also copies Rl to R2 , in preparation for the second half 

of the median finding program. 

The kth iteration of the second half of the median finding program assumes 

that Mi~j is stored in the R2 register of cell (i,j), and corresponds to the kth 

instance of equation (2.8). The call of sub-program AddRowNL
' (Rl' R2) performs 

the bitwise full addition of Mi~i and Rf-k,i. The carry register is again D, having 

initially a value of 0 (as left from the previous additions). Consider the bth sub

repetitio"n of this sub-program, where 1 ~ b ~ L'. The bth bit of Rf-k-l,i is loaded 

from Rl to be read by the cell to the south. This is then replaced by bth bit of 

Rf-k'i read from the north, which is also copied to the B register (for the full-add), 

with Rl being shifted for the next sub-iteration. The full-addition of the bth bit 

of Mi~i is then performed, leaving the result in R2, which is similarly shifted. The 

carries from these L' full-add cycles can be propagated the maximum number 

(1(k)) of bits along R2, by calling the sub-program Carries1(k)(R2). In preparation 

for the next iteration, R2 is shifted back a total of L' + l(k) units by calling 

ResetL'+I(k)(R2), and similarly Rl is shifted back L' units by calling ResetL' (Rl). 

The final step in the median finding algorithm, to determine whether Mi~i > 

L2/2, is left undeveloped. It can be implemented by broadcasting L2 /2 through 

the BISA, and performing a bitwise comparison. 

The period of this program is O(LlogL), an O(n2 /logL) speedup of the 

equivalent algorithm executed on a serial machine supporting full integer addi

tion. However, since the BISA is performing these operations bitwise, the BISA 

implementation of image median finding is inefficient for small n. 
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2.2.3 Limitation's of the BISA 

The BISA is a boolean ISA of moderate capacity, being capable of performing bit

wise integer and symbolic processing, and hence has application in implementing 

simple grCliph and pixel image processing algorithms, For example, it is capable 

of implementing systolic graph algorithms such as the transitive closure, shortest 

path, minimum spanning tree, bridge and cut point algorithms proposed for the 

ISA by Schimmler and Schroder [49]. While the BISA has been demonstrated 

to be able to implement reasonably efficiently a large variety of boolean matrix 

algorithms, it is evaluated for practical use as follows: 

1. Limited instruction power. Although it is possible to implement a 

complex operation as a sequence of several smaller ones (eg. the bitwise 

'full-add ' operation of Section 2.2.1) , and sometimes it might even 

be area-period efficient to do so, some systolic algorithms require the 

BISA to have a high instruction granularity. 

ego if an algorithm required some nontransmittent (bitwise) 

integer data, then the BISA would need to perform an 'half

add' or 'full-add' operation within a single instruction cycle. 

Note that program MedFind of Section 2.2.2.6 uses transmit

tent (bitwise) integer data. 

The reasons for this are to be further elaborated in Section 2.3. 

Furthermore, limited instruction power makes the BISA difficult to 

program (without the use of higher-level language facilities) . This is 

particularly the case for programs manipulating (bitwise) non-boolean 

data, such as the MedFind program. 

2. Fair communication capabilities. The BISA has a novel instruction set 

that allows various useful modes of output communication registers , 

and permits data to be stored to a communication register and non

communication register simultaneously. This alleviates the 'commu

nicClit ion register bottleneck' of this type of processor array, and these 

communication capabilities are sufficient for the class of algorithms 
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intended for BISA. 

3. Insufficient on-cell storage. For general purpose boolean processing, 

it is useful to have a larger storage capacity (ie. of the order of 102 

bits). Not all of these need be random access, and ring shift regis

ters provide reasonably efficient means of 'secondary' storage. This is 

because algorithm partitioning (see Section 2.5.2) may require consid

erably large sets of data from other partitions to be stored, so BISA's 

on-cell storage may need to be expanded to meet these requirements. 

At present, the BISA uses a 16-bit instruction. The extra pin count potentially 

arising from this can be avoided by the following technique. It is envisaged that 

many BISA cells can be fitted on a single chip, and that the decoding (from 

a compressed instruction, ie. a 4-bit, 'macro') of the instruction stream for each 

column of BISA cells need be done only once at the top (north end) of the column.. 

Four bit 'macros' are deemed sufficient since the decoding scheme can be flexible 

(ie. different for each program), and most boolean ISA programs require less than 

24 different instructions. This should result in a reduction of the overall area of 

the BISA, while keeping its pin count low. This idea is further developed for the 

microprogrammed ISA introduced in Chapter 3. 

From a 350). X 350). nMOS layout of the prototype BISA cell (called bISA, 

see Appendix 2.A), we estimate that an nMOS layout for the BISA would re

quire not more than 1000), x 1000). area. With a 2.5JLm nMOS technology, a 

4 X 4 BISA array would then fit onto a lcm2 area chip. Since a BISA cell would 

have a high instruction rate, and would require 5 pins per column (by compress

ing instructions into 4 bit macros, as mentioned above) pin count should not 

present a serious limitation to BISA implementation. However, with IJLm nMOS 

technology, pin count could impose a limitation on the BISA. 

2.3 ISA instruction granularity 

The main advantage of the ISA over SIMD arrays is that it is superior in han

dling nontransmittent data. Hence, by incorporating more sophisticated control 
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structures, effort should be taken to implement nontransmittent data efficiently 

on the ISA. 

In Section 2.2.2, nontransmittent data is used in four of the BISA programs 

given there. In program RedSquares (Section 2.2.2.1), the variable Slik is updated 

as it passes across row i, accumulating At as is passes cell (i,j). In program 

MatMult (Section 2.2.2.2), the variable G i j accumulates the product of A;kBkj as 

it passes row k. In sub-program GatherRowsL of program AssocMem (Section 

2.2.2.5), the lookup values are passed westwards along each row, and are updated 

when passing cells that had matched the lookup values. All these updates could be 

achieved by a single BISA instruction, so their BISA implementation is efficient. 

Program TransClos (Section 2.2.2.4), updates (in a more complex fashion) and 

passes westward the matrix A', making the program bulky and difficult to read. 

If it was necessary to pass integer data through the BISA7
, and update it (eg. 

add values to it) as it passes, the BISA would have to implement the 'full-add' 

instruction directly. 

The handling of nontransmittent data sometimes requires high instruction 

granularity, ie. a rela,tively large amount of computation and inter-cell communi

cation can be completed within a single instruction cycle. 

A high instruction granularity enables the nontransmittent data to keep pace 

with the instructions that manipulate it. Either such highly specialized instruc

tions and a high inter-cell I/O bandwidth must be directly implemented (which 

is costly, particularly if these are only occasionally used), or the basic ISA archi

tecture must be altered to effectively implement them (as proposed in Chapter 

4). For the former case, the requirements of the nontransmittent data intended 

to be used on the ISA determines its instruction granularity, with its associated 

communication capabilities. 

Flexible modes of output communication registers in an ISA are always use

ful, since they have an efficient implementation and this flexibility alleviates the 

'communication register bottleneck'. If a single mode needs to be chosen for an 

ISA, the most powerful mode required should be chosen. 

1The median finding program of Section 2.2 .2.6 could have been reformulated this way. 
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2.4 Internal memory size 

Another important factor in ISA cell design is the amount of internal memory 

in each ISA cell. In the case of the BISA, each cell has slightly more internal 

memory than is required by the programs of Section 2.2.2. While systolic algo

rithms generally require a modest amount of data storage in each cell, an ISA 

should have considerable internal memory if it needs to meet some of the following 

requirements: 

1. to implement more complex functions such as multiplication, recipro

calor sine-cosine evaluation by the use of lookup tables stored in the 

internal memory of each cell [26, pp457-458]. Provided high accuracy 

is not essential, the use of lookup tables is probably the most efficient 

method of implementing functions not easily supported by the ISA 

instruction set directly. 

2. to support LSGP partitioning (see Section 2.5) of a ~n x ~n problem 

size on an n X n ISA, it may be necessary for the cell internal memory 

to have O(~2) capacity. 

3. to reduce the I/O traffic of the ISA in situations where its I/O band

width is insufficient to match its computation rate8 . This is explained 

in detail below. 

A standard technique to overcome the I/O limitations of a computer archi

tecture is to incorporate a large local memory to reduce its overall external I/O 

traffic [25]. This can be successful for solving problems in which each output 

depends on many inputs. In the case of matrix algorithms, such problems are 

therefore unlikely to be I/0-bound9 and hence are suitable for parallel implemen

tation [25] . It is reasonable to assume that the I/O bandwidth between an n X n 

ISA and its data buffers is 0(71,). The ISA's computational bandwidth of 0(n2 ) 

is balanced with its I/O bandwidth of only 0(n) matrix computations (such as 

8This is not needed if the ISA data buffers have a large memory capacity instead. 
9Examples of I/O bound problems are matrix-vector multiplication and linear system 

solving. 
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matrix multiplication and triangularization) by the overall ISA internal memory 

of 0(n2
) area [25]. Hence, for these matrix computations, an ISA cell's internal 

memory can be independent on the array size. 

However, for applications such as implementing d-dimensional grid problems 

on an ISA, the overall internal memory of the ISA (and its data buffers) should 

increase by a factor of n d • 

Furthermore, the I/O bandwidth between the ISA system (the ISA combined 

with its data buffers) and external data sources should also be considered. In real

time signal processing applications, it can be assumed that O( n) sensing devices 

exist and can send data to the ISA system in parallel [58, p296]. In this case, the 

bandwidth can be considered 0(n), and the comments above apply to the overall 

ISA system. However, if the ISA system communicates with an external mass 

data storage, as is the case in most parallel computer systems, it is conservative 

to assume that the I/O bandwidth between them is o(n). This is because a 0(n) 

I/O bandwidth requires that the mass storage is 'truly parallel', which could incur 

great expense in the design and implementation of the storage, not to mention 

overheads in the organization of ~ata for parallel access. Note that the parallel 

mass storage in most existing parallel architectures, 

ego the 32-bank Data Vault of the 216 processor element Connection 

Machine CM-I, which accesses each bit of 32-bit words in parallel, . 

is not considered 'truly parallel', since the parallelism that they provide in data 

access is constant. Here, even for matrix computations, the overall memory of an 

ISA system must be large enough to reuse as much data as possible in order to 

reduce external I/O traffic. 

2.5 Matching problem size to the array size 

In the ISA programs of Section 2.2.2, the ISA is assumed to have a size matching 

that of the matrices used by the program. In typical scientific applications, 

computations may use data matrices whose dimensions could range from hundreds 

to tens of thousands. Any ISA used for such applications must however have fixed 
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dimensions of the order of hundreds, possibly as much as a few thousand (see 

Section 1.1.2). Hence, for any particular application, the matrix size and the ISA 

size are likely to mismatch, typically with the former exceeding the the latter. 

This presents a crucial problem with the practical usage of array processors in 

general. If the data matrices are too small for the ISA size, the design of the 

ISA interface can alleviate the loss of ISA utilization (Section 2.5.1). If the 

data matrices are too large for the ISA size, they can be partitioned into smaller 

units which match the array size (Section 2.5.2). Both of these techniques have 

important consequences in the design of ISA programs and control structures for 

ISA cells and data interfaces. These issues are related to the important problem 

of balancing a parallel computer architecture's computational and input/output 

bandwidths (as discussed in Section 2.4). 

2.5.1 Small matrix sizes on large ISAs 

While this situation is less common in practice, it still warrants some considera

tion since it is conceivable that data matrices whose dimensions are of the order 

of a hundred could be efficiently run"on an ISA whose dimensions are of the or

der of a thousand. A simple solution, suited to the ISA data interface proposed 

by Lang (see Section 2.6.1), is to use the north-westernmost sub-array matching 

the matrix size, but this can result in poor overall ISA utilization. This can be 

avoided by being able to partition the ISA into sub-arrays of smaller dimensions, 

which can either operate in a pipelined fashion [26, p508j or independently. To 

utilize partitioning into sub-arrays, the following features are required: 

• that each sub-array be individually programmable . 

• that each sub-array has an effectively independent data interface. 

• that ISA programs are parameterized for each possible sub-array size. 

While at first glance it might seem difficult, an ISA system architecture, consisting 

of the data interface of Section 2.6.3 together with the program interfaces for the 

'optimal' program compression methods of Chapter 3, can efficiently implement 

these features. 
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2.5.2 Partitioning: large matrix sizes on smaller ISAs 

An n X n ISA can operate on matrices of size ",n x ",n, '" ~ 1, using either 

the Locally Serially Globally Parallel (LSGP) or the Locally Parallel Globally 

Serial (LPGS) partitioning methods [26, pp374-376] (these are also referred to as 

partitioning using coalescing mappings and cut-and-pile mappings, respectively 

[43]). In LSGP partitioning, ISA cell (i,j) is allocated the (i,j)th sub-matrix 

after the matrix has been partitioned into", x '" sub-matrices. Then, all ISA cells 

(in parallel) perform the required operations on each element of its", x '" sub

matrix in some serial order. In LPGS partitioning, the matrices are partitioned 

into ",2 n x n sub-matrices. Each of these sub-matrices in turn is operated on, in 

some appropriate order, the results of which are later combined to give an overall 

result. 

It is essential that the LPGS and/or LSGP partitioning methods can be suc

cessfully developed for commercial applications of the ISA. These methods are 

discussed in more detail below. For reading Section 2.6, an appreciation of the 

LPGS method is important. 

2.5.2.1 LSGP partitioning for the Red Squares program 

In general, the LSGP method requires extra control structures10 and a large 

internal memory in each ISA cell, but is efficient otherwise. The control structure 

overhead might be thought too great for fine-grained ISAs; however, surprisingly, 

LSGP partitioning can usually be implemented on an ISA with very little control 

struoture overhead. 

Finding a scheduling for the LSGP partitioning that is compatible with the 

way instructions and selectors flow through the ISA is a difficult problem. The 

example program of Appendix 2.B is sufficient to demonstrate that, provided 

the nontransmittent data of an ISA program is updated with associative and 

commutative operations, and there is no contraflow in the other data used by 

the program, then such a scheduling can indeed be found with very low control 

lOeg. A partitioning factor of K. requires mechanisms to pass instructions/selectors at the rate 

of one cell per K. cycles - cf. a (K., K.) wavefront J,lISA (see Chapter 4) . 
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structure overhead. 

Appendix 2.B further demonstrates that , provided its ring-shift registers are 

large enough, LSGP partitioning can even be implemented on the BISA. However, 

this incurs a considerable expense in programming effort. 

Alternatively, microprogramming techniques similar to those presented in 

Chapter 4 can provide reasonably modest control structures to support more 

general and more easily programmable LSGP partitioning. 

2.5.2.2 LPGS partitioning 

The LPGS method is suitable for ISA programs for which data flows in two 

orthogonal °directions, since then it is easy to schedule the order of execution of 

the 1<,2 n x n sub-matrices. As an example, consider the LPGS partitioning of 

the transitive closure program of Section 2.2.2.4 for I<,n x I<,n data on an n x n 

ISA. Upon breaking the I<,n repetitions of this program down into I<, stages, for 

the k'th stage, 0 ::; k' ::; 1<" the matrix Ak'n is partitioned into: 

ie. the (i,j)th element of AL, is given by At:+i, j'n+j , where 0 ::; i', j', k' ::; I<, and 

1 ::; i, j ::; n. Similarly, the (i , j)th element of the nontransmittent sub-matrix 

All i' (A' j' ) . d fi d b A" i'n (A'i'n ) k' ,j' j' ,k' IS e ne to e k'n+i, j'n+j i'n+i, k'n+j . 

An efficient LPGS scheduling is to execute all I<, stages of the (i', j')th partition 

consecutively. This requires the matrix A<?, 0' to be loaded into the ISA, and A'k',i'·-;l 
1 ,J ,) 

0' 1 
(Aj~,;' ) to be passed southwards (eastwards) through the ISA, for 1 ::; k' ::; 1<,. 

A column-major scheduling for the partitions satisfies this requirement, together 

with FIFO queues (data buffers) as is shown in Figure 2.9. 

Even though an ISA program may have contrafiow, LPGS partitioning may 

still be applied. By combining the result matrices in a non-trivial way, Lang 

gives an efficient LSGP partitioning for the ISA implementation of Wa,rshall's 

transitive closure algorithm [32J. Also, an equivalent algorithm m a,y exist tha,t 

has no contraflow, ego the MatMult program of Section 2.2.2.2 may be replaced 
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(note: 2i = i' - 1 and i' = j' - 1) 

Figure 2.9: Initial data buffer and ISA configuration for column-major LPGS 

scheduling of the transitive closure program for partition (i ', j') 
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by more efficient ISA matrix multiplication programs that have no contraflow 

[31] . 

2.5.2.3 Comparison of partitioning methods for the ISA 

The LSGP and LPGS methods of partitioning are compared for the ISA in sum

mary form in Table 2.1. For the LSGP method, it is assumed that the movement 

of the ISA instructions and selectors are not modified, and techniques such as 

those outlined in Section 2.5.2.1 are used. 

I partitioning method II LSGP 

generality always, unless 'non-assoc.' 
nontransmittent data t 

program 
efficiency 

ISA I/O bandwidth 
programming effort 
memory / ISA cell 
cell control struct. 

data buffers 
data buffer control 

notes: 

usually high 

reducible by a factor ~ K 

greatly increased 

slightly increased 
O((Kn)2) area useful 

increased 

LPGS 

always, unless contrafiow 
in program-generated datat 

extra movement of data; 
sometimes must also 
combine sub-results 

same 
slightly increased 

0(1) sufficient 
same 

O((Kn)2) area essential 
increased 

• 'always' , 'same' and ' increased' are qualifications relative to an ISA using 

no partitioning. 

t this means the update of the nontransmittent data must be by an associative 

and commutative operation; also there must be no contraflow in the other 

data. 

t in this case only, nontransmittent means data that is updated as it passes 

through the ISA in any direction. 

Table 2.1 : Comparison of LSGP and LPGS partitioning methods for the ISA 

For the ISA programs of Section 2.2.2, the transitive closure program cannot 
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be partitioned using the LSGP method, si~ce its nontransmittent data (the ma

trices A' and A") is updated by a non-associative operator. A similar situation 

exists for the microprogrammed ISA programs introduced in Chapter 4. Also, 

when a boolean ISA is used to perform bitwise integer arithmetic, the limitations 

of cell memory severely restrict the LSGP method. 

All ISA programs of Section 2.2.2 can be partitioned using the LPGS method, 

as can also the microprogrammed ISA programs introduced in Chapter 4. Even 

though the MatMult program has contraflow in its transmittent data (the input 

matrices), if has no contra:fl.ow in its nontransmittent data (the output matrix). 

While the Matchn program also has contraflow in its data, LPGS partitioning can 

be applied to the n repetitions of the Match' sub-program (whose data has no 

contraflow). After all partitions of this sub-program are executed, LPGS parti

tioning can then be applied to the 2n period ReadEnA' sub-program (whose data 

also has no contraflow). The LSGP partitionings of a variety of ISA algorithms 

are given in [35, Ch.6]. 

In general, it can be concluded that the simplicity of the LPGS method makes 

it more suitable for implementation on a fine-grained architecture such as the ISA. 

However, the reduction in I/O bandwidth possible by the LSGP method still may 

be preferred if the conditions of technology makes an ISA limited, in both speed 

and density, by pin limitations. 

2.6 Data interfaces for the ISA 

A programmable data interface for meshes (eg. the ISA), which includes the data 

buffers and their 'front ends' (to external storage devices) is extremely important 

in providing temporary storage and 'balancing' the array architecture [26, pp362-

368] (see Section 2.4). In order to enhance overall mesh performance, the control 

structures for appropriate data interfaces must be carefully designed. 

In general, the data interface's memory can be regarded as the ISA system's 

cache memory, since it can be easily engineered to have an 0(n) I/O bandwidthll 

llThe ISA registers are the fastest memory, with a 8( n 2
) bandwidth, whereas that of external 

storage is the slowest . 
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with the ISA. Thus, over a long series of computations, the management of large 

amounts of data in the data buffers is important to minimize external I/O. Ideally, 

the memory capacity of the data buffers and the ISA should be large enough so 

that the ISA system can be regarded as 'intelligent memory' (as is done for the 

Connection Machine [14]), ie. the crucial data structures (matrices) are resident in 

the ISA system for the whole duration of their creation and use by the ISA. While 

this approach seems costly in terms of area, it is important in reducing the major 

limitation of scalable parallel architectures such as the ISA: their external I/O 

bandwidth. The data buffer design is also important in supporting LPGS (and 

LSGP) partitioning methods. Thus the data buffer's programmability, capacity 

and ability to move data are important considerations in the design of an ISA 

system. 

This section examines the data interface for the ISA, and hence deals with 

part of an important problem: how to integrate an ISA into an overall computing 

system, in such a way that the array's high comput<lJtional bandwidth can be 

utilized. The control (program) interface for the ISA is dealt with in Chapter 3. 

A programmable data interface itself requires a control interface; however, the 

data interface designs proposed here can be programmed using the instruction 

systolic paradigm, and hence their control interfaces are similar to that of the 

ISA. All principles here discussed for the ISA extend to any meshes, so that their 

application is quite general. Section 2.6 .1 describes existing mesh data interfaces. 

The desirable properties of ISA interfaces are then outlined in Section 2.6.2. From 

this, a partitionable and instruction systolically programmable data buffer design 

is proposed in Section 2.6.3. This design can be easily adapted for any mesh using 

skewed matrix input/output, and is a useful application of the instruction systolic 

concept. 

2.6.1 Existing mesh data interfaces 

While much work has been published on mesh (including the ISA) al.gorithms 

and design, the problem of the design for a general, programmable data interface 

has been left l8lrgely undeveloped. However, in most systolic algorithms, the flow 
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of data over the array's boundaries plays a crucial role in the algorithm. 

A simple and area-efficient ISA data interface, based on that proposed by 

Lang [35, pp28-30], is shown in Figure 2.10. The data front-end unit performs 

to host & I/O unit 

~ 
I I I I I Data Front End 

0]]
1 1 1 1 ~orth 

Data 
Buffer 

I-

w_e_st_D_at--la : FffR ISA 
Buffer : EEEB 

Figure 2.10: An area-efficient ISA data interface, for a 4 X 4 ISA 

functions such as data formatting and data up/down loading. G(n2
) area data 

buffers for the north and west sides are used, which may be programmed to 

behave as arrays of either queues or stacks. A write to (read from) a data buffer 

queue/stack may occur when the adjacent ISA cell writes into (reads from) the 

appropriate output (input) communication register. Output from (input to) the 

western side of the array is simulated by shifting east (broadcasting west) the 

data - such operations can be done in unit period on the ISA. Thus, this data 

interface requires very simple control structures, and makes efficient use of the 

ISA's high internal I/O bandwidth. 

However, this design suffers from the disadvantage that the ISA system is 

not partitionable into sub-arrays, and from the fact that feedback occurs via the 

ISA itself, resulting in a loss of period. To keep this loss to one instruction per 

feedback operation, output communication register modes more elaborate than 

those of the BISA, and/or special cell hardware features, are required. To be 

convinced of this, the reader may try to implement feedback for the 81 and 8 data 

of program RedSquares on a BISA Section 2.2.2.1). A less serious disadvantage 

of this design is that the data front end unit cannot communicate directly with 

the ISA, resulting in extra host/ISA communication latency. 
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A general mesh system architecture is proposed by S.Y. Kung [26, pp362-

368J . This has a similar data interface to the above design, with a single interface 

unit, made of a single data buffer and the data front end unit, being used for the 

mesh. An interconnection network provides extra (possibly non-systolic) modes 

of communication12, possibly including feedback between the opposite edge of the 

mesh and the data interface. 

A data interface for VLSI sorting which fundamentally incorporates feedback 

is given in Figure 2.11 [29J. This has been designed for LPGS partitioning using 

a sort-split-merge method of combining results. The control unit splits partitions 

of data, and the data buffers are implemented as VLSI shift registers. 

sorting 
chip 

VLSI-shift 
registers 

Figure 2.11: A VLSI data interface for a sorting chip (mesh) 

2.6.2 Data interface properties 

Dividing the data interface into the data front end unit and the data buffer(s), 

as suggested in Section 2.6.1, the data front end unit should be a:ble to perform 

the following functions: 

• support bus protocols etc. for communication with external storage. 

• store a few n x n matrices, which are currently being downloaded or up

loaded into the ISA system. This storage would need to be both accessible 

12eg. the row/column broadcasting of the ICL-DAP [17, pp246-247] 
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serially for communication with external storage, and accessible in parallel 

for communication with the ISA system . 

• to provide data formatting and decompression (see Section 3.2.1) to allevi

ate the data I/O bottleneck of the ISA system where possible. 

The data buffer(s) provide the main storage of the data interface, and they 

should have the following properties: 

1. be general, in that data can be effectively buffered (in a FIFO or LIFO 

manner) on all sides of the ISA. However, for the ISA, the preferred 

directions of data movement are southwards and eastwards, so that 

primarily data is input into the north and west sides, and output from 

the south and east sides. 

2. be expandable, so that a large ISA system can be made by simply 

adding on a suitable number of ISA sub-system modules. Similarly, 

for the efficient implementation of small data size problems on a large 

ISA system, the ability to partition the ISA system into smaller inde

pendent or pipelined ISA sub-systems is desirable. 

3. use fixed length wires only. 

4. be able to support LPGS (and possibly also LPGS) partitioning to 

any partitioning factor of I'\, required by the ISA's applications. This 

requires 0(1'\,2) storage locations for each of the n 2 data buffer cells. 

Also, for LPGS partitioning, the data buffers must be able to simulate 

feedback queues of lengths such a n, I'\,n and 1'\,2n (cf. Figure 2.9). 

5. to have control structures that can efficiently support these capabili

ties, and be able to support all I/O operations the ISA might reason

ably require. 

However, a tradeoff exists between the benefits of these properties and the area 

that they require. 
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2.6.3 A partitionable instruction systolic data buffer de-
. sIgn 

A partitionable instruction systolic data buffer design is presented here which 

satisfies the data buffer properties of Section 2.6.2. The design supports skewed 

input of matrices into the ISA, such as is required for most systolic algorithms. 

The design has simple control structures which aim to maximize the overall ISA 

performance. 

The design can be derived by 'folding' the two data buffers of Figure 2.10 

into one, as is shown in Figure 2.12. Each element in this data buffer (DBE) 

contains a cell having several (at least four, one for each direction) independent 

data channels. For the sake of simplicity, each data channel is assumed to move 

one word of data one unit in the appropriate direction each ISA cycle. At any 

time step, the data buffer cell is assumed to be able to communicate one word 

of data (either or both ways) between its 0(11:2) word RAM and any of its data 

channel cells. The interaction of each data channel with the data buffer can be 

programmed separately. 

Figure 2.12 gives a planar layout of the data buffer design (note that this 

'cylindrical' topology can be laid out more efficiently than is suggested by this 

figure). By incorporating a direct link between each ISA cell and its adjacent 

data buffer cell, this layout may also enable matrices to be transferred between 

the data buffer and the ISA in unit time, as well as support LSGP partitioning. 

A more area-efficient 2-planar layout, with the PE on the upper plane and the 

data buffer on the lower, is also feasible (a 2-planar circuit board configuration is 

used for the PAX array computer [56, p64]). This layout requires that the area 

of the ISA cells and DBEs each must match exactly, possibly requiring in turn 

that the ISA cells expand their internal memories. 

It is evident that this design satisfies the data buffer properties of Section 

2.6.2, and that the data front end unit can communicate directly with the ISA. 

Feedback queues of length an, a > 0, can be implemented by reading from the 

data channel into memory location x and then writing from memory location 

x + a into the data channel, at each data buffer cell. The next such read/write 
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('PE' denotes a ISA processing element; 'DBE' denotes a data buffer cell) 

Figure 2.12: Instruction systolically programmable data interface for a 3 x 3 ISA 
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. operation is similar except x is replaced by x + 1. 

This data buffer design has however some drawbacks. While it is easy to 

program matrix rowand/or column reversal, matrix transposition cannot (easily) 

be performed by the data buffers. Also, since the design requires at least four 

independently programmable data channels, the data buffer memory may need to 

support parallel read and write operations, a significant overhead. The ISA and 

data buffer system have a cylindrical topology, whose one-planar layout results 

in some wastage of area. 

It would be interesting to make a detailed area-time comparison between this 

period-efficient design and the area-efficient design presented earlier. This is 

however beyond the scope of this thesis. 

Programming the data buffers 

The data buffer design may be programmed in a fashion similar to the ISA, 

except that underlying wavefront programming model (and hence the buffer's 

control structures) must be extended to that used by microprogrammed ISA (see 

Section 4.1.1). 

To illustrate this, ' consider programming the westward-moving data channel 

of the data buffers to provide data for an ISA reading a matrix A from the west. 

Assume that element Aij is initially in data buffer cell (i, j) and that the current 

ISA program requires it to be read in at the ISA's western edge by the tjth 

instruction diagonal, where tj = to + j A. Here, the ISA program reads once from 

the west every A ~ 1 cycles. Since the data data channel takes j + 1 steps to reach 

is ISA cell (i,1) from data buffer cell (i,j), Aij must be loaded at the diagonal 

corresponding to: 

tj - (j + 1) = to - 1 - j(A - 1) 

This is illustrated in Figure 2.13 with A = 1 for an ISA program loading a matrix 

loading from the west. This program loads Aij into the A register of ISA cell 

(i,j), and is different from other ISA load matrix programs (see Section 3.7.1, 

[51]) which would load Aij into cell (i, n - j + 1). 

The da;ta buffer program here is also a skewed matrix, which is advanced n 

steps ahead of the corresponding ISA program. To load sub-matrices, an IS A-like 
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.---
-+' 

-+ 

-+ -+' 

-+ -+ 

-+ -+' 

-+ 

-+' 
'---

A A A A 

! ! ! ! 

Au A12 A13 A14 

A2l An A23 A24 

A3l A32 A33 A34 

A4l A42 A43 A44 

(a) ISA program (no selectors used) (b) synchronized data buffer program 

('-+' denotes 'C +- Cw '; '-+' denotes 'A +- Cw' and 'A' executed at data buffer 

cell (i,j) loads A;j into the data channel) 

Figure 2.13: Programming the western data buffer channel for loading a matrix 

into a 4 x 4 ISA 
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selector mechanism can be used to select the required rows, and the columns of 

the data buffer channel can be selected by the instruction stream 13. Note that 

the 'skew' of the A instructions in Figure 2.13(b) is ). -1 = O. For)' > 1, in order 

for the selector bits to properly meet such lines of loading instructions, they need 

to propagate westward one unit every). -1 (rather than 1, as in the ISA) cycles. 

A method for implementing variable speed selector bits is given in Chapter 4. 

2.7 Conclusions 

The simple RISC-format instruction set of BISA gives it an efficient cell design 

and sufficient flexibility to implement a large variety of boolean and symbolic 

algorithms. The flexible communication register modes of BISA are a useful 

feature. 

For the ISA, high instruction granularity is sometimes needed for algorithms 

using nontransmittent data. Hence, control structures that can flexibly imple

ment, or at least simulate, high instruction granularity need to be developed. 

The requirements of an ISA system may make a large internal memory (larger 

than that used for the BISA) necessary. Also, ways for avoiding limitations caused 

by an insufficient I/O bandwidth between an ISA system and its external memory 

need to be investigated. 

LPGS partitioning is recommended when the data size exceeds the ISA size, 

since it is efficient and sufficiently flexible in practice. However, LSGP parti

tioning may be used instead, and can be efficiently implemented on most ISA 

programs with a surprisingly small control structure overhead. 

It is important for a mesh's data interface to be designed to enhance over

all mesh performance as much as possible. To meet this end, it must support 

LSGP partitioning (if the data size is too large) and should be partitionable (if 

the data size is too small). The (ISA) data interface design proposed in this 

chapter achieves these properties using very simple control structures such as 

those used by the ISA itself. The design of matching ISA program interfaces 

13Thus, the data buffer channels may be programmed more efficiently by implementing them 

as an SISA [31], a special case of the ISA introduced in Chapter 3. 
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now needs to be addressed. An issue for future research is to investigate whether 

this period-efficient design is more area-period efficient than the standard area

efficient designs. 

2.A Appendix: The BISA prototype, bISA 

The features a of simple boolean instruction systolic array cell, called bISA, are 

presented here. For the sake of easy VLSI implementation, the bISA has a very 

simple instruction set, a modest memory capacity and a simple communication 

protocol. An nMOS layout of area 350), X 350)' has been devised for a bISA 

cell. Thus, a 16 x 16 bISA array requires only a 7mmx7mm area of silicon, 

with a conservative 2.5p, nMOS technology. The locality and compactness of the 

layout suggest that a bISA cell should be able to complete its instruction cycle 

within IOns. However, interestingly enough, it can implement efficiently a large 

variety of boolean ISA algorithms, including all of those presented in section 2.2.2 

(except that the Median Finding algorithm must be implemented differently, and 

is limited to a 3 x 3 window). 

2.A.l General description 

The bISA has an instruction cycle based on a two phase clock, whose phases are 

denoted by ¢h, 1>2 respectively, as for the BISA (see Section 2.2.1). 

The instructions for an array of bISA cells are sent south through the array 

via 9-bit shift registers. The selectors for instructions are passed east across a 

bISA array via I-bit shift registers. 

The bISA has the following memory: 

1. A single communication register (C), as for the BISA. This register is 

one of the 'accumulator' operands of an instruction. 

2. An 'accumulator' (A). 

3. A register (R). 
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4. An 8-element stack (S), which can be used as extra storage. The stack 

can also be used for unary counting, by being 'cleared', and then using 

a conditional store instruction (ie. store only if the A register holds a 

high value) from the A register. Note that the stack has an undefined 

effect on underflow. This stack has the role of the more sophisticated 

ring-shift registers of the BISA. 

5. Four read-only input communication registers (ew, eN, eE, es), as for 

the BISA. 

2.A.2 Informal description of the instruction set 

The bISA instructions are here represented by their semantic effects; the form of 

these effects are given by: 

where: 

dst +- fh src if cond 

dst +- dst 82 src if cond 

81 E {id, not} 

82 E {=, i=, and, nand, or, nor} 

cond E {true, A = I} 

and either: 

or: 

dst E {e, A, R, S} 

src E {e, A} 

dst E {e, A} 

src E {e, A, R, S, e w, eN, e E, e s} 

Such an instruction set can be represented using a nine-bit RISe instruction 

format. It can be seen that the bISA shares mCliny of BISA's simpler instructions. 

The bISA can execute 'conditional store' instructions (by choosing cond = (A = 
1)), in which the result of the instruction is stored only if the A register contains 

a high value (1). If S is accessed to evaluate the result of the instruction, a pop 
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operation is performed on S, with the bottom element of S being used to compute 

the result. If dst=S, and eond evaluates to true, the result of the instruction is 

pushed onto S. 

This informal description is concluded with a list of commonly used instruc

tions: 
A+-A 
C +- (C =I C) 
R +- (R = C) 
C +- (C A Cw) 

(no-operation) 
(clear C) 

A +- S (pop from S onto A) 
S +- A if A = 1 (push from A onto S if A = 1) 

The last example is used for unary counting. 

2.B Appendix: LSGP partitioning for the Red 

Squares program 

The RedSquares program of Section 2.2.2.1 can be efficiently implemented with 

LSGP partitioning on a BISA with no extra control overheads, provided that the 

BISA ring shift register length lR = ",2. The RedSquares program is of interest 

because its kth repetition, 1 ::; k < n, features both nontransmittent data (eg. 

SI,k of equation (2.2)) and also the shifting of other data (eg. Ak and A'k) west and 

north. Since the nontransmittent SI'k is updated with a commutative, associative 

operation (boolean disjunction), and only two orthogonal directions are required 

for shifting data, the LSGP partitioning method can be easily scheduled (eg. 

using, for northward and westward shifting, a 'forward' row-major or column 

major scheduling). 

For the sake of simplicity, it will be assumed first that some of the registers 

(ie. A, B) of the ISA cells are '" x '" 'sub-matrix registers', whose rows (columns) 

are accessed via the current value of the index register i (index register j) . These 

index registers may be incremented or reset in parallel during an ISA instruction. 

Figure 2.14 demonstrates the partitioning and an appropriate scheduling for the 

LSGP partitioning of the RedSquares program. The scheduling gives the time 

each element in the global matrix is updated, and assumes that '" + 1 instruc-
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tions are required to update each rowl4
. Note that the flow of ISA instructions 

[selectors] requires that each element of the sub-matrices of cell (1,2) [cell (2,1)] 

be updated one time unit after the corresponding element of the sub-matrix of 

cell (1 , 1) is updated. This scheduling is different from the non-partitioned (ie. 

K: = 1) ISA scheduling, where the (i, j)th element is updated i + j - 2 steps after 

the (1, l)th element. 

11 12 13 14 15 16 2 3 4 2 3 

21 22 23 24 25 26 6 7 8 9 7 8 

31 32 33 34 35 36 11 12 13 14 12 13 

41 42 43 44 45 46 16 17 18 19 17 18 

51 52 53 54 55 56 2 3 4 5 3 4 

61 62 63 64 65 66 7 8 9 10 8 9 

(a) partitioning of sub-matrices (b) 'forward' row-major scheduling 

Figure 2.14: LSGP partitioning of the RedSquares program around cell (1 , 1) for 

K:=4 

The partitioning of the first two diagonals of the ComputeAk+1 sub-program 

(which form A,k), for ISA columns 1 to n-1, is for this scheduling: 

i := l;j := 1; 
C - A[i,j]; 
UpdateA'; 
A[i,j]_ A[i , j] CEj 

where UpdateA' is given by: 

} 
repeated K: times 

i := i + 1j j := 1j 

A[i,j] - A[i,j] A[i,j + l]j j:= j + 1j } repeated K: - 1 times 

Here, if the C register of cell (1,2) is loaded at times (1, 6, 11, 16) with (At5' 

Ats, A~.5' A~.s) in turn, these values are read by cell (1,1) at times (4, 9,14,19) 

in order to compute (At,4' A~~4' A;~4' A~~4) respectively. The period for this code, 

which performs the K:
2 updates, is only (K: 2 + K: + 1) . The code for partitioning 

the last two diagonals of ComputeAk+1 is only slightly more complicated. 

14 An extra instruction is needed for communication reasons. 
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Similarly, the code for the first diagonal of the ComputeSk sub-program is 

given by: 

i:= I;j := 1; 

C - A[i,j]; } 
UpdateS1'; repeated", times 
C - C V Cw; i:= i + l;j := 1; 

where UpdateSI' is given by: 

C - C V A[i,j];j := j + 1; } repeated", -1 times 

Here, if the C register of cell (1,1) is loaded at times (5, 10, 15, 20) with (Sl~~, 

SI~~, Sl;~, Sl~~) in turn, these values are read by cell (1,2) at times (6 ,11,16,21) 

in order to compute (Sl~~8' Sl~~8' SI;~8' Sl~~8) respectively. Note that the sum

mation for Sl~~n is now taken in the order: 

relying on the associative property of boolean disjunction. The code for the last 

diagonal of ComputeS1 k is similar. 

Note that the i and j registers here are incremented (rather than decremented) 

because A[i,j] is updated using A[i,j + 1] and A[i + I,j], ie. data is being shifted 

to the north and west directions. If, for example, data is to be shifted north and 

east, the scheduling would change so that the i register is incremented and the j 

register is decremented. 

Since the implementation of 'sub-matrix registers' and their accessing is com

plex, particularly for boolean ISA, it is outlined how LSGP partitioning can be 

implemented using the ring-shift registers of the BISA. Consider converting the 

UpdateA' sub-program above by using the RI and Rz ring-shift registers (assumed 

to each contain exactly lR = "'z bits) to replace the A 'sub-matrix register'. RI 

stores the sub-matrix in row-major order (the same order as the scheduling) and 

Rz is a copy of RI. Using RI to access A[i,j], A[i,j + 1] can be accessed by 

advancing Rz one bit relative to RI. After all ",z elements of RI are updated, 

it is necessary to again copy RI into Rz. Surprisingly, the use of the ring-shift 

registers here increases the period by a factor of less than two. 
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Chapter 3 

Program Compression on the 

Instruction Systolic Array 

3.1 Introduction 

The architectural concept of the Instruction Systolic Array (ISA), presented in 

Section 1.2, preserves the advantages of the systolic array such as simplicity, 

regularity and locality, whereas its main disadvantage, the lack of flexibility, is 

overcome. Handling programs for instruction systolic arrays introduces various 

new problems in the area of programming languages and compiler construction. 

Since ISA provides an independent stream of instructions for each column, these 

programs tend to be large. This raises two questions concerning ISA design: will 

I/O (pin) limitations become the bottleneck for ISAs? Where and in which form 

will the programs be stored such that the process of fetching the program does 

not delay the computation? 

This suggests the use of program compression to overcome the loss of overall 

ISA performance due to I/O limitations and reduce ISA system program storage 

hardware. Compressing programs requires a control structure mechanism (called 

a matrix restorer) to restore the compressed version of the ISA program into 

its original (matrix) form. This must occur in a synchronous manner such that 

each column receives one instruction per time unit, with the matrix restorers 

themselves being linear instruction systolic arrays. It is convenient to distin-
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guish between two forms of program compression: vertical program compression, 

in which a sequence of instructions to be executed at a particular processing 

element is compressed, and horizontal program compression, in which similar in

struction sequences over a range of processing elements are compressed into a 

single, generalized instruction sequence. 

While these techniques are specifically designed for the ISA, they also have 

some application to SIMD meshes, Wavefront Array Processors and MIMD meshes 

(Chapter 7 describes the application of program compression techniques to MIMD 

meshes) . . Related works on program compression are referred to Section 3.2. 

These include relevant (matrix) data compression techniques (Section 3.2.1) and 

existing methods of program compression for non-ISA architectures (Section 

3.2.2). The motivations for ISA program compression are given in Section 3.3. 

In this chapter, four different methods of program compression for ISA pro

grams are presented. The first method (explained in detail in Section 3.4) involves 

a variation of the concept of the instruction systolic array (the single instruction 

systolic array (SISA)~reducing its flexibility and/or performance for a minority 

of programs. It involves also a slight simplification of the ISA concept and there 

is no additional hardware necessary for its implementation. 

The second method (Section 3.5) carries the concept of microprogramming 

over to the ISA, ie. macro instructions (representing short ISA subprograms) are 

defined and ISA programs are expressed in terms of these macros. Here additional 

control structures are needed to translate macros into ISA readable form (short 

ISA programs). This method has the advantage that it allows the implementation 

of complex instructions on an ISA having only a simple cell design, increasing 

the ISA's flexibility. 

The third method consists of introducing language concepts allowing the spec

ification of subprograms and loops. This method is described in Section 3.6. It 

uses the ISA diagonal or wavefront as a fundamental unit of description, which 

turns out to be appropriate for program compression. This idea is further elab

orated in Chapter 5. Program restoration firstly consists of replacing names of 

subprograms by corresponding ISA programs and, in the case of loops, replicating 
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the body of the loop as often as specified. The diagonals also need to be restored 

from their compressed form. Here, the matrix restorers serve as an interpreter. 

This method has the advantage that it makes.ISA programs more readable. 

The fourth method (presented in Section 3.7) makes use of the regularity 

of ISA program matrices. Regular expressions of a specific form are used to 

specify ISA programs and a matrix restorer, suitable for VLSI implementation, 

is designed to restore these expressions into ISA program matrices. The third 

and fourth methods gain by far the best compression rates but are also the most 

expensive in control structure overheads. 

An evaluation of these methods, in terms of both compression rate and hard

ware overhead, for a moderate sized ISA is given in Section 3.8. The application of 

these methods to other mesh architectures is outlined in Section 3.9. Conclusions 

are given in Section 3.10. 

This chapter is a revised and extended version of a paper of the same title 

co-authored with Schroder [53]. It introduces the concept of program compression 

as a technique to improve ISA (and other meshes') performance. Sections 3.2, 

3.3, 3.5, 3.7, 3.8, 3.9, and 3.10, together with the implementation issues of 3.6, 

are the author's work. 

For reading this chapter, the sections describing program compression meth

ods are largely independent, with common program compression concepts being 

introduced in Section 3.3. However, the concepts introduced in Sections 3.5, 3.6 

and 3.7 form the basis of Chapters 4, 5 and 7 respectively. 

The ISA instruction set assumed for this chapter is similar to that described for 

the boolean ISA, BISA, (Section 2.2), except that it can support the appropriate 

data types (integer or boolean) required by the particular example programs given 

in this chapter. For simplicity, one output communication register (C) mode of 

BISA is mainly used for these programs. 

A simple ISA program to demonstrate program compression techniques is the 

ringshift program (see Figure 3.1). This program performs a ringshift of the C 

reg~sters of the columns and rows of a n X n ISA. The execution time of the 

program is n + 4 clock cycles and its period is 4. Figure 3.2 shows the contents 
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0 : NoOp 

1 1 1 1 

11 1 1 1 
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'--

1 0 

111 111 

Figure 3.1: Ringshift program for a 6 x 6 ISA 

of the C registers of the ISA before and after execution of the program of Figure 

3.l. 

1 2 3 4 5 6 8 9 10 11 12 1 

1 8 9 10 11 12 14 15 16 11 18 13 

13 14 15 16 11 18 20 21 22 23 24 19 

19 20 21 22 23 24 26 21 28 29 30 25 

25 26 21 28 29 30 32 33 34 35 36 31 

31 32 33 34 35 36 2 3 4 5 6 

Figure 3.2: C registers before and after the ringshift program for a 6 x 6 ISA 

3.2 Program compression - related work and 

concepts 

As discussed in Section 2.5, a parallel architecture's high computational band

width can be limited by an inadequate I/O bandwidth. This is serious because 

current technology allows the former to grow very large, especially for scalable 
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parallel architectures such as meshes, whereas the latter is difficult to increase in 

proportion [25]. A low I/O bandwidth can be compensated for by applying com

pression and decompression techniques to reduce the volume of control (program) 

and data information that it must handle. While the applicability of data com

pression techniques is algorithm and/or application dependent, that of program 

compression techniques is architecture dependent. Thus it is possible to come up 

with general but reasonably inexpensive solutions to overcome I/O limitations 

due to the loading of programs. However, to achieve high overall architecture 

performance, a complete solution to I/O limitations must still be found, whose 

performance is balanced with its overheads. 

For program/data compression to be effective in improving overall mesh per

formance, the compression and decompression processes must be relatively fast. 

Fortunately for the case of program compression, the programs can be originally 

represented and stored in compressed form, and the decompression can be easily 

done in parallel by the matrix restorers. 

However, the case for data compression is different. Let 10 denote the I/O 

bandwidth between an n X n mesh and its external environment. Data compres

sion would only be required if the I/O bandwidth is limiting the mesh perfor

mance, ie. 10 = o(n). Now, the time taken to load/unload an n X n matrix is 

0(n2 / 10) and hence the time taken to compress/decompress this matrix must be 

0(n2 
/ 10). If the compression must be performed serially (requiring time 0(n2

)), 

it can only be worthwhile if either 10 = 0(1) or the matrix was originally stored 

(externally) in compressed form. For the latter case, if the matrix was produced 

by the mesh, the mesh should itself perform the compression (in parallel). 

An alternative to compression techniques for alleviating the bottleneck due to 

loading data (and programs) in/out of a mesh is to employ recycling. Recycling 

involves increasing the internal storage of the mesh (and its data interface) so 

that as much data (or programs) as possible is loaded once and then reused when 

needed (as discussed in Section 2.4). Provided the data is Fe-used a large number 

of times, ie. more than a constant number of times, the overall I/O tra.ffic can be 

considerably reduced. This is a more general solution to I/O limitations, but is 
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expensive in terms of hardware and has the disadvantage that for some algorithms 

the internal memory must increase faster than the number of processing elements 

[25). 

3.2.1 Data compression on meshes 

The simplest example of data compression for meshes comes under the category 

of data formatting: 

ego for digital signal processing applications, 8-bit integer data from 

sensors are sent to the Warp computer's (data) Interface Unit, which 

converts (decompresses) them into 32-bit floating point [1, p1530). 

This corresponds to a data compression rate of 4. 

Similarly, it is possible for the mesh or its data interface to generate matrices made 

of repetitions of a few simple patterns (which can be represented in a compact 

form), 

ego produce null matrices, produce random (ie. grey) matrices for 

image processing applications, fill in 'gaps' in sparse matrices and 

recover symmetric matrices from their lower triangular parts. 

which can sometimes effectively achieve a significant degree of compression. Some 

of these decompressions can be achieved by the mesh itself in linear time, which 

is sufficiently fast to achieve overall speedup provided fO = o( n). Less trivial 

examples of this nature include multiplication of arbitrary matrices with Hankel 

and Toeplitz matrices (which can be represented by vectors; their matrix form 

is restored using "bus expanders" just before entering the mesh [59, pp33-38)). 

Also, in some neural network applications, which often have efficient mesh imple

mentations [26, pp269-280], there may be sufficient symmetries in the network to 

apply compres~ion techniques to the corresponding synaptic strength matrices. 

Data compression can also be effectively achieved in some situations by re

formulating the algorithm to take advantage of data redundancies, ego mesh im

plementations of band matrix operations [26, pp177-178)[43). However, this does 

not always lead to an efficient mesh implementation. 
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More general data compression techniques such as data transforms and vec

tor quantization [26, pp573-578] cannot generally be employed since the compres

sion/decompression algorithms are too expensive and may introduce unacceptable 

distortions in the data. However, text compression techniques such as run length 

encoding and a simple form of vector quantization (which corresponds to micro

programming) are sufficiently simple to be applicable to program compression. 

3.2.2 Program compression on existing meshes 

This section examines the extent to which existing meshes incorporate program 

compression techniques. Note that microprogramming techniques, even on unipro

cessors, also achieve some degree of program compression. 

The Connection Machine (CM) [14] is normally regarded as a SIMD hypercube 

rather than an SIMD mesh. However, the design decisions made for program 

loading apply equally to an SIMD mesh of similar scale and granularity. Since 

the CM is comprised of fast bit processors, program compression is applied to the 

SIMD instruction stream in the form of microprogramming so that the CM host 

can "amplify" its program I/O bandwidth to keep up with the CM [14, pp88-89] 

The CM implements masking via status registers that can be set in each cell 

(depending on the cell's address and data contents) . CM cell instructions are 

conditionally executed on these status registers. 

The ICL DAP [17, pp243-247] is a fine-grained SIMD mesh. The DAP simi

larly uses program compression on its instruction stream, using a 60 instruction

word "instruction buffer" into which the DAP host loads instruction sequences 

(including small loops, later to be unfolded at run time). For the DAP, the main 

masking mechanisms are the "row and column vectors", for which DAP cell (i, j) 

combines the ith bit of the row vector and the jth bit of the column vector to 

decide whether to execute the current instruction. This masking mechanism is 

similar to that of the SISA, both reducing the masking information from n2 bits 

per cycle to 2n bits per cycle. Current implementations of the DAP have n = 64. 

Program compression then should also be applied to the row and column vec

tors (requiring 128 bits per cycle bandwidth), being substantially larger than the 
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instruction stream (requiring 32 bits per cycle bandwidth). 

In summary, SIMD meshes, which inherently utilize horizontal program com

pression since their instruction streams can be used by all elements, may also 

require vertical program compression in their instruction streams. Large SIMD 

meshes using 'row/column vectors' (or similar mechanisms) would also require 

(vertical and horizonta0 program compression for its masking mechanisms. In 

this case, the program compression techniques presented here for the ISA can be 

similarly applied to SIMD meshes. 

The Wavefront Array Processor (WAP) is usually implemented with cells 

containing their own instruction memories, as for MIMD meshes [26, pp299-300]. 

In this case, the comments on MIMD meshes (below) apply equally to WAPs. 

However, WAPs could also be implemented using "instruction wavefronts" (like 

the ISA) [20, Sect.6.3.1]' in which case the program compression techniques for 

the ISA could be applied to WAPs also. 

MIMD meshes such as Inmos Transputer arrays [26, pp467-470] and the Warp 

processor [1] have medium (microprocessor) to coarse-grained processing elements 

(cells) with several Kwords of program memory each. These memories are thus 

large enough to store many programs, and thus the program I/O bottleneck can 

be alleviated using recycling. The program for each cell is coded in a compressed 

form (using 'loops' or run-length encodings) as in conventional uniprocessors, 

and further (horizontal) compression can be effectively obtained by downloading 

identical code segments into all cells. This can be made more powerful by us

ing registers containing the cells 'id', ie. row and column indices, so that cells 

can interpret identical code segments differently. However, Chapter 7 demon

strates that the application of program compression techniques similar to ISAC 

can reduce the program loading times and cell program memory size. 

3.3 Motivations for compressing ISA Programs 

An example motivating the need for program compression techniques is given by 

the IDoolean ISA prototype, bISA. As discussed in Appendix 2.A, a conservative 

estimate shows that current technology is capable of implementing a 16 x 16 bISA 
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array on a chip of side 1cm, with a cycle time of IOns. Since bISA uses 9-bit 

instructions, the chip has an program input bandwidth of 16000 Mbits S-1. For 

comparison, the peak host to Warp processor data I/O bandwith (using a VME 

bus with DMA) is 45 Mbits S-1 [1, p1530]. Considering the fact that the Warp 

cells are each composed of hundreds of chips, this comparison demonstrates that 

a bISA chip alone has an unachievable program input bandwidth. This problem 

can only be overcome with the introduction of powerful program compression 

techniques l . 

Consider the program interface for an n x n ISA (similar arguments apply 

to an m x n ISA). This ISA is intended to execute a large number of programs, 

some of which are assumed to have S1(n) period. 

A straightforward implementation of the program interface is given in Fig

ure 3.3 (the SISA would have a similar interface). Matrices representing ISA 

programs, some which have size S1(n2 ), are loaded from the external instruction 

(selector) memory. For sufficiently large n, these memories would need to be 

parallel, ie. access 0(n) instructions (selector~) simultaneously, to enhance the 

rate of supplying programs to the ISA. To supply the ISA with exactly n instruc

tions per cycle, both the instruction (selector) memory and its 0(n) number of 

wires connecting to the ISA would 'need to made very fast. A more economical 

alternative is to employ recycling, ie. allow these programs to be a little slower 

(by a constant factor) and introduce an S1(n2 ) area instruction (selector) buffer, 

capable of holding several ISA programs. 

A similar situation arises for the ISA data interface [35, pp28-30] (see Section 

2.6) , except that it is convenient to assume that data buffers are connected to the 

communication registers of all ISA boundaries (rather than just the north and 

west boundaries). 

1 Note that for optimal program compression methods, the minimum (compressed) program 

input bandwidth actually decreases with increasing array size. This is because the program 

period is usually Q(n); hence increasing n gives more time for compressed programs to be 

loaded. It is a fair comment that the host to bISA array data I/O bandwidth might still be 

unachievable; however, for typical applications, its average external I/O rate might only be n 

bits per several tens of cycles. 

76 



Selector 

Memory 

Instruction 

Memory 

1 1 1 1 1 

Instruction 
Buffer 

1111111111 

I 

'--- - tttttttttjj 

Figure 3.3: A 10 x 10 ISA program interface 

An important consideration is the volume of information passing this inter

face, since systolic array, particularly ISA, computations are often limited by 

I/O requirements [22, 25]. When the size of a program is larger than the size 

of the program's data (often the case with ISAs - see Table 3.1), or when the 

program's data already resides within the data buffers, the overall ISA perfor

mance (speed) can be improved considerably by passing a compressed (optimally 

to O(log n) space2 ) representation of the program across the program interface. 

The compressed representation must then be restored, by a matrix restorer, to 

its full matrix form before entering the ISA cells. In any case, program compres

sion techniques can also reduce the overall area (cost) of the ISA system in the 

following ways: 

1. Reduction of the area of the instruction (selector) memory (optimally, 

from an O(n2 ) area parallel memory to an O(1og n) area serial one). 

2. Obtaining a precise, parameterized representation of ISA programs. 

2Here, O(logn) space is considered optimal since a constant n x n matri."{ still requires 

O(log n) space, to specify n, to be represented. 
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This means that for every required sub-array size3 and values of other 

parameters\ only one version of an ISA program need be stored in the 

instruction and selector memories, with the appropriate pararneter(s) 

being resolved at load-time. 

3. Reduction of the I/O bandwidth, ie. the number the wires and corre

spondingly the number of pins, required for the ISA program interface 

(optimally, from 0(n) wires to O(logn)). 

4. Reduction of area from replacing the (D( n2
) area) instruction (selector) 

buffer by a (optimally O( n log n) area) matrix restorer. 

All matrix restorers proposed in this paper have O( n log n) area, consuming 

a small part of the 0(n2 ) area of the overall ISA system. This raises the im

plementation question: is it more area-period efficient to overlap the loading of 

(the information for restoring) the next program into the matrix restorer with 

the execution of the current program? Consider the case of loading ISA programs 

having a typical period of D(n) . The matrix restorers for such programs can be 

loaded in an O(log n) period. Overlapping has an advantage of the saving the 

O(logn) loading period, at the expense of doubling the O(nlogn) area matrix 

restorer tables (storage). We suggest that for at least up to moderate array sizes, 

the constants of proportionality favour overlapping, and the implementations of 

program compression presented in this chapter can accommodate this. In partic

ular, these designs efficiently support overlapping since the matrix restorer tables 

are used in a read-only manner. Thus, using a two-phase VLSI implementation 

[40, pp226-233]' each table can be used (read) on the first phase and can be loaded 

(written) on the second phase, using a single bus. 

In any case, it is possible (and desirable) to minimize the matrix restorer 

storage by breaking ISA programs into 'irreducible' D(n) sub-programs, 

ie. sub-programs that are not expressed as sequences of significantly 

smaller, in terms of code size, D(n) sub-programs, 

3ie. when the problem size is smaller than the array size; see Section 2.5, and [35, pp66-67J . 

4eg. the parameter d of program RotHV(d) of Section 3.6. 
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and loading and using 'irreducible' sub-programs in turn. 

Section 2.5.1 argued that data and program interfaces should be designed 

to allow the partitioning of the overall mesh system into a small number of sub

systems. A data interface meeting this requirement has been presented in Section 

2.6.3. With the implementation of prgram compression, the ISA program inter

face of Figure 3.3 can be extended to allow partitionability by providing each 

sub-array with its own (instruction and selector) matrix restorers. If the matrix 

restorers have an O(log n) width (as for the methods presented subsequently), 

this can be implemented efficiently. Indeed, to retain the pin count advantage 

of program compression (see Item 3 above), each separately packaged sub-array 

must be provided with its own matrix restorers. 

3.4 Program compression using the SISA 

The flow of control information in an ISA is asymmetric, ie. Wi-bit instruction 

codes move through in north-south direction while only I-bit selectors move west

east. This asymmetry is overcome and at the same time a compression rate of 

approximately w;/2 is achieved by the concept of the single instruction systolic 

array (SISA) [31]. In the SISA, column selectors (in addition to the row selectors) 

are pumped through the columns of the array while the instructions travel in 

diagonal wavefronts through the array, starting at the north-west corner. Now 

an instruction is only executed if it meets with a row selector and a column 

selector equal to "1". 

The SISA ringshift program is shown in Figure 3.4. 

While the compression rate gained by introduction of the SISA concept is 

only moderate, there are no additional costs involved in its implementation. The 

loss in flexibility paid might then be acceptable. A large variety of efficient data 

permutation algorithms equally efficient on the SISA and the ISA is given by 

Lang [35, Ch.6]. The SISA still seems to be significantly more powerful than the 

SIMD concept (se~ [31]). The reader might convince him/herself of this by trying 

to implement the ringshift program on an SIMD mesh. 
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Figure 3.4: Ringshift program for a 6 x 6 SISA 
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3.5 Program compression using microprogram-
. 

mlng 

Microprogramming is a stMldard technique in microprocessor design [55, Ch.10], 

and is used in many array processing chips [26, pp454-474] . It has the benefits 

of simplifying processor design and reducing the communication bandwidth from 

program memory to the CPU (and is thus a form of program compression). For 

the ISA, a very simple form of microprogramming is proposed (a simplification 

of that given in Chapter 4 and in [34]) that still retains these advantages. By 

'microprogramming', it is meant that microcodes, ie. sequences of A = 0(1) Wi

bit ISA instructions are represented by single wm-bit macro(instruction)s, where 

Wm « AWi (see Figure 3.5(a)). For an ISA program, its microprogramming 

length parameter A 2: 1 is not arbitrary: it needs to correspond to a suitable 

semantic unit of the program (otherwise, the number of macros, and hence W m , 

will become unacceptably large). Microprogramming achieves a compression rate 

of Aw;fwm (and can achieve the same factor in pin reduction). 

A simple example of program compression using microprogramming using 

A = 4 is for the ISA ringshift program (see Figure 3.1) . Three macros (requiring 

Wm = 2) are used to represent the instruction sequences '0; +-; t; i' (for ISA 

column 1), ' -+; +-; t; i' (for ISA columns 2 to n -1) and ' -+; 0; t; i' (for ISA 

column n). For Wi = 8, this achieves a compression rate of 16. 

Also, the microprogramming skew parameter It, where normally It divides 

A, can also be introduceds. This gives other important advantages, important 

for the development of the ISA for general-purpose array processing. It enables 

the composition of a large range of powerful (macro)instructions from a simple 

(micro )instruction set. Thus, the ISA cells can be kept as small as possible, 

enabling both a faster clock cycle and greater parallelism (more cells can be fitted 

on a chip). Powerful instructions may be required by an ISA to implement some 

systolic algorithms efficiently (or at all). Such algorithms use nontransmittent 

data. 

5 An ISA without microprogramming corresponds to J.I = 1. 
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3.5.1 Implementation of microprogramming 

Unlike the usual use of microprogramming, which may be called static. micro

programming, a form of dynamic microprogramming is proposed here for which 

length, skew and contents of the microcodes can be changed between different 

ISA programs (or sub-programs of length O(n)). 

Instruction macros entering the ISA chip from the north are decoded into 

their respective sequences of A ISA instructions by a row of decode tables (in this 

case, the matrix restorer) situated above the ISA cells (see Figure 3.5(b)). The 

microcodes for the next ISA program can be simultaneously loaded (into currently 

unused table locations) across the row in a systolic manner. For each macro, A 

selector bits are used, having the added power that each row of an ISA can omit 

arbitrary instructions within a macro. The selector sequences themselves may be 

coded by macros, for A > W m , requiring a column of selector decode tables to the 

west of the ISA. 

For the simple model of microprogramming proposed here, the [micro-] in

structions (selectors) are 'skewed' by I" ~ 1 units6 • These skews are implemented 

by having a selector (instruction) queue of [variable] length I" in each ISA cell. 

These queues slow down the rate of the selector (instruction) streams through 

the ISA by a factor of 1", thus ensuring their proper co-ordination. 

For the purposes of this chapter, it can be assumed that the ISA cells' input 

communication registers latch new values either every I" micro cycles (a simpler 

model, more like traditional microprogramming), or every microcycle (allowing 

multiple data transfers in a given direction per macro). 

Our experience suggests that Wm = 4 and a decode table length of 24 words 

will be sufficient for most 'irreducible' ISA sub-programs (cf. Table 3.2). Under 

these circumstances, the extra control logic and I/O bandwidth due to the systolic 

loading of the decode tables is quite modest. The area overhead for implementing 

the decode tables might easily be offset by the pin reduction. 

While the instruction and selector queues may also be implemented efficiently 

6The microprogrammed ISA model of Chapter 4, and also [34], allows these skews to be 

independent. This reduces program period in some cases. 
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Figure 3.5: Instruction decode tables on a 4 x 4 ISA 

in VLSI (see Section 4.3), there is a delay penalty for dynamically variable values 

of p,. Upon changing from an ISA program of microprogramming skew p, to one 

of skew p,', where p,' < p" the ISA must be fed O(n(p,' - p,)) diagonals of 'no

operation' microinstructions to prevent the faster moving micros of the second 

program from colliding with those of the first . 

3.5.2 A microprogrammed transitive closure program 

The algorithm of Kung et. al. [57, pp192-197] (see Section 2.2.2.4) to find the 

transitive closure of an n x n adjacency matrix A can be implemented on an 

n X n ISA having a simple (BISA-like) instruction set using microprogramming 

with A = p, = 5. The algorithm uses the matrices A, A' and A", initialized 

respectively to 0 , A + I and A + I, where I is the identity matrix and 0 is the zero 

matrix. The matrix A resides in the ISA registers of the same name, whereas the 

nontransmittent matrices A' and A" are passed east and south through the ISA 

(see Figure 2.5). The algorithm consists of three of these passeS j and at the kth 

step of a pass , cell (i, j) performs the computation: 

Aij -Aij V A~k A~j j 

A~k - Aij if j = kj 

A" kj -Aij if i = k 
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Here, the four-output register mode of a BISA-like instruction set is assumed, 
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Figure 3.6: Transitive closure algorithm (one pass) on a 4 x 4 ISA 

and ISA internal registers A' and A" are used as temporary storage for matrices 

of the same name. Only two instruction macros, ] and l' (determining the final 

value of CE), and two selector macros, 8 = 11111 and 8" = 11110, (determining 

the final value of CS) are required (see Figure 3.5(a)). The resultant algorithm 

for a single pass is shown in Figure 3.6, with both the instruction and selector 

matrices resembling identity matrices. Consider the kth step (kth macro diagonal 

passing through the ISA). An ]' instruction meets cell (i,j) only when j = k, 

and there updates Aik' Similarly, an 8" selector meets cell (i,j) only when i = k, 

and there updates A'f,j' 

Without using microprogramming, the same ISA can implement this algo

rithm using using 13 instructions per step (see Section 2.2.2.4), by introducing 

rather complicated instruction replications. More interesting examples of how 

microprogramming enhances both the design and efficiency of ISA programs are 

given in Chapter 4. Microprogramming offers an efficient technique to implement 

such algorithms on a general purpose ISA, while allowing algorithms requiring 

simpler instructions to run at their maximal rate. 
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3.6 Program compression using Subroutining 

No matter how ISAjSISA programs are encoded there needs to be some high-level 

language constructs just to make these programs more understandable. The main 

idea is to split large ISA/SISA programs into meaningfully-named subroutines, 

and introduce some constructs (ie. loops) to avoid repetition. The subroutines 

should be sufficiently small that they can be designed using the top-down design 

tools presented in [52, 411. Experience suggests that a suitable basic unit for 

these subprograms is a 'wavefront' or diagonal, ie. one "sweep" through the ISA. 

Subroutining is capable of coding most ISA programs in O(log n) space, and 

optimally satisfies the requirements of Section 3.3. 

For convenience, a shorter (but less readable) way of encoding m x n ISA/SISA 

programs is first introduced. This is similar to the Pascal-like SISA language 

introduced in [35, Ch.41. Diagonals are presented as a sequence of pairs/triples 

(ie, rs)/(op, es, rs). Here ie and cs are n-tuples, rs is an m-tuple and op is a single 

instruction. The example programs of Figures 3.1 and 3.4 can then be written as 

shown in Figure 3.7. 

RotlH: RotlH: 
< O( _)n-l, (l)m >j <-+, 0(1 )n-l, (l)m >j 
< (_)n-10, (l)m> <-, (1)n-10, (l)m > ) 

RotlV: RotlV: 
< U)n, O(l)m-l >j <1, (l)n, O(I)m-l >j 

< (j)n, (1)m-10> <j, (l)n, (1)m-10> 

Figure 3.7: ISA/SISA programs for rotation 

Here names have been assigned to ISA/SISA subroutines and superscripts 

have been used to express diagonals. These superscripts can also be seen as a 

method of program compression, and at the same time parameterize the programs 

with respect to ISA size. Furthermore, subroutines can be used inside a "repeat" 

command: thus, an SISA program which rotates the contents of the C registers 

d positions vertically and horizontally can then be encoded as shown in Figure 

3.8. The subroutine name is followed by a list of variables (in this case with 

only one entry, d, giving the distance of rotation). Also, Subroutining allows 

different types of parameters (variables): value parameters as introduced and 
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address parameters which for example allow the use of the same subroutine code 

for rotating the contents of different registers. 

RotHV (d): 
RotlH: 
<-4, O(I)n-l, (l)m >j 
<+-, (lr-10, (l)m » 
RotlV: 
<1, (l)n, O(I)m-l >j 
<j, (l)n, (l)m-10> 

repeat d times 
RotlHj 
RotlV. 

Figure 3.8: SISA program for vertical and horizontal rotation by d positions 

Additional hardware is needed to implement these higher-level constructs on 

the ISA/SISA. The general implementation is rather complex to describe but is 

efficient, and is given in detail for the lower-level, but otherwise similar, language 

ISADL in Section 5.3. For simplicity, consider implementing Subroutining on 

the SISA. The 0(1) different row (column) selector patterns of a program are 

loaded into the tables of O(n) area diagonal restorers to the west (north) of the 

SISA. These are controlled by an O(log n) area diagonal sequencer located to , 

the north-west of the SISA. The diagonal sequencer handles functions such as 

subroutine and parameter substitutions and repeat commands, and selects the 

appropriate instructions and diagonal restorer table indices for each diagonal to 

be sent to the SISA. To ensure proper synchronization, these indices are pumped 

systolically through the diagonal restorers. 

Consider the loading of the column selector pattern '(I)n-1 0, into the north 

diagonal restorer. This loading process occurs in an instruction systolic fashion, 

from the left (cellI) to the right (cell n). Cells 1 and n-l are first marked,7 then 

all of the cells in between are marked, and the '1' selector is then loaded in the 

marked cells (cells 1 to n -1). The '0' selector is then loaded in the unmarked 

cells (cell n). Efficient loading of the diagonal ' ... (E)k .. .' requires that lEI be a 

7The marking of cell i can be done in O(log i) steps using systolic bitwise counting. 
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power of 2 - in practice, this is almost always the cases. 

Alternatively, if only a few (ie. 0(1)) types of selector patterns are ever used, 

they can all be stored permanently in the diagonal restorer's tables. Thus, selector 

patterns of length n can be represented compactly by their 0(1) table indices. 

This form of program compression is similar in concept to microprogramming 

except that it is horizontal rather than vertical. 

To handle more general ISA programs, the repeat construct needs to be 

generalized, as is illustrated in Figure 3.9 for the microprogrammed transitive 

closure program of Section 3.5. In this case, the diagonal(s) corresponding to 

TransClos: 
for k:= 1 to n do 

< Ik-1I'(I)n-k, Sk-1s"(s)n-k> 

Figure 3.9: Transitive closure program for an n X n ISA 

k = 1 would be initially loaded into the diagonal restorer. Upon each itera

tion, these would be shifted 'downstream' one unit to produce the diagonal for 

the next iteration. However, this scheme does not work for a few ISA programs 

which require a single diagonal to be sbjfted 'upstream' one unit for at least two 

consecutive steps (eg. the LoadMat program of Section 3.7). Such programs re

quire recoding, with sometimes a decrease in efficiency (as explained in Section 

5.4.1.3). For divide-amd-conquerprograms (see Section 3.7.1), the diagonals con

tain expressions depending exponentially on k: hence they need to be updated 

in a different way, as explained in Section 5.4.1.2. 

3.7 Program Compression using ISAC 

ISA Compressed coding (ISAC) is a precise, parameterized, low-level language 

capable of coding ISA programs in O(log n) space, optimally satisfying the moti

vations of Section 3.3. In ISA Subroutining, compression is first applied horizon

tally (ie. compress diagonals first) and then vertically (ie. iterations of diagonals). 

In ISAC, compression can also be first applied vertically (ie. compress iterations 

SSee Section 5.3.2.2. 
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for instructions for particular ISA columns) and then horizontally (ie. generalize 

over all columns) , giving a more flexible approach. ISAC is designed so that an 

ISAC program can be easily loaded, in a systolic fashion, into the instruction (se

lector) matrix restorers. For the sake of simplicity, an n x n ISA model is assumed 

here; however, the concepts presented are easily extended to general ISAs. 

3.7.1 Examples of ISAC coding 

The constructs of ISAC are introduced by some simple examples. 

The LoadMat program (see Figure 3.10) loads an n x n row-major matrix 

from the western data buffer into the C (communication) register of an n x n 

ISA. The instructions for this program consist of a descending triangle (initial 

height n) of '-t' instructions and an ascending triangle (initial height 0) of '0' 

instructions. The selectors for this program consist of a repetition (height n) of 

diagonals consisting entirely of 1 'so The ISAC encoding of the program is: 

LoadMat: 
(-t )I>.n (0)4.0 
(1)n 

0: NoOp 

El C +- Cw 

(1)4 

(-t )1>.4 

1 1 1 11 I 
1 1 1 1 I 

Jl 1 1 1 

11 11 1 1 

.--
0 

.--r--
0 0 

0 0 0 

- - --- - ---r--r---'--
1 ! ! ! 

Figure 3.10: LoadMat program for a 4 x 4 ISA 

For a microprogrammed ISA, the TransClos program (see Figure 3.6) is coded 

in ISAC as: 
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TransClos: 
(1)<1.0 l' (1)<>.n-l 
(S)<I·O S" (s),,·n-l 

Here, the instruction part consists of an ascending triangle (initial height 0) of I 

macros, followed by a 'diagonal,g of I" macros, followed by a descending triangle 

(initial height n-1) of I macros (and similarly for the seleCtor part). 

The RotHV(d) program of Section 3.6 is coded in ISAC using a repetition 

construct (of height d): 

RotHV(d): 
([0 II-t nl [~ n-ll0 nl 1 i )d 
(1 1 [0 111 nl [1 n-ll0 nl )d 

The diagonals are coded in an analagous way to the Subroutining method using 

the ISAC choice construct, ego the first diagonal '[0 11 -t nl' (meeting with a 1 

selector) is equivalent to the Subroutining expression < O( -t )n-I, In>'. 

Row Rev (see Figure 3.11) is an ISA program using a divide and conquer 

strategyl0 for reversing the rows of a matrix stored in the C registers of an n x n 

ISA, where n is a power of 2. The program swaps adjacent blocks of width 2k - 1 

by using 2k- 1 horizontal ring shifts over distances of d = 2k, where 1 ~ k < log n. 

The program is based on a horizontal ring-shift over consecutive blocks of width 

d/2 (cf. program Rot1H of Section 3.6), coded in ISAC as: 

RotH(d): 
[0 II-t dl [~ d-ll0 dl 
1 1 

Here, the choice construct ' [0 11 -t dl' means a '0' instruction appears in column 

1, and a '-t' instruction appears in columns 2 to dj this pattern is then repeated 

across the remaining columns. Similarly, a whole diagonal of 1 selectors could be 

expressed as '[1 nl nl', but this is abbreviated simply to '1'. The whole algorithm 

is expressed as: 

RowRev: 

((RotH(2k) )2k
-

1 
)k=1...1og n 

which introduces the parameterized repetition construct, '( . . . )k=l...u" which gen

eralizes the repetition construct. 

9In ISAC, a 'diagonal' can have arbitr?-ry skew, which gives ISAC extra flexibility. 

IOCr. ISA algorithms for matrix transposition [31] and sorting [46] . 
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EJ C +- CE 

EJ C +- Cw 

o : NoOp 

1 1 

1 1 1 

11 1 1 1 

l111 1 1 1 

1 

1 

1 

1 

[+- 310 4])2 
([0 II-t 41 

1 1 11 I 
1 1 I 
1 

c-
o - ~ - .... - .... 0 -.... .- .... 

0 - .... 0 - .... - .... 
0 0 0 - .... 

r--r--
0 

'--

111 1 

Figure 3.11: RowRev program for a 4 x 4 ISA 

3.7.2 Definition of ISAC 

Comparing ISAC to sequential programming languages, the repetition construct 

corresponds to for loops (with constant loop bounds), whereas the choice and 

triangle constructs correspond to if statements and for loops respectively, whose 

guards and loop bounds depend in a simple manner on the column (row) number. 

These constructs are now defined more formally. Let k, d, 1 and u denote non

negative integers. Let a, f3 and a( k) denote the instruction (selector) part of an 

ISAC encoding of an ISA program. 

The parameterized repetition construct provides vertical compression, and is 

defined by: 

(a(k))k=l..u = {a(l)(a(k))k=I+1..U if 1 ~ ~ 
to otherWIse 

(3.1) 

where to is the empty string. In this case, it may be assumed that some prepro

cessing mechanism evaluates the arithmetic expressions in a(k), for each value of 

k. The ordinary repetition construct can be defined similarly. 

The choice and triangle constructs allow different streams of instructions (se

lectors) to be seen at each column (row) of an ISA. The former provides horizontal 

compression, whereas the latter provides compression in both directions. They 
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can be defined by introducing the concept of the projection of a on the jth column 

(row) of an n x n ISA, ie. the instruction (selector) sequence that is produced at 

column (row) j by a, where 1 ~ j ~ n. This projection, denoted pj(a), is defined 

by: 

pj(a) = a if a contains no [ ... J, ( ... )4.1 or ( ... )I>.U constructs 

pj(a (3) = pj(a) pj((3) 

pj((at·U
) = (Pj (a) t-j+l 

pj((at· 1) = (pj (a) )1+j -1 

pj([a kl(3 dJ) = { pj/(a) if j' ~ k, where j' = (j -1) mod d + 1 
(3.2) 

Pi'-k((3) otherwise 

Note that P1(a)4.o and Pn(a)l>·n-1 produce empty sequences. Note also that 

the choice construct distributes in a fairly straightforward way over all other 

constructs, a property useful in optimizing compression rates. 

Extensions of ISAC might also be required to increase its generality. For 

example, the ISA Perfect Shuffle program [51, p286] requires 'half-triangle' con

structs (with the triangle height changing every second column) to be introduced. 

Also vertical interleaving may be a useful extension to ISAC (see Section 7.4). 

Example: the instruction sequence for column j = 2 of the LoadMat program 

for n = 4 (see Figure 3.10) is given by: 

Similarly, the instruction sequence for column j = 3 of the Row Rev program is: 

for n = 4 (see Figure 3.11) is given by: 

Given a , the ISAC representation of the instructions (selectors) of an ISA 

program of period t, the corresponding t x n instruction (selector) matrix I is 

recovered using the projections: 

l ij = (pj(a)); for 1 ~ i ~ t and 1 ~ j ~ n (3.3) 

where ( .. . ); means selecting the ith element of the enclosed sequence. Similarly, 

a general transformation from I gives an equivalent (space-inefficient) ISAC en

coding: 
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[Ill 11 [112 11 
[121 11 [122 11 

I 1n 21 ... n1 
I 2n 21 ... n1 

3.7.3 Matrix restorers for ISAC 

This section describes the hardware required to restore the matrix form for the 

instruction part of an ISAC encoding; similar hardware is required for the selector 

part. The cell PCUs of PAC (see Section 7.2) and the diagonal sequencer of the 

Subroutining method (see Section 5.3.1) have similar design features. 

The parameterized repetition construct can be handled by special matrix 

restorer mechanisms as described in Appendix 3.A.3ll . 

An ISAC encoding is loaded by passing it systolically across the linear array of 

cells comprising the matrix restorer. The jth cell in the matrix restorer interprets 

this encoding according to equations (3.2), and stores the jth projection of this 

encoding in an O(log n) table. Since O(log n) loading times are permissible, the 

most expensive operations required in this process are (bitwise) counting, table 

accessing and stack operations. The choice constructs are loaded in a similar way 

to that of the Subroutining diagonals (see Section 3.6). Repetition constructs are 

loaded according to the tabular encoding described below. Triangle constructs 

are loaded similarly, except that systolic (bitwise) counters can be used to give 

their position-dependent heights (see Section 7.2.3). 

The tables in the matrix restorer's cells store the corresponding projection 

compactly in 0(1) length tables, utilizing loops projected from the repetition 

or triangle constructs in the original ISAC encoding. The design presented 

here accommodates the nesting of these loops of w levels, where w is less than 

the table length. Loops are required to be of the form (Ei)k, where E is a 

sequence of instructions possibly with loops, i is an instruction and 1 ~ k ~ n 

llA simple solution uses a 'preprocessor' , adjoining the matrix restorer, to 'unfold' any pa

rameterized repetition constructs, according to equation (3 .1) before loading the program into 

the matrix restorer. In practice, the 'unfolded' encoding has size O(log2 n), requiring the matrix 

restorer cell's to have storage of the same order. 
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(note that ISA programs normally do not require k > n). The encoding of such 

loops is straightforward, and is illustrated in Figure 3.12. Note that double left 

parentheses are encoded by replacing the inner left parenthesis with a '*' in the 

table entry for the matching right parenthesis. 

* b )3 
( a 

Figure 3.12: Tabular encoding of '((a b)3 c)2 (d)4' 

While loading tables for this encoding, if a loop's ')k' entry is encountered, 

for k ~ 0, the body of the loop must be deleted (ie. by resuming the loading 

of the rest of the encoding from the location of the loop's '(' entry - this re

quires maintaining a w-element stack of table pointers). If the loop's ')k' entry 

is also marked '*', the beginning of the rest of the encoding 'inherits' the loop's 

unmatched '('. 

An algorithm effectively performing equation (3.3) for cell j of the matrix 

restorer is now described. This algorithm resembles the action of a standard 

microprocessor traversing its program memory (containing loops), except that 

it must ensure an ISA instruction is supplied every cycle (even if loop bookeep

ing is also performed during that step). This is essential in maintaining proper 

synchronization. 

A pointer x traverses the table in such a manner as to produce the required 

instruction sequence (ie. 'abababcabababcdddd' for the table of Figure 3.12). Con

sider the algorithm traversing the loop (E i)k. On the first access of the loop's 

'(' entry, x is pushed onto the left parenthesis position stack LPs. On the first 

access of the loop's ')kl entry, if k = 1, LPs is popped and x is incremented. 

Otherwise k > 1 and k is pushed onto the counter stack CT s and x is set to 

top(LPs). On all the k - 2 intermediate accesses of the ')k' entry, top(CTs) is 

decremented and x is set to top(LPs). On the last access, ie. top(CTs) = 1, CTs 

is popped and x is incremented. If this entry is not marked '*', the LPs stack is 

also popped. 
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If the loop is of the form (il (taking a single table entry), the situation is 

similar except that the LPs stack is not used, with x being left unchanged where 

it would have been set to top(LPs). If this entry is also marked '*', x must 

however be pushed onto LP s on its first access. 

The first access of a loop's '(' entry is determined simply by the boolean flag 

FT, which is true iff x was incremented on the last cycle. The first access of a 

loop's ' )'" entry is determined by the boolean stack FTs, which records the value 

of FT during the last access of the loop's '(' entry. 

A more formal description of this algorithm is given in Appendix 3.A.I. This 

method of encoding loops appears inefficient since the third (,)k,) field of the 

table will usually be blank. However, variable length table entries can be easily 

implemented to reduce this loss, as described in Section 3.8.2. This method of 

encoding appears not to be sufficiently general since loops of the form '(E(E')k')k' 

are not handled. In practice, these are sufficiently rare that recoding ISA pro

grams to avoid them is a viable option. Extensions of the above design to handle 

these loops are given in Appendix 3.A.2. 

Our experience suggests that 32 entries is sufficient for most 'irreducible' n( n) 

ISA sub-programs (see Table 3.2). 

It might be desirable to simplify and make more flexible the implementation 

of ISAC proposed here. One approach for doing this would be to implement 

ISAC more like that of program memories in standard microprocessor design. 

Here, one table access per loop iteration (ie. one table entry per loop) would 

be devoted to loop bookeeping and would not fetoh a new ISA instruction. In 

this way, general nested loops, subroutine calls and possibly even loops with 

zero iterations could be easily handled. However, to supply each column of the 

ISA with a new instruction every ISA cycle, the corresponding table accessing 

algorithm must run at two steps per ISA cycle, and a FIFO queue, able to buffer 

O(w) instructions, must be inserted between the ISA and the matrix restorers. 

Two factors discouraged the development of this approach here: Firstly, accessing 

a table twice per ISA cycle is deemed unfeasible for IS As with a very fast clock 

cycle, such as the boolean ISA. Secondly, considerable anrulysis would be required 
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to determine whether queue underflow12 could be produced by a particular ISA 

program (queue underflow would for example be produced by the nested loop 

'((i)2)n,). 

3.8 Evaluation of program compression meth-

ods 

In this chapter, four program compression methods have been proposed. For 

practical purposes, however, criteria are required to compare these methods in a 

realistic ISA system. These criteria are evaluated over a variety of 'irreducible' 

D(n) ISA sub-programs, taken from this chapter and the literature, which we 

believe are representative of 'irreducible' D( n) ISA programs in practice. 

The choices for these criteria are the compression rates and the number of 

bits of static storage required the matrix restorer cell's tables (indicating the 

area overhead required in implementing a method)13. 

F~r comparing the methods, the ISA system chosen has dimensions 25 x 25 

(expandable up to 28 X 28 ) and uses 8-bit instructions and data. While these 

dimensions are rather arbitrary, the results presented below, when combined with 

the asymptotic behaviour of the program compression methods, can give the 

reader a feeling for their relative performance. 

3.B.1 Compression rates 

Table 3.1 gives the program compression methods' reduction of overall I/O band

width. The numbers are given to two significant figures, since the exact numbers 

are dependent on implementation details. 

12Queue underflow results in loss of synchronization inside the matrb:: restorers and in the 

ISA receiving the wrong program. 
13 A third criterion, an estimate of the period O(log n) required to load the matrLx restorer 

for these ISA sub-programs is also relevant, for moderate values of n (to compare ISAC and 

Subroutining) . However, this requires a more detailed description of the implementation given 

in this chapter. 
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For microprogramming, f.L = 1 except for the TransClos program (where f.L = 
5) , and for each program, a 'natural' value of the microcode length A is chosen. 

The macro width Wm is set at the smallest possible length for each program, in 

order to optimize the compression rate. 

For Subroutining and ISAC, a variable length symbol method is used to code 

the programs in their symbolic form. Here, a 4-bit tag is used to identify the 

type of symbol, ego instruction, left/right parenthesis, etc. 8 bits are used for 

instructions (1 bit is used for selectors) and 8 bits are used for any counters. 

Thus, this coding is adequate for n ~ 28 . An O(log n) area preprocessor can 

translate these code sequences into matrix restorer loading instructions. 

As indicated by the fifth column of Table 3.1, most of the I/O of the ISA 

system is due to the programs, with many programs operating on matrices resi

dent in the ISA (which were originally loaded in by programs such as LoadMat). 

Thus, the overall I/O traffic of the ISA system can be significantly reduced by 

these methods, particularly by the 'optimal' ones. Note that for increasing n to 

28 , the 'optimal' methods would improve over the others by a factor of ::::: 64. 

3.8.2 Hardware overheads 

Table 3.2 gives the program compression methods' overheads in hardware, In 

terms of the number of static memory bits required for each program in each 

instruction matrix restorer cell's tables. This is given for the ISA programs of 

Table 3.1. It gives an indication of the overall area required by each method. The 

other factor for hardware overhead, the complexity of the cell's control logic, is 

simplest for microprogramming, and most complex for ISAC. Note that the SISA 

has no hardware overhead. 

For microprogramming, the number of bits for each decode table is given by 

the number of macros used (~ 2Wm) times A times Wi. 

For Subroutining, the simple implementation outlined in Section 3.6 is used, 

with one diagonal restorer entry (a 2-bit tag, used for shifting, and a wi-bit 

instruction) for each different diagonal. For the divide-and-conquer programs 

used here, one extra instruction plus eight extra control bits per diagonal are 
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program t A Wm ----!.<I....- v;, v;, for method 
VP+Vd 

SIS A mIcro. Subr. ISAC 
RotHV(n/2) 2n 4 2 0 18000 4600 2100 190 230 
TransClos <> 5n 5 1 2/48 46000 • 14000 2100 730 310 
LoadMat n 1 1 8/9 9300 2300 2100 ." 120 100 
Row Rev t ~2n 2 2 0 18000 4600 2100 390 410 
Transpose 

~ 6n 2 3 0 55000 14000 13000 390 .' 680 
t[31] 
Matrix 

5n 5 1 16/45 46000 8200 2100 100 
Mult.[31] 

130 

Perfect 
2 2 0 9200 2200 4100 • 200 Shuffie +[51] 

n 310 

notes: 

t is the program period, v;, (Vd) is program (data) I/O volume in bits, A is 

the chosen microcode length, and Wm is the minimum macro width. 

<> The input data is assumed to be I-bit here. 

* The program had to be recoded for this method. '*" ('*"') signifying the 

period is longer by a small constant amount (factor). 

t divide-and-conquer programs, typically having a lower compression rates 

for Subroutining and ISAC. 

+ To simplify the coding, an extra compare-exchange row was inserted to 

increase the period from n - 2 to n. 

Table 3.1: Program compression ratios for ISA with n = 8, Wi = 8 
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required (see Section 5.4.i.2). This has considerable scope for optimization, as 

indicated in Section 5.3.3. 

For ISAC, the table entries (using the scheme of Section 3.7.3) are assumed 

to be 24 bits each, with 4-bit tag, wi-bit instruction and 12-bit counter fields. 

However, where the counter field is not used for two consecutive odd-even entries, 

the second entry is packed into the first 's counter fields. This reduces the overall 

table size. For divide-and-conquer programs (see Appendix 3.A.3), the situation 

is sinlilar except that the entries are 30 bits wide. 

program # static bits per cell for: 
nlicroprogranrualing Subroutining ISAC 

RotHV(n/2) 3·4wi = 96 4 ·10 = 40 3·24 = 72 
TransClos 2·5wi = 80 5 ·10 = 50 9·24 = 216 
LoadMat 2 ·lwi = 16 2 ·10 = 20 2·24 = 48 
Row Rev 3·2wi = 48 2·26 = 52 5·30 = 150 
Transpose 6·2wi = 96 6·26 = 156 18 · 30 = 540 
Matrix Mult. 1 · 5Wi = 40 5 ·10 = 50 3·24 = 72 
Perfect Shuffle 4·2wi = 64 2 ·10 = 20 6·24 = 144 

Table 3.2: Hardware overheads for program compression methods (in terms of 

static storage bits per diagonal restorer cell) for a 25 x 25 ISA with Wi = 8 

3.9 Application to other mesh architectures 

For SIMD meshes, the SISA concept already exists in the row/column vectors 

of the ICL DAP. Microprogramming-like techniques can also be applied on the 

SIMD instruction stream, as is done for the Connection Machine. Subroutining 

and ISAC can be applied to compress the SIMD row/column vectors; however, 

in this case, all elements of a vector must be produced simultaneously (cf. the 

elements of ISA diagonals which are produced in a time-skewed fashion). 

ego On an m X n SIMD mesh, the program for unskewed matrix 

input from the west14 could be expressed in ISAC-like notation as 

'(I)I>·n(0)4.0' for the column vector program and as '(I)m' for the row 

vector program. It can be expressed in Subroutining-like notation as: 

14Cf. the 'skewed' LoadMat program of Section 3.7.1. 
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for k:=l to n do 

<_, (l)m, (l)k(o)n-k> 

and here, the column vector for the (k + l)th iteration is produced 

by performing a simultaneous (rather than a time-skewed, as in ISA 

Subroutining) right shift from that of the kth iteration. Since the 

shifting is simultaneous for SIMD meshes, the loss of flexibility of ISA 

Subroutining due to 'upstream' shifting would not carryover. 

However, the loading of ISAC-like choice and triangle constructs loses efficiency 

if it is not done in a time-skewed (systolic) fashion (this also applies to loading 

of row/columns vectors if Subroutining is applied). In this case, the loading of 

the vectors can occur in a time-skewed fashion n time steps earlier, requiring the 

overlapping of program loading and execution, and hence extra buffering by the 

matrix restorer tables. 

MIMD meshes have program memories in each of their cells and are required 

to be more powerful than the ISA model; hence only the most flexible method, 

ISAC, is expected to have application here. A two-dimensional extension of ISAC 

can be applied to efficiently load the cell's program memories, and to reduce their 

sIze. 

3.10 Conclusion 

A wide range of algorithms has been designed to be implemented on the ISA. 

Several ISA processors have been designed with different instruction sets. Pro

totypes of VLSI implementations of ISAs are under development. However, the 

peripheral hardware requirements (eg. the program interface) for ISAs are not 

settled yet. Furthermore, higher-level language concepts have to be developed in 

order to make the ISA concept acceptable for a wider range of users. 

This chapter addresses, from a program compression viewpoint, both of these 

viewpoints. Pilirt of a 'minimal' ISA high-level language is introduced in Section 

3.6, and any program compression methods used must be compatible with the 

high-level ISA language used. Furthermore, microprogramming has potential in 
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abstracting from the granularity of ISA's instruction set, developing a comple

mentary requirement for higher-level ISA programming. Some of the peripheral 

hardware requirements for ISAs are outlined in Section 3.3, and elaborated in 

Sections 3.6 and 3.7. 

This chapter has demonstrated that (in particular 'optimal') program com

pression techniques can substantially reduce the overall I/O traffic15 and the 

peripheral hardware requirements of the ISA (Sections 3.3 and 3.8.1). The lat

ter should easily offset the hardware overhead (O( n log n) area matrix restorers) 

of program compression methods. This occurs even for moderate ISA sizes and 

when the ISA cell's instruction and data word lengths are of similar sizes. 

The program compression method(s) to be chosen for an ISA system depends 

on its intended area of application. If program compression is critical to the 

overall system cost/performance, ie. if the ISA size is small or the data width is 

much larger than the instruction width, then the less expensive SISA or micropro

gramming methods are appropriate. Provided the SISA is sufficiently powerful to 

implement all of its intended applications, with only slightly less efficiency than 

the ISA, its simplicity and lack of hardware overhead makes it appropriate. Oth

erwise, microprogramming, with its enhanced flexibility and its generally superior 

compression rates, is appropriate. 

If program compression is critical, an 'optimal' method (Subroutining or 

ISAC) should be chosen. The compression rates of either are sufficiently good that 

the difference between them is not significant in practice. While ISAC appears 

to be more flexible than Subroutining, Subroutining has less control structure 

overhead. Furthermore, Subroutining has an important practical advantage in 

that its control structures directly support a high-level ISA language. This facil

itates easier automatic 'compilation' from high-level code into code to load and 

manipulate the matrix restorers. 

For a given area of application, combining one of the 'optimal' and non

"optimal' methods might optimize compression rate, flexibility and hardware over

head. Of these, combining Subroutining with microprogramming (possibly also 

15 A corresponding pin count reduction also can be achieved, pIovided the matrix restorers 

can be packaged with the ISA itself. 
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with the SISA) is the most interesting. This combines high compression rates 

with high flexibility, with potential to enhance higher-level ISA programming, 

and yet still has fairly modest control structure overheads. 

These methods have application in other mesh architectures. In particular, 

Subroutining can be applied to efficiently compress the row/column vectors for 

SIMD meshes, and ISAC can be applied to optimize program loading times and 

cell program memories for MIMD meshes. However, efficient program compres

sion techniques mitigate the more powerful and scalable ISA's chief disadvantage 

over the SIMD mesh: its extra program input traffic. The other disadvantage, 

that instruction granularity is a crucial issue for the flexibility of the ISA, may 

be mitigated by microprogramming techniques. Hence, the results of this chapter 

make the SIMD mesh a considerably less interesting architecture than the ISA. 

However, overall mesh performance may still be marred by I/O limitations 

due to loading data. Here, data compression techniques only have a limited 

applicability, and it may be ne;essary to pay the the high price of recycling 

and/or to develop costly parallel I/O transfers. How this can be achieved in 

detail is beyond the scope of this thesis. 

This chapter has demonstrated how control structures (particularly for the 

ISA program interface) can substantially increase overall ISA performance while 

reducing overall ISA system costs. Further work includes investigating how the 

microprogrammed ISA can extend the power and flexibility of the ISA model 

(Chapter 4), and support a higher-level ISA programming model. Also, whether 

the loss of flexibility of Subroutining can be avoided in practice, and the details of 

its (optimized) implementation need to be examined (Chapter 5). Both of these 

program compression methods utilize the wavefront concept and show sufficient 

promise to require a formal semantic definition (Chapter 6). The application of 

ISAC-like techniques to MIMD meshes also has considerable potential (Chapter 

7). It may be useful to simplify the implementation of ISAC, possibly along the 

lines of the suggestions at the end of Section 3.7.3, for this purpose. 
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3.A Appendix: Implementation of ISAC 

3.A.l ISAC table traversal algorithm 

The algorithm for traversing the tabular representation of the ISAC projections, 

as outlined in Section 3.7.3, is here described informally but in more detail. This 

algorithm is performed independently in all ISAC matrix restorer cells. While 

it appears complex, it is expected that the algorithm has a reasonably efficient 

VLSI implementation using PLAs. 

Let x be the table pointer. The algorithm begins with x initialized to the table 

entry corresponding to the beginning of the current program, and terminates 

when it reaches the entry corresponding to that corresponding to the end of the 

program. At each step, the instruction field of the xth table entry is sent to the 

adjacent ISA column. The algorithm uses the integer stack CTs , the table pointer 

stack LPs and the boolean stack FTs, each having length w (the maximum 

allowed loop nesting) and the usual 'push', 'pop' and 'top' operations. These are 

initialized to empty stacks. The algorithm also uses the boolean variable FT, 

initialized to true. 

A single step of the algorithm is now described in terms of cases for the 

different types of table entries. If the xth table entry is neither a '(' or ,)k, entry, 

the algorithm performs: 

X i- X + 1; FT i- 1 {advance to next entry} 

If the xth table entry is a '(' entry (only), the algorithm performs: 

if FT then 

push(x, LPs); push(FT, FTs) 

x i- X + 1; FT i- 1 

{starting 1st itn. of loop} 

{record x for next itn. ofloop} 

{advance to next entry} 

If the xth table entry is a ,)k, entry (only), let T* denote whether that entry is 

also marked '*'. In this case, the algorithm performs the more complex action: 

if (top(FTs) 1\ k> 1) or (top(FTs) 1\ top(CTs) > 1) then 

{ending not the last of k > 1 itns. of loop} 
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if top(FT s) then 

push(k - 1, CTs) 

else 

{ending 1st itn.} 

{record # i tns. to go} 

top( CT s) +- top( CT s) - 1 {update # itns. to go} 

top( FT s) +- 0 {record 1st itn. over} 

x+- top(LPs); FT +- 0 {return to corresp. '(' entry} 

else {ending last itn.} 

iftop(FTs) then {ie. k> 1- restore CTs} 

pop(CTs) 

if T* then {top( LP s) shared by enclosing loop} 

top(FTs) +- 1 

else 

pop(FTs); pop(LPs) 

x +- x + 1; FT +- 1 

{at 1st itn. of an enclosing loop} 

{discard tope LP s)} 

{advance to next entry} 

If the xth table entry is both a '(' and a ')k' entry, x is pushed on LPs on the 1st 

iteration only if T* is true. Otherwise, the action is as for the ')k' entry except 

that F P sand LP s are not used, with x replacing top( LP s) and FT replacing 

top(FPs). 

3.A.2 ISAC implementation of general loops 

The tabular encoding of loops for the ISAC matrix restorer cells described in 

Section 3.7.3 forbids loops of the form (E'(E)k)k
l

• In ISAC encodings, such loops 

might occasionally be required. 

A simple method of extending the tabular encoding to handle most of such 

loops occurring in practice is now described. These loops are restricted to the 

form "i' (E'(E1 i)k)k''', where i and i' represent simple instructions. The outer 

loop counter k' can be stored with the table entry for i', and is pushed onto 

the CT s stack when this entry is accessed. The 'i )k' entry is marked to signify 

a double right parenthesis; when the inner loop terminates, the CTs stack is 

popped. At this point, top(CTs) will give the remaining number of iterations 

for the outer loop, and the table pointer x is either incremented or set to the 'C 
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entry of the outer loop accordingly. 

A general but more expensive solution is to code loops of the form (E'(E)kt 

as (E'(E)kO)k
l

, where '0' is a special instruction code that is never passed to the 

ISA. This extension requires the table to perform two steps per ISA instruction 

cycle, and sends all instructions except the '0' to a queue (initially empty) of 

length 2w (the table waits if the queue is full). The queue sends an instruction 

to the ISA every cycle, and can be shown to never run empty. 

3.A.3 ISAC implementation of divide-and-conquer pro-

grams 

An efficient ISAC implementation of divide-and-conquer programs is described 

here. These programs can be expressed using a parameterized repetition contruct16 

such as (a( k) )k=c .. logn, where c is typically in the range 1 to 3. The k-dependent 

expressions in a( k) (being initial heights of triangle or repetition constructs, or 

boundaries in choice constructs) are of the forms d ± d or ~ ± d where d is a 

shorthand for 2k. 

This implementation is not general but is sufficient, with a little ingenuity, 

to cover currently existing ISA divide-and-conquer programs including matrix 

transposition [31], sorting based on row-wise/column-wise odd-even transposition 

sort [46], 'triangle' and 'diamond' merging [46, 51], and bubblesort [51J. To 

illustrate this implementation, the RotH(d) sub-program of Section 3.7.1: 

is used, where RowRev= (RotH(2k ))k=1..1ogn. An equivalent sub-program, used 

in ISA matrix transposition [31J: 

RotH'(d) : 
[(0 0)~·d/2( f- -+ )4.1 d/21 
(f- -+)~. d/2(0 0)4.1 dJ 

is also used. In this case, RotH'(d) has been 'padded' with an extra diagonal 

before and after, ensuring that triangle constructs never have height O. These 

extra diagonals meet 0 selectors, so that they have no semantic effect. 

16Note that in practice, only one level of parameterized repetition is ever used. 
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The implementation is illustrated in Figure 3.13. It is an extension of the 

tabular encoding of Section 3.7.3, thus requiring no more than O(log n) area per 

matrix restorer cell. The parameterized repetition is implemented as a repetition 

of height log n, whose kth repetition is interpreted according to the value of 

d = 21:. The program is preceded with an extra no-operation ('0') instruction, 

which is used to set up the nested loop (according to the scheme proposed in 

Appendix 3.A.2) and also to select the appropriate sub-program for the first 

repetition. The basic idea is that, for the kth repetition in matrix restorer cell 

j, loop counters can be generated by masking their respective values for the last 

repetition with ~ (and possibly adding ~ as well), as shown in the fifth columns. 

The appropriate component of the choice [P elQ d] can be selected by pre-test

ing whether jd > e, where jd = (j - 1) mod d + 1, as shown in the first columns. 

o 
o logn 

jd > % * ~ )n 1) mod~ jd> % * 0 r 1) mod~ 

jd > ~ ~ jd> % ( 0 

jd > J 0 )n 1 mod~ jd > ~ ~ )n ) mod% 

jd> % 0 jd > ~ ( ~ 
jd> % 0 logn 

(b) using '0 (RotH'(d))k=1..1ogn" d = 2k 

Figure 3.13: Tables in matrix restorer cell j for divide-and-conquer row reversal 

programs 

The implementation of the divide-and-conquer choice constructs: 

is now described. P (Q) is loaded into the odd (even) entries of the ISAC matrix 

restorer cell's tables (in Figure 3.13, consecutive even-odd entries are put side 
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by side for the sake of readability). On each table access, the boolean condition 

(first column of the table) of the current (xth) entry is evaluated, to a value C, 

say. The table pointer x is here updated to follow either the even (P) or odd (Q) 

table entries according to the formula: 

x+- 2(v div2) + C 

where v is the value x would have been given according to the algorithm of 

Appendix 3.A.1. 

The mask values d and f are updated, using simple shift operations, upon 

accessing (for the last time) the last even or odd entry of the parameterized 

repetition construct. In this case, the value of C would be computed from the 

updated mask values, in order to select either P or Q for the next repetition. 

To implement in ISAC the divide-and-conquer sorting programs using odd

even transposition sorting, a four-way choice construct must to be introduced, 

which can be implemented in a similar way to the above two-way construct. 

Consider the implementation of the repetition and triangle constructs. At 

matrix restorer cell j, these give rise to loop counters having values given by 

expressions of the forms i + c, d' - c -1, (j ± c) mod d' and (d' - j ± c) mod d', 

where d' is either d = 2k or f = 2k- 1 and 0 ::; c' ::; d' . Hence, the counter values 

for a( k) can be generated from: 

d' + c = (c) mod d' + d' 

d'-c-1 = (n - c - 1) mod d' 

(j ± c) mod d' = (j ± c) mod d' 

(d' - j ± c) mod d' = (n - j ± c) mod d' 

The values of the parenthesized expressions (on the RHS of the above equations), 

together with two bits to specify the appropriate operation (one bit to specify 

whether the mask d' is either d or f, and one bit to specify whether to add on d') 

are stored in the diagonal restorer tables. This is illustrated in the last columns 

of the tables of Figure 3.13. These counter values must be strictly positive, 

which may require 'padding' with extra diagonals or the introduction of four-way 

divide-and-conquer choice constructs. 

106 

T 



I 

! 

Chapter 4 

The Microprogrammed 

Instruction Systolic Array 

4.1 Introduction 

Microprogramming is a standard technique for simplifying microprocessor design 

and reducing the input bandwidth from the program memory to the CPU [55, 

Ch.10j[17, Ch.3]. Microprogramming also provides a higher-level abstraction from 

a processor's microinstruction set and detailed hardware control, enabling it to 

interpret several instruction sets. Microprogramming is used in many digital 

signal processing chips suitable for array processing and in the Inmos Transputer 

[26, pp467-470]. Microprogramming is also used to "amplify" the bandwidth of 

the SIMD instruction steam of the Connection Machine [14, p88]. In large-scale 

non-SIMD meshes, program input bandwidth is an even more important factor. 

In Section 3.5 (see also [53, 34]), the concept of the microprogrammed ISA 

(JLISA), was introduced, mainly from the motivation of program compression (ie. 

reducing program input bandwidth). In this chapter, this dynamic form of verti

cal microprogramming for the ISA is further developed. This technique enables 

the efficient emulation of almost arbitrary instruction granularity ISAs, as well 

as efficient cell design and abstraction from a fixed (ISA) instruction set. This 

supports higher-level programming of the ISA model, and hence reduces program

ming effort. In terms of the wavefront model, it supports the implementation of 
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macro-level wavefronts. Because of the flow of control information in a wavefront

based mesh (eg. the ISA), the implementation is not trivial; on the other hand, 

it extends the mesh's range of efficiently implementable programs. This makes a 

unique and interesting application of microprogramming. 

The {LISA (usually) uses fixed-length microcodes, with no internal iterations 

and no conditional mechanisms except the ISA selectors!. This leads to an area

efficient implementation suitable even for fine-grained ISAs. 

Section 4.1.1 briefly describes the {LISA model used for this chapter. A vari

ant useful for emulating arbitrary instruction granularity ISAs, called the normal 

{LISA, is introduced there. Section 4.1.2 discusses how microprogramming in

creases the ISA's advantage in power over SIMD meshes (by enhancing the ISA's 

handling of nontransmittent data), while mitigating the ISA's disadvantage in 

requiring more programming effort (due to the fact that instruction granularity 

is critical for the ISA). Section 4.1.3 elaborates the motivations for the {LISA. 

In Section 4.2, the {LISA model is illustrated by the LCS algorithm (represent

ing the class of Dynamic Time Warping algorithms) and the transitive closure 

algorithm (representing the class of algebraic path algorithms). An implementa

tion of microprogramming, using simple and area-efficient control structures, is 

given in Section 4.3. For the sake of efficiency, these control structures must also 

be combined with a macro discipline to properly implement macro-level wave

fronts. 

In Section 4.4, the {LISA model is viewed as a generalization of the ISA model, 

and its extra control structures are demonstrated to make it more powerful than 

the ISA and SIMD mesh models, in both a theoretical and practical sense. Sec

tion 4.5 illustrates the utility of the normal {LISA model for the Givens Rotations 

algorithm (representative of the class of matrix QR factorization algorithms). 

General transformations which enable a normal {LISA to emulate an ISA of (al

most) arbitrary instruction granularity is given in Section 4.6. This enables the 

{LISA to realize its chief application: an extension of the ISA model, increasing 

both its power and flexibility. Conclusions are given in Section 4.7. 

1 However, the j.lISA micros (eg. a signed addition instruction) might themselves be imple

mented by a second level of microprogramming. 
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The contribution of this chapter is to introduce and develop the theoretical 

and practical aspects of the microprogrammed ISA, which can be seen both as a 

generalization and an extension of the ISA concept. 

For reading the remainder of this thesis, an understanding of Sections 4.1.1, 

4.2 and 4.3 is important. A semantics for the microprogrammed ISA is given 

in Chapter 6. A generalization of the basic concepts of the microprogramming 

is used to describe control structures and program compression techniques for 

Processor Arrays in Chapter 7, especially Section 7.4.1. 

4.1.1 The microprogrammed ISA model 

The model for an m x n ILlS A is now briefly described. It is a refinement of the 

model proposed in [34], in which the concept of an ISA macro is more usefully 

defined. 

The concept of the ISA diagonal can be generalized to that of the wavefront 

for the ILISA, due to the introduction of the microprogramming parameters (IL, o} 

A (IL,O') wavefront propagates at an angle of tan-1(0'/1L) with respect to the 

north edge of the ISA, with a velocity of 1/ IL (1/0') in the south (east) direction. 

With this concept, a SIMD mesh uses a (0,0) wavefront; an ISA uses a (1,1) 

wavefront; a [(IL,O') wavefront]ILISA uses a (IL,O') wavefront with IL, 0' > 0 and a 

Processor Array (MIMD mesh) program can use various combinations of arbitrary 

wavefronts (see Chapter 7). 

A (IL, 0') wavefront ILlS A is also parameterized by the microcode length A 

(see Figure 4.1). Thus, a microcode is a sequence of A = 0(1) Wi-bit (mi

cro) instructions, and is represented by a single wm-bit, where Wm « AWi 

macro(instruction)2. The instruction microcodes themselves are skewed between 

neighbouring columns by an offset of 0', 1 :$ 0' :$ A, and the corresponding se

lector microcodes are skewed by a factor of IL, 1 :$ IL :$ A. Using A individual 

selectors bits (selector micros) per macro has the added power that each row of 

an ILlS A can omit arbitrary micros within a macro. 

A fourth parameter, used for the emulation of arbitrary instruction granularity 

20ur experience suggests Wm = 4 is sufficient for most applications (see Table 3.1). 
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ISAs by J.LISAs, is the macro overlap factor, ij. The quantity (r; + 1) corresponds 

to the communication register timesharing factor, ie.: 

the (maximum) number of times an output communication register is 

used to transfer separate words of data within a given macro. 

and is , in the best case, equal to it . The microcode length is usually related to 

the selector skew by the relation: 

(4.1) 

although to increase program compression, A may be made larger (cf. Section 3.5 

and Table 3.1). 

This concept of timesharing requires that the J.LISA's input communication 

registers read new values every microcycle. The alternative, to read new values 

on every macro cycle, while appearing to correspond more closely to traditional 

microprogramming, excludes timesharing and is more difficult to implement. 

The normal J.LISA has the constraint that (j = 1'. This model, with r; = 0, 

was proposed in Section 3.5. This model is most similar to the ISA, which is in 

fact a normal J.LISA with I' = 1, and is suitable for emulating ISAs of arbitrary 

instruction granularity. Occasionally, however (see Sections 4.2.1 and 4.5.6), the 

non-normal J.LISA is slightly more efficient. 

This form of microprogramming is dynamic, in that the microcode lengths, 

contents and skews can be efficiently changed between n( n) sub-programs. In

deed, for the purpose of optimization, the microcode length may vary between 

consecutive macro diagonals (see Sections 4.5.5 and 4.6.2) . In this case, care 

must be taken that correct inter-macro communication is preserved. Changing 

the microcode skews can incur a 8(n) delay, and hence they should be changed 

less frequently. 

4.1.2 IS As vs. SIMD meshes and microprogramming 

The main advantage of the ISA over the SIMD mesh is that it can pass a diag

onal of nontransmittent data through the mesh at constant period. This occurs 
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when the nontransmittent data moves in pace with an ISA program diagonal 

(wavefront), which moves and updates the data. 

ego The ISA ,can perform in constant period, from either rows or 

columns, operations such as broadcasting, ring-shifting, searching, 

summing and minimum finding. These operations cannot be effi

ciently performed on a SIMD mesh. 

Thus, algorithms based on matrix transitive closure or QR factorizations can be 

implemented in an 0(n) period on an ISA, but appear to require a 0(n2 ) period 

on a SIMD mesh. Thus, the ISA is more powerful than the SIMD mesh, and 

more flexible than (non-programmable) systolic arrays. 

However, to handle nontransmittent data in this way requires that its com

munication and computation must be completed in a single instruction cycle. 

This in turn makes the ISA's instruction granularity a critical quantity, This 

has two consequences: Firstly, an ISA's (fixed) instruction set may still be inad

equate to implement systolic algorithms making heavy use of nontransmittent 

data. Sometimes, the efficient implementation of such algorithms requires ex

tremely powerful and specialized instructions, ie. performing several arithmetic 

operations and communicating several words of data per cycle. 

Secondly, unlike SIMD meshes (or uniprocessors)! it is impossible to ab

stract from instruction granularity by simply composing sequences of instructions. 

This make the ISA more difficult to program, particularly when using high-level 

'macro' constructs, than the SIMD mesh. 

The microprogramming parameters (/L, (7) introduced in this chapter provide a 

way of effectively constructing high-level macros, enabling the /LISA to efficiently 

emulate various (macro) instruction sets (with varying instruction granularities). 

With this abstraction of the ISA model, its handling of nontransmittent data 

becomes much more powerful, and its merit, as compared with the SIMD mesh 

model, is significantly enhanced. 

111 



r-

I-

..... 

4.1.3 Motivations for microprogramming the ISA 

Microprogramming can enable the design of an efficient ISA suitable for a large 

application domain, in which a very large range of (powerful) instructions may be 

required. This is important for the development of the ISA for general-purpose 

matrix processing. Factors motivating dynamically microprogrammable ISAs in

clude: 

1. A simple instruction set is attractive for the ISA cell designer. This 

is because, I/O limitations permitting, it is useful to keep the ISA 

cells as small as possible. The advantages of doing this are twofold: 

a faster clock cycle and greater degree of parallelism (more cells can 

be fitted on a chip) are possible. Microprogramming permits the ISA 

cell designer to design a simple (micro )instruction set; then, for the 

current algorithm to be run on the ISA, the desired instruction set, 

with sufficient instruction granularity, can be constructed by choosing 

a suitable value of (J.L, (J') and composing the appropriate macros. 

2. The communication aspect of the high instruction granularityachiev

able by the J.LISA enables the timesharing of output communication 

registers (up to a factor of ij + 1) . This in turn allows different kinds 

of meshes to be efficient ly emulated using a basic mesh. For exam

ple, for the LCS algorithm of Section 4.2.1, an orthogonally-connected 

J.LISA uses microprogramming to emulate, on the macro level, a hex

connected ISA. 

3. Microprogramming can achieve a program compression rate (and cor

responding pin reduction) of >..wi/wm (for the instruction part of the 

program) [53]. Motivations for program compression include reduction 

of the bandwidth3 from the external ISA program memory to the ISA, 

and reduction of the size of the ISA external program memory (see 

Section 3.3). 

3ISA program matrices are typically of n(n2 ) size. 
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The importance of each of these factors depends both on what class of algorithms 

is required for the ISA and on the technology used. 

The simple model for the /-LISA presented here provides the benefits of con

ventional microprogramming, as well as increasing the range and efficiency of 

algorithms using nontransmittent data that can be implemented using a fixed 

ISA (micro )instruction set. It does this in a such a way that the more frequently 

used low-instruction granularity ISA programs can be run at maximum efficiency 

(in terms of both area and time) . 

4.2 Examples of microprogramming the ISA 

In Section 3.5.2, the Kung-Gubias-Thompson transitive-closure algorithm was 

implemented on a normal /-LISA using a four output communication register mode 

with A = /-L = 5 (ie. no timesharing). In this section, /-LISA programs are given 

illustrating communication register timesharing to a factor of ij + 1 = 2. The 

LCS program (Section 4.2.1) illustrates the use of a non-normal /-LISA (in this 

case being slightly more efficient than the normal /-LISA). The transitive closure 

algorithm is re-implemented in Section 4.2.2 on a normal /-LISA using a single 

output communication register, with A = /-L + 1 = 6. 

4.2.1 The Les algorithm 

The Largest Common Substring (LCS) algorithm [47, 38] is an inexact string 

matching algorithm used to compare protein sequences in molecular biology. 

Given a small alphabet ~, and two strings a, b E ~*, a is defined to be simi

lar to b iff ILCS(a, b)1 > 78%14 Defining m = lal and n = Ibl , ILCS(a, b)1 is 

given by M:",n using the following set of equations (0 ~ i ~ m, 0 ~ j ~ n): 

Mi,i = (ai = bi ) if 1 ~ i ~ m and 1 ~ j ~ n 

, = {O if i = 0 or j = 0 (4.2) 
Mi,i max{Mi,i * ME-I,i-l, ME-I ,i' ME,i-I} otherwise 

where a * b = a(b + 1). This algorithm can be implemented in 0(1) period on an 

m X n ISA, with the matrix M' being the nontransmittent data. The implemen

tation of [47] assumes each cell of the ISA has two output registers, denoted here 
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A and C. Its initial conditions are that the ith row of the rSA's west data buffer 

stores MI,o, the jth column of the north data buffer stores ' M~,j_lj M~,/ and the 

A register of cell (i , j) stores M;,j . The implementation consists of a uniform 

diagonal, selected on all rows, consisting of the instruction: 

which gives an efficient implementation of the LCS algorithm, at the cost of an 

rSA with unusual communication capabilities and specialized, complex instruc

tions. 

This algorithm can be implemented on a non-normal m x n ,urSA, with,u = 3 

and Ij = 2, with a simple microinstruction set, a single communication register C 

and an internal register A. This implementation has the same initial conditions, 

but uses a single communication register, which must be timeshared to a factor of 

r;+1 = 2 (achieved by 'overlapping' macros by r; microcycles). The corresponding 

program is illustrated in Figure 4.l. 

To visualize the execution of this program, the instructions (selectors) are 

moved down (right) one small unit per microcycle j the topmost (leftmost) in

struction (selector) micro in each cell being executed at that instant. One may 

visualize that each rSA cell here has queues of length 3 (2) to slow the rate of the 

instruction (selector) micros passing through the rSA (cf. Section 4.3). Here, the 

value of MI-l ,j-l is shifted to cell (i -l,j) by execution of the micro 'c +-- Cw', 

in time to be read by cell (i,j) as it executes the 'A +-- A * CN' micro. It may be 

thought that the 'A +-- A * CN' micro is undesirably specialized. However, it is 

often useful to implement rSA instructions that can be executed conditionally on 

the value of a register, say A, being non-zero (see Section 2.2.1). With initially 

A = Mi,j E {a, I} , the BISA-like instruction 'A +-- A+ CN, if A' would implement 

the micro 'A +-- A * CN' . 

This program can be easily converted for the four output communication reg

ister mode normal ,urSA (see Section 4.6.2). This increases the microinstruction 

skew to the 'normal' value of Ij = 3, and correspondingly increases the macro 

overlap to r; = 2. 
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ImT H : C +- max(A, C) 
1_ T I : C +- Cw 

1 1m I: A+- max(A, CN) 

I . I: A +- A * C N 

1 1 11 
1 1 11 1 

1 1 11 1 

ij{ 

~{ 

1 1 11 11 -
~ 1 p. -

mT f-

}A -T 
mT f- =F _T 

mT f- =F -T 
mT f- =F _T 

=F }cr 

~ ~ ~ ~ 

Figure 4.1: Microprogrammed LCS program on a 3 x 3 ~ISA with A = 4, ~ = 3, 

cr = 2 and ij = 1 
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4.2.2 Transitive closure algorithm revisited 

The normal jlISA implementation of the transitive closure algorithm (see Section 

3.5.2) , using four output communication registers with}, = jl = 5, can be easily 

transformed for implementation on a jlISA using one output communication reg

ister, by timesharing this register to a factor of r; + 1 = 2. This in turn increases 

the microcode length to }. = jl + 1 = 6. 

Comparing with Figure 3.5(a), the instruction macros, I and I', are converted 

in a fairly straightforward manner, as indicated in Figure 4.2. The C register is 

first used for southward communication, replacing all references to Cs in the 

micros for the four output communication register mode program. The micros to 

perform the timesharing (with C now used for eastern communication) , denoted 

' I-A I' for I and ' I-A ' for I' , are then appended to their respective macros. The 

internal A' register is used to latch input values for the western neighbour (instead 

of Ck). However, the 'OS +- Cs Cw' micro of I' is first converted to 'C +- C Cw', 

which is then converted to the equivalent micro sequence 'A' +- Cw; C +- C A" 

(the 'Ck +- A' micro of l' can be dropped) , This simplifies the macro structure 

of the program of Figure 4.2. 

The selector macros are appended by an extra ' 1' micro-selector, which is 

required to select the 'timesharing' micro. The selector micro diagonals are in

dicated implicitly in Figure 4.2 in the following fashion: the rows in which the 

micro instruction diagonals are selected are indicated to their left (the default 

is all rows are selected). Thus, in the first macro diagonal, the third micro is 

selected on all rows, whereas the fifth micro is selected on rows 2 and 3 only. For 

the sake of brevity, this representation of jlISA programs will be used henceforth. 

The A'-value for cell (i,j) is read (from the west) on the 2nd microcycle, 

reading the value of the C register of cell (i,j - 1) set by the 2 + jl - 1 = 6th 

microcycle. Similarly, the A"-value for cell (i,j) is read (from the north) on the 

1st microcycle, reading the value of the C register of cell (i - 1, j) set by the 

1 + jl - 1 = 5th microcycle. In this way, the C register is used to efficiently pass 

two items of nontr<llnsmittent data. 
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f-A 
TAli 

VA TA 
/\A' 
-tA' 

f-A' leAII 
TAli f-A' 

VA TA TAli 
/\A' VA TA 
-tA' /\A' 

f- A' le,AII -tA' 
1,2 TAli f-A le,A" 

VA TA TAli f-AI }fj 

/\A' VA TA TAli 

}p 
-tA' /\AI VA TA 
leAII -tA' /\A' 

f-A' le ,AII -tA' 

1,3 TAli f-A' le,A" 

f- A' C +- A' VA TA TAli 

f-A C+-A 
/\A' VA TA 
-tA' /\N 

VA TA C,A +- Av C le,AII -tA' 

TAli C +- A" 
f-A le,AII 

2,3 TAli 

}a 
/\N C+-C/\A' VA TA 

-tA' A' +- CW 
/\A' 
-tA' 

le ,AII C, A" +- CN le ,AII 

Figure 4.2: Transitive closure program using timesharing of the C register for a 

3 x 3 normal /LISA with JL = a = 5 and fj = 1 
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4.3 Implementation of the microprogrammed 

ISA 

An implementation of decoding macros for the J.LISA was given in Section 3.5.l. 

There, it was described how a row of decode tables, connected to the north edge 

of a J.LISA, decodes instruction macros into their respective microcodes of length 

A (and similarly for the selector macros). This scheme is area-efficient because 

the macro decode logic for the cells in each column is factored out into a single 

unit. 

For J.LISAs comprised of many chips, the retention of the pin reduction of 

microprogramming requires decode table arrays in every chip, and a small amount 

of extra hardware to pass the macros (along with the micros) through each chip. 

Variable values of A can be easily handled by this implementation by passing 

a "start new macro" signal systolically across the decode table arrays. This 

signal propagates one unit every 0" (J.L) microcycles across (down) the instruction 

(selector) decode tables. This allows A to vary even between consecutive diagonals 

of macros. Note that new microcodes may be loaded across the row of tables in 

a systolic manner. IT they can De loaded into currently unused table locations, 

decode table loading can be overlapped with J.LISA program execution. 

An alternative implementation of macro decoding uses an instruction (selec

tor) decode table in each ISA cell, with instruction (selector) macros being passed 

across (down) on the J.Lth (O"th) microcycle of that macro. This scheme is simpler 

but requires larger control structures, with microcodes (and the values of J.L and 

0") needing to be systolically passed to, and stored at, every ISA cell. In this 

implementation, an ISA cell would pass down (across) an instruction (selector) 

macro during the execution of the J.Lth (O"th) of the A microcycles of that macro. 

In the standard implementation, each ISA cell has an instruction (selector) 

queue of length J.L (0"), effectively slowing down the rate of instruction (selector) 

micros through the ISA by a proportional amount. They are the essential con

trol structures for the implementation of ISA microprogramming. The detailed 

implementation of these queues is described below. 
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4.3.1 Implementation of variable length queues 

It is assumed here that each JlISA cell has a variable length instruction (selec

tor) queue, which can have its length incremented/decremented within a single 

microcycle4
• The systolic control signals Jl+, Jl-, (7'+, (7'_) respectively inorement 

or decrement, the instruction (selector) queue. These signals themselves are as

sumed to propagate through the JlISA through at least one of queues. Let DoJl 

and Do(7' denote (Jl' - Jl) and (<1' - (1), respectively. The queue length adjustment 

of an m x n JlISA that must occur between the execution of (Jl, (7') wavefront 

programs and (p,', (7") wavefront programs can occur in the following two stages. 

The first is the transition from Jl to Jl', and is in turn broken down into a sequence 

appropriately of either tlJl increments or -tlJl decrements, described as follows: 

• instruction queue increment (DoJl > 0): 

Insert i, where 1 ~ i ~ m, '0' selector micros5 into row i and a 'NoOp' 

instruction micro into all columns of the JlISA. As the 'NoOp' micro leaves 

an ISA cell's queue, the Jl+ signal must be high, to insert a further 'NoOp' 

entry into the head of the queue. During this time, the cell effectively inserts 

a 'NoOp' into its column's microinstruction stream . 

• instruction queue decrement (tlJl < 0): 

Insert (m - i), where 1 ~ i ~ m, of '0' selector micros6 into row i and 

(m + 1) 'NoOp' instruction micros7 into each column of the JlISA. As the 

first 'NoOp' micro leaves a JlISA cell's queue, the Jl- signal must be high, in 

order to decrement the instruction queue length. During this time, ·the cell 

effectively deletes a ('NoOp') micro from its column's instruction stream. 

The second is the transition from (7' to <1', and is identical to the first step 

with rows interchanged with columns; instructions with selectors; i, m, Jl, Jl' with 

4Similar ideas can be used for the alternative implementation of macro decoding which might 

be capable of making arbitrary adjustments to J.l and <T within a microcycle. 

5These are used to skew the selectors by J.l' units. 

fiDitto. 

7These are to be overtaken by the faster moving micros to come. 
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j, n, u , u'. Thus, the ISA loses an effective period of: 

max(~/l, -em + 1)~/l) + max(~u, -en + l).6.u) 

microcycles during this transition, the effective period being the number of 'NoOp' 

micros it has to insert into column 1 of the ISA. Note that the first diagonal of a 

faster (/l', u') wavefront program must begin at least: 

tdel(.6./l, .6.u) = max(O, -em - 1)~/l) + max(O, -en - l).6.u) (4.3) 

microcycles after the last diagonal of the old program, to avoid a 'collision' with 

it. Hence, the above algorithm for performing the transition is efficient. 

It has been mentioned that the signals /l+, /l-, u + and u _ are pumped through 

the ISA at the same rate as the micro instructions (or selectors). This can be 

achieved by passing them through (say) the selector queues. While these are 

incremented, a low value of these signals must also be inserted into the queues. 

While these are decremented, the above scheme guarantees that the entry deleted 

is a '0' selector with low-valued signals. With a little care, using the above scheme, 

these four signals could be easily encoded into two, further reducing the hardware 

overheads. All of these signals can propagate through the ISA as an instruction 

propagates . through an SISA, so they require negligible extra input pins. 

The use of queues to implement microprogramming 'factors out' the more 

bulky decode tables from the /lISA columns. Appendix 4.A proposes a variable 

length queue design suitable for efficient VLSI implementation with moderate 

ranges of /l and u. 

4.4 The microprogrammed ISA in relation to 

other meshes 

Section 4.1.3 suggests that the extra control structures of the /lISA make it a more 

powerful model than the ISA, and hence also than the SIMD mesh. This section 

justifies this claim for a (/l, u) wavefront n X n /lISA, with the estaJblishment of 

theoretical relationships between the /lISA and meshes from the SIMD to the 

MIMD classes. 

120 

T 

• 



T 

- • 

For this comparison, assume that all meshes are n X n and communicate via 

(the same type of) communication registers, and use the same instruction sets. 

A Processor Array (P A) is defined to be an n x n mesh of independently pro

grammable processors; this model can use, among other things, arbitrary wave

fronts. In an Instruction Broadcasting Array (IBA) [21], instructions (selectors) 

are independently broadcast to each column (row) of the mesh; this model uses 

only a (0,0) wavefront. The IBA is a generalization of a "vector-orientated" SIMD 

mesh [21], ie. a SIMD mesh using only row/column vector masking mechanisms 

(eg. the IeL DAP [17, pp243-248]). 

In Section 4.4.1 the mesh 'power' hierarchy: 

PA => fLISA => ISA => IBA 

is established in both a theoretical (proofs of general 'efficient' simulation tech

niques) and a practical (asymptotic efficiency on known practical problems) sense. 

A model's position in this hierarchy is determined by the values (chiefly, the signs) 

of the wavefront parameters that it allows. 

Section 4.4.2 gives timing rules for the fLISA, which are used again in Section 

4.6. 

Section 4.4.3 demonstrates how an arbitrary fLISA can efficiently simulate an 

ISA (this result is required to establish the above hierarchy). An intermediate 

result is that a (fL, fL) wavefront fLISA program can be 'efficiently' simulated by 

a (fL + 8, fL + 8) wavefront fLISA, where 8 ;::: O. This result has significance in the 

practical development of the normal fLISA model: from it, the delay associated 

with changing the wavefront parameters can be compared with that of simulation, 

for programs using smaller wavefront parameters. 

4.4.1 Establishing the relationship 

Figure 4.3 summarizes the relationship between the various models of processor 

meshes. The relationship' P => Q', read as "P efficiently simulates Q", denotes 

tha,t an arbitrary program of period t in model Q can be simulated by a program 

of period O(t) in model P. It can be seen at once that this relationship is 
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PA =? /lISA =? ISA 
(any /l, (7) (/l> 0, <7 > 0) (/l = <7 = 1) 

Figure 4.3: Simulation relationships between various models of processor meshes, 

with their wavefront parameter restrictions. 

transitive. The relationships 'PA=?ISA' and 'ISA=?IBA' are established in [21]; 

a similar proof to that of 'PA=?ISA' demonstrates that 'PA=?/lISA' must also 

hold. This is because the PAis the most powerful way that such a mesh can be 

programmed. It remains to show that '/lISA=?ISA': this will be demonstrated 

in Section 4.4.3. All these results have practical significance, since their proofs 

also give general transformations from programs in the less powerful model to 

programs of similar efficiency in the more powerful model. 

For these models, the reverse of these simulation relationships do not hold. 

For example, an 0(1) PA (ISA) program can be found that cannot be simulated 

in less than O(n) period on a ISA (IBA) [21]. Using similar ideas, it can also 

be shown that with /l > 1 and/or <7 > 1, there exists an 0(1) /lISA program 

that cannot be simulated in less than O(n) period on the ISA. However, these 

counter-results lack direct practical significance since the programs used in the 

proofs are rather contrived. 

For counter-results, the power of a mesh model is more usefully indicated by 

considering whether a model can implement a practical problem (asymptotically) 

more efficiently than another model. There appears to be no 0(1) period program 

that can perform a horizontal ringshift on an IBA or SIMD mesh, although such a 

program exists for an ISA (see program Rot1H, Section 3.6). There also appears 

to be no 0(1) period program than can perform a 'reverse' horizontal ringshift8 on 

the ISA or /lISA, althou.gh such a program exists for the PA 9 • Finally, for meshes 

with communication registers that can store a single integer, there appears to be 

no 0(1) period program performing the LCS algorithm operation on an ISA in 

constant period, although such a program is given for a (3,2) wavefront /lISA 

8ie. a ringshift in the opposite direction to that used for the ISA program. 
9This PA program would use a (1, -1) wavefront, and the period is taken with respect to 

this wavefront. 
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(see Section 4.2.1) . It can then be concluded that the mesh hierarchy of Figure 

4.3 holds in a practical and strong sense. 

In the sense of the previous paragraph, the difference in power between meshes 

using (0,0) and (1,1) wavefronts (ie. between the IBA and ISA) is greater than 

that between meshes using (1 , 1) and [say] (3, 2) wavefronts (ie. between the ISA 

and the JLISA). This is demonstrated by the fact that when in practice a JLISA 

yields an asymptotically more efficient solution than an ISA, it was because the 

ISA was limited by inadequate instruction granularity. For this reason, the main 

application of the JLISA is seen as a flexible and area-efficient emulator of arbitrary 

instruction granularity ISAs. It also indicates that there is a diminishing return 

in the extra JLISA control structure hardware required to implement higher and 

higher values of JL and a (see Section 4.3) . 

Combining this observation with Figure 4.3, it can also be seen that the power 

of a mesh model can be characterized by the types of wavefronts that it can use, 

with the signs (positive, negative or zero) of JL and a being more critical than 

their magnitudes. 

4.4.2 The microprogrammed ISA timing rules 

The microprogrammed ISA timing rules define the communication part of the 

JLISA, and are used to prove JLISA simulation results. The JLISA timing rules state 

that upon an ISA cell executing the kth micro of an ISA program, it reads the 

communication register of the neighbouring cell in direction d, dE {N, E, W, S} , 

left by the (k + 8d(JL , a))th micro (ie. this micro was executed on the last micro

cycle) . Note that the first micro for column j enters the (l , j)th cell (j - l)a 

microcycles after the first micro enters cell (1 ,1). The rules are summarized in 

Table 4.1. Note that 8d(1, 1) gives the timing rules for an ISA, and 8d(0 ,0) gives 

those for an IBA. 

4.4.3 Simulation of ISA programs 

This section shows that a JLISA efficiently simulates an ISA (and hence an IBA) , 

and that normal JLISAs can efficiently simulate normal JLISAs using a smaller 
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d: cell (from (i , j) Od(IL, 0-) 
N (i - 1,j) IL-1 
S (i+1 , j) -IL-1 
W (i,j - 1) 0--1 
E (i,j + 1) -0- -1 

Table 4.1: Timing rules for a (IL,o-) wavefront microprogrammed ISA 

value of IL. These results use general program transformations which assumes 

that the ILISA has an extra internal register, called D, which is not available to 

the ISA. 

However, since the ILISA is proposed to implement 'dynamic' microprogram

ming, the existence of such transformations are not crucial in practice. They 

are useful, however, when a ILISA predominantly using (IL, 0-) wavefront programs 

needs to simulate a short ISA (IBA) program, and the delay in changing the 

wavefront parameters exceeds that associated with the transformation. In such 

cases, these simple transformations can be applied (requiring only very modest 

control structures to dynamically perform such transformations) to improve the 

overall efficiency of the ILISA. 

Firstly, the lemmas showing that non-normal ILISAs can efficiently simulate 

an ISA are given: 

Lemma 4.1 An arbitrary ISA program of period t can be simulated by a (IL,o-) 

wavefront ILISA, with IL > 0- ~ 1 in period tl-',<r = ILt. 

transformation: 

hj, the (k,j)th element of the ISA program's instruction matrix, ~s 

used to form the (k,j)th macro (of length ,\ = IL) of the ILISA pro-

gram 's instruction matrix: 

D +- CE; (NoOp )1-'-2; I~j 

where Ikj = (hi)gE . Sik, the (k , j)th element of the ISA program's 

instruction matrix, is similarly used to form the corresponding selector 

macro of the pJSA program's selector matrix: 
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Figure 4.4: A (4,2) wavefront !LISA program simulating an ISA program (in

struction part) 

This is illustrated for the instruction macro matrix in Figure 4.4. 

proof (semi-formal): 

Consider Figure 4.4, as cell (i, 1) executes micro I~l' The timing rules 

state that Cs contains the value of the communication register of cell 

(i + 1,1) left by the 'NoOp' preceding I~l' This value must be the 

, same as that left by the I~l micro. Similarly, D contains the value 

of CE at the preceding 'f-' micro, ie. the value of the communication 

register of cell (i, 2) left by the first 'NoOp' after I~2' This value must 

be the same as that left there by the I~l micro. 

Similarly, as cell (i, 2) executes the I~2 macro, Cw contains the value 

of the communication register of cell (i, 1) left by the first 'D f- CE' 

micro after I~l' This value must be the same as that left by the I~l 

micro. Similarly again, CN contains the value of the communication 

125 



I 
register of cell (i - 1,2) left by the 'NoOp' micro preceding I~2' This 

value must be the same as that left by the I~l micro. 

Generalizing these observations, and noting that the above transfor

mation preserves sequencing, in any cell (i,j), the operand values of 

micro !ki when executed in the JLISA must be identical to those of 

micro hi when executed in the ISA. This is sufficient to establish 

equivalence. 0 

Lemma 4.2 An arbitrary ISA program of period t can be simulated by a (JL,O") 

wavefront JLISA, with 0" > JL ~ 1 in period tJJ,tT = O"t. 

transformation: 

(as for Lemma 4.1, but with CE (JL) interchanged with Cs (0")) 

How a normal JLISA simulates normal JLISAs of smaller wavefront parameters 

can be derived using the lemma: 

Lemma 4.3 An arbitrary (JL, JL) wavefront JLISA program of period JLtJJ,JJ can be 

simulated by a (JL + 1, JL + 1) wavefront JLISA in period (JL + 1)tJJ ,jJ" 

transformation: 

Let hi [Sik] denote the (k,j)th instruction [(i, k)th selector] 'macro' 

of length A = JL of the (JL, JL) wavefront program (for 1 ::; i, j ::; nand 

1 ::; k ::; t JJ ) , with hi(m) [Sik(m)] denoting the the mth micro of this 

macro (for 1 ::; m ::; JL). 

This is used to form Iki [S:k], the (k,j)th instruction [(i, k)th selector)} 

'macro' of the simulation program simply by appending a 'NoOp' ['01 

micro to it, ie.: 

I~i = 'hi ; No Op , 

S;k = 'Sik; 0' 

This is illustrated for the instruction macro matrix in Figure 4.5. 

proof: 
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h'j(2) 

h'j(2) h'j(l) -

-
hlj(l) 

1 Ikl;(2) "-r-
./ 

hj(2) .. 
r- h l;(2), l./hj(2) / I" 

Ikj(l ) r- h IJ(l) "'-
-' 

..-
/ I" 

r+- h IJ(l) l./hj(l) 
/ I" 

" 
/ I" 

h;(2) hj(2) h:;(2) hj(2) 

I- h;(l) h j (l) 
r-- h;(l) hj(l) 

'-

'-- h:;(2) 
h:;(2) 

h:;(l) h:;(l) 

(a) original program around Ikj (b) transformed program around Ikj 

Figure 4.5: A (3,3) wavefront /LISA program simulating a (2,2) wavefront /lISA 

program 

(instruction part; note: x = x-I, x' = x + 1) 
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Consider the meeting of Ikj(m) and SIk(m) in cell (i , j), for 1 ~ m ~ 

p, . The following tables determines input register values read at this 

point. Columns 3 and 5 are determined by the timing rules for a 

(p,+1 , p,+1) ISA. The macros of column 4 are all 'NoOp'sj hence, the 

communication register values are determined by the preceding micro 

(column 5) . 

for m = 1 for m > 1 
input reads val. left by same as left by 
reg. of C in: llllcro: that for: mIcro: 
CN (i - 1, j) lli(p, + 1) lfu(p, ) Ih(m -1) 
Cs (i +1, j) Ilk-2)j(P, + 1) Ilk-2)j(p, ) I£/m -1) 
Cw (i , j - 1) lfi(p, + 1) lfi(p, ) I~!l(m - 1) 
CE (i,j + 1) IC.k-2)j' (p, + 1) I Ck- 2)j'(p, ) IL,(m -1) 

The timing rules for a (p" p,) wavefront ISA gives the same correspon

dence for hj(m) meeting Sik(m) , for 1 ~ m ~ p, (except that the 

primes are removed). 

Thus , using an inductive argument, noting that microinstruction se

quencing is preserved, the operands of Ikj(m) at cells (i , j) must be 

the same as those for h j(m). Hence, the simulation program is equiv-

alent . o 

From these lemmas, a (p" 0') wavefront p,ISA can be shown to efficiently sim

ulate an ISA: 

Result 4.1 (A p,ISA efficiently simulates an ISA) An arbitrary ISA program 

of period t can be simulated by (p" 0') wavefront p,ISA in period: 

tl'.t1 = max{p" O'}t 

proof: 

Combine the transformations of Lemma 4.1 (for the case p, > 0'), 

Lemma 4.2 (for the case p, < 0'), ClInd Lemma 4.3 (applied p, -1 times, 

for the case p, = 0'). o 
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Hence, the delay of changing the wavefront parameters to (1,1) and executing 

the ISA program exceeds the delay of this transformation when: 

(I-' -l)n + (0" -l)n + t ~ max{I-',O"}t 

which always occurs when: 

t :::; n/2 ( 4.4) 

Combining the above result and the transformation of an arbitrary IBA pro

gram (of period t) by an ISA program (of period 3t) [21], it can be shown that the 

I-'ISA can efficiently simulate the IBA program in period 3 max{l-', 0" }t. However, 

it is possible to find a slightly more efficient transformation: 

Result 4.2 (A I-'ISA efficiently simulates an IBA) An arbitrary lEA pro

gram of period t can be simulated by (1-',0") wavefront I-'lSA in period tl' ,CT = 
(2 max{l-', O"} + l)t. 

proof (outline): 

This is a generalization of the proof that an ISA can efficiently sim

ulate the program in period 3t [21]. Expand the IBA program in

struction hi (selector Sik) for (1 :::; k :::; t) and (1 :::; j :::; n) into the 

respective 'macros ': 

l~i = (Iki)8j (NoOp)max{I',CT}-lj C +- Dj (NoOp)max{I',CT} 

S;k = Sikj (o)max{I',CT}-\ Sikj (o)max{I',CT} 

The first sequence of 'NoOp's ensures that no eastward or southward 

communication occurs within the macro diagonals j the second ensures 

that the succeeding macro diagonal can read from the south or east 

the results of the execution of this diagonal. o 

Hence the delay of changing the wavefront parameters to (1,1) and executing 

the ISA program simulating the IBA program exceeds the delay of this transfor

mation when: 

(I-' -l)n + (0" -l)n + 3t ~ (2max{I-',0"} + l)t 

129 



r~ 

I-

which always occurs again when: 

t ::; n/2 (4.5) 

It is here conjectured that in practice a normal J.lISA (using a sufficiently large 

value of J.l) can efficiently simulate an arbitrary J.lISA. This, and the fact that 

the normal J.lISA is most appropriate to simulate ISA programs of (unlimited) 

instruction granularity, makes the normal J.lISA preferable to be implemented in 

hardware. Hence, the following result is useful: 

Result 4.3 (A normal J.lISA efficiently simulates 'smaller' normal J.lISAs) 

For any J.l' 2:: J.l, a (J.l, J.l) wavefront J.lISA program of period J.ltl'.1' can be simulated 

by a (J.l', J.l') wavefront J.lISA in period J.l'tl'.w 

proof: 

Apply (J.l' - J.l) times the transformation of Lemma 4.3. o 

Hence, while predominantly using (J.l', J.l') wavefront programs in a normal 

J.lISA, executing a (J.l, J.l) wavefront program may be required. Here, the delay of 

changing the wavefront parameters to (J.l , J.l) and directly executing the program 

exceeds the delay of this transformation when: 

which always occurs when: 

(4.6) 

4.5 Givens Rotations: a microprogrammed ISA 

case study 

Givens Rotations are used to triangularize matrices, and form an important step 

in matrix inversion. The Givens Rotations algorithm is representative of matrix 

QR factorization algorithms [5, pp161-165], all of which appear to require a sim

ilar (instruction) systolic implementation. A systolic algorithm for performing 

the Givens Rotations is found in [13], and an implementation for the Instruc

tion Systolic Array (ISA) is found in [7]. This implementation is one of the first 
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demonstrations of how an ISA can handle relatively complex patterns of non

transmittent data. It also demonstrates that the ISA implementation of systolic 

algorithms can be considerably complicated by restricting the ISA to pass only 

single words of data between adj acent cells per (macro) instruction cycle. 

Variations of the Given Rotations algorithm give an interesting application for 

the (normal) j.LISA, illustrating how it can simulate an ISA of very high instruc

tion granularity (in terms of the amount of computation and communication per 

[macro] instruction cycle) . The practical ISA implementation of Givens Rotations 

is thus enhanced considerably, in terms of efficiency and ease of programming, 

using microprogramming techniques. The most important of these is communica

tion register timesharing, especially for one output communication register mode 

j.LISAs. Optimized variations of the algorithm also illustrate the use of variable 

microcode lengths. However, while the normal j.LISA is the easiest to program, a 

(j.L, 1) wavefront j.LISA can implement the same algorithms in slightly lower period. 

The Givens Rotations algorithm for the ISA requires in any case either mi

croprogramming or an extremely (perhaps unreasonably, if the ISA is intended 

for other applications) powerful instruction set. For convenience, it is assumed 

here that all matrices are n x nj however, all ideas and algorithms here can be 

easily extended to the more general m x n matrices. 

While this section is not essential for reading the rest of this chapter, a feel for 

how the j.LISA simulates a high instruction granularity ISA (see especially Sections 

4.5.3 and 4.5.5) will be useful in understanding the more general treatment of 

Section 4.6. 

4.5.1 Description of the systolic algorithm 

As in [7], the algorithm transformimg a matrix A into upper triangular form can 

be expressed as: 

Givens: 

An +- Aj 

for i := 1 to n - 1 do 

Ai +- An; 
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for j := i + 1 to n do 

Ai+! f- Tij Ai j 

where Tii is a rotation matrix to annihilate A~.i and has the form: 

/ 1 

1 
cij Sii 
_Sii C ij 

1 

1 

where the cosine-sine coefficients occupy the intersections of rows i, j and columns 

i , j respectively and can be computed by the the procedure call: 

where: 

generate(x, y, c, s): 

if (x = 0) then c := OJ s := 1 

else t := y / Xj C := v'f'+t2j s := ct 

Using the form of Tii, the body of the inner loop 'of algorithm Givens can be 

re-expressed as, for 1 ::; k ::; n: 

Ai+! ~ 
ik ~ 

and since j > i and the jth row of the matrix is only operated on the (j - i)th 

iteration of the inner loop, then A~k = A~tl = ... = A~k and the above inner loop 

body can be again re-expressed as: 

-

A i+! ~ CiiA~ + SiiAi, . ik ~ ,k )k' 
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Note that the ith row of the result matrix is not changed after the ith iteration 

of the outer loop of algorithm Givens. 

4.5.2 ISA implementation using enhanced communica

tions 

Based on the ideas of [7], an ISA (a normal illS A) implementation of the Givens 

Rotations algorithm is first given; this architecture is assumed to be capable 

of communicating both rotation parameters westwards during a single (macro) 

instruction cycle. 

An ISA using the four output communication register mode is used here. 

However, CE is special in that it has two banks, ie. it can hold two numbers (the 

sine and cosine rotations). These banks are den?ted here CE.c and CE.s. 

For comparison with the ISA program of [7, SectA], the following symbolic 

register names are used in this program: 

G' = CE.c; 5' = CE.s; G = Cw.c; 5 = Cw.s 

A = CN; As = Cs; B = Cs; BN = CN 

and the program uses the 'sub-macros': 

G5 generate( BN , A, G', 5') 

G5' generate(B, As , G', 5') 

R B +- (G'BN + 5'A) 

R' A+-( - 5' B + G' As) 

=> G' +- G; 5' +- 5 

The program assumes the input matrix A initially resides in row-major order 

in the (symbolic) A registers of the ISA. It consists of the sequential blocks 

GI ; G2 ; • •• ; Gn - l , similar to the program of [7, FigA] , but each block is much 

simpler and shorter. Block Gi corresponds to the body of the outer loop of 

algorithm Givens and operates on rows 1 to ni (where ni = n - i + 1) and columns 

ni to n of the ISA only, and is illustrated in Figure 4.6. Block Gi assumes that 
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R' 

}.=p => 
R' R --- ---
=> => 

R' R --- ---
CS' => 
R --- ---

CS 

l..ni --- ---

l..ni 

l.. i-I i+l .. n 

Figure 4.6: Givens Rotations block Gi on an enhanced communication ISA (nor

mal J.lISA) 

the last ni rows of Ai reside in row-major order in the A registers of the first ni 

rows of the ISA. After its execution, the first i rows of the rotated matrix lie in 

the B-registers of rows ni to n of the ISA, ie. in a 'row-reversed' row-major order. 

Consider the execution of block Gi in ISA cell (i', k), where 1 :::; i' :::; n - i + 1 

and i :::; k :::; n. Assume that initially the A register contains A}k' and BN 

reads A{k, where j = i' - i. The (first) 'CS' sub-macro on column k = i then 

performs the procedure call generate(A}i' A{i, cij, Sij ). The results of this call are 

broadcast east along row i'. The 'R' sub-macro corresponds to equ3ition (4.8), so 

that the B register gets set to Ai:l. On row 1, the BN registers are assumed to 

be held at 0, so that here the 'R' sub-macro effectively performs the assignment 

'B t- A'. The 'R" sub-macro corresponds to equation (4.9), setting the A register 

to A{t;l)k' since As reads the value of A}U+l). Thus, this sub-macro shifts the 

remaining matrix north one unit. 

As was suggested possible in [7, Sect.9], each block Gi requires only two 

instruction diagonals. In a practical normal J.lISA implementation, the generate 

and rotate sub-macros might themselves be broken down into J.ll' J.l2 2: 1 micros, 
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respectively, so that the microcode length here is given by ,\ = /1-1 + /1-2, (with 

,\ = a = /1-). For the normal/1-ISA implementation, restrictions must be placed 

in the microcode structure so that the ISA is properly simulated. In this case, it 

is sufficient that each communication register is not modified before some fixed 

microcode position (say m1), and is read by micros (at microcode positions m2 ~ 

ml) in the appropriate neighbouring cell (see Section 4.6). 

This version is a significant improvement on the period of the corresponding 

/1-ISA implementation without using such enhanced communications or timeshar

ing [7, Fig.6] which would require 11(/1-1 + /1-2) microinstructions per block. This 

is because the most powerful instruction there also involves both a sine-cosine 

generation and a rotation. 

4.5.3 Timesharing for the four output register mode 

The above algorithm assumes that the eastern output communication register 

has two banks which can be simultaneously read. In practice, such a feature 

may require aEI. undesirably high inter-cell I/O bandwidth, but can be obviated 

provided the 'CS', 'cs" 'micros' can be broken down into /1-1 :::: 2 microcycles, 

and by timesharing CE to a factor of ij + 1 = 2. While this maintains the 

microinstruction skew at /1- = /1-1 + /1-2, the microcode length is slightly increased 

to ,\ = /1- + ij. 

C' is now bound to Cb s' is bound to a fresh (non-communication) register, 

and the '~' sub-macro is redefined to be the sequence of /1-1 micros: 

~ : C' t- Cw; S' t- Cw; No_OpI'1-2 

Correspondingly, each Rand R' sub-macro must be appended with the 'overlap' 

micro to output the sine value (which enables the timesharing of CE): 

CE t- S' 

The corresponding program is given in Figure 4.7. Note that columns j < i 

execute 'NoOp's for block Gi, and are omitted from this Figure. 
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-
C~ +- S' 

~ 

R' 

S' +- CW 

CE +- S' C' +- Cw 

R' 
C~ +- S' 

}hP+l S' +- Cw 
R 

C~ +- S' C' +- Cw S' +- Cw 

R' 
C~ +- S' C' +- Cw 

.. 
l..ni R 

CS' S' +- CW 
CE +- S' C' +- Cw 

R 
l..ni 

CS 

i i+1 .. n 

Figure 4.7: Givens Rotations block Gi on a ILISA with two-way timesharing of 

eastern output register (with ILl = ILz = 2) 
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4.5.4 Timesharing for the one output register mode 

Here, the normallLISA has its single output communication register C timeshared 

by a factor of three (passing the values of (B, G', 5') on the first macro, and 

( G' , 5', A) on the second. This requires a macro overlap of Ti = 2 and a longer 

macro length of ). = (Jll + ILz + 2) + Ti· 

The program is similar to that of Figure 4.7. However, the symbolic registers 

B, A, G', BN and As are now bound to fresh non-communication registers. The 

macros of the first (second) diagonal are preceded by a micro to read the required 

value into BN (into As), and are appended with the 'overlap' micro sequence "C +

B; C +- G'; C +- 5'" ("C +- G'; C +- 5'; C +- A"). The case for the second 

macro diagonal is different because northward/westward communication must 

occur after southward/eastward communication for this style of macro structure 

(see item (a) of Section 4.6.2). 

Block Gi of the program is illustrated in Figure 4.8. Note that after a cell 

executes 'C +- B', the new B-value can be read into the southern neighbouring 

cell as it executes the' BN +- CN ' micro (at distance Jl-1 below). Similarly, after 

a cell executes the 'C +- A' micro, the new A-value is ready to be read into the 

northern neighbouring cell as it executes the (IL + l)th micro of block Gi+1 (at 

distance IL + 1 above). Providing that the first four micros of Gi+1 do not modify 

the C register (a reasonable assumption, if ILl 2: 2), the new A-value can still be 

read into the northern neighbouring cell either two or four micro cycles later, as 

it executes the 'As +- Cs' micro of Gi+1. 

4.5.5 Optimizing the period 

Equations (4.8) and (4.9) require only one sine-cosine generation per rotation. 

By not performing the northward shift in sub-macro R' , ie. by redefining: 

R! : A+--5 BN + G A 

the second sine-cosine generation of the algorithm of Section 4.5.2 can be elimi

nated, with the rows of the rotated matrix being output (lowest rows first) from 

the B registers of row n of the ISA into the southern data buffer. Here, the four 
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C-A 
C - S' 
C -C' 

R' 
l..ni 

CS' 

As - Cs 
C - S' 
C -C' 
C-B 

R 
l..ni 

CS 

BN - CN 
i 

C - S' 
C - C' 

R' 
As - Cs 
S' - Cw 
C' - Cw 
C - S' 
C - C' 

R 

i+1 

C-A 
C - S' 
C - C' 

R' 

As - Cs 
S' - Cw 
C' - Cw 

C - S' 
C - C' 

R 

S' - Cw 
C' - Cw 
BN - CN 

.. n 

A=Jl+2 

Figure 4.8: Givens Rotations block on a JlISA with three-way timesharing of the 

single output register (illustrated for Jll = Jl2 = 2) 
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output communication register mode is assumed with the symbolic A register 

being bound to a fresh non-communication register but otherwise the symbolic 

register assignments given for the ij = 1 algorithm of Section 4.5.3 hold. 

Block Gi now operates on all rows (but only rows ni to n perform useful 

rotations), relying on the fact that the (inactive) rows 1 to n-i have their A 

registers cleared by the preceding blocks. Hence, with BN for row 1 held at 0, the 

B registers for rows 1 to n-i will retain their zero values by the R instruction. 

Block Gi operates on columns i to n, as before. 

To optimize the period, ie. minimize the number of microcycles per block, 

the Gi block could consist of a macro diagonal with 'CS; R' (for column j = i) 
and '~; R' (for columns j > i) followed by a shorter macro diagonal with R" 

(for columns j ~i). The first macro diagonal is of length Al = /L + 1 with 

/L = /Ll + /L2, and the second is of length A2 = /L2. This is safe because there 

is now no communication between consecutive blocks and because the second 

macro diagonal now performs no communication. This scheme has no contraflow, 

making it easily partitionable (see 2.5.2.2) . 

Alternatively, the result matrix could be shifted upwards 'on the fly', so that 

the result matrix is left in row-major order in the /LISA after the execution of 

rotation blocks Gl to Gn (with the extra block Gn being required to perform 

the last upward shift)lo. The result matrix is stored in the symbolic register B', 

which has the binding: 

B'= C~ 

The program for block Gi is illustrated in Figure 4.8, with the rows selecting each 

sub-macro diagonal being indicated to their left. Column k of the southern data 

buffer reads Aik after cell (k, n) executes the last micro of the' R' sub-macro; this 

is read back ij > 0 microcycles later into the B' register of cell (n, k) by the 'ia,' 

micro. In cell (n - i', k), the 'TB" micro reads into B' the value of A(i-i')k from 

cell (n - i' + 1, k) (which was put there by block Gi-l). 

lOSuch 'on the fiy' shifting of nontransmittent data is required for j.lISAs using data interfaces 

proposed by Lang (see Figure 2.10). 
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B' t- Cs 
ck t- S' 

R' R 

B't- Cs 
~ 

Ck t- S' 

l..n R' R 

ni··n B' t- Cs 
~ 

Ck t- S' 

R 
l..n 

CS 

t i+1 .. n 

Figure 4.9: Optimized Givens Rotations block Gi on a norrnalllISA leaving result 

matrix in row-major order (with III = Ilz = 2) 
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4.5.6 Factoring out the sine-cosine generations 

A final variation of the Givens Rotations algorithm is to confine the expensive 

hardware to perform the sine-cosine generations to a linear array connected to 

(the western edge of) column 1 of the ISA (note that having the sine-cosine array 

connected to, as opposed to part of, column 1 of the ISA costs an extra microcycle 

in communication latency) . Thus, the program now shifts west the A-values at 

the end of each block. 

Unfortunately, this westward shifting creates a delay of 20' microcycles be

tween when cell (i ,j) produces its own A-value and when it receives the A-value 

from its eastern neighbour. For the normal /-LISA implementations, 0' ~ /-Ll + /-L2, 

making this delay large. 

However, all variations on the Givens Rotations algorithm can be implemented 

on a (/-L,1) wavefront /-LISA (with slightly lower period). This /-LISA could then 

implement the westward shift with only a 20' = 2 micro cycle delay. 

Alternatively, a normal /-LISA using data interleaving could efficiently imple

ment this westward shift. In this case, the /-LISA would execute each block Gi 

on two independent matrices in turn, with the first matrix's A-value being read 

from the east after Gi is executed on the second. 

4.6 Simulating an arbitrary instruction granu-

larity ISA 

One of the main applications of a (normal) /-LISA (of modest microinstruction 

granularity) is its area-time efficient and flexible simulation of an ISA of high 

instruction granularity, or, in more general terms, supporting a macro-level wave

front programming model. The implementation of Section 4.3 is too general to 

support this directly: it is more efficient to implement the extra contraints re

quired in software rather than hardware. 

Section 4.6.1 gives constraints on the structure of macros used to efficiently 

simulate, ie. emulate, IS As in this sense. Based on these rules, Section 4.6.2 pro

poses a macro structure using an appropriate choice of the microcode skew and 
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macro overlap to emulate high instruction granularity. While such a structure 

is not always optimal (although generally, it is close to being optimal), such a 

discipline makes the J.LISA significantly simpler to program. It is also easy to 

efficiently emulate more powerful topologies such as hex-connected IS As on the 

J.LISA. Such macro structures have been used in the normal J.LISA programs pre

sented already in this chapterj a final example, a variation on the Dynamic Time 

Warping algorithm, is derived using this macro structure (Section 4.6.3). More 

powerful extensions for this macro structure, using enhanced communication reg

ister nodes and data delay queues, are outlined in Section 4.6.4. 

While this section is not required for the reading for the rest of this the

sis, an intuitive understanding of it is helpful in understanding the timing and 

programming of the J.LISA. 

4.6.1 Constraints on the macros' internal structure 

Consider the sequence of (macro) diagonals (of lengths A", A' and A respectively): 

D"j D'j D 

passing through a (normal microprogrammed) ISA, with a particular value v to 

be read (between micro positions TI and TI, with 1 ~ TI ~ TI ~ A) by D. 

If v is read from the west or north [south or east] neighbouring cell, it must 

reside in the communication register of that cell as it executes D [D"] (during 

micro positions WI to WI, where 1 ~ WI ~ A [wj to wV, where 1 ~ wj ~ A"]). 

Now (WI + 1) [wi' + 1] corresponds to the position of the first micro that overwrites 

this communicClition register; thus WI > A [wi' > A"] is possible. 

Using the microprogramming timing rules (Section 4.4.2), the required con

straints on T I and TI for v to be read are given by, for reading from the north/west 

and south/east directions respectively: 

WI - J.L + 1 ~ T I ~ TI ~ WI - J.L + 1 

J.L + 1 - (A' + A" - w'f) ~ T I ~ TI ~ J.L + 1 - (A' + A" - W;') 

(4.10) 

(4.11) 

A useful special case of these rules, adopted in the J.LISA programs presented 

here, is when v is read once only (ie. TI = T I)' 
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Example: correctness of the microprogrammed transitive closure program. 

For program TransClos, (see Section 3.5.2 and Figure 3.5(a)), no com

munication registers are timeshared (). = 1-'). 

Here, all macros are constructed so that the value of Cg (CE) is read 

at a fixed micro position rf = 1 (rf = 2); this value is not overwitten 

until the micro at position wi = 1 (wi = 2) in the next macro is 

executed. Now, by the definition of WI, WI - ). + 1 = wi, and rl = r f :::; 

wi and hence the inequality: 

rl:::; WI-I-' + 1 

of equation (4.10) holds. Note that the constraint Wf - I-' + 1 :::; rf 

automatically holds for)' = 1-', since here 1 :::; rl, wf :::; 1-'. 

This demonstrates that the macro structure of the TransClos program 

correctly emulates the corresponding ISA program implementing each 

macro as a single instruction. 

With the leftmost two inequalities of equations (4.10,4.11) reduced to equalities, 

the macro structure allowing timesharing is proposed in the following section. 

4.6.2 A macro structure to emulate high instruction gran

ularity 

This section considers the normal I-'ISA emulation of an ISA program in which 

(1/ = if + 1) values are communicated during a single instruction. This can be 

achieved by using a disciplined macro structure, which usually gives a solution 

close to the optimal period. This structure makes use of the macro overlap 

parameter if, with arbitrary computation granularity achieved by the parameter 

fL. Consider again the macro sequence 'D"; D'; D' of Section 4.6.1. The macro 

structure (for D) is given by the micro sequence: 
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with), = p. + r; and p. = TJ + c + 1. The values VI,.'" V'l are placed in the 

communication registers by micros WIt ... , W'l; these values can be read in only 

by the Rl" .. '~ microsll. 

If reading from the south or east is used, it is also required that R1 , ••• , ~ 

do not modify any communication register read in by a north or west cell (so 

as not to overwrite a value placed there by the previous macro). Otherwise, 

it is possible to allow an optimization with c < 0: this means that the last 

(-c) R-micros coincide with the first (-c) W-micros (and hence are of the form: 

"communication register" +- f("input register") - see the first example below). 

Examples . 

• The LCS program (see Section 4.2.1) can be implemented on a normal p.ISA 

with the slightly longer macro length), = p.+2 = 5. Here TJ = 2 and c = -1, 

and the macro (using the four output communication register mode for the 

sake of clarity) has the structure: 

R1 ; R2 = A +- A * CN; A+- max(A, CN) 

R3/W1 = C~ +- Cw 

W 2 ; W3 = C~, A +- max(A, C~); C~ +- A 

This macro structure is shown in Figure 4.10(c). 

• For the transitive closure program of Section 4.2.2, ). = p. + 1 = 6, TJ = 2 

and c = 2. Here, the macro l' has the structure: 

c1 ; C2 = C +- C 1\ A' j C +- C V A 

W1 jW2 = C +- A"; C +- A 

and similarly for the macro I. A similar macro structure is shown in Figure 

4.10(a). 

llNorthward or westward communication occurs over two macros; in this case, a macro may 

have a different number of read/write macros. For simplicity, the above macro structure assumes 

otherwise; however, these ideas can be easily extended to cover this case. 
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• The Givens rotation program of Figure 4.8 uses Tf = 3 and c = f.Ll - 2 + f.Lz. 

The first macro of block Gi on columns j > i has the structure: 

RI ;Rz;R3 = BN +- CN; C' +- Cw; S' +- Cw 

Cl;"';Cc = (NOOp)I'I-Z; R 

WI; Wz; W3 = C +- B; C +- C'; C +- S' 

Various cases for this macro structure are illustrated in Figure 4.10. This 

structure is particularly suited to reading several values from the north or west , 

since it is assured that for each value Tl = TI = WI - f.L + 1 (cf. equation (4.10)). 

For reading from the south or east, timeharing occurs less often in practice. Two 

cases must then be considered: 

( a) no timesharing of the northward or westward communication registers (d. 

Figure 4.10(a,c)). In this case, the preceding macro D' can have the usual 

length of )..' = '\, providing its first Tf (read) micros do not overwrite the 

north or east communication registers. This means that wi' ~ '\" + Tf, 

allowing (cf. equation (4.11)): 

and hence in this case, the value communicated north should be read by 

either Rl or Rz and be written on the last micro of D". 

(b) timesharing of northward or eastward communication registers. Here, the 

preceding macro D' is shortened and hence cannot read from the north or 

west (in practice, D' is often a 'NoOp' or it performs no communication; 

see Figure 4.10(b)). Setting TI to be the corresponding macro read position 

for w" ie. T I = Tf - ('\" - w'j) + 1, and WI' = w'j, equation (4.11) requires ,\' 

to be: 

,\' = f.L - Tf = C + 1 

It can be seen from Figure 4.10( a,b) how a hex-connected ISA can be emulated 

using timesharing techniques with Tf = 2. 

A methodology for using the f.L1SA to emulate an ISA of arbitrary instruction 

granularity is then: 
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W2 

J 
WI 
CI W2 

J I .... R2 WI 
W2 

, 
RI CI I .... 

WI W' ~ R2 2 

CI W' W2 lL RI I 

R2 C' 1 WI C' 1 
r- RI .... ~ CI q 

W~ R~ r- R2 ..... C~ 
W' W" - RI ..... W" 1 2 2 
C' 1 W" 1 C' 1 W" 1 
~ C~' C~ C" 1 

'-- ~ E; C~ E; 
W" 2 R~ r W" 2 Rl 
W" 1 '-- W" 1 

Cr C~' 
E; E; 
R~ R~ 

(a) reading from NjW with TJ = 2, c =-1 (b) reading from S jE with TJ = 2, c = 1 

W~' -

w~' 1-

...,R3/W{' 1-
W,,'/ R" 1_ 

3 ./ 2 1-

W,,'/ R" --
2 /' 1 

(c) reading from NjW with TJ = 2,c = 1 

Figure 4.10: Macro structure for ISA emulation using timeharing 
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1. write the ISA program, assuming arbitrary instruction granularity. 

2. independently translate the ISA diagonals into macros (in terms of a 

fixed J.LISA microinstruction set) in the above format. From the largest 

macro, determine the value of J.L for the program. 

3. using this value of J.L, 'pad' the macros (if necessary), so that a macro 

communicating 1] values (to the south or east) will have length ). = 
J.L + 1] - 1. Macros performing no communication can be of any length 

unless preceding a macro reading several values from the south or east. 

These last two steps are amenable to automation, and hence this technique can 

help in programming for the ISA model by abstracting from its instruction set. 

While some padding (with 'NoOp's) is required, this is still more area-time effi

cient than designing ISA cells with various large and complex instructions which 

are only used a small fraction of the time. 

4.6.3 Microprogrammed Dynamic Time Warping 

The macro structure of 4.6.2 is now applied to a two-dimensional systolic im

plementation of the Dynamic Time Warping problem with local continuity con

straints [26, pp583-584J. This problem is in the same class as the LCS problem 

of Section 4.2.1; however, it requires a much higher instruction granularity. 

This problem uses the m x n match matrix M (produced by a cartesian 

product of element-wise matches from two test patterns of lengths m and n) and 

the integer weights WI, ... , Ws. It can be formulated as finding JIII:n,n where for 

-1 ::; i ::; m and -1 ::; j ::; n: 

{ 

0 

M~ · = 
'J min { 

if i ::; 0 or j ::; 0 

otherwise 

While this problem appears to require a 'super hex'-connected ISA, it can easily 

be implemented on a rectangular mesh ISA having three communication registers 

(denoted C, W and NW) and internal registers A, NNW, and NWW (initialized 

to w3J11Ii ,i> wIMi_I ,j+W2A1i,i and W4Mi,i-1 +WSMi,i respectively). The instruction 
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performing this computation of Mid in cell (i,j) is then given by: 

W +- Cw; 

NW +- WN ; 

C, A +- min{NWN + NNW, WN + A, NWw + NWW} 

This can be emulated on an m X n normal J.LISA (with J.L = 5) using a macro 

diagonal of length ,X = 8 and macro overlap r; = 3. Here, the registers W and 

NW are now internal registers, with C remaining a communication register. A 

timesharing factor of r; + 1 = 4 arises since the values M[-z,i-l' MLl ,i-z, .1'11L i,i-1 

and M[,i-l must be read into registers NNW, NWW, NW and W respectively. 

The program's macro diagonal is given in Figure 4.11 (all selectors are l's). 

The macro structure is a special case of the c = 0 structure: 

with WI and Wz only modifying register A, and leaving Mi-I,i-I in the C register 

(set there by micro R3 ) to be read by the south and east cells during micros RI 

and Rz respectively (see Figure 4.11). Note also that R3 reads the value of the 

C register of the north neighbour, which was set there by W3 • 

A similar macro can be used to set up Mi,i, Mi-1,i and Mi,i-I in cell (i,j): 

this also requires the communication of four values. A non-communicating macro 

(of unrestricted length) would then be required to initialize NNW, NNW and A. 

It remains to be said that a preliminary (,X = 12) solution was derived at once 

(by the author) from applying the macro structure of Section 4.6.2. A principle 

of ordering micros used was that the values of most distant origin should be read 

in first. From this, some optimizations were easily applied. As a comparison, the 

much simpler LCS program of Section 4.2.1 was derived in much longer time (by 

the author), without using this technique of macro structuring. 

4.6.4 Extensions for the microprogrammed emulation of 

ISAs 

So far, techniques for implementing communication register timing on the J.LISA 

have assumed a BISA-like instruction set and communication register modes. 
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C,A f- min(A,NWW) 

Cf-W -

A f- min(A, NNW) 

Af-A+NW -

Wf-Cw 
.-________ ~I/----------------

7 

C,A f- min(A, NWW) 

C f- W NWW f- NWW + Cw __________ /v _________ _ 
A f- min(A,NNW) NNW f- NNW + CN -

A f- A+NW 

Wf-CW 

C,NW f- CN 

NWW f- NWW + Cw 

NNW f- NNW + CN 

Figure 4.11: Dynamic Time Warping program on a normal ILlS A using a single 

output register C, with ,\ = 8, IL = 5 and fj = 3 
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This has resulted in the value 1] being associated with the number of values read 

in per macro rather than the timesharing factor of communication registers (these 

coincide for the one output register mode). Also, it results usually in a small loss 

in efficiency in shuffiing data in and out of communication registers. The macro 

structure of Section 4.6.2 permits easy timesharing for data flowing southwards 

and eastwards, but is not so convenient for data flowing in the other direction. 

This section outlines how the JLISA can be extended to overcome these problems. 

These extensions were not developed earlier in this chapter since they require a 

further departure from standard ISA concepts and extra control structures for 

their implementation. 

A way to associate 1] = fj + 1 with communication register timesharing is to 

use (for the four output register mode) output communication registers comprised 

of several (ie. 1]) banks of data words - however, on the JLISA, only one bank of 

these can be communicated per microcycle. While the macro structure is still of 

the form (with A = JL + fj): 

R . . Tl • C . . C . W . . TXT 1,···,-,"'1' 1, · · · , c, 1,···,VY1) 

the 'Rl""'~' micros would each latch the values of the surrounding neighbours' 

communication registers into respective banks of local registers. The' WI, ... , W1)' 

micros would each update (a member of a) particular bank of output registers: 

this would make available that bank (for all output registers) to be read by the 

neighbouring cells. 

The JLISA also uses variable length delay queues for control information. By 

also delaying the data flowing in the northward and eastward directions by a 

(variable) factor of 1], the above macro structure allows the timesharing for data 

flowing in any direction. This will yield a cleaner and more powerful programming 

methodology for the ISA model using the JLISA. 

4.7 Conclusions 

The ISA is a considerable improvement in terms of flexibility over the systolic 

array model, but still lacks flexibitity in applications using nontransmittent data 
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which may require high instruction granularity. This can be solved by using 

the dynamic form of vertical microprogramming proposed in this chapter. The 

dynamic aspect gives the /-LISA great flexibility, in that tailor-made, optimized mi

crocodes can be chosen for each individual program. Vertical microprogramming 

is suitable because it is the simplest and most area-efficient method of micro

programming. While retaining the advantages of traditional microprogramming, 

the microprogrammed ISA has the extra advantages of increasing the effective 

instruction granularity (and hence the power) of the ISA and of achieving a con

stant program compression rate (the program compression aspects were mainly 

discussed in Chapter 3 - it is noted again here that for moderate to large array 

sizes, more powerful methods of ISA program compression exist). 

These two extra advantages are implemented respectively by two independent 

control structures, being the instruction/selector queues and decode tables. The 

decode tables themselves can reduce pin count, and this saving could easily offset 

the area that they consume. The queues, provided the wavefront parameters have 

a constant upper bound, can be designed to be small in area relative to ISA cell 

size. This area can also be easily offset against the extra control logic and routing, 

not to mention design costs, that an ISA would otherwise require to implement 

coarse granularity instructions directly. This results in the (micro )instruction set 

and overall cell area being kept small, thus improving the array's area-period per

formance (1/0 limitations permitting), especially for applications requiring only 

simple instructions. In summary, the control structure overhead of microprogram

ming can be easily justified if applications requiring high instruction granularity 

are used. 

The /-LISA can be regarded as a new model of mesh, and has been shown to be 

more powerful than the ISA (and hence the SIMD mesh). Here, 'more powerful' 

means that an arbitrary ISA program can be transformed into an equivalent /-LISA 

program whose period is of the same order. Similar observations were shown 

to apply for the normal /-LISA simulating a normal /-LISA program of smaller 

wavefront parameters. These transformations also have practical significance in 

that for short programs, applying these transformations can be more efficient than 
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changing the wavefront parameters (incurring a small O(n) delay) and executing 

the original program directly. 

However, the main application of the j.tISA is as an emulator of arbitrary 

instruction granularity ISAs, ie. supporting a macro-level wavefront program

ming modeL For this purpose, the j.tISA is restricted to the normal j.tISA, using 

the macro structure discipline of Section 4.6, which has been demonstrated to 

give efficient implementations of algebraic path algorithms based on the Kung

Gubias-Thompson systolic transitive closure algorithm, Dynamic Time Warping 

algorithms, and matr,ix QR factorization algorithms. On an ISA lacking the 

powerful and specialized instructions required, these algorithms become more 

complicated and longer, if they can be efficiently implemented at all. There is 

then considerable scope for worthwhile application of the j.tISA. 

This macro structure discipline permits the timesharing of communication 

registers (and hence abstraction from the communication part of instruction gran

ularity). This discipline is well developed for data flowing in the south and east 

directions; however, its development (possibly requiring extra control structure 

support) for data flowing in the opposite direction"!> is an issue for future research. 

From this discipline, a methodology for macro-level programming of the ISA is 

outlined - this involves deriving the program for an ISA program of ideal in

struction granularity, and then using this discipline to derive the macro structure 

for a fixed microinstruction set j.tISA. The first of these stages especially is an 

issue for future research. 

However, non-normal j.tISA implementations, with more freedom in their 

macro structure, may yield a slightly more efficient solution. This represents 

a tradeoff between programming efficiency and programming effort. 

A direction for future work on the j.tISA is to investigate the use of data delay 

queues. Such queues are already used in systolic architectures such as the eMU 

Warp Processor [1, pp1524-1525]' and are expected to improve the power and 

flexibility of the j.tISA modeL They also should simplify the emulation of the ISA 

when efficient timesharing of data flowing north and west is required: here the 

macro overlap parameter TJ would give the lengths of the northward and westward 
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data queues. 

Another direction for future research is to extend the /LISA concepts, partic

ularly the macro structure of Section 4.6, to more general meshes capable of sup

porting the macro-level wavefront programming model, such as Processor Arrays. 

This is partially examined in Chapter 7. Since an orthogonally-connected /LISA 

has been shown to efficiently simulate programs using more general topologiesI2 

(on the macro level), it can be concluded that a general-purpose mesh should 

use (wavefront) microprogramming techniques on a basic orthogonal-connection 

topology to simulate more powerful (and expensive but only occasionally used) 

topologies. 

The microprogrammed ISA is an extension to the ISA which increases the 

ISA's relative merit over SIMD meshes. It can be seen as a further step towards 

making the ISA model suitable for large-scale, general-purpose matrix compu

tations. However, for this purpose, it also is necessary to implement 'optimal' 

(wavefront-based) program compression methods on the /LISA - this is the con

cern of the next chapter. 

4.A Appendix: Variable length microinstruc-

tion queues for VLSI 

A variable length queue design, suitable for efficient VLSI implementation, is 

proposed here. This design is suitable for moderate ranges of /L and a, ie. 1 ::; /L , a 

::; 10 (this would be sufficient to make a ten-fold increase in the /LISA's effective 

instructional power). This design consists of a shift register (each cell consisting 

of a pair of gated inverters), as is shown in Figure 4.12. The half cells, HI and 

H2 ensure that the minimum delay through the whole structure is 1 micro cycle. 

To decrement the queue length, the gates of the lowest 'unopened' cell (Q4 in 

Figure 4.12) are opened; and conversely to increment the queue length. This is 

implemented by a I -bit stack adjoining the queue: a '1' in a stack cell 'opens' the 

adjoining queue cell. Thus a queue decrement corresponds to a pop on the stack 

12eg. hex-connected arrays, in the case of Dynamic Time Warping algorithms. 
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Stack 

o -[2J-[2J-[2J-[2J-CD-CD-CD-CD-CD ! - ! - ! - ! - ! - ! - ! - ! - ! -1 

Queue 

Figure 4.12: Variable length queue corresponding to p, (0") = 4 + 1 = 5 

(with a '1' underflow); and conversely for queue increments. 

The delay 8T through a series of 8 such cells cannot be ignored. For nMOS 

technology, using minimum size (8:1) inverters, and an estimated stray capaci

tance ratio13 of 1.5, T ~ 1.5(1 + 8 + 1 + l)r = 16.5r [40, ppl0-12J, where r is the 

minimum sized switch delay. Since the arrangement of Figure 4.12 requires the 

delay 8T to be within a half microcycle, which could be as low as 100r for a fast 

p,ISA, the maximum value of 8 would be 6, short of the target of 9. This could 

be rectified by moving the half-cell H2 to below the cell Q3. 

Providing the queue could be overlaid onto the passive instruction (selector) 

path through a p,ISA cell, it would add negligible area to the layout. The main 

increase in area would be due to the stack, but this would still be much less than 

a full decode table. Hence, provided large values of p, (0") are not required, this 

implementation of variable length queues for microprogramming requires only a 

small hardware overhead. 

l3The ratio is low, since the cells can be put very close together 
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Chapter 5 

Program Compression by ISA 

Diagonals 

5.1 Introduction 

Motivations to compress ISA programs include reduction of the critical host to 

ISA input bandwidth and overall reduction in the ISA system hardware [53J (see 

Section 3.3). These factors are particularly important for large IS As composed 

of fine- to medium-grained cells. Chapter 3 discussed the SISA method of ISA 

program compression [31 J, which has a very simple implementation but achieves 

only a constant factor of program compression and reduces the flexibility of the 

ISA. Other methods, such as ISAC, can 'optimally' compress essentially all ISA 

programs. ISAC can achieve this performance of compression since it exploits 

the few different types of regularities found in ISA program matrices. ISAC has 

a drawback, however, in that it requires O( n log n) area control structures for its 

implementation. 

The ISA is an architecture suited to performing computations expressed as 

sequences of diagonals or wavefronts. For such computations, the diagonal is an 

appropriate 'semantic unit' (see Chapter 6) for a high-level ISA language. The 

Subroutining program compression method of Section 3.6 gives such a language 

(similar to the ISA language proposed by Lang [35, ChAD, having an 'optimal' 

program compression rate and showing potential for a very efficient implemen-
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tation. Also, the advantages of microprogramming the ISA, as demonstrated 

in Chapter 4, make it essential that the easy compatability of this implemen

tation with ISA microprogramming be developed. However, still in question is 

the flexibility of this language in terms of on which ISA programs it can effi

ciently implement program compression. This chapter investigates the issues of 

the implementation and flexibility of the Subroutining method, choosing a more 

primitive representation of Subroutining that is convenient for discussing program 

compression concepts. 

The [SA Diagonal Language (ISADL) introduced here is a low-level, diagonal

based ISA language. Its constructs are equivalent to the lower-level constructs 

of Subroutining, so that all program compression properties of ISADL carryover 

to Subroutining. A subset of ISADL, sufficient to implement 'optimal' program 

compression for most ISA programs (of our experience), has an implementation 

'factoring out' much of ISAC's control structures. ISADL is then proposed here as 

a practical compromise between the SISA and ISAC concepts, in which the range 

of algorithms intended to be run on a particular ISA determines the control struc

ture overhead. Hence, in this chapter, elegance is sacrificed for implementation 

efficiency and more attention to detail is given. 

The concept of ISADL is based on an observation similar to that motivating 

the SISA: that the diagonals of ISA programs have a surprisingly simple structure. 

Two approaches for implementing ISADL arise: 

• pass sufficient information across the diagonal restorer to completely con

struct each diagonal as it enters the ISA (cf. the SISA). This has the advan

tage of requiring very little storage and being very powerful, at the expense 

of a high I/O bandwidth (ie. several instructions and log n-bit integers would 

need to be processed and passed for the more complex diagonals) . 

• load the (few) diagonal (pattern)s for an O(n) subprogram into the diago

nal restorer before use, and then perform (systolic) operations on these to 

restore the diagonals as they are sent to the ISA. This has the advantages 

of reducing the I/O bandwidth and simplifying the logic of the diagonal 

restorer, at the expense of extra storage. 
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Thus, a tradeoff a.rises between the internal storage a.nd I/O bandwidth of a.n 

ISADL implementation. For simplicity, ISADL is formulated favouring higher 

internal storage, and modifications a.re then given to reduce this at the expense 

of extra I/O bandwidth. 

Some simple exa.mples of ISADL progra.ms are given later in this section. 

Section 5.2 gives a formal definition of ISADL, in terms of the ISA program 

matrices that it represents. A sub-language of ISADL, having an efficient pro

gram compression implementation, is defined in Section 5.2.1. Section 5.3 gives 

a.n overview of the control structures required to implement progra.m compres

sion for this sub-Ia.nguage. These control structures a.re broken down into two 

components: a.n O(log n) a.rea diagonal sequencer, a.nd a.n O( n) a.rea linea.r (in

struction systolic) a.rray called the diagonal restorer. This allows more general 

ISADL progra.ms, microprogramming a.nd subroutines to be easily incorporated 

(Section 5.4) , as well as easy ISA expa.ndability. Section 5.4.1.3 also discusses 

how ISADL programs that a.re difficult to implement program compression on 

can be recoded, or replaced by. equivalent progra.ms. Thus, Sections 5.3 a.nd 5.4 

combined describe how ISADL prograJiIl compression ca.n be made practical. The 

success of this is evaluated in Section 5.5, which estimates the ha.rdwa.re overhead 

a.nd progra.m loading performa.nce of ISADL for a typical ra.nge of ISA programs. 

The compression rate of ISADL is 'optimal' , being essentially the sa.me as that 

of the Subroutining progra.m compression method (see Table 3.1) , and need not 

be further discussed in this chapter. Conclusions a.re given in Section 5.5.3. 

This chapter's contribution is to develop, in considerable deta.il, 'optimal' pro

gra.m compression for diagonal-based ISA la.nguages, so that their implementation 

will be highly beneficial a.nd in every way feasible for a moderate to large-scale 

ISA system. If the reader is already convinced that this is possible, this chapter 

need not be read in detail. An understa.nding of the basic concepts and expression 

of ISADL (from this section) will also be useful, but not essential, for the read

ing of Chapter 6, in which proof methods for diagonal-based ISA languages are 

presented. The basic implementation concepts of ISADL (from Section 5.2.1) are 

briefly considered for the implementation of progra.m compression for processor 
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arrays in Chapter 7. 

Examples of ISADL encodings 

The basic concepts and features of ISADL are illustrated here. The Load

MatD program! of Figure 5.1(a) loads an n X n matrix from the west data buffer 

into the respective C registers of the ISA. The instruction part of the program 

consists of 2n diagonals, the odd ones containing both '-t' and 'NoOp' (0) in

structions. These are separated by a boundary, initially at column n, which shifts 

left between successive iterations. In ISADL, an instruction repeated across suc

cessive columns in a diagonal need only be specified by the positions of its (left 

and right) boundaries and the instruction itself. This provides horizontal program 

compression, and leads to the encoding of Figure 5.1(b). Note that the bottom 

diagonal has a 'NoOp' (0) sub-diagonal whose left and right boundaries are equal, 

in this case signifying that there are 4 - 4 = 0 repetitions of the '0' instruction 

ending at column 4. This is done so that this sequence of (8) diagonals can be 

easily expressed as repetitions of a small sequence of (2) 'generalized' diagonals, 

as shown in Figure 5.1(c). This provides vertical program compression. The pas

sive (even) diagonals are required for the implementation of ISADL, as discussed 

in Section 5.3. The ISADL encoding of the general LoadMat program is given in 

Figure 5.1(d). 

For the sake of conciseness, the notations x' = x + 1 and x = x-I are used 

in this chapter. 

TransClos, a pass of the microprogrammed implementation of the Kung

Gubias-Thompson transitive closure algorithm of Section 3.5.2, has a similar 

encoding. Its instruction matrix resembles a skewed identity matrix, and can 

also be regarded as n iterations of a diagonal in which the boundaries between 

the I and I' macros shift right one unit each iteration (the boundaries at the kth 

iteration are at k-l and k, for 1 ~ k ~ n). Here, the leftmost sub-diagonal has an 

implicit left boundary of O. The instruction matrix and the ISADL representation 

are given in Figure 5.2. 

lef. the program LoadMat of Section 3.7.1. 
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f- 31 0 4 
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( a) matrix for a 4 X 4 ISA (b) ISADL encoding of matrix, n = 4 

(I f-

o 

4 k 1 0 

: I) k=1..4 : I) k=1..n 

(c) introducing iteration, for n = 4 (d) general ISADL encoding 

Figure 5.1: LoadMatD program, instruction part (selectors are 'l's) 
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I I' I 

I I I I 

I I' I 

I I --
I' -

(a) matrix for a 4 X 4ISA 

I I k I I' k I I 4 I k=1..4 

( c) introducing iteration, n = 4 

I 3 I' 4- I 4 

I 2 I' 3 I 4 

I 1 I' 2 I 4 

I 0 I' 1 I 4 

(b) ISADL representation of matrix, 

n=4 

I I k I I' k I I n I k=1..n 

(d) general ISADL encoding 

Figure 5.2: TransClos program, instruction part (selectors are similar) 

The Row Rev program of Section 3.7.1 uses a divide-and-conquer strategy2 for 

reversing the rows of a matrix stored in the C registers of an n X n ISA, where n 

is a power of 2. The program uses a sub-program, RotHd, which swaps adjacent 

blocks of width ~ by using ~ horizontal ringshifts over a distance of d. This 

accomplishes a row reversal when repeated for d = 2,4, ... , n. This results in a 

surprisingly efficient algorithm to reverse the rows of a matrix, and is expressed 

in ISADL as: 

introducing a generalization of the repetition construct. The RotHd sub-program 

consists of two diagonals, which have boundaries that do not shift and a basic 

pattern of recurrence width d, repeated across the n columns of the ISA (it is 

assumed here that d divides n). Its instruction matrix and ISADL encodings are 

illustrated in Figure 5.3. Note that ( ... Y is a shorthand for ( ... )1=1..~, emphasiz

ing that the diagonals' boundaries are not shifted between iterations. 

2This is also used in ISA implementations of sorting [46, 51]. 
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(a) matrix, for an 8 x 8 ISA, d = 4 

+- 3 0 4 

o 1 -4 4 

+- 3 0 4 

o 1 -4 4 

(b) ISADL encoding of matrix, d = 4 
and implicitly n = 8. 

( c) general ISAD L encoding 

Figure 5.3: RotHd program, instruction part (selectors are ' l 's) 

5.2 Definition of ISADL 

This section gives a formal definition of ISADL for an n x n ISA, which not only 

defines the language in terms of the ISA program matrices that it represents , but 

also provides a specification of its implementation of Section 5.3. This section 

also introduces the main concepts of ISADL that are required for its efficient 

implementation. In particular, the description of an ISADL program can be 

broken down into two largely orthogonal concerns: a description of the sequence 

of diagonals (cf. the diagonal sequencer) and a description of the details of each 

diagonal (cf. the diagonal restorer) . 

In this section, the following notation is used. N denotes the set of natural 

numbers, with m , n E N. The set of total mappings from a set N to the set X is 

denoted N -4 X. Thus, x...s E (1..n -4 X) is a sequence of n elements of X and 

could represent a linear array, whereas ME (1..m -4 (1..n -4 X)) could represent 

an m x n matrix. <> denotes the empty sequence, < x > denotes a unit sequence, 

and x_sn denotes a sequence composed of n repetitions of the sequence x...s. For 

x...s , x...s' E (l..n -4 X) and i E l..n, 'x...s x...s" denotes x...s concatenated with x...s' 

and ;Z;...s[iJ is an alternative notation for x...s(i) , emphasizing x...s is interpreted as 

an array. The set of all strings over a set D_s is denoted D_s", with to denoting 
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the empty string. I is the set of ISA instructions [or selectors]. 

The formal definition of ISADL can now be given. Let d....s(k), d....s' denote 

ISADL encodings (possibly depending on some integer k), let a, bEN such that 

a ~ b, let D represent a single ISADL diagonal, and let 'i' represent tabular 

concatenation. The ISA instruction [selector] matrix corresponding to an ISADL 

encoding d....s is given by mat~en(d~), where: 

mat~en(€) = <> 

mat~en(d....s(k)k=a .. bi d....s') = mat~en(d....s(a)i . . . i d....s(b)i d....s') 

mat~en(Di d....s') = < diag~eq(D, n) > maLgen(d~) (5.1) 

Given that i E I, n' E Ln, (nl"'" n/) are integer expressions whose values 

satisfy 0 = no ~ nl ~ n2 ~ ... ~ n/ ~ w ~ n where n/ divides w, Dl"'" D/ are 

ISADL (sub-) diagonals, ISADL diagonals reduce to sequences of n instructions 

[selectors] as is given by: 

diag~eq(i, w) = < i >tu 

diag~eq(1 Dl nl I ... I D/ n/ ~ w) = (diag~eq( D l , nl - no) 

... diag~eq(D/, n/ - nJ_l))tu/nl (5.2) 

Equation (5.2) converts ISADL diagonals into a similar form to that used by the 

Subroutining program compression method. Example: referring to Figure 5.3(b), 

diag~eq( 10 1 l-t 4 1,8) = « 0 > «-t> )3)8/4 = < 0 -t-t-t 0 -t-t-t> 

These equations also give implicitly the allowed syntax of ISADL. Since these 

equations are reasonably simple, the examples of Section 5.1 are deemed to pro

vide adequate illustration. Note that for the first iteration of the diagonal of 

program TransClos, nl = 0, so here no I instruction appears to the left of the 

1'instruction. Apart from a few similar cases, diagonals whose boundaries 'cross 

over' (see section 5.2.1) are best excluded from ISADL programs. The recurrence 

width n/ (and hence the array size n) is required to be a power of 2. 

An arbitrary m x n matrix can be encoded using the tabular form of ISADL, 

with at most n entries in each row, and at most m different rows. In practice, these 

encodings can be represented in a constant space, due to natural redundancies in 

ISA program matrices. 
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5.2.1 Constraints on ISADL for efficient program com-
. 

preSSIon 

A restricted but reasonably powerful subset of ISADL is now described that has 

an efficient hardware implementation, the chief components being the diagonal 

sequencer and restorer (see Figure 5.4). The restrictions here make it possible to 

form the (k + 1 )th iteration of a ISADL diagonal from a simple systolic operation 

on its kth iteration. For this, it is sufficient that the diagonal restorer, on the 

kth iteration of a diagonal, stores the diagonal's current instruction sequence (in 

linear array form), with the elements to be updated for the (k + 1)th iteration 

being appropriately marked. An updated element derives its value from its im

mediate left or right neighbouring element. This enables an extremely efficient 

and scalable implementation which also forms the basis of the extended versions 

of Section 5.4. 

Consider the ISADL iteration ( ... D( k) ... )k=1..d. To allow the easy systolic 

construction of D(k + 1) from D(k), where the diagonal D(k) has boundary 

expressions dependent on k, D(k) must satisfy the following constraints: 

1. D( k) is enclosed by no other iterations. 

2. boundary expressions in D(k) are of the forms c, s - k or a + k, where 

c, s, a are expressions independent of k. Note that for 

D(k) = I .. · I D' $-k I ... I 

any boundary expressions inside D' implicitly inherits the '-k' term 

from the s - k boundary (Clind similarly for the a + k boundary. See 

equation (5.2)). 

3. if D(k) has boundary expressions of the form s - k, the corresponding 

loop must contain at least two diagonals3
• 

For this ISADL iteration to be considered 'well formed', it is also required that 

the boundary expressions of D(k) do not 'cross over' for any k E l..d. ie. the 

3cf. the LoadMatD program of Section 5.1. 
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sets {e}, (a + La + d) and (8 - d .. s - 1) are pairwise disjoint. Exceptions are 

permitted for the sake of convenience for e = nl = s - 1 [c = 1 = a + 1], 

where nl has its meaning as in equation (5.2), ego programs LoadMatD with 

c = n [TransClos with c = 1} and RotH~ with c = nl = 2d. In these cases, 

the instruction 'hidden' by boundary 'cross overs' on the first iteration must be 

available from the immediate right Ueft}. In practice, other cases can be avoided 

by substituting equivalent loops. 

The initial value D(1) of the diagonal D( k) is loaded into the diagonal restorer, 

with instructions on the boundaries being augmented with an appropriate '+' 
and/or '-' marker4. The restorer's boundaries (Oth and n + lth elements) are 

given respectively by the instructions of the 1st and nth instructions D(2) -

these are required if a + 1 = 1 or s - 1 = n. 

Each diagonal is given an index in the range LNd, Nd > O. The respective 

sequences of diagonal indices to be produced (which may be augmented by extra 

information) is determined by the diagonal sequencer, which traverses a table 

storing the run-length encoding of the required sequences of diagonal indices and 

lookup tables. A visualization of these components for the program RotH4 (cf. 

Figure 5.3) on an 8 x 8 ISA is given in Figure 5.4. 

(a) diagonal sequencer 

2: 
1 : I~I:I:I:I~I:I:I:I 

1 n 

(b) diagonal restorer 

Figure 5.4: Implementation (initial state) for RotH4 on 8 x 8 ISA 

The diagonal sequencer's state is d....s E D_s*, where D_s = l..Nd • The current 

<lIn a few cases, both may be required. ego by the above rule, for the diagonal: 

D(k) = I ... .-k II i l 1 I i2 2 I .+k I .. ·1 
the instruction at the 8 - 1 boundary is marked '-' (to copy i l left upon each iteration of k) 

and those at the s - 1 + 1 and s - 1 + 2 boundaries are marked '+' (to copy i l and i2 right). In 

this case, however, the rule must be extended so that the instruction at the s - 1 + 1 boundary 

is also marked '-', (to copy i2 left), cf. the triangle merger program of Appendix 5.B.2. 

164 



I 

I 

... 

state of the diagonal restorer is dJ E (O .. Nd - (l..n + 1 - D_r)), where D_r = 
Ix P( {+, -}). The (i,j)th element of the instruction (selector) matrix produced 

by the combined states (d-s, d_r) is given by: 

mt..gen( d-s, dJ)[i][j] 

where, for d-s, d-s' E D-s·j dJ, dJ' E (l..Nd - (O .. n + 1 - DJ))j kEN and 

dE D-s: 

mt..gn(€, dJ) = <> 

mt..gn( d-s1 d-S', dJ) = mt..gn(d-s d-S' , dJ) 

mLgn(d-sk+1 d-S',dJ) = mt..gn(d-s d-sk d-S' , d_r) 

mt...gn(d d-s, dJ) = < apply(dJ[d]) > 

mt..gn(d-s, dJ $ ((d,next(d_r[d]))) 

·where '$' denotes functional override, and for each j E O .. n + 1: 

apply(d))[j] = ins[j] 

next ( d)) [j] = (ins'[j], bdp'[j]) 

ins'[j] 
[ 

ins[j + 1] if '-' E bdp[j], and j ~ n 
= ins[j - 1] if '+' E bdp[j - 1], and j 2: 1 

ins[j] otherwise 

[ 

bdp[j + 1] if '-' E bdp[j + 1] and j ~ n 
{'+'} if '+' E bdp[j - 1] and j 2: 1 
<p otherwise 

bdp'[j] = 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

where (ins[j], bdp[j]) = d[j]. The diagonal sequencer is responsible for unfolding 

run-length encodings (equations (5.3-5.5)) and supplying the diagonal restorer 

with the correct sequence of diagonal data (equation (5.6)). The diagonal restorer 

performs the corresponding operations on its diagonals (equations (5.8, 5.9)) , and 

supplies the ISA with the current diagonal (equation 5.7). 

5.2.2 Example: row reversal revisited 

Equations (5.3-5.9) are illustrated here by an alternative divide-and-conquer ISA 

row-reversal program, RowRev'. This program now uses the sub-program RotH~k' 

which swaps odd-even adjacent blocks of width 2k - 1 by using the horizontal 
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ringshift from the (2k

-
1 

- l)th element of the left block to the (2k- 1 - l)th element 

of the right block, repeated for I = 1, ... , 2k-l. Thus, the ISADL encoding is given 

by: 

RowRev' 

The RotH~k sub-program is coded using two diagonals, as shown in Figure 5.5(c). 

1--1--

'--

(a) matrix, for k = 3,n = 8 

0 0 ~ 4 0 8 

0 1 -+ 5 0 8 

0 1 ~ 5 0 8 

0 2 -+ 6 0 8 

0 2 ~ 6 0 8 

0 3 -+ 7 0 8 

0 3 ~ 7 0 8 

0 4 -+ 8 0 8 

(b) ISADL encoding of this matrix 

( 

0 ~-l ~ d-l 0 d ) 1=1..~ 
o ~_I -+ d-I 0 d 
L-~~~ ____ ~ __ ~ 

( c) general IS AD L encoding, d = 2k 

Figure 5.5: RotH~k program (selectors are' l's) 

The diagonal restorer state corresponding to the encoding of Figure 5.5(c), 

for k = 2 and n = 8, is given in Figure 5.6. This indicates the first four diagonals 

produced (cf. the bottom four rows in Figure 5.5(b)). Note that the diagonal 

sequencer state is identical to that of Figure 5.4, with the first diagonal being 

indexed on odd time steps and the second on even time steps. At time step 3, 

cells 4 and 7 receive the instructions from cells 5 and 8, respectively, becau.se cells 

4 and 7 had a '-' (left-shifting boundary point marker) at time 1. The markers 

themselves are also shifted left. 

166 

... 



": 

... 

4: 10 I 0_ +- +- +- +- 0 0 I 0 

3: I 0 I 0 
0_ -+ -+ -+ -+ 0 I 0 

2: 10 I 0 
0_ +- +- +- +- 0 I 0 

1 : I 0 I 0 0 0_ -+ -+ -+ -+-
1

0 

1 8 

Figure 5.6: Diagonal restorer for RotH~ on an 8 x 8 ISA, time steps 1-4 

5.3 Implementation of ISADL 

This section describes the implementation of ISADL program compression, giving 

the basic design of the diagonal sequencer (Section 5.3.1) and diagonal -restorer 

(Section 5.3.2). This basic design was assumed for the implementation of the 

Subroutining program compression method in Sections 3.6. An extension, sig

nificantly reducing diagonal restorer table area, is given in Section 5.3.3; it does 

however have the disadvantage of increasing diagonal restorer I/O bandwidth, 

which may need to be moderated by introducing- further techniques. 

The basic ideas presented in these sections are important for the reading of the 

rest of this chapter. An outline of an internal representation of ISADL programs, 

directly suitable for the loading the diagonal sequencer and restorer, is outlined 

in Section 5.3.4. 

5.3.1 The diagonal sequencer 

This section describes the design of the diagonal sequencer, which is very similar 

to a cell of the matrix restorer of the ISAC method of program compression 

(see Section 3.7.3) . The function of the diagonal sequencer is to provide the 

diagonal restorer wi th the correct sequence of diagonal names (and possibly other 

information) so that it can produce the correct sequence of diagonals for the 

current program to be sent to the ISA. In practice, the diagonal sequencer is 

expected to be packaged separately from the ISA and the diagonal restorer. It 

requires O(log n) area, thus allowing for easy expandability of design in the overall 
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system. 

Its main component is a table containing a compact representation (run-length 

encoding) of the diagonal name sequence derived from an ISADL encoding. The 

structure of this table enables the implementation of equations (5.3-5.6), the main 

feature corresponding to ISADL iterations, ie. ( .. . )k=1..c , here referred to as loops. 

The tabular encoding and its implementation are described in detail for the ISAC 

method in Section 3.7.3 (see especially Figure 3.12); the only difference here is 

that diagonal names (from the set D....s) are used instead of ISA instructions, 

and that only one (as opposed to n) of these tables is used, so that area-efficient 

optimizations are not crucial here. 

The extensions to ISADL of Sections 5.3.3 and 5.4 requires only that the 

diagonal name field of the table be augmented with extra information, and that, 

for nested loops with variable upper bounds, the diagonal sequencer has some 

means of updating the table's loop counter fields. 

5.3.2 The diagonal restorer 

Here is described a design for an ISADL diagonal restorer which is adequate for 

the constraints of Section 5.2.1. It corresponds to the systolicization of equations 

(5.7-5.9). The main data structures for diagonal restorer cell j are the tables 

INS and BDP (each of size Nd) , where (INS[d], BPD[d]) E (I x P( {+, - , On) 

correspond to d-.r( d)j, d E l..ND• The two cell components described below 

communicate through these tables, and at any time, are assumed to operate on 

disjoint partitions of them. Extensions to this design, to increase its generality, 

will be given in later sections. 

5.3.2.1 Diagonal fetch/shift logic 

This part of the diagonal restorer is responsible for fetching the instructions 

for the current diagonal to be sent to the ISA, and for performing any shift 

operations (ie. +, -) on it. Since the diagonal is sent to the ISA in a time skewed 

fashion, the fetch/shift operations must be systolicized [37, pp27-32], from lower 

numbered columns first. This is possible due to Constraint 3 of Section 5.2.1, 
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which ensures that a '-' shift on a single diagonal's boundary point cannot occur 

on two consecutive steps. 

The diagonal fetch/shift logic for cell j, where 1 ~ j ~ n, is now described. 

The cell has a systolic input d ED., which gets passed directly to the (j + 1 )th cell 

on the next cycle. Let d" denote the value of d two cycles previously (a 'lookahead' 

of 2 is required for the systolicization of the '-' shift). INS~, INS~ are registers 

used to shift diagonal boundaries, with INS_ denoting the INS~ register of cell 

(j + 1), and INS+ denoting the INS~ register of cell (j -1) (a similar convention 

applies for BDP~, BDP~, BDP +, BDP _). The shifting of diagonal boundaries is 

implemented by the following steps, performed at each ISA cycle. The instruction 

part is given by (cf. equation (5.8)): 

, INS[d'1 \ 

INS~ 

INS' + 
t 

INS_ if '-' E BDP ) \ 
INS+ if'+'EBDP+ 
INS_ if d = d" 
INS[d] if d =I d" ) 

\ INS[d'1 

Note that the test (d=d") is identical in all diagonal restorer cells, and can be 

performed by the diagonal sequencer, with the result being passed systolically 

through the diagonal restorer. Similarly, the BDP part is given by (cf. equation 

(5.9)): 

, BDP[d"] \ 

BDP~ 

BDP' \ + 

'(BDP_ if'-'EBDP_) \ 
{' + '} if '+' E BDP + 
</> otherwise 

( 
BDP _ if d = d" ) 
BDP[d] if d =I d" 

BDP[d"] 

The instruction sent to the corresponding column of the ISA is given by (cf. 

equation (5.7)): 

INS [d'1 

5.3.2.2 The diagonal loading logic 

A simple boolean processor is sufficient to set the L (load) bit which determines 

whether a diagonal restorer cell loads in its INS tables with the current load 

instruction value (which is passed across the restorer systolically). If the E (stack 

169 

I 

i 
: 
I 



is also set at a cell, the BDP field (default value ¢) is also loaded from the 

current input. The loading operation reflects the recursive structure of an ISADL 

diagonal , as is given by equations (5.2). The assumption that the array width n 

is a power of 2, as are also any recurrence widths (ie. nl of equations (5.2)) within 

a diagonal, is essential for this component. 

The design here is based the small boolean stack E , and a boolean variable E' 

for each cell in the diagonal restorer. The idea of the algorithm can be obtained 

by considering loading the ISADL diagonal: 

I·· . 

It is assumed that the E' (E stack top) bit is set only at cells where this diagonal 

begins (ends) , being in this case at cell 1 (cell n). This E stack top is pushed 

onto the E stack. If ndn > 1, E' is set high at cells jlj == 1(modulo nl). To 

load sub-diagonal Dk , it is (inductively) assumed that the E' bit is set only at 

positions jlj == nk-l + 1 (modulo nl). The E stack top is then set only at positions 

jlj == nk(modulo nl), ie. one E bit is set nk - nk-l units after every set E' bit. If 

Dk is an instruction, the L bit is set between consecutive high E'-E pairs (ie. in 

cells jlj == <5(modulo nt) where nk-l < <5 :::; nk) and the appropriate instruction is 

loaded. Otherwise, the procedure repeats recursively. Afterwards, the E' bit is set 

in cells immediately following the set E bits, ie. at cells jlj == nk + 1 (modulo nl), 

so that the next sub-diagonal can be loaded. After all I sub-diagonals are loaded, 

the E stack is popped. The Oth and (n + 1)th cells are special (requiring a single 

L bit, which can be set/reset as required) and are loaded separately. 

Example: consider n = 16 and loading the ISADL diagonal 

For this program, nl = 5 and nl = 8, where I = 2. Initially, the 16 element 

diagonal restorer has its E' (E stack top) bit set only at cell 1 (ce1116). Then, 

the E' bit is set at cells jli == 1(modulo 8). The top of E is then set in a,ll cells 

after the first set E' (ie. in all cells). To select the cells jlj == 5(modulo 8) , the 
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following bit operations are applied to the top of E: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 leave odd 1's 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 leave ·odd 1's 
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 leave even 1's 

Here, odd [even]I's only have been left at step r,1 :::; r :::; logn/, according to 

whether the (log n/ + 1 - r )th bit of nl - 1 = 4 is 1 [is 0]. 

The full algorithm, with optimizations, is presented in Appendix 5.B.l. 

5.3.3 Optimizing program loading and storage area 

Typically, the (initial values of) diagonals of an ISA program are slight variations 

of a very few generic diagonal patterns. For example, many ISA programs consists 

of several near-uniform diagonals, each with different instructions. In such cases, 

it is inefficient for the diagonal restorer to load and store each slightly different 

diagonal separately. This section introduces the concept of diagonal patterns, 

which reduce the diagonal restorer's loading time and internal storage at the 

expense of its input bandwidth. This bandwidth can be reduced using the concept 

of 'macros'. 

The central idea is to load the diagonal restorer with a diagonal pattern 

which represents several similar (initial values of) diagonals. Upon execution, the 

diagonal sequencer supplies the necessary information to the diagonal restorer 

so that it can reduce the diagonal pattern to the required diagonal. This concept 

is recommended for ISADL implementation, and is used for the evaluation of 

Section 5.5. 

The concept of diagonal patterns is introduced via the instruction variables, 

i = {il , . . . ,iNp } , where Np 2:: 0 and i U I = ¢>, The RotHd program can be 

considered to have a single diagonal pattern, which for each of its diagonals , an 

i -+ I lookup table can be used to reconstruct the diagonal from the pattern, as 

is shown in Figure 5.7. 

The implementation of diagonal patterns requires the following simple modi

fications: 

• instead of storing just the diagonal (pattern) name in each entry of its table, 
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(a) ISAD L encoding (diagonal names annotated) 

(b) 'merging' diagonals to have identical boundaries 

it/ -, I2/ -, I3/0 

It/o, I2/ -, I3/ -
II 
II 

1 

1 

I2 7 I3 
I2 7 I3 

S 

S 

( c) lookup tables for each instance of the single-diagonal pattern version 

Figure 5.7: Single iteration of RotHs program illustrating a diagonal pattern 

requiring Np = 3. 

the diagonal sequencer now also stores a 'shift-suppress' bit (default value 

0; see below for its use) and the pattern's lookup tables. Upon accessing 

this entry, the diagonal sequencer sends all this information to the diagonal 

restorer. 

• the diagonal restorer fetches the entry according to the current diagonal 

(pattern) name: if the entry is in I, the corresponding entry in the lookup 

table is sent to the ISA, otherwise the entry is sent to the ISA. If the 'shift

suppress' bit is 1, the INS and BDP tables in the diagonal restorer cells 

are not updated (but otherwise operate as described in Section 5.3.2.1). 

This concept can be extended to diagonals whose boundary expressions vary 

(over iterations) . Consider the program RotH~ (cf. Figure 5.5), which can be 

expressed as: 

where Dl(k) and iJ2(k) are defined in Figure 5.8(a). Observing that the bound

aries for D2 (k) and Dl (k + 1) are identical, these can be merged into a single 
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diagonal pattern D l .2(k), defined also in Figure 5.8(a). The implementation of 

these is illustrated in Figure 5.8(b,c) (cf. Figure 5.6). 

D2(k) : 10 4-k I +- 8-k I 0 81 

Dl(k) : 1 0 4-k l-t 8-k I 0 81 
d l 1 11/ +- )4 

D1.2(k) : 1 0 4-k 1 II 8-k 1 0 81 d l 0 11/ -t 

(a) diagonals of RotH~ (b) diagonal sequencer state 
made into a diagonal pattern 

4 : [1111/ +-] => 0 o_ Il II II 1
1

_ 0 0 0 

3 : [OIIt! -t] => 0 0 o_ Il II II 1
1

_ 0 0 

2: [lilt! +-] => 0 0 o_ Il II II 11_ 0 0 

1 : [OIIt! -t] => 0 0 0 o_ Il II II 11- 0 

1 8 

(c) diagonal restorer state, time steps 1-4 

Figure 5.8: RotH~ program with single diagonal pattern (named dd 

In general, upon forming diagonal patterns over the iteration of at least r 

diagonals: 

( . Dl(k). . D2(k)· . Dr(k). )k=l..d ... , , ... , , ... , , ... 

there may be a particular ro, where 1 ::; ro ::; r, in which the diagonals: 

are most easily merged into a single diagonal pattern. For this diagonal pattern, 

the 'shift-suppress' bit is 1 in the diagonal sequencer's table for entries corre

sponding to Dr for r i= ro, and only at Dro are the diagonal pattern's boundaries 

shifted. 

The merging of ISADL diagonals into diagonal patterns can also extend the 

types of boundary expressions possible. In particular, it is sometimes possible to 

implement diagonals whose boundary expressions are of the forms 'e, e_ -rk, e++ 
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rk' provided r of them can be merged into a single diagonal pattern (all of these 

require a a 'shift suppress' bit). Other diagonals may be merged into this pattern, 

and these require a 1 'shift suppress' bit. However, we have not yet encountered 

any examples of ISA programs that require boundary expressions of this form. 

By increasing the number of instruction variables, Np, the number of different 

diagonal patterns required to represent a program, Nd , decreases, reflecting the 

tradeoff between the diagonal restorer's I/O bandwidth and internal storage. In 

a real implementation, Np would be fixed to a small value, ego Np ::; 4, and the 

groups of diagonals to be merged into a pattern can be chosen by hand. The 

diagonal patterns for each of these groups can then be (automatically) generated, 

provided the generated lookup tables require no more than Np entries. 

A way of improving the diagonal restorer's I/O bandwidth and internal stor

age would be to enumerate (into 'macros') the instructions of the current (n(n)) 

subprogram to be sent to the ISA. The diagonal sequencer and restorer would 

then use the shorter micros (allowing, in particular, a larger Np), which would be 

decoded using (dynamically loadable) tables before entering the ISA cells. The 

overall storage may not always be reduced, but the overall I/O bandwidth would 

be reduced, since the decode tables, reloaded every n( n) cycles, require only a 

modest I/O bandwidth. 

5.3.4 Representation of ISADL programs for loading 

U sing the concepts outlined in Section 3.3, an O(log n) space representation of 

the ISADL program would be stored in an external ISA program memory. This 

representation should enable efficient loading of the diagonal sequencer and re

storer tables with their initial values. A more or less direct representation of 

the diagonal sequencer table could be stored in the external program memory. 

A simple, compressed representation of the O(log n) length diagonal load logic's 

instruction sequence (together with its inputs) for the diagonal restorer could be 

stored in the external memory. To load the diagonal restorer tables, a simple 

'front end' to the diagonal restorer (with buffering) would be Fequired to perform 

these expansions. Since these details should not create aJny diffiollities, they are 
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not further elaborated here. 

5.4 Extensions of ISADL 

This section extends the basic ISADL implementation of Section 5.3 to cover 

practically all known features required by ISA programs. These extensions are 

of two forms: relaxing the constraints on ISADL required by the implementation 

of Section 5.3.2 (these are used in the evaluation of ISADL in Section 5.5.2), 

and combining ISADL with other forms of program compression mentioned in 

Chapter 3. 

5.4.1 Relaxing the ISADL constraints 

The constraints of Section 5.2.1 have been required for a simple implementa

tion of the diagonal restorer. This section explains how these constraints can 

be either avoided or accommodated by extending the diagonal restorer's design. 

The extensions of Constraints 1 and 2 also have application in incorporating the 

higher-level aspects of Subroutining into ISADL. 

5.4.1.1 Nested loops: Constraint 1 

A diagonal whose boundary expressions are dependent on k, the index of some en

closing loop, has been constrained to not be enclosed inside any other loops. This 

section shows how this constraint can be relaxed. Consider an ISADL program 

Pk l>k 2 whose boundaries may depend on the integers kl , k2 (and no other loop 

indices). The ISADL program ( ... (PklokJkt=I .. dt •• • )k2 =1..d2 can be implemented 

in two ways: 

• upon every iteration of the outer (k2) loop, reload the diagonals correspond

ing to PI ,k2 • This is feasible if dl is sufficiently large, ie. dl = O( n), and 

the reloading could be done either by the host or an extended diagonal 

sequencer . 

• initially store the diagonals corresponding to PI,I in a separate area of the 

diagonal restorer (eg. the SD and l/r tables of Section 5.4.1.2). Consider 
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the k2th iteration of the outer loop, for the diagonal dk2 of PI ,k2 ' Just 

before the first use of dk2 (in the inner loop), it is copied to the main tables 

of the diagonal restorer; then dk2 +l is produced systolically from dk2 in the 

fashion described in Section 5.3.2.1. This approach would at most duplicate 

the storage required by the diagonal restorer, and only very slightly affect 

its I/O bandwidth. 

However, if Pk1 ,k2 is independent of kll a simplification can be made. The diag

onals for PI,I are initially loaded into the diagonal restorer. Consider the k2th 

iteration of the outer loop. On all but the last iterations of the kl loop, the 

diagonal sequencer always sends a 'suppress-shift' bit of '1' to the diagonal re

storer. On the last iteration, the normal 'shift-suppress' bit values are sent to the 

diagonal restorer to produce the diagonals for PI ,k2+l' 

5.4.1.2 Divide-and-conquer programs: Constraint 2 

Constraint 2 restricts boundary expressions in an ISADL diagonal to be of the 

forms c, s - k or a + k where k is the index of an enclosing iteration. In practice, 

this needs to be relaxed only to cover cases where the boundary expressions 

depend exponentially on k , as occurs in divide-and-conquer programs, ego program 

DivConq5 of Figure 5.9. 

These ISADL programs are generally of the form6 (p(k))k=l .. u, with 1 :::; / < 

u :::; log n, which consists of patterns repeated over recurrence widths of 2k. The 

boundary expressions of P( k) are of the forms c, 2k - c, 2k ± c, where c ~ 0 

is an expression independent of k. Typically P(k) also contains a nested loop 

whose upper bound is 0(2k); this detail affects only the design of the diagonal 

sequencer. Approaches for implementing such ISADL programs mainly affect the 

diagonal restorer and include: 

• reload the diagonal restorer upon each iteration of k, as described in Section 

5.4.1.1. This is simple and inexpensive, but has the drawbaok that for small 

5This program is taken from the first repetition of the first diagonal of the (RotH~. )k=1..1og n 

program and is only used to illustrate this technique. 

6 cf. (RotH~.)k=1..1ogn, see Figure 5.3. 
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0 8 - 16 
0 4 - 8 ... 16 
0 21- 4 0 61- 8 ... 16 
0 11- 21 0 31- 4 0 51- 6 10 71- 8 16 

(a) 'expanded' ISADL program, n = 16 

o 8 - 16 
o 4 - 8 

o 2 - 4 

o 1 - 2 

(b) usual ISADL encoding, n = 16 (c) introducing iteration 

Figure 5.9: Program DivConq, showing the spliced diagonal technique 

k, P(k) may be too short to load the diagonals for P(k + 1). 

• load all (u - l + 1) versions of the boundaries into the diagonal restorer 

before execution. This is the most general approach, and is feasible since 

u ::; log n, but has the disadvantage of making the diagonal restorer's cells 

have O(1og n) area . 

• introduce the technique of spliced diagonals, which involves separating the 

ISADL diagonals of P(k) into sub-diagonals (which are independent of k) 

on either side of all boundaries of the four forms a,2k - s, 2k - s2, 2k + a2, 

(where a, a2 > 0 and s, s2 ~ 0) together with the recurrence and hal/

recurrence widths (of forms 2k, 2k). These are collectively called the splicing 

boundaries. 

ego the diagonal I 0 21< I - 2k I of the DivConq program (see 

Figure 5.9) has two such sub-diagonals, being uniform diagonals 

of '0' or '_' instructions. It has the boundaries 2k - 0 and 2k - O. 

The (initial vaJues of the) diagonals of P( k) are then produced by combining 

the sub-diagonals using the splicing boundaries in the obvious way. 

The approach here is load the splicing boundaries of P(l) only, and from 

their kth version, produce the (k + l)th version. This can be achieved by 
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simple bit operations on bit-arrays which represent the splicing bound

aries. This reduces the storage overhead to 0(1) with only a small loss of 

generali ty. 

Loading of the spliced diagonals is done in a similar fashion to the loading 

of ISADL diagonals, as described in Section 5.3.2.2. 

The last approach is deemed the most promising, and will now be described in 

further detail. 

The splicing boundaries of the forms a,2k - s, 2k, 2k - s2,2k + a2, 2k, are 

stored respectively in the bit-arrays l,r,i,12,r2,i2 E (l..n -+ (l..Ns -+ {0,1})), 

where Ns ~ Nd gives the subset of diagonals that can be formed by the spliced 

diagonal technique. In this case, a '1' in an array cell means a boundary (of the 

appropriate form) occurs there. In the case of '12' and 'r2', 'phantom' boundaries 

corresponding to (2k - 82) and (a2) are also inserted to enable efficient updating 

of these bit-arrays. 

ego for the DivConq program with n = 16, the splicing boundaries 

of interest for the diagonal I 0 2k I -+ 2k I (having diagonal name do 

say) are illustrated below. Here, r[doJ and i[do] correspond to the 

expressions (2k - 0) and (2k), and are visualized by a single array, 

where,(, ('J') represents a '1' in r[do] (i[doJ) only: 

k=2: 0 0 0 [] 0 0 0 

k=3: 0 0 0 0 0 0 0 

[] 0 

[] 0 
o 0 0 0 0 0 

000 0 0 0 
o 
o 

A similar convention is used now to visualize l2[d2] and i2[d2], which 

here correspond to the expressions (2k - 0) and (2k). Here 'phantom' 

boundaries of l2[d2j, written as '[" are needed for the formation of the 

next iteration's diagonal only: 

k = 2: 0 

k = 3: 0 
o 0 
o 0 

[] 0 

o 0 

[] 0 
o 0 

o 
o 

o 0 
o 0 

[j 

o 
o 
o 

o 0 
o 0 

From inspection, increasing k requires the deleting of every other '[ J' 

pair. 

The technique is now more generally described. Consider again the program 

(P(k))k=l .. u. Before its execution, the sub-diagonals and splicing boundaries 
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corresponding to k = I are loaded (it is assumed for the moment that P(k) 

does not have an iteration which affects the boundaries of its diagonals). This 

loading is very efficient, since here the recurrence width 21 is small. Upon the 

kth iteration, consider the first time a particular diagonal (or diagonal pattern, 

see Section 5.3.3) having index do, is about to be used in diagonal restorer cell j. 

Assume that this cell also contains the table SD E (LNsd -+ (LN. -+ I)). Here, 

N.d is the maximum number of sub-diagonals used to form a spliced diagonal; 

in practice, one of these is almost always a uniform 'NoOp' diagonal, which does 

not have to be explicitly stored in SD. The diagonal's jth element is set to the 

sjth sub-diagonal (counted from the left) of do at cell j, as follows: 

So = 0 

= {O if i[do]U] = 1 
Sj Sj-l + (l[do]U] V r[do]U]) otherwise 

+ (p2j I2[do]U] V p2jr2[do]U]) 

p2j = (parity(i2[do][Lj - 1]) = 1) 

where x denotes the negation of x. The variable p2j is used to ignore the 'phan

tom' boundaries in the 12 and r2 tables. The splicing boundaries are simulta

neously updated for the next (ie. (k + l)th) iteration by deleting every odd (or 

even) entry [this doubles the distances between corresponding entries]: 

(l[do]U],r[do][j],i[do]U]) t- (l[do][j] /I. Pi! r[do][j] /I. Pi! i[do]U] /I.pj) 

Pj = (parity(i[do][Lj - 1]) = 1) 

(l2[do]U], r2[do][j], i2[do]U]) t- (12[do][j] /I. p2j, r2[do]U] /I. p2j, i2[do]U] /I. p2j) 

These operations can be very efficiently systolicized (cf. Section 5.3.2.1). 

For programs of the form (P(k))k=u . .l, where u > 1, these operations on the 

splicing boundaries need only be reversed. This can be achieved by shifting a 

copy of these bit arrays the appropriate distance, and then recombining the copy 

with the original. Such operations can also be easily systolicized if P( k) contains 

at least 2k iterations of each diagonal (usually the case in practice), with data 

being shifted one unit on each such iteration. Since such programs have not been 

found necessary in practice, their implementation is not further developed. 

179 

I 

...... 



If P( k) contains an iteration of the form (PI (k, 0) )o=1..l(k), the boundary point 

operations (cf. the variable BDP of Section 5.3.2.1) must also be considered. This 

can be done by annotating an extra field, denoted' .B', of type P( {+, - }) to the 

splicing boundaries 1, r, 12 and r2. The boundary point operation in diagonal 

restorer cell j for diagonal do is formed as follows: 

BDP[do] 

Bb( (bit , bdp)) 

~ (BI(I[do][j]) U BI (r[do] [j])) U (Bp-2j(12[do](j]) U Bp2j (r2[do](j])) 

= {bdP if b A bit = 1 
{} otherwise 

Example: the (RotH~,\y=1..1ogn program has identical splicing bound

aries as the DivConq program, except that 12 and r are annotated 

with '-' markers. For k = 3, these can be visualized as: 

r : 0 0 0 0 0 0 0 [-] 0 0 0 0 0 0 0 [-] 
12 : 0 0 0 [-] 0 0 0 [-] 0 0 0 [-] 0 0 0 [-] 

To reduce storage, it is possible to merge the '1' and 'r' (also 'r2' and '12') 

arrays together, since the splicing boundaries represented by each should never 

overlap. These were modelled separately here to simplify the presentation. Also, 

the i[l..Nd][l..n] and i2[l..Nd][l..n] arrays could also be merged together, and can 

in practice be shared by all diagonals that are constructed using splicing bound

aries. Thus, the extra hardware required for implementing splicing boundaries 

is reasonably modest. 

One possibility would be to implement all of ISADL using spliced diagonals, 

ie. shift bit-patterns, rather than ISA instructions, to implement diagonal bound

aries of the form c ± k. This might result in a reduction of hardwwre and the 

different mechanisms required to implement ISADL, but would have complicated 

and obscured many of the ideas presented here. 

5.4.1.3 'Flat' ISA programs: Constraint 3 

If in (Pk)k=1..d, Pk consists of a single diagonal which has a boundary expression of 

the form s - k, the diagonal restorer cannot easily generate PI, ... ,Pd' Solutions 

to this problem include transforming the 'flat' ISA programs into semwntically 

equivalent (or at least sufficiently similar) ISA programs, or by including new (and 
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relatively expensive) mechanisms into the diagonal restorer. This is illustrated 

in the LoadMat program of Figure 5.10, where Pk = 1- n-k IOn ~ While the 

-11 0 4 

I-- - - 21 0 4 

'-- - 31 0 4 - 4 

(a) matrix, for a 4 X 4ISA (b) ISADL encoding of matrix 

I - 4-k 1 0 4 I k=1..4 1 - n-k IOn I k=1..n 

(c) introducing iteration, n = 4 (d) general ISADL encoding 

Figure 5.10: 'Flat' LoadMat program, instruction part 

k'th diagonal can be produced by a left shift on the kth diagonal, (see Figure 

5.10(b)), the overall timing requires, as the nth row of the program matrix enters 

the ISA, that all columns of the diagonal restorer simultaneously send a new 

instruction to the ISA. For iterations of r diagonals, this phenomenon also occurs 

if there is a boundary of the form c - rk (only of interest when the r diagonals 

are merged into a single diagonal pattern). Such simultaneous changes cannot be 

achieved by simple systolic shifting. 

In general, a 'fiat' ISA program (ie. a (> 0(1)) section of a row of the pro

gram's matrix forms a boundary between two different sorts of instructions) must 

be handled in one of the following ways: 

• be replaced by a sufficiently similar non-'fiat' program. For example, the 

LoadMat program can be replaced by the program of Figure 2.13, which 

loads (in period n) in row-reversed order, a matrix from the west data buffer 

into the ISA . 

• be transformed into an equivalent non-'fiat' program. For the 'fiat' ISA 
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programs encountered so far, such transformations can be found with at 

most a factor of 2 increase in period. ego Loading/unloading a matrix from 

the west is done by inserting an extra diagonal (d. Figures 5.10 and 5.1). 

However, programs loading/unloading a matrix from the east (requiring 

period 2n) are transformed similarly but with no change in the period (see 

Appendix 5.A.3). 

The other known class of 'flat' ISA programs includes some of the com

parison-exchange programs, ego the row-wise odd-even transposition sort 

and triangle merger programs [46], which can be transformed with negli

gible increase in period. These transformations are achieved by 'skewing' 

the comparison-exchanges, and inserting two empty 'anti' diagonals. This 

method is preferred, presumably on the grounds of better programming 

style, by Lang [35, pp49-59], and is illustrated in Appendix 5.B.2. 

• be handled using an idea similar to the spliced diagonal technique intro

duced in Section 5.4.1.2. Consider the kth diagonal of the ISADL encoding 

of the LoadMat program of Figure 5.10(c). The sub-diagonal left (right) 

of the 'n - 1.:' boundary is composed of '~' ('0') instructions, and is given 

index d1 (do), say. Upon executing the kth iteration of this diagonal, a 

counter is passed systolically across the restorer: 

its initial value is 4 - k, and at each cell, it is decremented (ie. at 

cell j, it has value 4 - k -]) 

If this counter is (not) greater than 0, the d1 th (doth) diagonal is selected. 

This idea can be easily extended to more general examples of ':£lat' ISA 

programs, but has the disadvantage of making the diagonal restorer's cells 

dependent on log n (the size of the largest counters needed). 

5.4.2 Combining ISADL with the SISA 

ISADL is used for program compression on both the ISA instruction and selector 

matrices similarly. For the SISA [31], the instruction matrix is replaced by a 'top' 
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selector matrix and a single instruction stream. The latter can be implemented by 

inserting an extra field (for the instruction stream) in the 'top' selector matrix's 

diagonal sequencer: this instruction field is sent to the SISA instead of the 'top' 

diagonal restorer. Since the diagonal restorers need only store and manipulate 

bit information, implementing ISADL on the SISA is extremely efficient. 

5.4.3 Incorporating subroutines into ISADL 

ISADL incorporates the low-level concepts of the Subroutining program com

pression method (see Section 3.6), such as iterations of diagonals, even when the 

diagonals are dependent on the index of the iteration. Section 5.A illustrates 

how the meaningful naming of (parameterized) sub-programs is naturally incor

porated into ISADL. Generally, if an S1(n) ISA program consists of many calls of 

a sub-program, this can be implemented in ISADL as follows: 

• load the diagonal sequencer in advance with all diagonal information re

quired, excepting diagonals (diagonal patterns) that can be easily con

structed from previous ones (as is done for iterations and divide-and-conquer 

programs). 

• implement subroutines in the diagonal sequencer's table, in a similar fash

ion to normal computer memory. The essential features of this would be to 

update (ie. ±1, x2, /2) and to reset (ie. using small stacks) loop indices and 

to send diagonal update/reset commands to the diagonal restorer (some 

of these have already been modelled) . Useful features would include orga

nizing the diagonal sequencer's table in a fashion similar to implementing 

subroutines in RAM, with a mechanism for subroutine return. 

These extensions are illustrated in the ISADL implementation of binary recursive 

ISA programs (see [48, Sect.5]) in Appendix 5.B.3. 

5.4.4 Combining ISADL with microprogramming 

A (p, a) wavefront microprogrammed ISA (see Sections 4.1.1 and 4.3) has a skew 

between neighbouring columns of selectors of p ;::: 1 and a skew between neigh-
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bouring columns of instructions of 0' ~ 1. It has micro(instruction)s of width Wi, 

and sequences of A micros may be coded by a macro of width Wm < Wi. Two 

approaches can be taken to use ISADL on a microprogrammed ISA: 

• use macros in the diagonal restorer, which are decoded by a row of decode 

tables before entering the JLISA. This can reduce the diagonal restorer I/O 

bandwidth by a factor of Wm/WiA, and hence the diagonal restorer would 

be able to afford a larger value of Np • 

• use micros in the diagonal restorer. This eliminates the need for decode 

tables, and the diagonals of an ISA program are generally more simply 

expressed on the micro level than on the macro level. The loss of the pro

gram compression due to microprogramming is unimportant since ISADL 

provides much more powerful program compression. 

Although it is important to reduce the I/O bandwidth of the diagonal restorer, 

the second approach will be developed here. This is because A must generally 

be a factor of the number of micros within every iteration in an ISADL program 

(normally the case when a macro represents a meaningful semantic unit, but 

otherwise a value of A > 2 could seldom be used). Since the JLISA 'would be 

intended to run a range of such programs, the diagonal restorer would still need 

sufficient I/O bandwidth to cope with the lowest value of A (which is unlikely to 

exceed 2). 

Consider the diagonal restorer for the top (ie. instruction) part of the ISA 

program, which must implement a skew between neighbouring columns of 0' ~ 1. 

The design given in Section 5.3.2 must now be generalized from 0' = 1 to handle 

larger values of 0' . All systolic information passed downstream must now be 

buffered by queues of length 0'. The systolic diagonal index input, d, must now 

have a lookahead, d", of 0' + 1. Hence, in diagonal restorer cell j, d" would refer 

to the entry entering cell j's diagonal index queue, and the 'd' would refer to the 

entry at the tail of the queue on the previous ISA microcycle. 

Since a small range of the values of 0' would be adequate for most micropro

grammed ISA systems, these queues CClin be efficiently implemented by variable 

length shift registers (cf. the selector qu.eues of the JLISA cells in Section 4.3.1). 
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Changing the queue lengths can be done incrementally, and to increment a, a 

diagonal index corresponding to the diagonal 

I NoOp n I 

should be inserted in the diagonal index queue. 

The additional storage of these queues might require reducing the size of Np , 

and hence that of the lookup tables required by introducing diagonal patterns 

(Section 5.3.3), since these tables must also be queued. The diagonal restorer of 

the left (selector) part of the microprogrammed ISA is similar, except that J1. is 

interchanged for a. The design of the diagonal sequencer is unaffected. 

5.5 Evaluation of ISADL 

Since ISADL is here proposed as a practical method for ISA program compression, 

this section examines the requirements of ISADL on the ISA algorithms presented 

in this chapter (including Appendix 5.A), giving the values of the ISADL (diago

nal restorer) parameters Nd and Np in ea'Ch case. It then examines the hardware 

requirements of ISADL due to these (and other) parameters. In both these cases, 

the merging of diagonals into diagonal patterns (Section 5.3.3) enhances the ef

ficiency of ISADL's implementation. An overall conclusion for ISADL can then 

be given. 

5.5.1 ISADL requirements for various ISA algorithms 

Table 5.1 gives the requirements of ISADL for the various ISA programs pre

sented earlier in this chapter, those listed in Table 3.2, and those presented in 

Appendix 5.A. Except for programs MedFind and Matchn
, these programs are 

of 'irreducible' code size (in the sense of Section 3.3) and hence realistically rep

resent the volume of information that must be held in the diagonal restorer at 

anyone time. 

For a given (optimally chosen) value of Np , the number of instruction variables 

used to form diagonal patterns, the table gives the values of Nd, the number of 
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diagonal (patterns) of each program. This can be compared with the program's 

value of NdO , which is Nd evaluated for Np = o. The reduction of the static 

memory from implementing diagonal patterns is given by Nd/ NdO . 

The table also gives Ld , the period (ie. number of diagonal restorer loading 

instructions) for loading these Nd diagonals into the diagonal restorer. Ld is 

hoped to be generally less than the array size n, here assumed to be a power of 

2, and at least less than the period of the program itself. 

In evaluating Ld , the fully optimized version of the algorithm of Appendix 

5.B.1 is used. The main results are that, assuming the E' (E) bit is set at cells 

jlj mod m = 1 (jjj mod m = m), diagonals of the forms: 

I it m I, I it t I i2 m I, I it m I i2 m I 

can be loaded in periods 1, 2 and 2 respectively. Such diagonals are the most 

common in ISA programs, so that the loading algorithm is generally very efficient. 

It can then be concluded that allowing a small value of Np can significantly 

reduce Nd and keep Ld small, indeed smaller than the array width (program 

period) for n ~ 32 (n ~ 16) for all of the above programs. However, ISA programs 

can be devised with worse loading performance, and in these cases a moderate 

array size n is required to make n ~ Ld • 

5.5.2 ISADL memory and I/O bandwidth requirements 

Section 5.5.1 gives some feeling as to the values of the ISADL parameters Nd, 

Np , N. and Nsd required by practical implementations. This section estimates 

the hardware required by the implementation of the diagonal restorer of Section 

5.3 in terms of its principal components, the (static) memory and the inter-cell 

I/O bandwidth. The latter is important since it corresponds directly to the pin 

count of the diagonal restorer. The cost of the diagonal sequencer's hardware is 

relatively small, since it has O(log n) area. 

Table 5.2 gives the cost of the diagonal restorer's hardware in terms of these 

components, where Wi is the width (in bits) of the 'control codes' of the diagonal 

restorer. This has been given for the basic implementation of ISADL with its 
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program notes NdO Np Nd period, t Ld minnlt > Ld 
LoadMat * 2 0 2 2n 4 2 

TransClos * 1 0 1 n 3 4 
Row Rev 0 2 0 2 ~2n 14 8 
RowRev' 0* 2 1 1 ~2n 11 8 

RotHV(n/2) 4 2 2 2n 4 2 
Transpose 0* 6 2 3 ~6n 24 4 

Matrix Mult. 5 1 1 5n 1 1 
Perfect Sh. t 2 0 2 n 2logn + 5 16 

RedSquares 8 1 2 7n+2 4 1 
MedFind • 10 1 1 > 4L log L 1 1 

Matchn 
* 11 1 3 7n+6 6 8 I 

AssocMem *. 3 2 2 2m+2 ~ logm +6 4 if m > 4 : 
MatMult *t 6 1 1 6n 3 1 

TransClos' * 7 1 1 13n 3 1 

*: in these programs, diagonal restorer cells 0 or (n + 1) also need to be loaded, 

takin~ an extra cycle for each such operation. 

0: these are divide-and-conquer programs, in which Ld is given by the periods to 

load the splicing boundaries (for the first iteration only) and the corresponding 

sub-diagonals (these use the algorithm for loading ordinary ISADL diagonals) . 

They require Ns :s; 2 spliced diagonals and Nsd = 2 sub-diagonals. 

• the period of these programs is dependent on another parameter (ie. L or m) 

assumed to be D( nr ), 0 < T :s; 1, and not exceeding n. 

t: the u = 3 version of MatMult is used here. 
I 

+ the ISADL encoding of the Perfect Shuffle program is given in Appendix 5.B.2. 

Table 5.1: ISADL parameter values for various ISA programs 
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feature I/O bandwidth static memory assoc. logic 
variable # bits variable # bits 

diagonal d logNd 
fetch/ INS_,INS+ 2XWi INS wiNd R/Waccess 

shift BDP_, BDP+ 2x2 BDP 2Nd R/Waccess 
logic 

diagonal h 1 L,E' 2x1 bit opns. 
loading instr'n, etc. wi+2+logNd E 4 

logic opcodes 5 
diagonal lookup tables NpWi INS Nd added 
pClitterns 'suppress ' bit 1 

Divide p,p2 2x1 l/r, l2/r2 2 X 3Ns bit opns. 
-and s 10gNsd i/i2 Ns +1 (modNsd ) 

Conquer SD NsNsdWi R/Waccess 
mlcro- all cell inputs must be buffered in shift registers of length (7 - 1 
prog. 

total (Np + 3)Wi + 2 log Nd (Nd+N.Nsd)Wi + 3Nd 
# bits + log Nsd + 15 +7Ns +6 

Table 5.2: Diagonal restorer cell hardware requirements 

recommended extensions of Sections 5.3 and 5.4. Note that nested loops (Section 

5.4.1.1) can be implemented using the SD and l/r tables of the divide-and-conquer 

hardware (assuming that these tables are loaded by the diagonal load logic) . Note 

thClit for the diagonal fetch/shift logic, the variables INS~ , INS~, BDP~, BDP~ 

and d" are refreshed every cycle, so they need not be implemented using static 

memory storage. For each row, the hardware cost (in bits) is annotated with the 

associated variables; the reader might need to refer back to the relevant section 

to recall their functions . The logic associated with updating these variables is 

given in the rightmost column. 

Example: For the set of algorithms used in this chapter (see Table 5.1), suffi

cient values of the above parameters are: 

Nd = 4, Np = 2,Ns = 4, N.d = 1 

Substituting these values in the totals of Table 5.2 gives a total I/O bandwidth 

of ~ (5Wi + 20) bits, and a total static memory of ~ (8Wi + 45) bits. For a 

diagonal restorer cell for the selector pClirt of the ISA program, Wi = 1, so that 

.~ 25 bits I/O bandwidth and ~ 55 bits of static memory are required. For a 
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cell for the instruction part, Wi can be reduced to ~ 4 (using microprogramming

like techniques; see Section 5.3.3), so that ~ 40 bits I/O bandwidth and ~ 75 

bits of static memory are required. These figures are approximate since this 

evaluation may have ignored some (hopefully minor) considerations, and because 

the implementation has plenty of room for application-specific optimizations. 

For the appropriate programs of Table 5.1, substituting the value of NdO with 

Nd in the number of bits of the INS and BDP tables of Table 5.2 gives the "static 

memory per program" column for Subroutining7 in Table 3.2 (with Wi = 8). For 

. divide-and-conquer programs, the l/r, 12/r2 and i/i2 tables are also counted (with 

Ns = N dO , Nsd = 1). 

Table 5.1 indicates that the loading of the diagonal restorer is generally so 

fast that overlapping the loading of a new program's diagonals while restoring 

a current program's diagonals should not be necessary. However, if overlapping 

is required, two versions of each of the diagonal restorer's tables are required, 

almost doubling the static storage requirement. 

5.5.3 Conclusions 

This chapter has proposed a low-level, diagonal-based ISA language, called ISADL. 

This language is general except that the array size and any program recurrence 

widths are powers of 2 (not a serious limitation in practice). Since it essentially a 

low-level version of ISA Subroutining, the results of this chapter settle the issues 

of whether the Subroutining program compression method is sufficiently flexible 

and of how to optimize its implementation. It also demonstrates that its imple

mentation can be easily extended for compatability with ISA microprogramming. 

While one can devise ISA programs which can be compressed efficiently in 

ISADL but not in ISAC (and vice versa), one can say that the flexibility of the 

ISAC and ISADL implementations are both sufficiently high to cover practically 

all known features of ISA programs. An exception to this occurs with 'flat' ISA 

programs (see Section 5.4.1.3), which present difficulties for ISADL. We have 

7Table 5.1 assumed that Subroutining is implemented in the same way as ISADL except 

that diagonal patterns are not used, ie. Np = O. 
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indicated, however, that these programs can be avoided in practice. 

In terms of the cost of implementation, ISADL is interesting in that the ma

trix generator can be factored into two components, an O(log n) area diagonal 

sequencer, and an n X 0(1) diagonal restorer. Thus, theoretically ISADL has 

hardware cost of O(n), asymptotically better than ISAC's area cost of O(n log n). 

For realistic values of n, ego n = 28 , the hardware costs also favour ISADL, by 

what is estimated to be at least order of magnitude, so that ISADL is strongly 

recommended as the most practical method of program compression for the ISA. 

ISADL also shows a high performance in program loading time, and thus is well 

suited for smaller ISA sizes. It also has practical advantages in that (higher-level 

constructs of) Subroutining, as well as other forms of ISA program compression, 

can be efficiently incorporated into ISADL. 

Thus, in practice, ISADL is concluded to be a superior program compression 

method to ISAC. 

Much detail of the implementation of ISADL has been given in this chapter. 

This will enable an ISA system designer to realistically evaluate the cost, in 

terms of design and hardware, of incorporating ISADL into an ISA system. We 

conclude, from the results of Section 5.5.2, that ISADL would be cost effective for 

ISAs with an array size n 2 16, and increasingly cost effective for larger values 

of n. The diagonal restorer cells are estimated to have an area comparable to a 

boolean ISA (EISA) cell, as described in Section 2.2. 

The implementation of the ISADL diagonal restorer is interesting in that 

operations over log n bit integers (required by ISAC) has been replaced by bitwise 

operations, and that it utilizes fully the systolic concept. It has, however, a 

drawback: to incorporate a new program compression feature into ISADL may 

require a new mechanism. Thus, a 'Rolls Royce' implementation may be rather 

complicated. A mitigating factor is that the mechanism might only involve the 

diagonal sequencer, as was the case for incorporating subroutines in ISADL. The 

0(1) area of the diagonal restorer cell makes an ISA system implementing ISADL 

very easiiy expandable. 

One reason for the success of ISADL in program compression is that is de-
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scribes ISA programs on what is normally a very natural level: the diagonal. This 

is demonstrated in Chapter 6, where ISADL is combined with a diagonal-based 

ISA program proof method. This proof method gives very compact proofs for 

ISA programs, and also an indirect semantics for ISADL. This has an important 

practical advantage: that high-level ISA languages should also be based on the 

diagonal, giving a very simple compilation into ISADL. Appendix 5.A shows how 

by adding simple macro facilities, the presentation of ISADL programs can be 

improved. 

Future research on ISADL includes examining a specific ISA application, and 

examining how its programs can be expressed in ISADL for program compression 

implementation. This is because details of implementation (and hence their. cost) 

depend strongly on the set of ISA program features that need be incorporated. 

Also a convenient representation of ISADL programs for diagonal sequencer and 

restorer loading needs to be decided - this involves translation from a high-level 

(diagonal-based) ISA language, with some optimization heuristics. Particular 

attention here needs to be given to creating diagonal patterns. 

Wavefront-based program compression, combined with ISA microprogram

ming, is both feasible and highly beneficial for improving the ISA model for 

flexible, large-scale matrix computations. 

5.A Appendix: Boolean matrix algorithms in 

ISADL 

This appendix illustrates the utility of ISADL for coding the boolean ISA algo

rithms of Section 2.2.2. These examples illustrate how typical ISA program are 

coded in ISADL. They also illustrate how the ISADL encodings give a precise 

and parameterized expression of these programs (not possible using the standard 

matrix representation of ISA programs). To improve the readability of these 

encodings, naming of sub-programs in ISADL encodings is introduced. 

The sub-programs are then expanded as simple macros (the rules are given in 

Section 5.A.7). This suggests how ISADL could be used as a basis for a higher-
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level ISA language. These co dings are also used in the evaluation of ISADL in 

Section 5.5.1. 

5.A.1 Red Squares program 

The Red Squares program, finding the largest square of 1 's in an n X n boolean 

matrix, is coded, for an n X n ISA as: 

RedSquares : ( 

ComputeSk ~ k=1..n 

ComputeAk U 
ComputeSo 

where the sequencing occurs bottom-up. This expands to the full ISADL encoding 

(instructions in the centre and selectors to the right with subprogram names 

annotated to the left): 

ComputeSk: II C +- C V CN :\' 0 1 I C +- Cv Cw 1110 1 11 nJ\ 
C,A+-ACs n 1 nl O n 

C,A +- 0 n 0 nil n 

ComputeAk: C,A +- ACE n I C,A +- 0 n 1 n 

n 0 n 

ComputeSo : { 

\ 
C+-A n II 

C +- C V CN n 

0 1 I C +- C V Cw n 

\ 
1 n / 
0 1 11 n 

1 n 

5.A.2 Matrix multiplication program 

This program is for an n X m ISA, where m = 2n - 1, and is of interest since one input 

matrix is broadcast east, the other is broadcast west, and the result matrix is moved 

south. This three-way movement is achieved by combining a SE moving wavefront 

(ie. a regular diagonal) with a SW moving wavefront. Fortunately, this wavefront 

combination can be expressed in terms of regular diagonals as (instruction part; all 

selectors are 1): 

MatMult: 
(I NoOp' 

M m-k I NoOp 

(I NoOp' 
~oOp m-k 1M 

: I) k=1..n 

: I) k=1..n 

The 'M' instruction is used in four output register mode, and has the effect: 
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whereas the NoOp and NoOp' macros have no effect. For the one-output register 

mode, with a microprogrammed instruction diagonal restorer having q = 3, the above 

instructions become the sub-programs: 

M: 1 

1 

1 

A+- Cw 

.---
o 1 
r-

~ 
NoOp : ~ 
~ 
~ 
~ 

with NoOp' becoming the empty macro. The boundary '1' in the above sub-programs 

indicates that the instructions have a recurrence width of 1, ie. repeat across every 

column, in the contexts where they are used. 

5.A.3 Pattern match program 

The Pattern Match program, with the pattern length m ::; n, illustrates how a 'flat ' 

(load matrix from the east) subroutine, ReadEA' , is skewed (see Section 5.4.1.3). It is 

expressed in ISADL as: 

Matchm : 

CombineA m A' 
ReadEA' 

( 

I .c:;.:o~m.:...:.p.:.:u-=.,te.=:A'\;--'<~) k=l..m 
}catterSEp 
ShiftEAk 1 

with the sub-programs given by (selector diagonals only given if not trivial): 

CombineAmA': { 1 C,A +- ACN n I 

ReadEA': < 

> 
ComputeAk : < 

? 
ScatterSEp : ~ 

ShiftEAk-l : { 

(I: n-k I C +- CE : Ir=l..m 
IA+-AC :1 

C +- (C = B) . 

C +- CN n 

C +- Cw n 

A+-1 1 I A +- Cw n 

For m = qn + r , where 0::; r < n, this program is written: 

1 Matchr I 

(I Matchn If 

5.AA Transitive closure program 

The non-microprogrammed transitive closure program, TransClos', is coded in ISADL, 

with a rather interesting nested loop structure (differing for the instruction and selector 
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parts), as: 

( ~ NoOp k C n 

C k a.k => n 

a' => k 0 n .k 

~: ) ~L.' ( ( 0 k I ak . .0. n 

a'k . .0. do n 

1 n 

)' ) ,~, ..• 
which uses the ISADL sub-programs (indices appearing in the sub-program names here 

are only annotations to improve readability): 

a~k =>: I C, A' - Cw 1 1 

C, A'- Cw 1 

a.k =>: 0 1 

0 1 

C,A-CVA 
c: C-CA' 

C-CN 

~
l 

a'k . .0., ak . .o.: 1 1 

1 1 

1 

1 

1 

NoOp: ~ 
tt±j 

~
l 

0: 0 1 

o 1 

To understand the ISADL encoding directly, consider the execution of iteration k along 

row i of the ISA. ColUIIlIis l..k receive the old value of a~k from I a~k => k I ... I, which 

broadcasts it east from cell (i , 0) (row i of the western ISA boundary). Columns k' .. n 

receive the updated value of aik from I .. . k I a .k => n b which broadcasts it east 

from cell (i , k). This value (being the updated a~k) is produced by executing (the 

last instruction of) C at cell (i,k). Now consider the execution of iteration k along 

column j of the ISA. Rows l..k receive the old value of a'kj from C (1st sub-iteration) 

meeting 1 a'k . .o. k I ... b which broadcasts it south from cell (O,j) (row j of the northern 

ISA boundary) . Rows k' .. n receive the updated value of akj from C (2nd sub-iteration) 

meeting I ... k I ak . .o. n I, which broadcasts it south from cell (k,j). This value (being 

the updated a'kj ) is produced by executing (the last instruction of) C (1st sub-it eration) 

at cell (k,j). 

5.A.5 Associative memory lookup program 

Here a pattern p[1..m] is searched for in a key table K[1..n2 /m][1..m] (with associated 

lookup table L[1..n2 /m][1..m]) stored in row major order in an n X n ISA (with min). 

The matching lookup pattern(s) L[i] are then gathered, ready to be output on the 

southern side of the ISA. This program, called AssocMem, has the most varied and 

complex diagonal patterns out of all ISA programs of this chapter. Its selectors are 

again l 's and its instruction part, for the last two sub-programs of the AssocMem 

program of Section 2.2.2.5, is coded in ISADL as: 

AssocMem: 
GatherArrayL 
GatherRowsL 
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The sub-programs expand to: 

GatherArray L : { 

GatherRowsL: { . 

5.A.6 Median finding program 

Finding the median of an Lx L, L = 2K + 1 window of an n x n image (boolean matrix) 

is implemented here using a boolean ISA performing bitwise addition using ring shift 

registers Rl and R2 (at least of size 2 log L bits) The overall program is divided into 

two main stages, summing the L pixels to the west, and adding the L (row) sums to 

the north: 

ResetllogLI(Rl) 
1=1..L 

Resetllogk'~I(R2) 

Carries Ilog k'i (R2) 

MedFind: AddRowSum~ogL 1 (Rl , R2) 
( 
( ResetCopyllogk'1 (Rl , R2) ~ k=l..L 

AddPixel~g k'] (Rl ) 

Rl +- A n 

The selectors for each ofthese sub-programs are 1's; the instruction parts are given by: 

Resetb(Rl ) : { ( I B+-RI; RI n I )b 
Carriesb(R2) { ( I HA(R2,D) R.f n I ) b 

AddRowSum~(R"R,) , { ( 
FA(R2,B,D)jRt n r RI+-BjRt n 

B+-CN n 

C +- RI n 

ResetCopyb(RI,R2): { ( R2+-RI jRl jR; n )b 

AddPixel~(Rd' { 
( HA(RI , D); Rt n )b 

C+-D n 

D +- Cw n 

Recall that HA(R, C) denotes (R, C) +- (Rtf) C, RC), FA(S, B, C) can be implemented 

by the sequence 'HA(R, B); HA(R, C); C +- C V B' and that appending an instruction 

with ';R+ ' ('jR-') indicates that the ring-register operand RI is shifted forward (back) 

after execution of that instruction (and similarly for R2). This program is interesting for 

the purpose ofISADL implementation: some nested loops have their bounds dependent 

on the logarithm of the outer loop index. This requires an extra capability in the IS AD L 

diagonal sequencer. 
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5.A.1 ISADL macro rules 

In Appendi..x 5.A.1-5.A.6, various 'macro'-type conventions were introduced to improve 

the readability o(rSADL programs. These conventions are defined semi-formally here. 

1. Sub-program macro rule: if Subprog= I Dl nl 1 ···1 D/ n/ ~ then: 

I SUb~<og I ~ I D, " 1 .. 1 D, " I 

This is used to expand macros in programs ReqSquares, MedFind, Matchm 

and AssocMem, and is a tidy way to sequence sub-program calls inside 

tables. 

2. Nesting ISADL sub-programs within a diagonal: 

This can occur if all sub-programs have the same length (in the following 

case r): 

Dr 
----1... J2L Dr 

1 nl I· ··1 Dr n/ 

nl ... n/ = -w J5r Dl nl 1··· 1 D; n/ 1 1 

This is used to expand macros in programs RedSquares, MedFind and 

Match (with l = 1); and in programs MatMult and TransClos' (with l = 2) . 

3. Nested sub-diagonal simplification: 

I ... a II Dl nl 1 .. ·1 D/ b-a I b I .. ·1 
= I··· a 1 Dl a+nl I .. . 1 D/ b I .. ·1 

This is used to simplify macro expansions in programs MatMult and Trans

Clos'. 

5.B Appendix: Implementation of ISADL 

5.B.l The diagonal load algorithm 

The algorithm setting the L bit, used to selectively load ISADL diagonals into diagonal 

restorer cells, is described here. The algorithm is based the small boolean st ack E 
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(where the context is clear, E also denotes the E stack top), and a boolean variable E' 

for each cell in the diagonal restorer. 

Loading the initial value of a component of an ISADL diagonal requires that the 

E' (E) bit is set in the cells where that component begins (ends). To load a whole 

diagonal, assume that the E' (E) bit is high only at cell 1 (cell n). If the component 

extends over w columns, let a consecutive high E' and high E pair, separated by w 

units, be denoted 'E'-w-E'. Here, w corresponds to the w of equation (5.2), and can 

be counted in (log w - 1) steps using the systolic input bit h, which travels across 

the diagonal restorer with the loading logic instruction codes. If the component is a 

simple instruction, the L bit is set between E'-w-E pairs, and the instruction is loaded. 

Otherwise, the process is repeated recursively, and if the component has recurrence 

width nl where nl = qw and q > 1, q E'-nl-E must be first set between each E'-w

E. Since this process occurs in a time-skewed (instruction systolic) fashion across the 

diagonal restorer, the systolic bit h can be used to efficiently detect if the current cell 

is between an E'-w-E. 

The following algorithm gives the required diagonal loading logic instruction se

quence for cells 1 to n (the value of h read in at cellI is put in brackets ([OJ is default), 

and meta-instructions are in bold). Note that no = 0 and E denotes the negation of 

the 2nd top element of E. 

d.1(i, w) = 
(L,h) f- (h V E',E'V hE) 

E f- push(E) 

ifni < w then 

new(E,nl-l,log nl) 

(E', h) f- (E' V h, EE) 

(* load i*) 

(* put wlnl E'-nl-Es inside current E'-w-E *) 

(* set every nlth (modnl) E after high E'*) 

(* set E' if a high E (and not the last high E) in previous cell*) 

for k := 1 to I do 
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new(E,nk - nk-l -1, flog(nk - nk-dl) 

(* set every (nk - nk_l)th (mod2nog(nk-nk-tll) E after high E'*) 

(E,h) - (Eh,E'v hE) 

dJ(Dk' nk - nk-l) 

if k < I then 

(E', h) - (h,E) 

else 

(E', h) - (h,O) [1] 

E +- pop(E) 

new(E, 0, I) = 
(E, h) _ (E' V h, E' V h) 

for k := 1 to I do 

(* select first of these after a high E'*) 

(* set E' to E of the previous cell*) 

(* set E' only in 1st cell (for next diag.) *) 

(* set E high if after any high E'*) 

(E, h) - (Eh, E ffi h) [8k] (* select odd (even) Es if Ok = 0 (1)*) 

where Ok denotes the kth bit of 0 (1st bit is least significant). new-E(o) sets E high 

at intervals of 2Llog6J+1 and an offset of 0, bit from the last high E'. The correctness 

of this procedure relies on the fact that the distance between consecutive high E' - E' 

pairs is always a power of 2, and is divisible by nt. 

Optimizations 

It is necessary for at least small number of diagonals to be loaded within a period of fl( n) 

ISA instruction cycles. Since the period of the above algorithm is O(1og n), determined 

by calls to the new procedure, these optimizations reduce the number of these calls. 

These optimizations require negligible extra hardware for their implementation. 

Since in this case the corresponding E values have already been calculated, the call: 

new(E, nt - nt-l - 1) 
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can be replaced by the instruction: 

E <- pop(E) 

after inserting an extra 'E <- push(E)' instruction immediately before the for loop. 

Diagonals that often occur in ISA programs are uniform, except possibly that one 

edge instruction is different. Here, useful optimizations would be: 

(L, h) <- (E' V h, E' V hE) (* load i 1 *) 

ifni < w then 

(* as above *) 

(L,h) <- (h,E'V hE) (* load i2 everywhere *) 

L <- E' (* load i 1 at left end *) 

ifni < w then 

(L, h) <- (h, E' V hE) 

L<-E 

(* as above *) 

(* load i 1 everywhere *) 

(* load i2 at right end *) 

There are further optimizations that can be taken, such as, when loading several 

diagonals of the same recurrence width m say, calculating once and then re-using the 

E'-m-E pairs for each such diagonal. Further speedup can be achieved by making the 

systolic input h into a bit vector of size 10 , where 1 ::; 10 ::; log n. The new procedure 

can now select a high E at intervals of 21
0 during a single instruction, resulting in a 

factor 10 speedup. 
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5.B.2 Transforming 'fiat' ISA programs 

This appendix illustrates the efficient transformation of the odd-even transposition sort 

and triangle merger programs [46] outlined in Section 5.4.1.3. These transformations 

are achieved by 'skewing' the comparison-exchanges, and inserting two empty 'anti' 

diagonals. This is illustrated for the 'forward' triangle merger (over width d) program 

of Figure 5.11 (all selectors are 1 's; the case for the 'reverse' triangle merger is similar). 

- r--

r-- - r-- r----
--------.... ------- -- ------ -- ---- -- ---- --

I--t- t-t-
'-- ~ 

(a) original matrix, d = n = 8 (b) transformed matrix d = n = 8 

d/2-k If- 1 I 2 I d/2+k d 

d/2-k I d-+ 2J d/2+k d 

( c) original ISAD L encoding (d) transformed ISADL encoding 

Figure 5.11: 'Forward' triangle merge (over width d) instructions for an n x n 

ISA 

5.B.3 Binary recursive programs in ISADL 

To illustrate incorporating more sophisticated Subroutining concepts into ISADL (Sec

tion 5.4.3), this appendix demonstrates how binary recursive ISA programs can be 
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implemented in ISADL. This also incorporates the concepts of diagonal patterns (Sec

tion 5.3.3) and spliced diagonals (Section 5.4.1.2). Iteration is a form of linear recursion 

which can be efficiently implemented in ISADL providing the differences between suc

cessive iterations are 'acceptable' . By unfolding binary recursion into linear recursions, 

binary recursive ISA programs (which typically incorporate some divide-and-conquer 

strategies) can be coded efficiently in ISADL. Consider the ISADL program P(n): 

P(1) = P 

P(k + 1) = AZk; P(k); BZk; P(k); CZk 

where An,Bn,Cn are O(n) ISA subroutines (usually, at least one of them is 0(n». 

An example of a binary recursive ISA algorithm is the algorithm for finding all cut

points of a graph of [48, Sect.6j, which has A2k = PUSH; (INC; ROTzk+1 )Zk, BZk = 
(INC; ROTzk+1 )2k and CZk is an empty program. 

As an example, P(8) unfolds to (semicolons omitted): 

which is rearranged to: 

At(Az(Al P Bl P Cl ) 

Bz(Al P Bl P Cl)CZ) 
B4(Az(Al P Bl P Cl ) 

Bz(A1 P Bl P Ct}CZ)C4 

(A4 Az At) P 
(Bl P C1 Bz Al P) 
(Bl P (C1 CZ)B4(Az A1)P) 
(Bl P C1 Bz Al P) 
Bl P (Cl Cz C4 ) 

Thus, P(n) is then coded in ISADL as follows: 

(AZk )k=bn / 2 •• 1; P; 
(B1 ; P; (CZk )k=l..b;; BZb;+1 ; (AZk )k=b; .. I; p)i=l..n/Z-l; 
B1 ; P; (CZk )k=l..bn / 2 

where the binary coefficient b; is given by the lowest set bit in i's binary representation: 

b; = min{j : O:S; j < lognl i mod 2i = 1} 

An efficient ISADL implementation of this requires that: 

• each diagonal of AZk can be merged with a diagonal of CZk into a ~agonal 

pattern, and any diagonal of BZk (or BZk+l) can be merged into one of these. 

Thus, all diagonal patterns for these subroutines initially correspond to 2~n/2, 

and the patterns are varied during the nested (k) iterations as is done in Section 
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5.4.1.2. If the diagonals of AZk or BZk have their boundaries dependent on 2k , 

this in turn requires that AZk is 0(2k) (to accommodate duplicating splicing 

boundaries by 2k- 1 shifts), and Cn is n(1) (to accommodate removing odd/even 

splicing boundaries). 8 This is sufficient to ensure the correct boundaries are 

available in the diagonal restorer at any time . 

• the diagonal sequencer be able to generate the sequences l..b; (b; .. 1) and dynam

ically allocate the values of any loop bounds (usually 2k, 2k -1) within Ak, Bk and 

Ck. It must also command the diagonal restorer to change its splicing boundaries 

appropriately. 

8This can always be achieved by inserting a few diagonals of 'NoOp's in en, which can be 

efficiently merged with any diagonal on An or Bn . This will not increase the time complexity 

of Pen) . 
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Chapter 6 

A Micro-level Semantics for the 

Microprogrammed ISA 

6.1 Introduction 

Parallel computing presents many challenges to the programmer, who must now 

consider issues of synchronization and communication as well as computation. 

As a result of this, the debugging of parallel programs can be extremely difficult , 

due to non-determinism in parallel program execution and the fact that unipro

cessor debugging techniques (eg. tracing variables) disturb the timing of parallel 

execution and often yield unmanageable volumes of data [39, pp12-15J. This has 

lead to an interest in program verification techniques for parallel computers, in 

which the correctness of a program can be established (at least in part) at coding 

time. 

Chapters 3, 4 and 5 have demonstrated that the microprogrammed ISA and 

wavefront-based ISA program compression can enhance considerably the effi

ciency and flexibility of implementing the wavefront programming model on fine

grained meshes. Both of these concepts have also touched upon the high-level 

language aspect of the issue of confident and efficient programmability. This 

chapter examines the verification aspect of this issue for microprogrammed ISA 

programs written in a wavefront-based language (ie. ISADL). 

While both of these concepts are based on the intuitive wavefront mesh pro-
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gramming model, it may furthermore be asked whether this model can be given 

a formal semantic basis. An affirmative answer to this question is important 

for two reasons: Firstly, it would give more reason to believe that the wavefront 

model is appropriate for developing high-level language concepts, and not just effi

cient control structures. Secondly, it would provide a reference point to confident 

programmability by defining what is the actual behavior of a wavefront-based 

program, so that it may be compared with its intended behavior. This chap

ter seeks such an answer for the features of the wavefront model that can be 

supported by the microprogrammed ISA. 

The microprogrammed ISA (!lISA), being a new model of parallel computa

tion, needs to be formally defined, and the well-developed weakest precondition 

semantics [6] is an appropriate choice. Fortunately, since the !lISA is synchronous, 

deterministic and relatively simple, its semantic modelling and associated pro

gram verification techniques are straightforward, as compared with more general 

models of parallel computation. This chapter gives a weakest-precondition seman

tics for the !lISA, which is modelled at the micro-level, for the sake of simplicity. 

However, it can easily be extended to the macro level, since the same principles 

apply to macros as to micros. 

The ISA, and in particular the !lISA, are relatively difficult to program, as 

compared to SIMD meshes and uniprocessors. One approach to simplify the 

programming of the !lISA was given in Section 4.6 - this was a discipline for 

programming the !lISA at the macro level. Another approaoh is to compensate 

for programming difficulties by developing useable program verification (ie. proof) 

methods for the !lISA, in order that the !lISA can be used confidently in practice. 

Hence, this chapter develops a useable !lISA program proof method based on the 

weakest precondition semantics. 

The microprogrammed ISA semantics of [34] is based on the concept of global 

predicates to specify the pre/post-conditions of the ISA. It is also based on a 

'serialization principle', in which during a global time snapshot over the array, 

the operations at each component are carried out in an arbitrary, serial order. 

This leads to a simple and elegant semantics, which is amenable to mechanized 
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and manual program verification. 

However, for wavefront architectures such as the jLISA (Chapter 4) global time 

snapshots are not a convenient frame of reference, so that the direct application 

of the semantics for program verification is difficult. Hence, this chapter also 

develops a proof method based on the semantics that is convenient for the ver

ification of jLISA programs expressed in diagonal or wavefront-based languages 

such as ISA Subroutining (Section 3.6) and ISADL (Chapter 5). This can be 

achieved by combining two concepts: 

1. describing the state of the array as a 'predicate array' of the states 

of its components, and then to parallelize the weakest precondition 

operation. ie. the weakest precondition of the 'predicate array' due 

to a global snapshot (array) of operations or instructions is expressed 

in terms of the weakest precondition of each operation component 

applied to its respective predicate component. Communication effects, 

including boundary conditions, are modelled by a technique called 

communication register time-stamps (CRTS). 

2. incorporating the diagonal or wavefront as the basic semantic unit, 

which requires a time-skewed (rather than a global time) frame of ref

erence. This frame of reference follows the wavefront as it propagates 

through the array. 

The method has an interesting parallel with program compression, since it can 

compress a (expanded) proof using ,the semantics directly in an analogous way 

to that in which (the matrix form of) an ISA program can be compressed by 

ISADL. This method is intended to be as far as possible compatible with the 

programmer's (intuitive) view of the jLISA. 

This proof technique may be used in the following ways: 

• to verify that a jLISA program implements a given series of recursion equa

tions /boundary condi tions. 

• to derive the (weakest) series of recursion equation/boundary conditions 

that a jLISA program implements. 
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• to be used to optimize microcodes of a given /LISA program (in conjunction 

with some semi-automated 'assistant' system). 

Sections 6.2 and 6.3 give extended versions of the syntax and semantics of the 

/LISA microlanguage of [34]. Section 6.4 describes the programmer's view of the 

/LISA, outlining accordingly how a program verification technique can approxi

mate the programmer's intuition. Using most of these ideas, Section 6.5 develops 

the wavefront-based proof technique. It also establishes various results to demon

strate the validity and generality of the method with respect to the semantics. 

Section 6.6 illustrates the method on some non-trivial examples, and introduces 

the use of boundary conditions and invariants. Section 6.7 discusses the relative 

merits of this technique, and its possible extensions. 

This chapter gives a semantics fOF the /LISA (and hence ISA) model, forming 

an important step in the development of this model. The proof method also 

effectively gives a semantics for the ISADL or Subroutining programming lan

guages. The CRTS technique of the proof method also models general boundary 

conditions, essential for systolic algorithms, which the semantics itself does not 

provide. 

Sections 6.2 and 6.3 are largely based on Dr Lender's semantic modelling of 

the /LISA from [34]; the rest of this chapter is the author's own work. 

This chapter is not essential reading for the rest of this thesis, and only a 

reader interested in semantics or program verification is likely to be interested 

in the (perhaps unavoidably complicated) details. However, the reader might 

still find it rewarding to obtain a feeling for the semantics and proof method by 

looking at the examples in Sections 6.3, 6.4 and 6.5.1. 

6.2 Syntax of an ISA microlanguage 

The syntax of a microprogramming language for an m x n microprogrammed 

ISA is given here. This language is also wavefron-based, but for the sake of a 

convenient semantic definition, differs from the Subroutining or ISADL languages 

already encountered. The language's syntax uses the BNF notation, along with 
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the following notations: '[ ]k' denotes k repetitions of the enclosed material· '.' , , 
denotes sequential composition. A program consisting of J{ > a micro diagonals 

has the syntax: 

< program > < line of stat > < line of sel > 

[j < line of stat >< line of sel >]K-l 

< line of stat> .. - < statl >j < stat2 > [, < statl >j < stat2 >]n-l 

< statl > < inputregs > f- < expls > ISKIP 

< stat2 > .. - < accregs > f- < exp2s > ISKIP 

< inputregs > .. - < inputreg > [, < inputreg >] 

< accregs > .. - < accreg > [, < accreg >] 

< expls > .. - < expl > [, < expl >] 

< exp2s > .. - < exp2 > [, < exp2 >] 

< inputreg > .. - a local input register, 

not a communication register 

< accreg > .. - a local accumulating register 

< expl > .. - expression involving any register 

< exp2 > .. - expression not involving a neighbour's 

communication registers 

< line of sel > .. - < sel > [, < sel > ]m-l 

< sel > .. - all 

So far, the syntax is consistent with that of [34], and it encompasses simulta

neous assignments. Further restrictions on the simultaneous assignments allowed 

are given in the semantics of the next section. The syntax will now be more 

closely defined in terms of traditional ISA models which use single output com

munication register per cell [21]. In this chapter, the p.ISA cells are assumed to 

have four input registers, one communication register, two accumulating regis

ters, support boolean conjunction and disjunction, and support integer addition, 

multiplication, and maximum. The extra syntax rules are then: 

< accreg > ::= AlBIC 
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< input reg > 

< exp1 > 

< exp2 > 

< reg> 

<OP> 

NISIEIW 

CNICslCEICw 

< reg> I < reg> < OP > < reg> I max( < reg>, < reg> ) 

< accreg > 1< inputreg > 

In these rules, CN, CE, Cw, Cs are the communication (C) registers of the 

north, east, west and south neighbours. To more realistically model the ISA, it 

is also required that any 'inputreg' (eg. N) used in 'stat2' (eg. C +- C * N) of a 

statement must also be updated in the corresponding 'statl' (eg. N +- CN). This 

ensures that a value read into an 'inputreg' cannot be used on subsequent cycles 

(and will not be introduced into the corresponding precondition). 

6.3 Semantics for the ISA microlanguage 

This approach for defining a semantics of the ISA microlanguage is based on the 

'weakest precondition' operator (cf. [6]). For the sake of convenience, a program 

P having J< diagonals (ie. period of J<) using a (J.L, a-) wavefront on an m x n 

J.LISA, is given in the wavefront form: 

P = '(lstatk lse1k) 
k=l,K 

i=l,m 
; ( . ' (statljkj stat2jk) 

k=l,K J=l,n 
= 

where" , P(l)" intuitively denotes 'P(a)j P(a+1)j ... j P(b)' and " P(l)" 
l=a,b l=a,b 

textually represents the diagonal composed of the elements 'P(a), ... ,P(b)'. 

P is first syntactically transformed into a series of global 'snapshot' instruction 

matrices, using the microprogrammed ISA transformation kijt = t - J.L( i-I) -

a-(j -1), where the index t denotes the time step, and the indices i and j denote 

the position of the processing elements: 

pI = 
t=l,T 
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where, for the microprogrammed ISA\ T = ]( + J.t(m - 1) + (j(ri - 1) , and, for 

k = kijt : 

P1ijt = { P Eij .stat1jk if 1 ~ k ~ ]( 1\ se1ik = 1 
SKIP otherwise 

P2ijt = { P Eij .stat2jk if 1 ~ k ~ ]( 1\ se1ik = 1 
SKIP otherwise 

This amounts to the postulate that wp(P, Q) = wp(P', Q) for all Q. As is proved 

in [34, Sect.6.1] (using the fact that at time t within P', communication regis

ter access and update over the array occurs in the two non-overlapping phases 

(;i ;j P 1ijt) and (;i;j P2ijt ) in P'), the order of execution along the i , j indices is 

irrelevant. In this sense, it can be said that this semantics embodies a 'serial

ization principle'. For this reason, it is necessary to decompose the instructions 

into two phases. The meaning of P Eij.statljl. is: 'statement statljl. in processing 

element P Eij at time step t = k + J.t( i-I) + (j(j - 1)'. The semantics of the 

different mechanisms is, for L > 0: 

where: 

WP(Sl; S2, Q) = wp(Sl, WP(S2' Q)) 

wp(PEij.SKIP, Q) = Q 

• Q~, ... ,r~ is the predicate Q where all occurrences of the variables r\ . .. ,rL 
e , ... ,e 

have been simultaneously replaced by el, . .. ,eL , respectively. The variables 

must be distinct. 

• reglj' 1 ~. I ~ L is the register (input or accumulating) reg l of P Eij (for 

example Aij). 

• explj , 1 ~ I ~ L is the expression expl calculated in P E ij . Thus every 

occurrence of 'reg' is replaced by regij (for example, 'A' is replaced by 

IGenerally, T represents the last time when P is in the array, ie.: T = max{tJkijt = K , 1 :::; 

i:::; m , 1:::; j:::; n} . 
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A ij ), every occurrence of CN is replaced by Ci(j-l), every occurrence of CE 

is replaced by C(i+l)j, every occurrence of Cw is replaced by C(i-l)j, and 

every occurrence of Cs is replaced by Ci(j+l). 

This semantics is in fact suitable for any deterministic, communication register

based mesh for which program control is data independent. For this purpose, 

a similar microlanguage should be chosen, with a corresponding transformation 

into 'global' snapshot instruction matrices. 

Example - the LCS program 

The LCS program (see Section 4.2.1; a similar program is found in [34, Sect.7.1]) 

has K = 4, fL = 3, u = 2 and is written syntactically as: 

LCS = (i=~'N (N - CN; A - A * N) i=:'M (1)) 

(i=:,n (N - CN;A - max(A,N)) i=Lm (1)) 

(i=:,n (W - Cw; C - W) i=~,m (1)) 

( i=:,n (SKIP; C - max(C, A) i=:,m (1)) 

For a 3 x 3 ISA, with '*,~, !,m' denoting 'A _ A*N, C _ W, A _ max(A,N), 

C - max( C, A)' respectively, the corresponding 'snapshot' matrices (P2ii)t for 

1 ~ t ~ 6 are (in row-major order, i,j subscripts suppressed, and 'SKIP' is 

default entry): 

* L ~ * 

m L ~ m 

* L ~ * 

The final snapshot occurs at T = 14 with only Om' in cell (3,3) of the ISA. From 

this, the reader can visualize the transformed program LCS'. 
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6.4 A programmer's view of ISA program ver

ification 

This section illustrates how the programmer might reason about the j.LISA (ISA) 

during the development of a program. This reasoning is consistent with wavefront 

concepts. It is desired that a proof method mirrors this reasoning process as 

much as possible, because this makes the proof method easier to use. Thus, the 

priority here is to make a proof method practical, even at the expense of some of 

its 'theoretical elegance'. 

The example used to illustrate ISA programmer's reasoning is a simplified 

version of the Red Squares program (see Section 2.2.2.1). The program imple

ments on an n X n ISA the following set of recursion equations (for 1 ::; i,j ::; n 

and 1 ::; k < n): 

A~k. = A~ -A~ +1 ',J I,] I ,) 

A~t1 A'k A'k = i,i i+1 ,i ',1 

where, for the sake of simplicity, the boundary conditions are left unspecified. 

These equations suggest a program consisting of n - 1 uniform repetitions, in 

which the kth repetition at typical cell (i,j) begins with the value of AL in its 

communication register. Hence, when cell (i,j + 1) similarly has ready AL+1' 
cell (i,j) reads this value to produce Ai~i ' Then, when cell (i + 1,j) has similarly 

computed Ai~1,i' cell (i,j) reads this value to produce Atj1, The associated ISA 

wavefronts, passing through a typical cell (i, j), are illustrated in Figure 6.1. 

To verify that such a scheme correctly implements the recursion equations, 

the programmer considers the 'state', ie. the relevant values of the (C) registers, 

around cell (i, j) - these are annotated in braces below - as the respective 
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... . .. j" 

... j" i--" 

j" i--" 

i--" .. . w 
C i-- C CE i--" 

NoOp 
i--" 

i--" 

j" : C i-- C Cs 

(a) for the '-,,' wavefront (b) for the '1,,' wavefront 

Figure 6.1: Execution of simplified Red Squares program around 'typical' cell 

(i,j) = (2,2) for a 4 X 4 ISA 

sequence of wavefronts pass through it: 

{Cij = Atj} 
NoOpj 
{Cij = Af,j} {Ci(j+1) = Af,j+1} 
C i-- C CEj 
{Cij = Af,jAf,j+1 = Ai~j} 
NoOpj 
{Cij = Ai~j} {C(i+1)j = Ai~l,j} 
C i-- CCSj 
{CiJ· = A~k. A~k+l . = A~tl} 

It) I" I,) 

Here, the programmer begins with the assumption that Cij contains the correct 

starting value ALj then (0- = 1) NoOp's are required to ensure that the corre

sponding assumption holds in cell (i, j + 1) before forming Ai~j' by reading Ci(j+l) ' 

Similar reasoning holds for the next step. 

The above reasoning may be thought of as an informal or a 'programmer's 

verification' of the Red Squares program. The annotations may be thought of as 

being under the scope of some kind of universaL quantification over the subscripts. 

In the SIMD version of this algorithm (using a (j.l, 0-) = (0,0) wavefront, and hence 

NoOp's are no longer required), this quantification corresponds to global time 

snapshots over the array, so that verification is more straightforward. However, 

in the ISA version, quantification occurs in a 'time-skewed' sense in which the 

predicate describing the state of a cell holds when the respective wavefront passes 

through it. This concept is more difficult to formalize. 

A fair comment is that since the programmer reasons about how the 'state' 

around a typical array cell changes as execution proceeds, the weakest precondi

tion semantics can never be fully appropriate to base suoh a proof method on. 

212 



This is because weakest precondition semantics reasons in the reverse direction. 

While this gives the semantics elegant theoretical properties, it widens the gap 

between formal and intuitive reasoning about programs. Such problems aside, a 

wavefront-based proof method will now be introduced, which otherwise attempts 

to mirror this intuitive 'programmer's verification'. This can be achieved by using 

the concept of a time-skewed 'state' around a typical array cell, with the 'rele

vancy' being modelled by the selective introduction of communication register 

time-stamps2. 

6.5 A wavefront-based proof method 

This section presents a proof method based on the microprogrammed ISA seman

tics. The method is suitable for manual proofs. This section proper introduces 

the method and its main concepts, which are illustrated by a simple example in 

Section 6.5.1. That the method is indeed valid with respect to the /-LISA semantics 

is demonstrated by the results of Section 6.5.2 - this section is not essential for 

further reading. Section 6.5.3 gives an interpretation for the CRTS introduced 

by the method under which it yields the weakest or most general solutions - this 

is important for the intuitive understanding of the method. Section 6.5.4 shows 

how ISADL is incorporated into the method (giving an effective semantics for 

ISADL) - however, this can more easily be understood merely be following the 

examples of Section 6.6. 

The semantics considers a general program P for an m X n /-LISA of period 

J( and microprogramming parameters /-L and (7. The first micro of P enters the 

ISA a time t = 1 and the Kth micro leaves the /-LISA at time t = T, where 

T = J( + /-L(m - 1) + (7(n -1). Convenient shorthands used here are 'y' denoting 

'y - 1', and 'y" denoting 'y + 1', 'i,j' denoting 'i : 1 $ i $ m,j : 1 $ j $ n', and 

Qa .. b denoting (Qa /\ Qa+1 /\ ... /\ Qb). 

The method is based on evaluating the (weakest) precondition at time t, Qt, 

for 1 $ t $ T, of the /-LISA due to the execution of the klltth to kmntth wavefronts 

2cf. the the proof of the Red Squares program in Section 6.6.2 in which the time stamp C~/ 

(Cf/) corresponds to the constant Af,j (A~~i) of this section. 
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of P, where: 

kijt = t - J.Li - uj (6.1) 

The method requires the ISA postcondition Q = QT' and also the preconditions 

Qt, for 1 ~ t ~ T , to be in a normal form: 

where s7t is normalized, ie. it refers to the registers of no ISA cell 

except cell (i,j). 

(6.2) 

Thus, the precondition conjunct, s7t of cell (i,j) in Qt is determined by the 

'corresponding conjunct, s~t', in Qt' and the instruction, 'P1ijt; P2ijt ', executed 

in cell (i, j) at time t. In this process, s~j' may need to normalized using the 

(unnormalized) precondition conjuncts corresponding to the neighbouring cells. If 

cell (i, j) is on the edge of the J.LISA, boundary conditions must also be considered. 

The method consists of the three steps: 

1. normalize the postcondition QT', yielding s~jiT'. 

2. with the definitions, for k = kijt : 

s~. deC 
') 

k;jT'Rk .. k;jT' s· · .. 
') ') 

if k > K 

s~. deC wp(P!'. s~~)R~. if! < k < K 
') ')' ') ') --

(6.3) 

(6.4) 

sfj deC s7t Rt·o if k < 0 (6.5) 

R~. deC {(Cri = Cii ) if PI'it.'PIilt,PIi'it or PIii't contain Ci{6.6) 
') true otherwIse 

(6.7) 

evaluate successively sri' for 1 ~ k ~ K . 

3. identify the (weakest) precondition as Q1. 

Here, ct for 1 ~ i ~ m, 1 ~ j ~ nand 1 ~ k ~ K are the communication 

register time-stamps (CRTS) introduced into the Rri conjuncts3 • The CRTS 

3These are introduced only when necessary for normalization, ie. R~t is true if cell (i, j) is 

read at time t - see equation (6 .6). Note that if equation (6.6) presents difficulties, theoretical 

or practical, Rfj can be simply redefined to be (Ct = Cij). 
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generally denote 'fresh variables', ie. variables not appearing elsewhere in the 

current universe of discourse, particularly in the postcondition QT' . If ct does 

appear in the postcondition, an extra constraint is imposed on the C register of 

cell (i, j) at time t where kijt = k. 

Section 6.5.2 establishes that the method is valid, ie. that Ql => wp(P', QT'), 

and that Qt, for each 1 ::; t ::; T, is in normal form. In Section 6.5.3, an 

interpretation is given for the CRTS under which Ql = wp(P', QT'). 

The communication phase (timing) of the jlISA instruction cycle is explicitly 

modelled by the substitutions of CRTS in wp(P1ijt ; P2ijt , s~t') in equation 

(6.8). It is convenient to move these substitutions inside the definition of Pi~;j ' 

in equation (6.7). The computation phase is modelled by applying the weakest 

precondition operator. Thus, the splitting of a jlISA instruction into two explicit 

phases is no longer necessary, a significant conceptual and practical simplification. 

For the use of this method, the syntax for the jlISA microlanguage can then be 

simplified by redefining: 

< line of stat > < stat2 > [, < stat2 > ]n-l 

< exp2 > an expression involving any register> 

< reg> 

Equation (6.3) [(6.5)] states effectively that the precondition [postcondition] of 

P at cell (i,j) is given by s!j [sffj, and that only what occurs between these states 

is significant. This corresponds to the intuitions of the jlISA programmer, who 

visualizes P as a series of wavefronts moving through the jlISA and considers the 

values of the registers of cell (i,j) as each wavefront passes through it. Thus, the 

padding of jlISA programs on either side with large numbers of 'NoOp' wavefronts 

is made implicit by the proof method. 

Note that in practice, P will be written so that cell (i,j) is read at time t only 

·f 1 < k < T/ ' th t Rk;jl .. O - t [RK ' .. k;jT' - RK '] 1 _ ijt _ .ll. , so a ij - rue ij - ij. 

So far, the microprogrammed ISA semantics are adequate for constant bound

ary conditions. A simple way to generalize the semantics for arbitrary boundary 

conditions is to time-stamp the boundary (input) registers, so that at time t, 

the boundary registers are denoted by (the constants): C~ij', C7Jo., C~":t, C7~';" 
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respectively, where 1 :::; i :::; m,l :::; j :::; n. This notation is convenient, since 

in for example Pi1 = (Cij +- C7:t') (which corresponds to the jlISA instruction 

'C +- Cw'), C7tT denotes a boundary register for j = 1, and a CRTS otherwise. 

The derived preconditions generally impose some constraints on these constants, 

from which boundary conditions can be deduced. 

For specifying output boundary conditions, the CRTS C71' C~j' C7n and Cjn, 
for some appropriately chosen 1 :::; i :::; m, 1 :::; j :::; n and 1 :::; k :::; K, may appear 

in the postcondition. This imposes some extra constraints on the corresponding 

communication registers at the corresponding times. As these CRTS are fixed 

externally to the proof method, so that they should be interpreted differently 

from other CRTS (see Section 6.5.3). 

It may be asked why the transformation kijt = t - jl2 - U) was chosen here 

for the microprogrammed ISA. The reason is that the inverse transformation was 

used to form (PIijt; P2ijt) of Section 6.3, and hence that Pi1 is determined by 

'statljk; stat2jk' and selik from the wavefront: 

in the program P. From the observation that wavefronts are always reasonably 

simple (this is the motivation of ISADL), the description of Pi1 will also be reason

ably simple. This leads to compact proofs of jlISA programs, as is demonstrated 

in Section 6.6. Other transformations of the form kijt = t - f( i, j) may be chosen 

but are unlikely to be of any intuitive or practical significance. 

6.5.1 Example: the Les program 

The LCS algorithm is an inexact string matching algorithm with an efficient 

microprogrammed ISA implementation (see Section 4.2.1), with K = 4, jl = 3 

and U = 2. The selectors of this program are alII's, so that Pi1, for 1 :::; k :::; K, 

are given ,simply by evaluating each of the four uniform instruction diagonals 

at cell (i,j) and replacing any external register references with their respective 

216 



CRTS (or time-stamped boundary registers): 

4 Cij t- max( Cij , Aij) 
3 Cij t- C7:; 
2 Aij t- max( Aij , CfJ 
1 Aij t- Aij * q; 

A normalized postcondition is chosen: 

Q = V· · (M~ · = C··) I,] I] I] 

The method will find the relationship between the constant matrix M' and the 

initial values of the ,uISA's registers and boundary conditions. This is achieved by 

deriving the intermediate conditions S& to stj' noting Rfj and Rtj are non-trivial: 

s~· = (MIj = Cij)(C~j = Cij) I] 

= (MIj = C~j = Cij) 

s1. = wp(Cij t- max(Cij, Aij ), sfj) I] 

= (MIj = Cfj = max( Cij , Aij)) (ct = Cij ) 

s~ . wp(Cij t- Cf;, st) = I] 

= (MIj = Cfj = max(Cf;, Aij) (ct = c~;) 
s~ . = Wp(Aij t- max(Aij, Crj ), s?j) I] 

= (MIj = C~j = max( c~;, Aij, Crj) (ct = C~;) 
1 wp(k · t- k · * G~ · S2 .) Sij = IJ I] I] '1 

In this last step, CG' for 1 ~] < n was eliminated using the equations (Vi,jetj = 
q;). By matching here Ofj with the result matrix MIj , the LCS program correctly 

implements the LCS algorithm given by equations (4.2) provided the folloMng 

initial/boundary conditions hold: 

Aij = Mij 

C~j = M~j 
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cro = MIo 

6.5.2 Validity of the proof method 

In this section, the validity of the proof method, using equation (6.8), is given. 

Equations (6.3-6.5) are derived, for the sake of convenience, from the equivalent 

expression for the precondition components: 

(6.8) 

where 1 ~ i ~ m, 1 ~ j ~ n, 1 ~ t ~ T and k = kiit . This assertion is justified as 

follows . For k > K or k < 1, P1iit = P2iit = SKIP, and hence the substitutions 

can have no effect on the normalized predicate sf;. For 1 ~ k ~ K, sf; is again 

normalized, so that the substitutions can be 'brought inside' wP(P1iit; P2iit , sf;) 

to form Pi~ . 
k·· k·· I k·· 

By identifying slit with wP(P1iit; P2iit, sit )Rit, the following lemma is 

useful for normalizing the preconditions generated by the proof method: 

Lemma 6.1 (Normalization Lemma) given 1 ~ t ~ T: 

where: 

sl~jt 
.] => (c~ . = ~ijt) 

.] 'J , if i > 1 and (slfi contains C,i) 

sl ~~1t 
'J => (c .~ - Cki]jt) 

'J - i; , if j > 1 and (slfi contains C;;) 

1 k"jt s iIi => (C Ck"j') iIi = iIi , if i > m and (s 1fi contains Gil i) 

1kWt s ii' => (C CkWt ) ij' = ij' , if j < nand (s 1fi contains Gii') 

proof: 

With k = kiit and k- = k(i-l)it, consider i > 1 and sfi containing 

Ori' ie. communication from the north in cell (i,j) (note: s~i could 
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only contain the boundary register C~j value instead of C'j). Here, 

the relevant factors of (V'i,js7?) are: 

by the assumption sIr ~ (C,j = Cr) 

k-(C k-)( k )C, . = slij I; = eli sliit c;- property of predicates 

= lk- ( lk )C,; s ij s ijt C.!<:-
'J 

'J 

again by the assumption 

If sfj does not contain C,j, the above equation still holds. By repeating 

this procedure in all directions, all four substitutions can be made 

to sfj. Note the condition sfj ~ (C ij = Cfj) is preserved by these 

substitutions. By iterating over all (i,j) (in 'trbitrary order), the 

result is established. o 

For the microprogrammed ISA, with k = kijt, then k + J.L = ktjt, ... , k - G" = kij't, 

so that the CRTS substituted here are 

The Normalization Lemma is illustrated for the LCS program (cf. Section 6.5.1 , 

Srj with part (a), and Srj with part (b)) in Figure 6.2. 

For normalized postconditions, the microprogrammed ISA semantics can now 

be parallelized in the following sense: 

Result 6.1 (Parallelization result) given t, 1 ::; t ::; T, and provided for all 

k · · ( '1 d k ij " 1 ::; i ::; m,1 ::; j ::; n that Sit is defined as in equation 6.8; an Sij zs 

normalized, then s7? is also normalized and: 

proof: 

Now s7? is normalized, since s;?' and R~j are normalized, and the 

only register references outside cell (i,j) in (Pl ijt ; P2ijt ) are elimi

nated by the subsequent substitutions. Also: 

219 



sl~~ = 
'1 

( . . ·=Ql = Ci]) 

sl~, = 
'1 

( - C5 -.. . - ij-
max( Ci], Aij)) 

( C~ , = C ,~ ) 
'J 'J 

sl~ . = 
'J 

( ... = C¥j = C,j) 

sl~ · = 
'J 
( ... = Cfj 

= max(Cfl , 
Aij , C,j)) 

( C~ . = C~~ ) 
'J 'J 

(a) kijt = 3, sIrj containing Cil from 
(PIijt; P2ijt) = (Cij +- Ci]) 

(b) kijt = 2, sI~j containing C'j from 
(PIijt; P2ijt) = (Aij +- max(Aij, G,j» 

Figure 6.2: Normalization Lemma: visualization of ('v';,jsI7t) around cell (i,j) 

for the LCS program 

k" " = ('v'i,jWp( Ci,jPI;jt; P2ijt) , s;j' )) property of wp 

k ·" k , 
= ('v'i,jwp((PI ijt ; P2ijd, sit)) since Sit is normalized 

-'- (\..I .. ((PI, " P2 .. ) kij")Rkij,) ....- v t,J wp tJt, t]t, Sij ij property of predicates 

= 

= 

by equation (6.8) 

o 

Inductively applying this result over time, together with the definition of pI, 

establishes the validity of the proof method with respect to the original jlISA 

semantics: 

Result 6.2 (Validity result) 

(\..I ki '1 ) ( I (\..I kijT, )) v i,jSi/ =} wp P, v i,jSij 
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6.5.3 Interpretation of the communication register time

stamps 

The validity of the CRTS technique of the proof method has just been demon

strated. Intuitively, the CRTS introduced by the method, ie. those not already 

appearing in the original postcondition, denote some (not yet known) values re

siding in the jLISA's communication registers at particular time instants, and the 

proof method eventually determines these values. At this stage, they mayor may 

not add any real information to the precondition; in the latter case, it is desirable 

to eliminate them from the precondition (eg. it is desirable to eliminate altogether 

Cb, for 1 :::; i :::; m and 1 :::; j :::; n, in (Vi,iS~i) for the LCS program of Section 

6.5.1). A formal interpretation of the CRTS is given here, which forms justifica

tion for their introduction and subsequent elimination. Under this interpretation, 

the proof method does in fact yield the weakest precondition. 

The interpretation runs as follows. Consider some jLISA cell (io , jo) at time 

step t, with 1 :::; t :::; T and ko = kioiot. At time t, Cioio is assumed to have a 

definite (but possibly unknown) value\ so that the conjunct (3Cfoio.R~iot)' where 

R7;io (either true or (Cioio = C~io))' evaluates to true. Assume that C~io does 

not appear in the postcondition; hence, it cannot appear in any S7itl, so that with 

l ki;. def ((PI P2 ) ki;./) ( f t· (6 8))· S ii = wp iit; iit, Sii c . equa IOn . . 

(w lki;.) 
v i,iS ii = (Vi,isl~;·)(3C7oio · R7;iot) 

= (3C7oio·(Vi,iSl~;· R7;iot)) 

Under the interpretation of Cfi being under implicit universal quantification 

(when not appearing in the postcondition) , R7i always evaluates to true, so 

that, by inspecting the proof of Result 6.1: 

(V k"') (( PI P2 ) (V . . k .•.. ;./)) . 's'J - wp· .. . " t ,,)s') ',) ii - 'i,j ,)t, ')' 

Hence, under this interpretation of the CRTS, the proof method yields the weakest 

precondi tion. 

4cf. VLSI, where a memory cell can similarly be assumed to have a definite value during the 

'read phase' of any instruction cycle. 
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This interpretation can also be used to eliminate CRTS no longer contributing 

any real information to the precondition. Consider that at some time 1 ~ i ~ t, 

a conjunct of the form (C78iO = E) appears in (Vi,iS7?') (which is implicitly 

quantified over C7~io)' where E contains no j.tISA registers. If C~io appears in 

no other conjuncts, the scope of its quantification can be brought inside to give 

(3C7oio .C7oio = E), which similarly evaluates to true and can be dropped. Note 

that if E did contain any ,uISA registers, dropping this conjunct may result in loss 

of the normalization property, and the proof method could not proceed further. 

Note that any constants appearing in the postcondition QT' and the bound

ary registers C7o, C~i' C7n" C~/i should not be interpreted as being implicitly ex

istentially quantified, since these are fixed externally to the weakest precondition 

derivation. In any case, a precondition derivation seeks to express the postcon

dition constants in terms of the boundary registers and the values of the ,uISA 

registers during the precondition: to existentially quantify any of these would 

render the precondition meaningless. 

6.5.4 Incorporating ISAPL into the 'method: a seman

tics for ISADL 

ISADL is a language based on the diagonal or wavefront as a semantic unit for 

a ,uISA program. For describing ISADL implementations, the semantics of a 

ISADL diagonal is given in terms of instruction sequences; for the purpose of this 

method, its semantics is given in the form of a 'guarded expression', ie. a series of 

instructions, each guarded by (mutually exclusive) predicates which are functions 

of the cell position, (i,j). The guarded expression form of the instruction part of 

a ISADL diagonal D on an m x n ,uISA is given by: 

d_ge(D, true,j,O,n) 

where, with x modI Y = (x - 1) mod Y + 1,: 

d_ge(1 DI nl I D2 n21 ... 1 D/ n/ ~G,.7,I,h) 

= d_ge(DI,G 1\ (I <.7 ~ h), (.7 -1)modln/,O,nl) 

d_ge(D2, G 1\ (l < .7 ~ h), (.7 - l)modlnt, n}, n2) ... 
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d_ge(ins,G,.J,I,h) = "PEij.ins, GI\(I<.7~h)" (6.9) 

where 'P Eij.ins' is the instruction 'ins' with any register references evaluated for 

cell (i,j), as is descrlbed in Section 6.2. The corresponding selector diagonal D' 

is similarly converted into "guarded expression" form by: 

d_ge(D', true, i, 0, M) 

and the diagonal's operation (effective instruction) on cell (i,j) is given by the 

'Cartesian product' of these two guarded expressions. This, after evaluating reg

ister references at cell (i, j) and making the appropriate substitutions of equation 

6.7), gives Pi1. Equation (6.9) may be understood by studying the examples of 

Section 6.6. Note that the conditions '0 < i ::; m,O < j ::; n' are implicitly 

assumed and can be dropped. 

6.6 Using the proof method 

One of the primary objectives of the proof method is to give compact proofs 

of jlISA programs with a minimum of bookeeping. The essential part of the 

proof method involves evaluating and rearranging the intermediate component 

preconditions sfj' for 1 ::; k ::; K, using equation (6.4). From applying the proof 

method to the LCS program in Section 6.5.1, two observations can be made to 

reduce bookeeping: 

1. introducing the qj in the postcondition to give the component Srj = 

(M[j = qj = Cij ) is unnecessary to maintain normalization in the 

precondition components Sfj and s~; (which 'read' Cij from qj)' This 

is because M[j' an expression containing no jlISA registers, could be 

used instead of Crj to normalize the other components. 

In general, if sfj is 'read' by a neighbouring componentS sf], and (sfj => 

(C ij = ct)), where ct is an expression containing no jlISA registers 

5In this case k - k = k··, - k~~ , 'Jft 'Jt o 
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(eg. Mlj), then R~jt can be defined as true provided ct is used instead 

of C~j (eg. to form Pi1). 
Also, when the postcondition component sfJ' is 'read', postcondition 

components of the form '(C{J' = Cij) .. .' may be used. Here, C{J' is 

not to be interpreted as under implicit universal quantification (see 

Section 6.5.3) . 

2. when R~j = (Ct = Cij), it is convenient to redefine S~j to the equivalent 

form: 

k de! ( (pk k' ))Cij Rk 
Sij = wP ij' Sij C~ . ij 

'J 

This helps to reduce the conjuncts in S~j containing jLISA register ref

erences (the live conjuncts) from the others (the static conjuncts, ego 

conjunct (ct = q;) in S;j of Section 6.5.1). The static conjuncts ~re 

not affected by the weakest precondition operations. 

This distinction is useful since static conjuncts can be separated, man

ipulated6 , and used to simplify the live conjuncts at any later stage. 

Once in the appropriate form (see Section 6.5.3), they can then be 

dropped from the precondition Q1. 

For presentation of the proofs required by this method, a tabular presentation 

with Pi; and st (live and static conjuncts) is concise and convenient. With the 

above observations, the static conjuncts of s~; , need not be explicitly 'carried' to 

define S~j : they need be written only once. Enclosing static conjuncts in brackets 

([ ... J) signifies that they must be included in the precondition. 

In the remainder of this section, the proof method is applied to four sim

ple microprogrammed ISA programs, and one more complicated one. The first 

program has a constant period, whereas the others are iterative and require the 

induction of invariants, the simplicity of which reflects the uniformity of their 

ISADL encodings. These examples illustrate the derivation of boundary condi

tions and communication effects in various directions. Of these examples, the 

first two are the simplest and capture the main ideas of the proof method. 

6This, together with inducing the invariants, are the parts of the proof method most difficult 

to mechanize. 
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I 6.6.1 The LCS program revisited 

The proof of the LCS program (Section 6.5.1) is now given using the tabular 

presentation described above. The ISADL encoding for the instructions of this 

program is given by {corresponding state numbers, k, annotated to the left): 

4 C +- max(C, A) n 

3 C +- Cw n 

2 A +- max(A, CN) n 

1 A +- A * CN n 

The selectors are alII's. With MIi , for 0 ::; i < m and 0 ::; j ::; n, being 

used in place of Cfi (the CRTS and the north/west boundary input registers 

corresponding to state k = 5), a normalized postcondition is chosen: 

Q = (\f . ·(M~ . = C .. )) 
',J 'J 'J 

The method derives the intermediate conditions sfi to sti' using Pi; which is 

derived from the corresponding ISADL diagonal according to equations (6.7,6.9): 

k 

5 

1 Ai; +- A * Cfi 

1 

live 

MIj = max( ct, Aij) 
cti = Cij 

M~ = max( ct, Aij , Mli) 
MIj = max(Ct,Aij * q.,Mf.) 

I (M' A j qj , i=l ,~M') M· · = max ", ij * M' ," '1 'J 11 , l<i::;n 'J 

static 

C4 -M' ii - C 

At the last stage, the static conjunct of sfj is used to eliminate Cfj (for i > 1) and 

ct from slj. This static conjunct can then be dropped from the final precondition. 

6.6.2 The Red Squares program: simple, uniform itera

tions 

The Red Squares program 1 calculates at the kth step, where 1 ::; k < n, the 

matrix Ck•1 , where Cf/ is set iff there is a square of l's of size k in the n X 

7 cf. program RedSquares of Section 2.2.2.1; the program here, for the sake of simplicity, has 

the ComputeSk sub-program removed, and hence need not use the A register. 

225 

I 

.... 



n boolean matrix Ck.1 whose left-upper corner is in position (i, j). Its (J.L )ISA 

implementation uses K = 4n, J.L = 1 and u = 1. Applying the proof method 

on this program illustrates how the CRTS, together with the concept of static 

conjuncts, can simplify the invariant and hence the proof. The ISADL encoding 

for the instructions of this program is given by: 

( 
C ~CCS n 

C~O n 

C~CCE n I C ~O n 

SKIP n 

1 nlO n 

0 n 11 n 

1 n 

1 n 

Introducing a convenient notation' k.a = 4k + a', a normalized postcondition 

is chosen, as before: 

which, reflecting the uniform iterations in the ISADL encoding, is generalized 

in a uniform way to the give the (live part of) the invariant predicate, for 1 :::; 

i,j , k:::; n: 

k.l ~ (Ck.1 - C .. ) Sij - ij - 'J 

The method is now used to establish that this invariant is maintained, ie. the 

kth diagonal, operating on sf?, yields sf/, for each 1 :::; k :::; n. Relationships 

between the CRTS Ck' .1 and Ck.1 are derived in this process. 

l Pl. S~i 
live static 

k'.l ... Cf.;"l = Cij 

kA Cij +- Cijctl C~~·l = { C··Ck.3 , O<i~n 'J i'j 
, O<i~n 'J Cij , i=n 

k.3 Cij +- 0 
Cf/ = Cij C~~ ·l = C~:3C~'? , ~<i~n 1 'J • J 

, i=n 'J 0 ,,=n 

Cij +- CijC1l 

[ CijCf]l k.2 ' O<j~n C~:3 = ' O<j~n 
Cij +- 0 'J 0 , j=n 

, j=n 
C!c:lC~:J-

k.l Cf/ = Cij C!c:3 = 'J 'J 

'J !, O<j~n 
0 , j=n 

In the table, a notation fOJ; conditionals serves as a convenient shorthand; in 

the Pi~ column, the default value is 'SKIP'. Note that at step k.3 (step k.l), the 
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static conjunct is produced by substituting Cij with C7/ (with C7/) at the earliest 

possible opportunity. From the static conjuncts, the relationship of the values 

of the C registers between successive iterations is derived implicitly at each step. 

The precondition corresponds to the invariant with k = 1, stating that at each 

IlISA cell contains the corresponding element of an initial matrix Cl.l, and the 

set of (weakest) recurrence equations of the static conjuncts gives the relationship 

between the final matrix cn.l and the initial matrix Cl.l. 

6.6.3 The matrix input program: non-uniform iterations 

The LoadMat program (see Section 3.7.1) loading a matrix from the western data 

buffer to the C registers of an ISA, uses J( = n, Il = 1 and (j = 1. Applying the 

proof method on this program illustrates the use of the CRTS for deriving input 

boundary conditions. The ISADL encoding for the instructions of this program 

is given by: 

I C ~ Cw n-k I SKIP n I k=1..n 

The selectors are all 1 'so 

A normalized postcondition is chosen, as before: 

which, reflecting the ISADL encoding, needs to be generalized to the invariant 

(component) condition, for 1 ~ i,j ~ n and 1 ~ k ~ n': 

s~. 1,g (C ·· = {ct, ,O<j~n-k })( C,:'-} = C~~ ,O<j~n-k) 
'J 'J C~. n-k<j<n ,0 'J 

'J' -

This invariant can be induced by applying the method for a few cases (eg. k = 
n - 1, k = n - 2) on Q. Note that during iteration k, only the registers in cells 

k' Ck' (i,1) to (i, n - k) are actually read (hence only the CRTS Cill ... ' i(n-k) are 

introduced). 

The method is now used to establish that this invariant is maintained, ie. the 

kth diagonal, operating on s~, yields s7j, for each 1 ~ k ~ n, to establish when 

and whe~e the matrix cn' enters the ISA. 
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I F!i sl.. • 
live static 

k' Cij = { 
C~· , O<j~n-k 

.) . . . cn' ... 
ij , n-k<j<n 

C·· ..... C k' 
(c~~ = {C~ ,O~j~~-k) 

k 
.) ., .) C ij ' j=n-k 

.) 

, O<j~n-k (Cij = Cf; , n-k<j~n) 
(Cij = Cf. ,O<j<n-k) 

Cij = { 
C~· , O<j~n-k C~o = C~ · , O<j<n-k 

k .) • .) - - ,1 n' -] n' . -c~~ , n-k<j~n [CiQ = C ij , )=n-k .) 

In the last step, a recurrence equation has been solved, expressing C7~ in terms of 

the postcondition matrix cn'. The precondition corresponds to k = 1, and from 

here, the boundary conditions can be derived from the retained static conjuncts: 

6.6.4 The matrix output program: non-uniform itera

tions 

The UnLoadMat program (see Figure 6.3), unloading the n x n matrix A from the 

C register of the ISA into the eastern data buffer, uses K = n, fL = 1 and (J" = 1. 

Applying the proof method on this program illustrates the use of the CRTS for 

deriving output boundary conditions. The ISADL encoding for the instructions 

of this program is given by: 

I SKIP n-k I C +- Cw n I k=1..1i 

The selectors are all 1 's. 

A postcondition is chosen with the CRTS on the east ISA boundary being set 

to some (unspecified) matrix A: 

Q7' is interpreted as follows: after the execution of the kth diagonal of program 

UnLoadMat, the value of A i ,n -k is read by the east data buffer from the C register 

of cell (i , n). This postcondition is unusual in the sense that all of its conjuncts 

are static, since they express output boundary conditions. In a similar fashion to 
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r-
-+ 

-+ -+ 

-+ -+ -+ 

'-----

Figure 6.3: UnLoadMat program, instruction part, on a 4 x 4 ISA 

('-+' denotes 'C ...- Cw') 

the LoadMat program, live conjuncts are introduced into the invariant predicate, 

for 1 ~ i,j, k ~ n: 

k ~f (C .. _ {Ai'i O<i~n-k ) Q1..k s ·· - '1 - k . 
'1 C.. n-k<i<n ' 

'3 -

Note that during iteration k, only the registers in cells (i, n - k) to (i, n) are 

actually read by other ISA cells or the east data buffer (hence only the CRTS 

C7(n-k)"'" C7~ are introduced) . 

The method is now used to establish that this invariant is maintained, ie. the 

kth diagonal, operating on s7;, yields s7i ' for each 1 ~ k ~ n, to establish where 

the matrix A resides before the program is executed: 

1 pl. , sh 
live static 

k' Cii = { 
A .. O<i~n-k' [Q} .. kj ' ,3 .. . ck' (C7~ = Ai,n-k) ij n-k'<i~n t A · · O<i<n-k' 

Cii - C~ 
Cii = ~1 -

k 
Cii i=n-k 

(k' Ck' .) (C7~ = A;,n-k) , n-k<i~n C.~ = .. , n-k<1<n 
'1 'J -

(C ii = Cfi , n-k<i~n) 

k Cii = 1 A .. O<i~n-k 
Ck' A ' ,1 , n-k~i~n 

Cf.L n-k<i~n 
ii = i,n-k 

In the last step, a recurrence equation has been solved, expressing C7; in terms 

of the postcondition matrix A. The precondition corresponds to sJi: 
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6.6.5 The row swap program: complex iterations 

The RotHd program (see Section 5.2.2 and Figure 5.5), parameterized by d = 

21(1 $ 1 < logn) , interchanges the values of the C registers in corresponding 

positions between odd and even numbered blocks of width d. It presents the 

greatest challenge so far to the proof method, with non-uniform iterations based 

on exchange steps. Exchanging values between adjacent ISA cells is surprisingly 

easy to express in terms of the wavefront concept, as this example illustrates. 

The program uses K = 2d, fL = 1 and u = 1. The ISADL encoding for the 

instructions of this program is given by: 

( 
I-:::-;=---",+-:::C;-~--:C:::-=E=--=+-;::-=::--'=-i ) k=l..d 

C~Cw 

The program's selectors are all 1 'so 

Similarly, with now 'k.a = 2k + a', a normalized postcondition is chosen, as 

before: 

d'.l d'.l ) Q = (V; ,jS;j ) ,where Sij = (Aij = Cij 

The approach taken here is to express any introduced CRTS in terms of A, and 

eliminate them from the invariant. By again applying the method on Q for a few 

iterations, the invariant (component) condition is induced, for 1 $ i $ m,l $ 

i $ nand 1 $ k $ d': 

k.l ~ (c .. - { Sij - '1 -

, 0 < io ::; d - k } 
, d-k < io ::; 2d - k ) 
, 2d - k < io ::; 2d 

where io = (j - 1) mod 2d + 1. The method is now used to establish that this 

invariant is maintained. The CRTS C~:2 for d - k < )·0 < 2d - k, and C~:l for 
'1 - - '1 

d - k $ io $ 2d - k, are introduced by the method and can be later eliminated. 
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PI, 

k'.l ... 

k.2 Cii - C7i 
, d-k<io $2d-k 

k.2 

k.l 
C i]' _ C~.;2 

'] 

, d-k<io$2d-k 

k .l 

live 

Ai,i+d 
Ai,i+k-d 
A · · ' ,] 

(Cii = Ai,i+d 
(C7i = Ai,i+k-d 
(Cii = Ai,i 
(C " - Ck .2 '] - i; 

, O<io$d-k 
, d-k<io $2d-k 
, 2d-k<io <2d 

, O<io$d-k) 
, d-k<io $2d-k) 
, 2d-k<io$2d) 
, d-k<io <2d-k) 

Ai,i+d ,O<io$d-k 
Cii = Cf/ ' d-k<io$2d-k 

Ai,i , 2d-k<io <2d 

(Cii = Ai,i+d ,O<io$d-k) 
(C ·· - Ck.2 - d k- ) '] - ii ' ]0= -

(C~-i2 = {Cfj2 '~-k<iO~2d-k) 
'] Ai,i ' )0=2d-k 

(Cii = Ai,i , 2d-k<io$2d) 
(Cii = Cf;l , d-k<io<2d-k) 

Cii = 
Ai,i+d 

Ai,i+k-d 
A · · ' ,) 

,O<io$d-k 
, ,d-k<io $2d-k 
, 2d-k<io<2d 

----- -= --

static 

Ck.1 - A -ii - i,i+k-d 
, d-k<io$2d-k 

Cf/ = A i,2d-k+(i-io) 
, d-k<io $2d-k 

In this process, the static conjuncts have been manipulated (index renumbering 

and recurrence equation solving) , and in the last step, they have been used to 

eliminate 07/ from the live conjuncts. The invariant gives the precondition s7/: 

0 .. _ {Ai,i+d ,O<io$d 
') - Ai,i-d, d<io$2d 

verifying that the swap has indeed occurred. While this proof is rather com

plicated, it must be remembered that this program is indeed rather difficult to 

understand. 

6.7 Discussion and conclusions 

This chapter has given a formal description of the syntax and semantics for mi

croprogrammed ISAs, which, for p. = (J = 1, gives also the semantics of ordinary 

ISAs (see also [33]). This is extended from the semantics of [34] in that multiple 

assignments have been included. This semantics is based on a 'serialization prin

ciple' and it enables formal proofs of correctness to be given for p.ISA programs, 

and it can be readily mechanized. The semantics demonstrates how the weak-
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est precondition semantics, developed for sequential architectures, can be easily 

extended to any synchronized parallel architecture. 

Most importantly, the semantics is conceptually simple and theoretically sound. 

However, to make this semantics useful, the wavefront-based proof method was 

derived from it. The key point of the method is that it is practically useful, 

enabling the compact and manageable verification of j.LISA programs. Thus, for 

the case of the microprogrammed ISA, all aspects of the issue of confident and 

efficient programmability have now been addressed. 

The proof method reflects the parallel and pipelined nature of the j.LISA. It 

generates proofs with a structure reflecting the program's ISADL encoding (ie. 

reflecting program compression). The method, coupled with equation (6.9), gives 

an effective semantics for wavefront-based j.LISA programs (in this case ISADL 

programs) . The convenience of ISADL for use with the proof method indicates 

that for (j.L)ISA programs, the wavefront is the most natural and intuitive 'se

mantic unit', and hence indicates that the wavefront model is appropriate for 

developing high-level (ISA) language concepts (cf. ISA Subroutining) . While the 

. proof method at least partially reflects the programmer's intuitions, its basic ideas 

can be used to develop other wavefront-based program verification techniques. 

At a first glance, the microprogrammed ISA seems a difficult architecture 

to program. However, the semantics and wavefront-based proof method, since 

they can be applied as easily to each, indicate that the j.LISA is not (on the 

low level) significantly more complex than the ISA or even the SIMD mesh. 

Furthermore, macro-level j.LISA programs may be verified by the semantics or the 

proof technique, by simply extending the communication register structure (see 

Section 4.6). 

6.7.1 Discussion of the proof method 

The proof method is general: the only restriction is that the postcondition be 

normalized, which, in our experience, has always been satisfiable. The method 

has been shown to be theoretically valid, and, with the interpretation of any 

introduced CRTS being under (implicit) existential quantification, also yields the 
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weakest precondition. The proofs generated by the method were presented in 

an (experimental) tabular form: this eliminated the unnecessary duplication of 

information. 

The proof method introduces a minimum of CRTS, which were necessary 

to keep the normalization property. This has the bonus that arbitrary boundary 

conditions can be handled in a uniform way. It also has the advantage of reducing 

the size of the live conjuncts of the precondition, as was done for the Red Squares 

program of Section 6.6.2. However, the proofs sometimes may still require some 

careful (subscript) bookeeping - it is fair to say that formal program verification 

is hard to make simple. 

The proof method may however appear somewhat inelegant. After trying 

hard to find a more elegant and yet as useable proof method based on weakest 

precondition semantics, it remains an open issue as to whether such a proof 

method can be found. 

The proof method compares favourably in terms of proof size with the corre

sponding weakest precondition-based proofs for uniprocessor programs. This is 

partly due to the implicit quantification for /LISA programs replacing the explicit 

(nested) loops of the corresponding sequential programs. Compared with a proof 

technique based more directly in the ISA semantics (cf. the proof, adequate for 

only constant boundary conditions, of the LCS program in [34, Sect.7.2j), the 

method yields more rigorous and shorter proofs. The latter is because much of 

the bookeeping is done by the results of Section 6.5.2, and that the ISA instruc

tions need no longer be broken down into two steps, due to the normalization 

property being maintained. 

The proof method captures some of the intuitive /LISA programming ideas (see 

Section 6.4), with the idea of explicit array cell 'states' being modelled (for the 

communication registers) by the CRTS technique, with the normalization prop

erty enabling global array predicates to be separated into conjuncts corresponding 

to array cells. It also hides the counter-intuitive aspects of the semantics, which 

requires 'padding' of /LISA programs and splitting instruction into two phases. 

However, the concept of cell 'states' is not completely modelled by the method, 

233 



and, more seriou~ly, the proof method reasons in the reverse direction to the pro

grammer (since it is based on the weakest precondition semantics). The latter 

makes induction of invariants, and their proofs, more difficult and confusing than 

they need be. 

The proof method appears to be mechanizable, except for operations, such 

as solving recurrences and for inducing invariants. In such cases, intelligence is 

required, but this is a price that must always be paid for compact, parameterized 

proofs. A semi-automated assistant system would form a reasonable compromise. 

In general, mechanization of proofs requires a similar degree of intelligence just 

to keep their outputs readable, and often such a proof is not convincing unless it 

is independent of the array size, or at least uses a large (fixed) array size. 

The proof method can be adapted to other deterministic, communication 

register-based mesh architectures, with a 'snapshot' semantics as given by the 

transformed program pi of Section 6.3, by simply modifying the kiit transforma

tion. The results of Sections 6.5.2 and 6.5.3 require only that this transformation 

be of the form kiit = t - J(i,j). For example, an SIMD mesh would use the 

trivial transformation kiit = t (ie. J.l = 0' = 0) and and a 'flat' wavefront ISA 

would use kiit = t - (i -1) (ie. J.l = 1 and 0' = 0). A more interesting example is 

the rectangular (MIMD) mesh for computing symmetric eigenvalues of [3] which 

would use kiit = t -Ii - jl (see Section 7.1.1). Generally, a program written for 

a MIMD mesh will have to have some simple kiit transformation if it is to be 

readily understood. 

The proof method uses a transformation from a more convenient (abstract) 

time-skewed frame of reference (using essentially equivalent predicates) to a global 

(concrete) frame of reference. In this sense, it has an interesting parallel with the 

abstract data type refinement technique [16], which has found application in the 

verification of VLSI circuits for pip eli ned computers [8]. A direct application of 

such techniques might also be suitable for the J.lISA. 
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6.7.2 Future research on mesh program verification 

Synchronous, deterministic and simple models of meshes, such as the {LISA, are 

amenable to relatively simple semantic modelling and verification methods, as 

compared with other models of parallel computation. Issues of synchronization 

are much simpler, while non-determinism, shared variables, deadlock and livelock 

do not occur. This makes simple models such as the ISA and {LISA attractive, at 

least in the short term. 

The application of program verification techniques on these types of meshes 

is expected to be more important and more successful than for uniprocessors: 

• more important, because subtle timing effects in the {LISA make it more 

difficult to program8 . 

• more successful, since the {LISA is programmed in terms of short subroutines 

(which are convenient for proof methods), has simplicity of programming 

features (no data-dependent control and cells only perform simple assign

ments, while I/O can be handled in a uniform way) and has also implicit 

quantification over array subscripts (simplifying proof bookeeping) . 

Thus, it can be argued that it is important to develop intuitive and useable 

program verification methods for such architectures. 

The proof method presented in this chapter was made less intuitive and use

able than desired, due to the fact that the weakest precondition semantics works 

from the postcondition to the precondition, whereas it is natural to reason in the 

opposite (forward) direction. This has limited the popularity of weakest precon

dition semantics in general. However, one of the earliest versions of axiomatic 

semantics reasoned in the forward direction [11], and a topic for future research 

would be to develop the wavefront-based proof method on this semantics. Also, 

the CRTS technique might be introduced more naturally into this semantics. 

It may be commented that the microprogrammed ISA semantics transforms 

an ISA program P in a natural wavefront form into a sequence pI of 'snapshot' 

s'I'he RedSquares program of Section 2.2.2.1 had a bug, surviving several months, e.'Cposed 

by applying the proof method on it. 
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programs, and the proof method then effectively reverses this transformation. A 

topic for future research might then be to give a direct wavefront-based semantics, 

using the intuitive ideas of the proof method. The proof method has indicated 

that such a semantics is both feasible and worthwhile, but to give such a semantics 

is beyond the scope of this thesis. 
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Chapter 7 

Program Compression for 

Processor Arrays 

7.1 Motivations 

Previous chapters have developed control structures supporting program com

pression and microl1>rogramming techniques which improve the overall efficiency, 

reduce the overall hardware· and increase the flexibility of the (microprogrammed) 

ISA. This architecture supports a basic wavefront programming model and has 

no cell program memory; however, it has reasonably efficient implementations of 

most array algorithms. This chapter examines to what extent these techniques 

can be applied to the Processor Array (PA) to achieve the same advantages. The 

PAl has a (minimal) program control unit (PCU), which in turn is expected 

to enable it to support an extended wavefront programming model. The PA is 

intended to be fine- to medium-grained, and has the following properties: 

• the PA cell's PCU (program) memory has O(1ogn) area (required to effi

ciently store O( n) iterations of instruction sequences). Such an area upper 

bound is used in practice, but it requires that the PA programs can be 

efficiently compressed vertically. Thus, arbitrary MIMD mesh programs 

cannot be directly executed on this architecture without having to reload 

IThis is slightly less powerful (in theory) than the Processor Array of Section 4.4, which 

effectively has a peu of unlimited size. 
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each cell's program memory every D(log n) cycles. 

• the PA has limited data-dependent operations. For example, an instruction 

can be masked using the cell's status bits, which may be set in a data

dependent way. Section 7.4 discusses how this condition may be efficiently 

relaxed . 

• the PA is communication register-based, with a fixed (nearest neighbour) 

interconnection pattern. The timesharing of processes is not permitted over 

the PA. Also, the LSGP partitioning scheme (see Section 2.5.2) is not to be 

used on the PA, since this scheme complicates the structure of PA programs. 

These assumptions are made mainly for the sake of simplicity. 

The control logic required for the PCU includes decrement operations and zero 

equality tests over log n-bit integers (a description for a suitable PCU can be 

found in the ISAC matrix generator cell of Section 3.7.3). In return for the 

expense of the PCU control structure, we desire that (the program compression 

method for) the P A can implement a wider programming model than can the 

/LISA. This model is called the extended wavefront modeP, whose programs can 

use: 

1. (/L, 0') wavefronts of arbitrary (but constant) /L and 0'. Thus, the PA 

should be able to simulate, with no time loss, any efficiently com

pressible SIMD or microprogrammed ISA program. Furthermore, the 

PA should be more efficient than the /LISA for algorithms requiring 

row-dependent operations. 

2. partitioned wavefronts, in which different wavefront programs are exe

cuted in each component of a partitioning of the PA (eg. the symmetric 

eigenvalue program of Section 7.1.1). 

3. interleaved wavefronts, in which the overall program is expressed as a 

superposition of a few different wavefront programs (see Section 7.4.1). 

2For PAs, the concept of a wavefront is extended slightly in that a wavefront may be inter

preted differently as it passes through the array. 
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To our current knowledge, this class includes' all PA programs that are useful in 

practice. 

The control structures for loading programs from this model are required to 

be suitable for large-scale PAs and to have modest area overheads, ie.: 

• the program loading mechanism is systolic and a minimum (ideally O(1og n)) 

of PA cycles are lost during program loading. 

• the loading process requires operations no more expensive than those used 

by the PCU, ie. decrements/comparisons with zero over O(log n)-bit inte

gers, and stack/memory accessing. 

The Processor Array Compressed language (PAC) is a low-level PA programming 

language implementing, with these requirements, program ' compression for the 

extended wavefront programming model on the PAs described above. Section 

7.1.1 introduces some examples motivating PAC. It also introduces the notation 

of PAC, which is similar to that of ISAC (see Section 3.7). Section 7.1.2 discusses 

the extent to which program compression methods are implemented on existing 

PAs. This leads to the discussion for the alternative implementations of PAC in 

Section 7.1.3. Section 7.2 defines the PAC notation, describes a translation of 

PAC into a slightly lower-level language, called PACl, and describes an efficient 

implementation of PAC!. After considering the more complicated examples of 

extended wavefront programs in Section 7.3, extensions to PAC are proposed in 

Section 7.4. Section 7.5 gives a cost analysis of the alternative implementations 

of PAC and discusses the application domain for which PAC is considered viable 

for PAs. 

The contribution of this chapter is to apply the program compression concepts 

developed earlier in this thesis to Processor Arrays. This exposes general issues 

of program loading for PAs (Sections 7.1.3 and 7.5) and the need for PA control 

structures to implement inte'rleaving (Sections 7.3 and 7.4.1). The basic concepts 

of PAC can be understood from Sections 7.1.1 and 7.2. 
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7.1.1 Simple examples of PAC programs 

This section gives some simple examples motivating PAC and introducing its 

notation. They also motivate the-requirements of program compression for Pro

cessor Arrays. 

The (ComputeAk)n-l program (a simplification of the RedSquares program 

of Section 2.2.2.1) can be expressed as the sequence of instructions executed at 

each PA cell. Figure 7.1(a) gives a program using an ISA (ie. a (1,1)) wavefront, 

where activity propagates one unit south and one unit east each time step. Note 

that the cell instruction sequences are executed from the bottom up. This is 

almost identical to the corresponding ISA program except for the '0' instruction 

in the bottom row. Figure 7.1(b) illustrates the program for a SIMD (ie. a 

(0,0)) wavefront, where activity begins simultaneously in all cells. Note that 

this program has a lower period than any equivalent program on ISA or SIMD 

meshes (whose masking consumes extra instruction cycles). This example then 

illustrates the advantage in efficiency of PAC since it does not require any (cell 

posi tion-dependent) masking capability. 

The ISA wavefront program is written in PAC as (order of execution is left

to-right) : 

(o[~ 210 3 ] 0 [~:])2 
for a 3 X 3 PA, and for an m X n PA: 

The SIMD wavefront program is the same, except that the 'NoOp' ('0') instruc

tions are omitted. 

This program introduces the repetition construct '(p)k" read as: 

cells (i , j) (in the current context) execute k repetitions of the program 

p (note that k may be a restricted function of i and j), 

the column selection construct '[P rlQ nl', read as: 

columns jlO < j ~ r execute program P and columns jlr < j ~ n 

execute program Q, 
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j)2 j)2 j)2 
0 0 0 j)2 j)2 j)2 
~ ~ 0 (~ (~ (0 

(0 (0 (0 
j)2 j)2 j)2 

j)2 j)2 j)2 0 0 0 

~ ~ 0 (~ (~ (0 
(0 (0 (0 
0)2 0)2 0)2 

0)2 0)2 0)2 0 0 0 

~ ~ 0 (~ (~ (0 
(0 (0 (0 

(a) for ISA wavefront (J.L = a = 1) (b) for SIMD wavefront (J.L = (j = 0) 

('0' denotes 'NoOp ', ' ~ ' denotes 'C ~ CCE', '0 ' denotes 'c ~ 0' and 

'i' denotes 'c ~ CCs ') 

Figure 7.1: Instructions executed at each cell for (ComputeAk)2 program for a 

3 x 3 PA. 
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and the row selection construct ,[ ~ ~]" read as: 

rows ilO < i :::; s execute program P, and rows ils < i :::; m execute 

program Q. 

The selection constructs allow the construction of parti tions of the P A (program). 

Often, it is necessary to have different numbers of repetitions in different 

PA cells. This is illustrated in Figure 7.2. With f.L = 1, the LoadMat pro

gram is equivalent to the program of the same name in Section 3.7.1. Program 

ISAtoSIMD creates a SIMD wavefront from an ISA wavefront by delaying cell 

(i,j) by (m - i + n - j) cycles3
• This type of program is very important in PAC. 

The LoadMat program is coded in PAC as '( -+ )3-i+1( 0 )i-1 ' for a 3 x 3 PA, 

and as '( -+ )n-i+1( 0 )i-l> for an m x n PA. In ISAC, this program is coded as 

'( -+ t·n ( 0 )<1.0'; however, for PAC, a more general and readable form is convenient. 

The ISAtoSIMD program is coded in PAC as '(o)3-i(o?-i' for a 3 x 3 PA, and as 

'(or-i(o)n-i ' for an m x n PA. Note that this last is equivalent to '(o)m-i+n- i ', 

which is a less preferable form since the exponent can exceed n (and so is harder 

to store in the PA cell's PCUs). 

A more interesting program is SymEigen, the n x n PA implementation of 

the symmetric eigenvalue algorithm (full systolic version) of [3, pp75-80]. This 

program can be viewed as wavefronts moving outwards from the main diagonal 

(see Figure 7.3(c)-(e)) . It can then be expressed by partitioning the PA into 

a lower triangular, a main diagonal and an upper triangular parts, which have 

(1, -1), (0,0) and (-1,1) wavefronts respectively. If the PA is assumed to be 

initially using a SIMD wavefront, delaying cell (i,j) by Ii - jl cycles will achieve 

this effect. This is demonstrated in Figure 7.3(a), with one 'sweep' of the eigen

value computation illustrated in Figure 7.3(b). L, D and U are rather complex 

instruction macros, the details of which are irrelevant here. In Figure 7.3(c)-(e), 

the instructions executed at each cell at time steps 1,4 and 5 of this program 

are given (the subscripts annotated to the instructions indicate which repetition 

produced them). 

3 A converse program exists to create an ISA wavefront from a SIMD wavefront by delaying 

cell (i, j) by i + j - 2 cycles. 
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0 (0 )2 
(~)3 (~)2 ~ 

(0)2 (0 )2 (0 )2 
(0 )2 0 

0 (0)2 0 0 0 
(~)3 (~)2 ~ (0)2 0 

0 (0 )2 
(~)3 (~)2 ~ (0)2 0 

( a) LoadMat program ((j = 1) (b) ISAtoSIMD program (J1. = (j = 1) 

('0' denotes 'NoOp' and '~, denotes 'C +- Cw') 

Figure 7.2: Instructions executed at each cell for programs with cell-position 

dependent iterations for a 3 X 3 PA. 

In PAC, the complete program is expressed as: 

S E
· [(o)i-i i-1! i!(o)i-i nl 

ym Igen: [(L 0 o)n i-l!(D 0 o)n ;j(U 0 o)n nl 

noting that the first column selection is equivalent to '( 0 )Ii-il'. The second column 

selection can be read as: 

cells (i,j)!j < i execute (L 0 o)n, cells (i,j)!j = i execute (D 0 o)n 

and cells (i , j)!j > i execute (U 0 o)n. 

Allowing the boundaries in the column selection to depend on the row position i 

enhances the power of PAC, by creating programs for non-rectangular partition

ings of a PA. 

7.1.2 Program compression on existing PAs 

This section examines the extent to which existing PAs incorporate program 

compression techniques. A discussion of how (fine-grained) SIMD meshes use 

program compression was given in Section 3.2.2; here, the discussion concentrates 

on (coarser-grained) MIMD meshes. From this discussion, the requirements and 

advantages of PAC can be more clearly seen. 
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° (0)2 (0 )3 (0)4 (D')5 (U')5 (U')5 (U')5 (U')5 

° ° (0)2 (O? (L')5 (D')5 (U')5 (U')5 (U')5 

(0 )2 ° ° (0)2 (L')5 (L')5 (D')5 (U')5 (U')5 

(0)3 (0)2 ° ° (L')5 (L')5 (L')5 (D')5 (U')5 

(0)4 (0)3 (0 )2 ° (L')5 (L')5 (L')5 (L')5 (D')5 

(a) delays to set up wavefronts part (b) actual eigenvalue computation part 
(D' = 'D ° 0', etc.) 

D1 ° ° ° ° D2 °1 °1 U1 ° °2 U2 °1 °1 U1 

° D1 ° ° ° °1 D2 °1 °1 U1 L2 °2 U2 °1 °1 

° ° D1 ° ° °1 °1 D2 °1 °1 °1 L2 °2 U2 °1 

° ° ° D1 ° L1 °1 °1 D2 °1 °1 °1 L2 °2 U2 

° ° ° ° D1 ° L1 °1 °1 D2 L1 °1 °1 L2 °2 

( c) instructions at t = 1 ( d) instructions at t = 4 ( e) instructions at t = 5 

Figure 7.3: SymEigen program on a 5 X 5 PA 
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The Inmos Transputer [18] can be easily configured as a medium-grained n X n 

PA (microprocessor sized granularity, with large PCUs) . The program loading 

algorithm simply loads programs in depth-first order over the n 2 nodes of this 

Transputer network. Thus, no special effort appears to be taken to incorporate 

program compression on (small-scale) Transputer networks. 

The Cellular Array Processor (CAP) [19] is a scalable (micro-processor sized 

granularity) PA capable of implementing in software various communication to

pologies. The cells are also sophisticated microprocessors. The architecture has 

the capability to efficiently down-load (broadcast) identical programs to its cells, 

using its "command bus". For the CAP, the PAX computer [56, p90] and various 

other message-passing architectures [2, ppl04-106], a eellprogram 

ie. a 'formula' for a generic cell program (taking the cell's address or 

'id' as a parameter) 4 

is written in a high-level language. After compilation, this can be effectively 

passed to all cells: different cells can interpret the cellprogram differently accord

ing to their address 'id'. Such architectures implicitly incorporate some program 

compression, and are expected to have reasonably efficient program loading. 

The Warp processor [1] is a coarse-grained linear systolic array. Its cells use 

a very long (272-bit) instruction word (VLIW) which makes it advantageous to 

use a PCU even for SIMD-like or linear IS A-like programs. Otherwise, to send 

a new VLIW instruction to a cell every cycle would result in an unacceptably 

high inter-cell I/O bandwidth. The Warp langauge W2 describes Warp programs 

in terms of the eellprogram concept mentioned above [27, Sect.4.1j. The Warp 

machine can down-load identical instructions to each its its cells using a 'serial

chain' (ie. systolic program loading) and its PCUs are very large (several K 

instruction words). 

Generally, PAs can efficiently perform serial down-loading and execution of 

eellprograms, but usually make little further effort to utilize program compression. 

The reasons for this are summarized as follows: 

4cf. the PAC programs of Section 7.1.1 , which take as parameters the cell row and column 

addresses i and j . 
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• the array sizes of existing PAs are still small, so that even loading cells 

individually is still viable (eg. as for Transputer meshes). 

• the cells are sophisticated (microprocessor size or larger) so that loading 

times are generally dominated by program compile times (from a host com

puter). 

ego the Matrix multiply algorithm for a 10 cell Warp array takes 

1.7 minutes to compile (using an optimizing compiler) compared 

with a 25ms execution time for 100 X 100 matrices [4, p271]. The 

Transputer presents a similar situation. 

Also, the cell PCDs of these PAs are typically large (several K instruction 

words), enabling many programs to be stored simultaneously in each cell 

(thus the reloading of programs need occur less often). 

• the programs themselves are typically computation-bound and operate on 

large data sizes only. 

ego the Matrix multiply algorithm for a 10 cell Warp array 

should take 25 x .09 = 2.25ms for a 30 X 30 matrix. With a peak 

Warp instruction loading rate of one Warp instruction per 67/Ls 

[1, p1529]' only ~ 30 instructions could be loaded during this 

time. Since this program uses partitioning and requires pipeline 

initialization and optimization, this time may be insufficient to 

load the Matrix Multiply program. Also the program startup 

time of 5ms is significant compared to this execution time. 

Thus, it can be seen that these arrays have sufficiently fast program loading 

times for programs which use large data sizes and/or are repeated for many 

different data sets. 

Considering the reasons mentioned above, it is not too surprising that few 

details are published on PA program loading mechanisms and performance. Cell

programs can be downloaded reasonably efficiently on most of these architectures, 

possibly with a capability to select single (or ranges of) PAs for separate loading. 
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Provided the program loading mechanisms are systolic, as for the Warp array, 

scalability presents no particular problem to program loading. Thus, it might 

be thought that the implicit program compression achieved by the cellprogram 

concept is sufficient. However, in the next section, the possible overheads of such 

an approach are examined, and from this the advantages of introducing explicit 

program compression concepts can be seen. Also, for these PAs, program loading 

times can still be significant compared with program execution times, resulting 

in a loss of overall P A performance. The overhead in both time and area in pro

gram loading can, without too much effort, be made very small. This applies 

more particularly to finer-grained PAs than to those discussed in this section. 

7.1.3 Alternative approaches for PAC 

As demonstrated in Section 7.1.2, an efficient way to both express and (systoli

cally) download PA programs is to use the cellprogram concept. This can be 

incorporated by the following alternative approaches for the implementation of 

PAC, which are analysed in more detail in Section 7.5: 

l(a). load a cellprogram for the complete array into each cell and interpret it at 

run-time. 

This interpretation is done via registers in each cell which contain the cell 

address or 'id' (which has to be initialized by some other mechanism). 

This approach is efficient provided these cell programs are fairly simply 

interpreted5• It does however, present the following disadvantages: 

- the interpretation in general requires operations (eg. O(log n )-bit ad

ditions, comparisons, etc.), which results in a loss of PA cycles. This 

is considerable for PA implementations of the more complex programs 

(cf. the PA equivalent of the ISA program RotH~ of Section 7.2.3) and 

cannot easily be avoided. This effect is made more serious since for 

PA algorithms, the number of overall PA cycles lost is determined by 

the worst case loss of any of its cells. 

sThis approach appears to be taken for SIMD machines, which use cell addresses to determine 

whether to mask instructions, and most existing PAs. 
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- the cell program may be considerably more bulky than the program 

that any PA cell actually needs to execute (d. the SymEigen program 

of Section 7.1.1 with the corresponding programs executed in each cell 

in Figure 7.3), often resulting in a substantial and unnecessary increase 

in the size of the cell PCU. 

1(b). load the cellprogram for the complete PA into each cell and interpret it at 

load-time. 

This approach avoids the disadvantages of the former approach, but possibly 

introduces a more complex PA cell design, since the 'program load' mode 

of P A cell operation would be more specialized. A variant of this is to 

interpret the cellprogram dynamically while loading it, and this is suitable 

to be combined with approach 2(b) mentioned below. 

2(a). serial program loading and execution, ie. load the next program after exe

cuting the current program. 

This approach is taken for most PAs, and requires that program loading 

and execution occur sequentially within (each cell of) the PA. It has the 

disadvantage that the PA is delayed since the loading of the next program 

has to wait for the execution of the current program to cease in the PA (and 

the" execution of the next program must wait until its loading has ceased). 

2(b) . overlapped program loading and execution, ie. load the next program while 

executing the current program. 

This approach avoids the loss of PA cycles of approach 2(a), at the expense 

of extra cell hardware. It requires that the cell PCU tables be capable of 

storing at least two programs simultaneously. It also requires separate logic 

to load the cell PCUs with a new program while the current program is 

being executed. This in turn requires dedicated circuitry to perform the 

cellprogram interpretation (eg. O(logn)-bit adder, small stack etc.). This 

can be mitigated partially by the fact that the O(log n) size cellprograms 

can generally be loaded over Q( n) cycles (being the period of the current 

PA program), so that the additions etc. could be performed bit-serially. 
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Coupled with dynamic interpretation of the cell program during loading, 

this is the approach recommended for PAC, since it enables the inter

pretation of the (PAC) cellprogram to be expressed in terms of only in

crement/decreII;lent and zero equality operations (over logn-bit integers). 

These operations are no more expensive than those required to control the 

cell PCUs. How this can be done is explained in Section 7.2. This method 

may however result in a small loss of generality. 

The general objective of this chapter is to present an efficient program com

pression method for a PA model which is substantially more powerful than the 

microprogrammed ISA. The choice to have an O(log n) area PCU in each cell 

enables an ISAC-like program compression method. However, generalizing the 

ISADL concept, which requires only an 0(1) area PCU, might result in a more ef

ficient solution. Unfortunately, to extend ISADL to have (IL, 0") wavefronts with IL 

or 0" negative would approximately double the I/O bandwidth required, and (0,0") 

or (IL,O) wavefronts would remain impossible. Also, different direction wavefronts 

in different pa:rtitions of a PA would be hard to implement using the ISADL con

cept. In short, to have a more powerful PA model than the microprogrammed 

ISA, the extra area of the PCUs for an ISAC-like method is acceptable. 

7.2 Implementation of PAC 

This section formally defines PAC and describes a transformation into a lower

level language, called PACl. Both the definition and the transformation impose 

constraints on PAC programs. Efficient and simple control structures for the 

implementation for PACI are then described, and it is then indicated how PAC 

delay programs provide quite general PA program synchronization. 

This section is important for the reading of Section 7.4.2. 

7.2.1 Definition of the PAC constructs 

The PAC notation, sharing similarities with ISAC and ISADL, can be defined 

very simply. The projection of a PAC program P onto the PA cell (io,jo), for 
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1 ~ io ~ m and 1 ~ jo ~ n, is given by finding the projection onto the joth 

column of the projection of P onto the ioth row of the PA: 

The substitutions (ilio) and (j /io) evaluate the repetition counters and selection 

boundaries at cell (io,jo). 

Since the PAC notation is fairly obvious and the definitions of the row and 

column projection functions, R and C, are bulky, the formal definition of PAC 

is put in Appendix 7.A. Note, however, that PAC allows the column index to 

be present in a row selection construct (but not conversely); for this reason, the 

projection is performed first on the rows and then on the columns. Note also that 

the row and column selection constructs distribute over all PAC constructs in a 

fairly obvious way, a property useful in manipulating PAC programs. 

An arbitrary PA program of period t represented by the m x n matrix P 

(where Pi; is the program to be executed at cell (i,j)) can be coded in PAC as: 

[ [P" 
11 P12 21 PIn nl 

j] [P21 11 P22 21 P2n nl 

[Pm! 11 Pm2 21 ... Pmn nl 
Such an expression in general requires an O(n2t) loading period, with an O(t) 

area cell PCU. In practice, however, the loading period and the cell PCU area 

need only be O(log n). How this is achieved will be elaborated below. 

7.2.2 A PAC program interface 

An efficient PAC program interface is proposed in Figure 7.4. A PAC program 

P is passed (from the top) through an m x 1 column generator, the io th row 

of which evaluates Pio = R;o.m(P (ilio)). This gets passed through (from the 

left) the ioth row of an m x n column generator array, the joth column of which 

evaluates Pi; = C;o.n(Pi (jljO)). The column generator array is embedded into 

an m x n PA. The row and column generator combined give a matrix generator 

(see Chapter 3). Note that the asymmetry of the system reflects the definitions 

of Rand C (see equations (7.9-7.10)). 

250 



._-- --, 

P 
.lJ. 

~ 
- Pn P12 P13 P14 

row Pz - PZ1 P22 P23 P'J.4 column 
generator P3 - P31 P32 P33 P34 generator 

P4 - P41 P4Z P43 P44 array 

Figure 7.4: PAC program interface for a 4 x 4 PA 

This program interface is to be loaded systolically in a fixed velocity wavefront. 

As shown in Figure 7.4, the ISA wavefront, with I-' = a = 1, is chosen. This is 

because a fixed velocity wavefront for the program loading reduces hardware 

costs. Of these, wavefronts with II-'I = lal = 1 are the cheapest to implement. 

It is also useful to match the program loading wavefronts with those of as many 

of the PA's program as possible (this reduces the cell PCU size - see Section 

7.5). Since the ISA can efficiently implement most PA algorithms, the majority 

of programs would probably use the (1,1) wavefront. 

The row and column generators can efficiently evaluate the required projec

tions by updating and passing systolic counters (which are used to evaluate row or 

column position dependent loop indices and repetition constructs). This counting 

operation can be performed bitwise if necessary, and so a (1,1) program loading 

wavefront can be easily implemented. 

Note that this program interface can easily allow the PA system to be parti

tionable into a small number of sub-arrays, by simply providing row generators 

for each desired sub-array (see Section 2.5.1). 

7.2.3 Transformation into PACl 

PAC requires to be transformed to a lower-level language, called PACl, for direct , 

efficient loading. PACI is basically a two-dimensional extension of ISAC (see 

Section 3.7). This transformation replaces expressions dependent on i and j in a 

PAC program with 'recipies' telling the row and column generator arrays how to 

compute their values during program loading. It is illustrated by the following 

simple examples: 
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-. Program ISAtoSIMD, '(or-i(o)n-i ', becomes in PACI: 

(0 t,· m-l (0 t j • n-l 

• Program SymEigen (delay part), [(o)i-i i-ll ;I(o)i-i n], becomes in PACI: 

Similarly, the converse delay program, [(0 )n-i+i i-I!( o)n ;1(0 )n+i-i nl, 

becomes in PACI: 

• Program RotH~ of Section 5.2.2 can be coded6 into PAC as: 

This is translated to: 

Here, for a PACI program component P with an expression operated on by <Ji 

(t>i), the row generator increments (decrements) the expression's corresponding 

systolic counter at all rows where P is selected. This counter is reset to its initial 

value at the rows corresponding to the beginning of each selection. A similar 

situation exists for <Jj (t>i) for each row of the column generator array. 

The PACI equivalent of a PAC program P, for m and n being powers of two1 , 

is given by: 

For PAC programs Pl , ... , PI, integer expressions e, nl, ... , nl-l (which possibly 

contain i), and integers nl and n' where nl divides n', the non-trivial parts of the 

6For simplicity of expression in PAC, an extra 'diagonal' has been inserted at the beginning 

and end of this program. 

70therwise, the expression R'lm/(C'ln/(P))' where m' = 2nogml and m' = 2nogml, should 

be used instead. 
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definition of C' are: 

C'jon'([PI nl1P2 nll·· ·IPI nrl) 

= [C'il nr(Pd nlIC'hnr(P2) n21···IC'irnr(PI ) nrJ 

(7.1) 

The definition of R' is similar for the row selection and repetition constructs 

(noting that no expressions may now contain j) except that also, for integers 

nIl"" nl (ndm'): 

[R'iom,(Pd oPi(rt.m').n~ I 
R'iom'(P2 ) oPi(r2.m') .n~ 
I ... I R'iom'(PI ) nrJ 

where n~=nk+rk(io). l~k<1 (7.2) 

For the purposes of efficient implementation, the function OPj (OPi) is defined 

over only very restricted functions fie. c(j), rl( i), etc. of equations (7.1-7.2) are of 

restricted formsJ. This constrains how expressions in PAC programs can depend 

on j (i) for the implementation of PAC program compression. Currently, OPj is 

defined (OPi is identically defined): 

{ 

<lj . ' if c(j) = j modI 2k and 2kln' 
oPj(c,n') = t>j, if c(j) = -jmodl 2k and 2k ln' 

• ,if c(j) = 0 
(7.3) 

with '.' as the default value. This definition is extended in Section 7.4.2. The 

requirement that 2k divides n' for a PAC sub-program P, repeating over intervals 

of n' consecutive columns and containing c(j) = ±j modI 2k, ensures that c(j) = 

c(j + n') and hence P is the same at each interval. In practice, it is not useful to 

lift this requirement. 

For example, with m = n, f(i) = imodl n f'(i) = -imodl n, the conversion 

of the SymEigen program (delay part) into PACI occurs in the following stages: 

R'in(C'ln([ (o)/(i)+I'U) ... l(i)1 (o)IU)+f'(i) n])) 

= R'tn([ C'tn((o)/(il+/'(i») ... l(i)1 C'/(i)n((o)IU)+I'(i») n]) 

= R'ln([(otj·/(i)+I'(l) ... IU)I (o)"j·/(i)+I'(i) n]) 
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= [(0 t i • t>j. 1(1)-1 

= [(oti.t>j.O ... 

Similarly, with g(j) = j modI d and g'(j) = -j mod d (assuming d divides n), the 

PAC version of the RotHd program (see Section 5.2.2) is translated into PACI as 

follows: 

C'In([ (0 O)d+1+gl(j)(~ ~)g(j) dl (~~)d+1+gl(j)(O o)g(j) 2dn 

= [C'I,2d((O O)d+1+gl(j)(~ ~)g(j)) dl C'd+1,2d((~ ~)d+1_gl(j)(O o)g(j)) 2d] 

= [(0 otj·d+1+91(1)(~ ~tj · 9(1) dl (~~tj· d+1_gl(d+1)(o otj· g(d+1) 2d] 

= [(00tj·d+1-1(~~)~j.l dl(~~tj·d+1-1(00tj·l 2d] 

While the conversion into PACI seems to restrict the form of PAC programs, 

in practice it usually takes only a little manipulation of a PAC program to put 

it in PACI-convertibleform. As an example, the PAC program '(0)n-1i-il ' need 

only be re-arranged into '[(0 )n-i+i il( 0 )n+i-i nl'. 

7.2.4 Implementation of PACI 

This section outlines the loading of PACI programs into the row and column 

generator cells, describing the required control structures. 

The row (column) generator loads row (column) selection constructs in exactly 

the same way as the ISADL diagonal restorer loads [the initial value of] an ISADL 

diagonal (cf. Section 5.3.2.2). This is because these constructs are very similar 

in structure to an ISADL diagonal: the only difference is that the arguments of 

the PAC selector constructs may be long programs, whereas those of an ISADL 

diagonal are only sub-diagonals. This results in the the boolean variables Land 

E' of the ISADL diagonal loading algorithm being replaced by short boolean 

stacks (of the same name) for its PAC adaptation. Hence, for loading Pk for the 

PAC column selection: 

[ •• ' nk-l IPk nk I· .. nl 
the PAClloading algorithm would then set top(L) only in columns nk-l to nk, and 

top(E') only in column nk-l' The implementation of the PACI algorithm requires 
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a modest amount of hardware (a small boolean processor is sufficient). The 

performance of the ISADL algorithm was shown to be very good in general (see 

Tables 5.1 and 5.2)j this performance should carryover to its PAC adaptation. 

The evaluation of '[Pl 61... nl' across a PA row requires a bit to be set 

in its 8th column, to mark the boundary between the cells loading P1 and the 

others. This marking can be done by passing systolic counters bitwise across the 

row, taking O(log 8) steps. These counters are also used to evaluate the <l;, .•• , t>j 

expressions of PAC!. 

Consider the loading of a PACI repetition construct of the form (i P)<lj·c into 

a cell of the column generator array, where c in an integer, i is an instruction and 

P is a PACI sub-program. If, in this cell, top(L) = 0, the cell passively passes 

the construct to the cell to the right. Otherwise, the cell loads this construct 

in the following way. If top( E') = 1, let v denote Cj otherwise v denotes the 

current value of the previous column's (systolic) counter. v is loaded into the 

counter field of the current entry of the cell's PCU. The cell sets its (systolic) 

counter to v + 1 (to be read by the cell to the right). The instruction field of 

the current PCU is loaded with i, and this entry is marked '(" signifying the 

beginning of a repetition. Then the sub-program corresponding to P is loaded, 

the last instruction of which is marked as ')'. A similar case exists for the PACI 

sub-program (i P)f>j· c except that the row passes on v -1 to the cell to the right, 

instead of v + 1. 

The row generator loads these constructs, together with the column selection 

constructs, in a similar way. As an example, consider loading (P)f>j· <Ii· c into 

a row (cell) of the row generators. If top(L) = 0, the row passes on (P)f>j·<li.c 

unchanged. Otherwise, the row loads this sub-program in the following way. If 

top(E') = 1, let v denote Cj otherwise v denotes the current value of the previous 

row's (systolic) counter. The cell sets its (systolic) counter to v+1 (to be read by 

the succeeding row). The cell loads (P)f>j· v (with P processed in a similar way) 

into the adjacent row of the column generator array. 

SEquations (7.1-7.2) would have generated (PY'" I>j . C rather than (p)"j . <I,. C. However, for 

the purpose of loading, the former expression is more convenient. 
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7.2.5 Array synchronization using PAC 

In the microprogrammed ISA, the implementation of (J.L, q) wavefronts, and hence 

array synchronization, is achieved using instruction and selector queues. In the 

PA, (partitioned) (J.L, q) wavefronts can be implemented by simply executing (par

titioned) PAC delay programs (see Section 7.1.1). 

The loading of PACI programs proceeds using an ISA wavefront. It is also 

easy to implement an initial program start signal which also propagates with the 

same wavefront. However, the PA cell's PCUs may be easily instructed to begin 

execution of the next program immediately after executing the first program 

(the second program can be assumed to be loaded by this stage) . If the first 

program has a period appropriately depending on the cell position (i,j), the 

second program can use an.y simple wavefront. Figure 7.2(b) demonstrates such a 

program which transforms an ISA wavefront into an SIMD wavefront. In general, 

the following synchronization result holds for PAC: 

Result 7.1 (Simple wavefront PA synchronization result) If an mxn PA 

is currently using a (J.L, q) wavefront, 'executing' the delay program S(J.L'-J.L, q'-q) 

causes it to use a (J.L' , q') wavefront, where: 

proof: 

Let D.J.L = J.L' - J.L and D.q = q' - q. 

if D.q ~ 0 } 
if D.q < 0 

Assume that initially the PA uses a (J.L,q) wavefront. Here, the first 

instruction of the program S(D.J.L,D.q) is executed in cell (i,j) J.L steps 

[q steps] after it is executed in cell (i - 1,j) [cell i,j - 1)]. 

If J.L' ~ J.L, then this program has a period J.L' - J.L cycles longer in cell 

(i,j) than in cell (i -l,j). Thus, after executing S(D.J.L, D.q), the next 

program's first instruction is executed in cell (i , j) J.L + D.J.L = J.L' steps 

after it is executed in cell (i - 1,j). 

Ot!ierwise, this program has a period J.L' - J.L cycles longer in cell 

(i -l,j) than in cell (i,j). Thus, after executing S(D.J.L, D.q), the next 
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program's first instruction is executed in cell (i,j) /1- - (-fl/1-) = /1-' 

steps after it is executed in cell (i - 1,j). 

A similar argument establishes that after executing 5(fl/1-, fla), the 

next program's first instruction is executed in cell (i,j) a' steps after 

it is executed in cell (i,j - 1). 0 

This result can be simply extended for partitioned wavefront programs. It also 

gives the delay associated with changing the wavefront parameters - this has 

already been discussed in Section 4.3. Thus, the PAC model has a simple, efficient 

and versatile method of providing P A array synchronization for the class of P A 

algorithms that it can implement. 

7.3 PAC on more complex PA programs 

This section gives more complex examples of PA programs, with their PAC en

codings. These programs use interleaved wavefronts9 and they motivate the PAC 

extensions of Section 7.4. 

Here, the concept of wavefront interleaving is introduced. In some cases, 

these programs can be easily expressed in PAC without using (explicit) wavefront 

interleaving concepts; in other cases, this is impractical. This concept is also 

useful for providing 'separation of concerns' in systolic algorithms, and hence 

may be a useful tool for the derivation of such programs. These examples also 

require extensions to be made to PACI so that they can be loaded into the PA. 

7.3.1 Matrix multiplication 

The MatMult program of Section 2.2.2.2 [57, pp189-192] for an m x (2m - 1) 

PA can be easily coded in PAC. The PAC program is shown diagramatically in 

Figure 7.5. It can be thought of a (1,1) wavefront of M' instructions (passing 

input data east) combined with a (1, -1) wavefront of £1 instructions (passing 

input data west). These wavefronts combine to give the £1' instructions (passing 

9 Hen<!e, they cannot be implemented as efficiently (or at all) on a microprogrammed ISA. 
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input data both ways), as is shown in Figure 7.5(a). This distinction between the 

different types of NI instructions is only conceptual, to demonstrate that in some 

cases wavefront interleaving in PAC can be performed very easily. The MatMult 

program is coded in PAC as: 

MatMult: [(oo)m ml (0 0)2m-i 2m-I] (M Or 

,---

0 

0 M' 0 

0 M' 0 M' 0 (0 )4 (0)4 (0)4 (0 )2 

M' 0 M' 0 M' 
(0)4 (0)4 (0)4 (0 )2 

0 M' 0 M' 0 

M' 0 M' 0 M 
(0)4 (0)4 (0)4 (0 )2 

0 M' M 0 (b) delay part , from ISA wavefront 

M' M 
'--- '--

(MO)3 (MO)3 (MO)3 (MO)3 (MO)3 

(MO? (MO)3 (MO)3 (MO)3 (MO)3 

(MO)3 (MO)3 (MO)3 (MO)3 (MO)3 

(a) ISA program (M=M'=M=M') (c) computation part 

Figure 7.5: MatMult program for a 3 X 5 PA 

7.3.2 Matrix transpose program 

The systolic matrix transpose algorithm of Ullman [57, pp199-201] can be imple

mented on an n x n PA with only orthogonal connections. The cell PCUs enable 

258 



the simulation of variable speed systolic control bits propagating through the PA. 

The program to perform the transpose of the upper half of a matrix, called pro

gram MatTrans1, is indicated by Figure 7.6, which gives the instructions executed 

at each (global) time instant. 

• L +- • 
.lJ. ¢:: • 

+-

L L +- +- • L L 
L L .lJ. +- +- ¢:: • L .lJ. 

L .lJ. .lJ. +- ¢:: ¢:: • .lJ. .lJ. 
.lJ. .lJ. .lJ. +- +- +- L 

L L +- +-

+- • L 0 

+- ¢:: • L .lJ. ¢:: 0 

+- ¢:: ¢:: • L .lJ. .lJ. ¢:: ¢:: 0 

¢:: ¢:: ¢:: • L .lJ. .lJ. .lJ. ¢:: ¢:: ¢:: 0 

+- +- +- .lJ. .lJ. .lJ. .lJ. ¢:: ¢:: ¢:: ¢:: 0 

( '+-' and '¢::' denote 'Cs +- CE '; 'L' and '.lJ.' denote 'CE +- CN'; '.' denotes 

'Cs +- A' and 0' denotes a No-operation) 

Figure 7.6: Execution of MatTrans1 program on a 5 X 5 PA, time steps 1-9 

The program assumes that initially an n X n matrix A resides in the respective 

A registers of the PA. The program can be visualized as (n-1) south-west moving 

(1 , -1) 'wavefronts'lO. Consider the kth wavefront, 1 ::; k ::; n -1. This becomes 

active at time step 2k - 1 (on the PA's kth anti-diagonal, see Figure 7.6), when 

the wavefront consists of '.' instructions. These instructions load A;,i into the Cs 

register of cell (i,j), where j = n + i - k. On time steps 2(k + t'), where t' ~ 0, 

the wavefront consists of '.lJ.' instructions which shift Ai,i into the Cw register of 

cell (i + t' + 1,j - t'), where j = n + i - k. On time steps 2(k + t') + 1, where 

lOThese wavefronts are unusual, since they are interpreted differently at different anti

diagonals. 
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t' ;::: 0, the wavefront consists of '<=' instructions which shift Ai,i into the Cs 
register of cell (i + t' + 1,j - t' - 1), where j = n + i - k. The program stops at 

t' = n - k -1, with Ai,n+i-k residing in the Cs register of cell (i + n - k, j - n + k), 

where j = n + i - k, ie. in cell (n + i - k, i). 

Note that the '-t' and '!' instructions of Figure 7.6 exist only to simplify the 

coding into PAC (being identical with the '::;.-' and '.IJ.' instructions, respectively). 

They play no part in the actual transpose. The pictorial representation of the 

program is given in Figure 7.7. Note that the program is uniform along the 

anti-diagonals. Assuming the PA is initially set up in a SIMD wavefront, the 

0 • • • • 
(<= .!J.)2 (<= .!J.)1 (<= .!J.)1 

.!J. .!J. 
0 • • • 

(.!J. <=)2 (<=.!J.)2 (<= .!J.)1 (<= .!J.)1 
.!J. .!J. 
0 • • 

(.lJ. <=)1 (.!J. <=)2 (<= .!J.)2 (<= .!J.)1 (<= .!J.)1 
<= .!J. 

0 • 
(.!J. <=)1 (.!J. <=)1 (.!J. <=)2 (<= .!J.)2 (<= .!J.)1 

<= .!J. 
0 

(.!J. <=)1 (.!J. <=)1 (.!J. <=)2 (<=.!J.)2 
<= <= 

Figure 7.7: MatTrans1 program for a 5 x 5 PA 

delay program to set up program MatTrans1 is 8(1, -1) = (0 )i-1( 0 r-i , and the 

computation part is given by considering the lower, diagonal, and upper parts of 

the P A separately: 

MatTrans1 [(<=)(n+j-ilmod2(.!J. <=)(n+j- ildiv2 n] 

(<= .!J.)(n-1ldiv2 0 d 

(.!J.)(n-l+i-ilmod2( <= .!J.)(n-l+i-jl div2. n] 

Note that the period of MatTrans1 in cell (i,j) is n -Ii - jl. The delay program 

to restore the PA to a SIMD wavefront is [ i I (0 0 )j-i n]. 
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Note that P A CI has to be extended to accommodate expressions such as '( n _ 

1 + i - j) div 2'; this will be dealt with in Section 7.4.2. The program to transpose 

the lower half of the matrix, which shall be called MatTrans2, is defined similarly 

and uses a (-1,1) wavefront. These programs can be executed serially to perform 

a complete transpose, ie.: 

8(1, -1) MatTrans1 [ il (0 o)i-i n] 

8(-1,1) MatTrans2 [(oo)i-i i-II n] 

in a period of ~ 4n, as compared with the ISA matrix transpose program which 

has a period of ~ 6n [31]. 

To run r 2: 1 consecutive matrix transpositions in a period of (2r + 2)n, an 

interleaving, ie. executing alternate instructions from r iterations of each of the 

two (half) transpose programs, can be performed: 

intJv ( < (8(1,-1) (MatTrans1 [(o):-~ il (o).i~i n]Y 8(-1,1)),) 
8( -1,1) (MatTrans2 [ (0 )'-.1 d (0).7-' nlY 8(1, -1) > 

This is possible since the two programs operate on disjoint sets of PA registers. 

Note that the combined period of MatTrans1 (MatTrans2) and the delay program 

'[(o)i-i d (o)i-i n]' is n, hence maintaining the wavefronts set up by 8(1,-1) 

(8( -1,1)). 

7.3.3 Warshall's transitive closure algorithm in PAC 

Warshall's Transitive Closure algorithm can be implemented simply and effi

ciently on an n X n ISA using ring-shifting [32], which can be converted very 

easily into an equivalent PAC program. Here, it can be indicated how to im

plement this on a n X n PA without performing any ring-shifts. The purpose of 

this is to illustrate how a PA program whose 'wavefronts' have a time-dependent 

'source' can be implemented in PAC (providing they do not collide). 

The structure of the P A program consists of three phases for each of the n 

iterations: a horizontal communication, a vertical communication and a local 

computation phase. Correspondingly, it is convenient to use a horizontaJ commu

nication register CH (read by west and east neighbours), a vertical communication 
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( a) time steps 1-5 (b) time steps 6-10 

(c) PCUs of rows (for initially u = 1) 

('e ' denotes 'CH +-- A', '-4' denotes 'CH +-- Cw' and "+--, denotes 'GH +-- GE'. 

Subscripts denote the source columns of the 'wavefronts') 

Figure 7.8: Horizontal communication phase of Transitive Closure program on 

one row of a 5 x 5 P A 

register Cv (read by north and south neighbours) and a local register A. The hor

izontal communication for a row of the PA implementation of this algorithm is 

illustrated in Figure 7.8. 

For the kth repetition of the horizontal communication phase, column k sends 

an eastward moving (u = 1) wavefront of '--4' instructions and a westward mov

ing (u = -1) wavefront of '+--' instructions from column k. Since these wave

fronts never collide, it is possible to express their combination by inserting 'no

operations' (two '0' instructions), as is shown in Figure 7.8(c). However, this 

program requires that initially (j = 1; because the period in column j is 3n - 2j, 

the program then leaves the PA with a skew of (j = -1. The PAC encoding is, 

for the n repetitions of the horizontal phases: 

HorBroadCast: (--4 )i-1 • (0 0 +--r-i 
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and similarly, for the n repetitions of the vertical phases: 

VertBroadCast: (L)i-l .' (0 0 rr-i 

with 'f denoting 'Cv f- CN ' Ii' denoting 'Cv f- Cs ' and '." denoting 'Cv f- A'. 

The n repetitions of the computation phase are coded simply as: 

where 'G' denotes 'A f- A + GHGv ' (which probably would be implemented by 

a macro, ie. a sequence of smaller instructions). Defining ''ft' (''*=') to be the 

macros '0 0 i' ('0 0 f-'), the n repetitions of the whole program can be easily 

expressed as an interleaving of the repetitions of each of its phases: 

The wavefront interleaving operation takes one macro from each of the programs 

of its argument list in turn (thus it is important that the macros are not expanded 

before the interleaving is performed). It is possible to express this program in 

PAC without using explicit wavefront interleaving (see Section 7.3.4 for a similar 

example). However, in this case, the explicit use of interleaving has resulted in 

the elegant expression of an otherwise complex communication pattern of the 

algorithm. 

The ISA implementation of Warshall's transitive closure algorithm (which 

uses ring-shifting) [32], has a period of IOn. Assuming a similar instruction set 

on a P A (except that two communication registers are used instead of one; this 

extra feature does not improve the ISA program's period), the 'G' macro requires 

only two instructions. Here, the above PA implementation, when appended with a 

6(2,2) delay program to restore the (1, 1) wavefront, has a period of Sn. Moreover, 

this implementation has a complementary version which requires the PA to be 

initially in a (-1, -1) wavefront and leaves it in a (1,1) wavefront. In this version, 

the activity begins in cell (n,n) and ends at cell (1,1). The average period of 

running both versions consecutively is only 6n. 
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7.3.4 Kung's transitive closure algorithm in PAC 

On an n x n PA, a natural expression of the Kung-Gubias-Thompson transitive 

closure algorithm [57, pp192-198] for an n X n matrix A can be given using 

PAC. The microprogrammed ISA algorithm is given in Section 3.5.2. Recall 

from Section 2.2.2.4 that the algorithm consists of three passes; a single pass is 

described as follows. The initialization phase sets up the matrices A ° = 0 and 

A'O = A"O = A + I, where 0 is the zero matrix and I is the identity matrix. 

These are updated in cell (i,j) for the kth iteration, where 1 ~ k ~ n, as follows: 

At t- At-1 + Atl A~-\ 

A/j t- {A~ if k = i; 
ik Al-1 otherwise 

Alii {At if k = j; 
kj t- A~;-1 otherwise 

Identifying Afj with the A register of cell (i,j) on iteration k, and the nontrans

mittent variable A~{ (A%}) with the CE (Cs) register of cell (i,j) during the kth 

iteration, and the above operations with the macros: 

CAt- A+CWCN 

~' 

.ij." 

C~ t- A 

C~ t- A 

~ : C~ t- Cw 

.ij.: C~ t- CN 

the pass, using a (5,5) wavefront 11 , is simply expressed as: 

since at cell (i,j), only A~{ (AZ}) is updated with an '~" (.ij.") instruction, ie. the 

updating occurs only on the k = ith (k = jth) iteration. 

The expression '(~)j-l ~' (~)n-j" combined with (c)n, has the same 

structure as the instruction part of the ISA version of this algorithm. It also 

has a similar function: to update the A and A' matrices. The expression '(.ij. 

);-1 .ij." (.ij.)n-;, has the same structure as the selector part of the ISA version: 

its function is to update A". Note that on a PA, the updating of Cs is done 

by a single (micro )instruction 12 at intervals of f-L = A = 5 microcycles (ie. once 

llThis assumes that the C macro has length 3. 

12It requires two micros, with the use of selector bits, on a microprogrammed ISA. 
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every iteration). The microprogramming timing rules of Section 4.4.2 ensures 

that upon the kth iteration, when cell (i, j) accesses CN , the Cg register of cell 

(i - l,j) still stores A%}-I. 

Note the similarities between this expression and the program of Section 7.3.4. 

Thus, the use of explicit interleaving has lead to a very straightforward PAC 

implementation. It is also possible to eliminate the explicit interleaving at the 

loss of the clarity and the compactness of the PAC encoding: 

intJv« (ct, ((~)i-l ~' (~t-i), ((.ij.)i-l .ij." (.ij.t-i ) » 

= [(C)i-1C'(C)i-i-1C"(Ct-i i-II 

(C)i- 1C"'(Ct-i d 

(C)i-1C"(C)i-i-1C"(Ct-i nj 

where C = 'c .ij. ~ " C' = 'c .ij. ~' , 

and C" = 'c .ij." ~ " C", = 'c .ij." ~' , 

This example is already sufficiently complex to make it difficult to illustrate pic

torially. In Appendix 7.B, the C, ... ,C'" macros are rewritten to have length 

A = I" = 4 with the same instruction set as the A = 5 microprogrammed ISA 

transitive closure program of Section 3.5.2. This reduction in period is due to 

the fact that on a PA, updating Cg in cell (i,j) can be done here in one (micro) 

instruction only, whereas the ISA requires two. 

7.3.5 Simulating skewed matrix input on a PA 

Efficient implementation of the transitive closure algorithm of Section 7.3.4 re

quires the PA to have a two-dimensional torus topology. This is required to return 

the nontransmittent matrices A" (A') to the left column (top row) of the PA for 

the second and third passes. For such a PA, it is efficient to assume that these 

matrices are initially resident in the PA [57, p207j, ie. A~ (AiJ) is initially in the 

Cw (CN) register of cell (i,j), and then to simulate their (skewed) input into the 

PA. 

For this topology, it is convenient to assume that the PA is buffered on its 

west (north) side by a column (row) of registers (or queues of length 1; cf. the 
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ISA data buffers proposed in Section 2.6), which read the contents of the adjacent 

CN (C~) registers on every PA (micro )instruction cycle. Figure 7.9 illustrates 

the respective time snapshots for simulating the input of row i of the matrix A to. 

These are combined with respective instructions for updating row i of A for the 

transitive closure program of Section 7.3.4. 

A~ I {::2 I 
A~ I ~~ I {::31 

A~ I {::3 I ~~ I {::4 I 
A~ I ~2 I {::4 I ~1 I {::s I 
A~ I {::4 I ~~ I {::s I ~1 I 0 

A~ I ~3 I {::s I ~2 I 0 I ~11 
(a) time steps 1-6 

A~ I {::s I ~3 I 0 I ~2 I 0 

A~ I ~4 I 0 I~; I 0 I ~2 I 
A~ I 0 I ~4 I 0 I ~3 I 0 I 

I ~s I 0 I ~4 I 0 I ~31 
I ~s I 0 I ~~ I a I 

(b) time steps 6-10 

('~' denotes 'C~ - CE', with '=>" and '=>' as defined in Section 7.3.4. 

Subscripts denote the column index of A~. The contents of row i of the 

PA's west data buffer are annotated to the left) 

Figure 7.9: Simulating input of Ai for the Transitive Closure program on row i 

of a 5 x 5 PA 

The program for row i of the PA uses a (0,1) wavefront and is expressed in 

PAC as the interleaving of the westward and eastward communicating wavefront 

sub-programs: 

SkewMatInput intJv( < ({:: t-i (o)i, (~)i-1~' (~t-i » 

= [({:: ~)i-1 {::~' ({:: ~t-2j(0 ~)i n/21 

({:: ~t-i(o ~)2i-10 ~' (0 ~t-i nl 

Note that expressions of the form ( .. Y-2i and ( .. . )2i -1 require extensions to the 

implementation of PACl. T:he corresponding program for A'to is similar, and uses a 

(1,0) wavefront. The interleaving of these programs (with also (c)n) implements 

266 



the first pass of the Kung-Gubias-Thompson transitive closure algorithm with 

simulated input of the matrices A' and A". However, to express the program 

for this pass without explicit interleaving is extremely cumbersome, and hence is 

inefficient for loading. and storing in the PA. To efficiently implement this program 

on a PA, the hardware implementation of wavefront interleaving is necessary. 

7.4 Extensions to PAC 

Motivated by the examples of Section 7.3, this section gives some simple and rel

atively inexpensive extensions to PAC to increase its power and flexibility. The 

most important of these is called wavefront interleaving, which allows among other 

things a PA using PAC to efficiently simulate an ISA. Wavefront interleaving bor

rows many concepts of microprogramming (see Chapter 4), and correspondingly 

has two forms: vertical interleaving, with the unit of interleaving being an in

struction macro (as illustrated in Section 7.3); and horizontal interleaving, with 

the unit of interleaving being a parallel operation within an instruction. Hori

zontal interleaving can be used to generalize the ISA masking mechanism, and 

hence be used for easy and efficient (microprogrammed) ISA simulation. Vertical 

interleaving can be used to simulate horizontal interleaving. 

7.4.1 Implementation of wavefront interleaving 

Section 7.3 gave examples of PA programs which were conveniently expressed 

as a vertical interleaving of two or more wavefront programs. Sometimes, this 

effect could be implicitly encoded in PAC; at other times, the PAC encoding 

without explicit interleaving became large, complex and inefficient to implement. 

This section formally defines vertical interleaving and indicates how it may be 

efficiently implemented on a O(logn) area cell PCU. It should be noted that 

the need to implement wavefront interleaving is not due to any limitations of 

PAC, but is due to the requirement for efficient loading of the O(1ogn) area cell 

PCUs. Hence, any PA programming language and the PA hardware itself should 

support wavefront interleaving if algorithms such as those in Section 7.3 need to 
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be implemented. 

Consider the PAC programs PI' ... ' PI, which are coded using fixed length 

macros of lengths AI, ... , Al respectively. The vertical interleaving (executing one 

macro from each in turn) of these programs, being coded using macros of length: 

is defined in terms of its component program at the arbitrary m x n PA cell 

(io,jo): 

CiQ,n(R;Q,m(intlv( < PI' ... ' PI > ))) = iJ( < CiQ,n(R;Q,m(Pl )), ... , 

< CiQ,n(R;Q,m(PI)) » (7.4) 

With € denoting an empty program, 'ins' denoting a PA instruction macro, k 2:: 1 

denoting an integer, and P{, . .. , P{ denoting component programs, the component 

of a vertical interleaving is defined as: 

iJ( < €, €, ••• , € > ) = € 

iJ« (P)Op{,P~, . .. ,P{ » = iJ« P{,P~, ... ,P{ » 

iJ« (p)kp{,p~, ... ,P{ » = iJ« p(P/-lp{,P~, ... ,P{ » 

iJ( < ins P{, P~, ... , P{ » = ins iJ( < P~, ... , P{, P{ » (7.5) 

This definition implicitly assumes that all programs have the same period. The 

overall wavefront parameters of an interleaved program are generally chosen a pri

ori; if the sub-programs themselves use different wavefronts, then the appropriate 

delay programs should be incorporated within them. 

Example. For column 3 of an 8 x 8 PA, the vertical interleaving of the sim

ulated matrix input program with the horizontal component of the transitive 

closure program of Section 7.3.5 is given by: 

iJ« (~)5(0)3, (~)2~' (~)5 » 

= iJ«~ (~)4(0)3, (~?~' (~)5 » 

= -¢::: iJ«~ (~)l~' (~)5, (~)4(0)3 » 

= ~ ~ iJ« (~)4(o?, (~)1~' (~)S, » 
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= (*= ::})2 iJ« (*=?(O?, ::}' (::})5, » 

= (*= ::})2 *= ::}' iJ« (*=)2(0)3, (::})S » 

= (*= ::})2 *= ::}' (*= ::})2 iJ( < (0)3, (::})3, » 

= '( *= ::})2 *= ::}' (*= ::})2 (0 ::})3 

While it is possible to express vertical interleaving in terms of existing PAC 

constructs (cf. Section 7.3.4), a general formula to do so would be complicated and 

yield surprisingly large PAC programs. Instead, hardware support for wavefront 

interleaving is proposed; this reduces the size of the cell PCUs and enables more 

efficient program loading. 

The control structures required to implement vertical interleaving in the cell 

PCUs are surprisingly modest. Recall that the PCU has a table T to store 

programs, and its own working variables (eg. a table pointer, loop counter and 

table pointer stacks, and boolean flags). To interleave I sub-programs (eg. I = 
2,4), each program is loaded into a separate partition of T. I versions of the PCU 

working variables are then requireS., which are selected one at a time by a new 

PCU variable L. Upon beginning the execution of the interleaved program, L is 

set to 1. After executing a macro form the first sub-progra,n{, L is set to 2, and 

this continues, with the operation L i- (L + 1) modtl being performed after a 

macro in the current sub-program is executed. This process continues until L = I 

and the Ith sub-program has terminated, at which time the whole interleaved 

program is assumed to be terminated. 

The macros of the interleaved programs may be implemented as macros, and 

be decoded in a similar fashion to the macros for the microprogrammed ISA (see 

Section 3.5.1). This may reduce cell PCU size in some applications. Alternatively, 

the sub-programs could be stored in T on the micro level, with each PCU (mi

croinstruction) entry being augmented by a "end macro" marker. After an entry 

with this marker set is accessed, the execution of the next sub-program begins. 

This scheme has the advantage that the macros may have variable lengths. 

It is also useful to use horizontal interleaving which combines the parts of an 

instruction 

ego the instruction proper and a selector bit (to determine whether 
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the instruction is actually performed, as in the ISA) 

into a whole instruction. This is particularly useful in reducing code size if the 

PA's cells use long instruction words composed of several overlapped operations 

(as for the CMU Warp processor, which uses software pipe/ining [27, ch. 5]). As 

for its microprogramming counterpart, horizontal interleaving is more expensive 

to implement, since here interleaving I sub-programs would require 1 replications 

of the PCU control logic, as weIll individually accessible PCU tables. However, 

horizontal interleaving is still useful, and two examples to illustrate this are given 

below. 

Horizontal interleaving can in general be simulated by vertical interleaving, 

but the proof of this is beyond the scope of this chapter. Here, care must be 

taken when an interleaved sub-program uses a variable updated by another on the 

same macrocycle - in such cases, copying of such variables before their update 

is required. The simulation of the horizontal interleaving of 1 sub-programs will 

multiply the required wavefront parameters J.L and u of the original program by 

a factor of I. 

This form of simulation is illustrated by a PA using two-way vertical inter

leaving simulating a (J.L, u) wavefront microprogrammed ISA (see Section 7.4.1.1). 

For each microprogrammed ISA diagonal, each PA cell uses one instruction to 

set a dummy register to the result of the diagonal's instruction, followed by a 

conditional store (on whether the diagonal's corresponding selector bit is set) of 

the dummy register into the destination of the instruction. This scheme doubles 

the program period, as well as the wavefront parameters J.L and u. 

7.4.1.1 Simulation of an ISA using horizontal interleaving 

It has been shown that an arbitrary PA program of period t can be expressed in 

PAC and, in O(t) stages, this program can be loaded and executed in a PA with 

O(log n) area PCU s. Since a microprogrammed ISA program may be efficiently 

simulated by a PA (in the same fashion as an ISA program may be simulated 

by a PA [21)), a PA loaded by PAC can be said to simulate an arbitrary micro

programmed ISA. However this is unsatisfactory because performing many short 
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load-execute stages may result in large delays (see Section 7.5). 

To offset the expense of the PCUs, it is necessary that the PAC-loaded PA 

be considerably more powerful than the microprogrammed ISA. In this chapter, 

many examples of PA algorithms have been given which cannot be implemented 

as efficiently (or at all) on a microprogrammed ISA. It then remai~s to show that 

'in practice' any microprogrammed ISA program can be simulated efficiently using 

PAC. 'In practice' means that the microprogrammed ISA program can be coded 

in ISAC: this definition is justified by the high flexibility of ISAC (see Section 

3.7). 

This simulation uses the 'interleaving' of the top and left programs (T P, LP) 

of the ISA program, which can be assumed to be coded in ISAC. Their translation 

into PACI is straightforward, giving sub-programs T pI and LP' , which are loaded 

into the PA. The horizontal interleaving of < T pI, LP' > performs the simulation, 

with T pI containing the instructions proper, and LP' containing the respective 

selector bits. 

7.4.1.2 Matrix transpose program revisited 

The matrix transpose program of Section 7.3 required the introduction of super

fluous instructions to simplify the PAC encoding. These are denoted T and -' 

in Figure 7.6, and play no part in the actual transpose. By applying horizontal 

interleaving on: 

8(1,-1) MatTransl [ d (oo)j-i nl 

with the 'selector bit' program '(0)n+i-l-1 SI', where SI is a yet to be determined 

program of period n - i + j, the superfluous '1' and '-' instructions can be 

eliminated. 

To determine SI, it should be noted that each PA cell (i,j) executing Mat

Transl executes a number nij of '!' and '_' instructions first, and then executes 

the other instructions (which perform the actual transpose). By inspection of 

Figure 7.6, the nij coefficients may be determined, and they are given in Figure 

7.10. From generalizing this figure, one can see that: 

{ 
n + 1 - i - j if 1 ~ j ~ n - i-I 

nij = i + j - n - 2 if n - i-I < j ~ n 
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ie. S 1 must de-select the first nij instructions in cell (i, j) and select the (n - i + 
j - nij) remaining ones: 

4 3 2 1 0 
3 2 1 0 0 
2 1 0 0 1 
1 0 0 1 2 
0 0 1 2 3 

Figure 7.10: Number of superfluous instructions/cell for program MatTransl on 

a 5 x 5 PA 

7.4.2 Extensions to P ACI 

Sections 7.3.2 and 7.3.5 give PAC sub-programs of the forms ( ... )(n-i+j)divZ and 

( ... )n-Z j , respectively. These can be translated into PACI by extending the cur

rent definition of C' and OPj (see Section 7.2.3): 

C'jo,n/( (p)(e+c(i)) divZ) = (C' jo,n/(p))h- oPj(c,n/). e+c(io) 

= {<1Zj if c(j) = 2j mod! 2k and 2k In' 
°Pj( c, n') r>Zj if c(j) = -2j mod! 2k and 2kln' 

(7.6) 

(7.7) 

The operation' / z' is implemented in the column generator array only: it instructs 

the respective cells to divide by 2 the current systolic counter, and can be effi

ciently implemented. The operation '<1z/ ('r>z/) instructs the cell to perform the 

increment (decrement) of the current systolic counter from the second least [as 

opposed to the least] significant bit. 

Depending on the range of programs to be executed on the PA, other such 

extensions may be required. It is likely that efficient implementations can be 

found for these also. 

7.4.3 Widening the domain of PAC 

As stated in Section 7.1, PAC assumes that the PA cells have limited data

. dependent operations. It is permissible that the PA cells can mask an instruc-
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tion according to the values of its ~tatus registers, which may be set in a data

dependent way. To extend this, only a (conditional) goto instruction would be 

required: this would set the PCD table pointer to the lookup value of a symbolic 

address (provided the appropriate cell status register is set). A 'symbolic address' 

is a marker at a point annotated inside the PAC program: at load time, when 

a PA cell encounters this marker, the current PCD table loading address would 

be stored in some lookup table. At run time, the lookup table would translate 

symbolic addresses into absolute PCD table addressesl3 . 

Hence, adding data-dependent features into the PA causes only a small over

head in the implementation of PAC. However, it should be remembered that this 

would not be necessary for most systolic algorithms. 

The other main limitation of PAC is that, for the sake of program compression, 

PAC disallows iterations of the form '(P(k))k=1..c" where P(k) is a PAC sub

program dependent on k. 

ego for 

P(k) _ { Pl P2 if k ~ c/2 
- P{ P2 if k > c/2 . 

'(p(k))k=1..C' would be encoded in PAC as '(Pl P2)c/2(P{ P2 )C-c/2,. 

Such co dings have already been used in the PA transitive closure 

programs of Section 7.3. 

To reduce cell PCD area, these effects can be implemented using a PA register 

as a counter storing the current value of k, and regarding this iteration as a 

data-dependent program. This incurs an overhead in program execution time. 

Alternatively, interleaving could be sometimes used to simulate this effect 

more efficiently: 

ego for 

P( k) _ { Pl P2 if k ~ c/2 
. - P{ P2 if k > c/2 

then '(P(k ))k=1..c, can be encoded as: 'intlv( < (PdC/2(PDc-c/2 , (P2)C > 

)' . 
l3In general, the absolute address would be dependent on the cell position; thus it cannot be 

determined before load time. 
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7.5 Evaluation of PAC 

This section analyses in further detail alternatives for the implementation of 

.. PAC (see Section 7.1.3). These alternatives amount to two design decisions: 

(i) whether, in a PA cell, to evaluate any cell position dependent expressions in a 

program at load-time or at run-time; and (ii) whether to overlap program loading 

and program execution in a PA. These analyses extend to any PA requiring 

efficient program loading. Conclusions are then made regarding a viable PA 

domain for PAC. 

7.5.1 Load-time vs. run-time evaluation of cell position

dependent code 

As mentioned in Section 7.1.2, a choice in PA design is to load a cellprogram and 

evaluate its position dependent features either at load-time, or at run-time. To 

perform these evaluations, the latter choice requires extra instructions which may 

affect the synchronization of the P A. 

To perform this comparison, several assumptions about a PA performing the 

evaluation at run-time must be made. Firstly, the (i,j)th cell of an m X n PA is 

assumed to have registers (of the same name) containing the values i, j, m and n. 

The column selection constructl4 : 

is assumed to be implemented as: 

if j ~ nl then goto L2 

(0 )1-2 

<code for PI > &goto L 

L2 : if j ~ n2 then goto L3 

(0 )1-3 

<code for P2 > &goto L 

14The implementation becomes more complex if the recurrence width of the construct is less 

than n. 
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L/ : <code for Pz > &goto L 

L: ... 

Here, 'P&goto L' means the last instruction of P also performs an uncondi

tional goto to the code at label L. If P is of the form (PI)", then this goto is 

performed only on the kth iteration of P'. To maintain proper synchronization 

between cells executing different sub-programs within the selection construct, 

no-operations have to be inserted. A similar implementation applies for the row 

selection construct. 

Assume that the cell position dependent repetition construct '(PdJ(i,j) , is 

implemented by instructions evaluating f( i , j) , and that these instructions have 

the syntax 'R := R op E' where R is a register (or the peu counter stack top), 

E is either a register or a fixed-length constant and 'op' includes integer addition, 

subtraction, absolute value, division (by a power of 2) and modulus (of a power 

of 2) . If f( i, j) > 0, an instruction places the value of f(i,j) on the counter 

stack top of the cell peu, and PI is executed f( i ,j) times. Otherwise, the same 

instruction performs a goto past the construct. 

The comparison of the two methods for a cross-section of the PAe programs of 

this chapter is given in Table 7.1. The second column gives section references from 

this chapter where the respective PAe programs can be found. The program's 

size (the maximum number of entries in any cell's peu tables) for the evaluate 

at load-time and at run-time methods is given in columns 4 and 5, respectively. 

A similar situation exists for the program period (the maximum period of the 

program in any PA cell) in columns 6 and 7. 

It should be noted that the results of Table 7.1 favour the load-time method 

in that programs with relatively large dependence on the cell position are given 

in the table. On the other hand, the assumed implementation of the run-time 

method uses a very specialized instruction set chosen to optimize its performance. 

The load-time method is superior in terms of saving cell peu size, as demon

strated in Table 7.1, because of two factors: 

• the code for the whole PA is stored in each cell peu (accounting for the 
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PAC encoding sect. code size period 
ref. load run load run 

RedSquares : 

([i- n-110 nl r· ~ m~-1)n-1 7.1.1 2 4+2 2(n - 1) 4(n -1) 

[ [(i-j)n 1 n-11(i- o)n 1 n] m-1 J 
* 2 8+3 2(n - 1) 2n+2 [( i- o)n-1 n-11(O o)n 1 nl ml 

ISAtoSIMD: 
7.1.1 2 2+4 m+n-2 m+n+2 ( 0 )n-i ( 0 )m-i 

SymEigen (delay part) : 
7.1.1 1 n-1 

[(o) i-i i-II d(o)i-i nl 
(0 )Ii-il * 4 n+2 
SymEigen (compute part): 

7.1.1<> 3A 9A+3 3nA 3nA +2 [(L 0 o)n i-11(D 0 o)n d(U 0 o)n nl 
MatMult: 

7.3.1<> 4A 6A+7 4Am 4Am+4 [(oo)m ml(o 0)2m-i n] (M o)m 
MatTrans: 
[( <= ) (n-i+i)mod2 
(<= .JJ. ) (n-i+i) div2 i-II 7.3.2t 4 10+14 n n+9 (<=.JJ.)ndiV2 0 d 
(.JJ. ) (n-l+i-i)mod2 
(.JJ. <= ) (n-l+i-i) div 2 

• n] 
HorBroadcast: 

7.3.3 4 4+4 3n -2 3n+2 ( -+ )i-1 • (0 0 i- )n-i 

Skew MatInput: 
[( <==> )i-1 <==>' 
( <==> )n-2i (0 => )i 
(<==> )n-i (0 => )2i-1 

n/21 7.3.5t 8 16+13 2n 2n+7 

o =>' (0 => )n-i n] 

notes: 

* the program of the row above is here recoded to suit the run-time method's 

period. 

<> (large) macros of length A ~ 1 are used here. 

t some effort has been made to optimize the run-time method's codings. The 

run-time method's code size and period should be treated as approximate. 

Table 7.1: Load-time vs. run-time PAC program evaluation 
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first term in column 5). 

• the code to perform the evaluation must also be stored (accounting for the 

second term in column 5). 

For the range of the programs given in Table 7.1, the combination of these factors 

requires the load-time method's PCU table size to be about a third of that of the 

run-time's method. 

If the PA instruction set does not support powerful conditional goto op

erations, such as those required for the above implementation of the run-time 

method, the run-time method incurs a substantial overhead. On the other hand, 

ifthe load-time method cannot use the PA cell's ALUs to perform the loading, the 

load-time method requires extra integer arithmetic circuitry, which also might be 

a considerable overhead. This can be mitigated if the load-time method is used in 

conjunction with overlapped program load and execution (see the next section), 

in which case there is sufficient time for all arithmetic operations to be performed 

bi t-serially. 

Both methods have approximately the same performance in total load-execute 

time, unless the load-time method overlaps the loading of a new program with the 

execution of the current program, in which case it generally has a small advantage 

(as indicated by the difference between columns 6 and 7 of Table 7.1). 

7.5.2 Program loading and execution: serial vs. over

lapped 

This section analyses the load-execute performance of PAs with respect to whether 

the program load and execution phases should be executed serially or be over

lapped. The former is superior in area; the latter is superior in period. The 

analysis is then given with respect to the area-period (AP) measure. Assume 

that the program loading propagates according to a fixed, say a (1,1), wavefront. 

The overlapped load-execute method requires extra area in the cell PCU tables, 

to buffer (b + 1) ~ 2 programs at once; however, it has the advantage that the 

PA can be performing useful computations virtually 100% of the time. Also, the 
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serial load-execute method incurs a serious delay when the program execution 

wavefront differs from the program loading wavefront. 

To compare the two methods on an n x n PA, only O( n) programs using 

(IL, a) wavefronts will be considered. Our experience is that these programs can 

be assumed to have a period not less than15: 

tmin = max{IILI, lal, l}n 

These programs are also made to be 'irreducible'16 where an 'irreducible' pro

gram is a program that is not expressible as a sequence of two sub-programs, 

each of period no less than tmin and each requiring significantly less coding space 

than the program itself. 

This is possible because any application to be run on the PA can broken down 

into a sequence of 'irreducible' programs, which may be loaded and executed 

separately. Let Atab denote the area of a peu table that is just large enough to 

store any such 'irreducible' program, ie. Atab gives the area of the smallest peu 
table that the P A can use. 

First consider the PA executing a sequence of several programs, all of which 

use a (IL, a) wavefront. The following analysis derives for this case a sufficient 

value of b and an AP comparison of the methods. This value of b C3in then be 

shown to be sufficient to cover the other cases. 

Let the current program to be loaded on the P A be Q. Assume that the 

array size n is sufficiently large that the loading period for the program Q, tId = 

O(log n), satisfies tId::; tmin. 

Serial program loading and execution, by definition, requires that the program 

loading wavefront for the program Q does not pass through any PA cell while 

it is still executing the current program. This delay is equivalent to executing 

the delay program 8(1 - IL, 1 - a). After Q has been loaded, a complementary 

1
5This assumption can be justified as follows. Such programs in practice consist of at least 

n basic operations. A value of J.l such that J.l > lui ~ 0 is only required if north-south commu

nication occurs between the (k+J.l)th instruction at row i and the (k+l)th instruction at row 

i+l, for some k. Since this communication would form part of one of the n basic operations, at 

least J.ln instructions are required. Similar reasoning exists for -J.l > lui> 0 and lui ~ 1J.l1 > O. 

16cf. Section 3.3. 
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delay, equivalent to executing 5(", - 1, a-I) , is required. This is because the 

execution wavefront for Q must not pass through any cell still loading Q. Thus, 

the combined delay is approximately tdel = (I", -11 + la -ll)n. The total period 

for the load-execute eycle for Q is: 

Let the total area of a PA cell operating in this way be Aj the cell uses a 'minimal' 

peu table of area A tab• 

Since it is assumed that tld ~ tmin, a PA using fully overlapped program 

loading and execution performs the load-execute cycle of Q in period: 

For this method, since the P eu table must be able to hold (b + 1) ~ 2 programs 

simultaneously (and assuming that the extra control structures required by the 

overlapped method is negligible), the cell area is A' = A + bAtab. 

Overlapped program load-execution is more AP efficient (ie. A' pi < AP) 

provided that: 

A'-A 
< 

p-pi 

A P 
bAtab < tdel + tld 

A tQ 

Atab < fQ I", -11 + la - 11 tld 
(7.8) +-

A b max{I",I, lal, I} btQ 

where fQ = tmin/tQ, ie. fQ ~ 1, and the calculation of Section 7.5.2.1 gives a 

conservative value of b = 4. However, in practice, provided occasional delays due 

to program loading can be tolerated, smaller values of b may be permissible. Here, 

the overlapped program load-execution is always superior on coarse-grained PAs, 

where A tab « A. It is also superior on finer-grained PAs if on average either of 

the following conditions hold: 

1. when fQ is relatively close to unity, ie. P has a period not many times 

the minimum period troin and a (1,1) wavefront is not often used (in 

this case, (I", - 11 + la - 11)/(max{I",I, lal, I}) ~ 1, and is on average 

2). 
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2. the array size n is sufficiently small so that tid, where tid ~ tmin, is still 

of comparable size to tQ (this situation can exist for current commercial 

PAs - see Section 7.1.2). 

Now, consider the case of executing the program sequence 'Qj Q", where pro

gram Q [Q1 uses a (J.L, 0') wavefront [a (J.L' , 0") wavefront]. By Result 7.1, the delay 

program 8(J.L' - J.L, 0" - 0') must be effectively executed between the executions of 

Q and Q'. Assume that (for the overlapped method) this delay program is loaded 

with Q, and that the value of Atab has been adjusted (only very slightly) to take 

this into account. A similar analysis reveals that the overlapped load-execution 

method does not require a larger value of value of b than it does for the previ

ous case. However, the serial load-execute method must effectively execute the 

generally longer delay program: 

8 (J.L - 1, 0' - 1) j 8 (1 - J.L', 1 - 0") 

This analysis does not consider programs using partitioned or interleaved 

wavefronts. Also, the serial load-execute method might be more AP efficient 

if it could similarly buffer (b' + 1) ~ 2 programs in its PCU17
• Loading (b' + 1) 

programs consecutively reduces the loading delays of this method by a factor of 

approximately b'. However, this analysis shows that b' must be less than b if the 

serial load-execute method is to be more AP efficient. 

7.5.2.1 Calculation of the PCU table buffering factor 

The buffering factor b of the PCU table for the overlapped load-execute method 

is calculated as follows. 

If the PA begins executing (in one of its corner cells) the program Q at time 

t = 0, cell (i,j) begins executing P at time: 

tex ( i, j) = IJ.L1 (sgnl'(i -1) + (1- sgnl')(n - i)) + 10'1 (sgnq(j -1) + (1- sgnq )(n - j)) 

where sgn", = 1 if x> 0 and sgn", = 0 otherwise. The loading of Q, performed in 

period tid, must be completed before the execution of Q begins in any cell. The 

1
7This is used in commercial PAs - see for example [24, p3], which indicates b' is of the 

order of tens for the Warp processor. 
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loading must then begin in cell (i,j) at time: 

tld(i,j) = -tid - (sgnl' + sgn,,)n + i - 1 + j - 1 

The maximum difference between these times is given by: 

max{i,jl tex(i,j) - tld(i,j)} 

= tid + IJ.L - 11(n - 1) + sgn_1' + 10" - 11(n - 1) + sgn_" 

< tid + IJ.L - lin + 10" - lin 

noting that, for J.L > 0 (J.L ~ 0), the maximum difference occurs at row i = m (row 

i = 1), and similarly for 0" . 

During this time, there must be sufficient space in the peu tables to store the 

program being executed and the b programs awaiting execution or being loaded. 

To cover the worst case, it must be assumed that the program being executed 

and the programs awaiting execution are of the minimal period tmin, so that: 

b = rtld+IJ.L-1In+10"-1Inl 
max{IJ.LI, 10"1, l}n 
iJ.L-11+10"-11 

~ 1 + r max{IJ.LI, 10"1, 1} 1 
The second term is bounded above by 3 in all cases except J.L = 0" = -1. For 

J.L = 0" = -1, the second term is 4; however, in practice, b need not be calculated 

to cover this case, since tmin = n and it is very unlikely to have four consecutive 

programs of period n each requiring its full portion Atab of the peu tables. 

Hence, in practice, a fairly conservative value of the peu buffering factor is 

b = 4. Generally, by extending this reasoning, smaller values of b, ego b = 3 or 

b = 2 or even b = 1, may be adequate to achieve on average an almost 100% 

degree of overlapped program loading and execution. Depending on the set of 

programs to be run on the PA, and on the PA size, one of these smaller values 

may give an optimal AP compromise. 

7.5.2.2 Harmonizing program loading and execution wavefronts: an 

efficient concept for program loading 

The main drawback with the area efficient serial program load-execute method is 

that it causes delays because of the mismatch between the program loading and 
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execution wavefronts. In combining the variable-wavefront microprogrammed 

ISA with ISADL (see Section 5.4.4), this problem was avoided by inserting queues 

in the ISADL diagonal restorer, so that no mismatch occurred. In this case, 

architectural considerations were simplified by the fact that J.L, (J > O. This idea 

can still be extended to PAC, but the generality of wavefronts required for PAC 

introduces some architectural complexitieS. However, in most cases, it combines 

the program loading efficiency of the overlapped program load-execute method, 

with much of the area efficiency of the serial load-execute method. 

Figure 7.11 gives an overview of a program interface which harmonizes the 

program loading wavefronts with the program execution wavefronts, and uses 

the serial program load-execute method. A program using a (J.L, (J) wavefront is 

loaded into the PA from one end of one the two row generators, depending on 

the signs of J.L and (J (these must also be non-zero). Thus the row generators 

(rows of the column generator array) are bi-directionallinear arrays. They are 

implemented exactly as in Section 7.2.2, except that their inputs are buffered by 

program loading queues of length IJ.LI (I(JI) and the direction of input is determined 

by the sign of J.L ((J). Note that the column generator array is embedded into the 

PA (d. Figure 7.4). The cost of this program interface is mainly in its added 

P 
(1'>0, 

<1>0) 

J). 

; (J> 0 row P2 

generator P3 

P4 

1)-
P 

(1'<0, 

<1>0) 

~ 

~ 

~ 

~ 

4 X 1 column 
generator 

array 

PH PI2 PI3 PI4 

P2I P22 P23 P24 

P3l P32 P33 P34 

P4l P42 P43 P44 

P 
(1'>0, 

<1<0) 

J). 
+- ; +- P2 (J < 0 row 
+- P3 generator 
+- P4 

1)-
P 

(1'<0, 

<1<0) 

Figure 7.11: Program interface harmonizing program loading and execution wave

fronts on a 4 X 4 P A 
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complexity: it must be capable of loading programs from four different points (as 

compared with one for the PAC program interface of Figure 7.4). There may be a 

serious cost also in that the I/O across each row of the column generator array is 

now bi-directional: this may in turn double the PA cell pin count due to program 

loading. The cost of the variable length program loading queues required can be 

kept small (cf. Section 4.3.1). 

This interface can also efficiently load programs with interleaved wavefronts, 

by performing the loading in an appropriately interleaved manner. However, 

this in turn requires every row generator cell (column generator array cell) to 

have an extra set of input pins and an extra loading queue for each interleaved 

sub-program having a different value of /1. (a). The PA program examples of 

Sections 7.3 and 7.2 indicate that only two different wavefronts are normally 

required for PA wavefront interleaving: thus this overhead may not be too serious. 

However, this interface cannot load without delay any program using (0 ,0') or 

(/1., 0) wavefronts, nor any program using different wavefronts over PA partitions, 

such as the SymEigen program of Section 7.1.1. Thus, the choice of a program 

interface for efficient PA loading is a tra,deoff between flexibility and efficiency. 

Note that this concept can also be applied to the overlapped program load

execute method, to reduce (in most cases) the buffering factor b to 1. Thus, 

provided the extra pins it requires is not critical, harmonizing the program loading 

and execution wavefronts is a useful concept in efficient PA program loading. 

7.5.3 Conclusions regarding a viable domain for PAC 

This chapter has proposed PAC as a low-level PA language designed for the 

efficient implementation of program compression for systolic (in a broad sense) 

programs expressible in terms of the extended wavefront programming model (to 

our knowledge, this includes all PA programs that are useful in practice). After 

translation into a lower-level form, the efficient loading of PAC programs into 

'minimal' O(logn) area cell PCUs is supported by modest control structures. 

PAC also has scope for further extensions. PAC provides a means of efficient 

and general PA program synchronization. However PAC suffers from a weakness: 
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unlike ISADL, the wavefront is not an explicit feature of the language. Hence, 

PAC might not be a convenient basis for a higher-level PA language, nor be 

. particularly amenable to verification techniques (see Chapter 6). 

Although PAC has specific constructs, most of the principles involved with its 

implementation can be extended to any PA language designed for efficient pro

gram loading. For this purpose, the essential features are constructs for selecting 

ranges of rows and columns, (the fast loading of) cell-position dependent loop 

counters and the wavefront interleaving construct. The latter is related to ISA 

microprogramming. In the case of vertical interleaving, PA programming power 

is increased in return for a very modest control structure overhead. Horizontal 

interleaving may be used to reduce PA cell code size (and hence cell PCU size) for 

software pipelined programs [27, Ch.5] in PAs implementing two-level pipelining. 

Wavefront interleaving is proposed here as a useful feature to be implemented in 

advanced PA architectures. 

A reasonably efficient method for program loading, used by some existing 

commercial PAs, is to express a PA program as a cellprogram, which is loaded 

to the PA cells and any cell-position dependent expressions are evaluated at run

time. The program loading and execution are typically performed serially, and 

the considerable delays due to program loading and startup, coupled with a large 

PA cell grain size, has led to the cell PCUs being large, capable of storing many 

(ie. the order of tens of) programs. 

However, for larger-scale and/or finer-grained PAs, these program loading 

methods may prove inefficient. These PAs would implement subroutine-sized 

matrix algorithms, for which typically a cell PCU capable of storing 64 instruc

tions would be adequate [10, p3][58, p299][24, p4]. For these PAs, it is area and 

period-efficient to use a PCU capable of holding at most a few such programs, 

and to employ efficient program loading techniques. Here, it has been shown 

that evaluating a program's cell-position dependent expressions at load-time can 

reduce cell PCU size by a typical factor of 3, at the expense of relatively modest 

contol structures (in the case of PAC, a fairly modest bitwise processor suffices). 

We have shown that for a fixed wavefront program loading direction, overlapping 
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program loading and execution is period-efficient, but results in an increase in the 

size of the PCU tables by a factor of (b + 1), where 2 ::; b ::; 4. This is generally 

area-period efficient when the area required to store a single ('irreducible') sub

program in the cell peu divided by the whole cell area is at most b-1 . However, 

at the expense of some generality, harmonizing the program load and execution 

wavefronts can improve the area-time efficiency of either method, provided pin 

count is not a limiting factor to the PA area. All these considerations are impor

tant in any form of efficient PA program loading. 

PAC may be viably implemented on these PAs, with the suggested implemen

tation evaluating cell-position dependent expressions dynamically at load-time, 

and overlapping program loading and execution. For the PCUs not to form a 

substantial fraction of the cell area, each cell would require a comparable area 

for local data storage and at least implement instructions supporting efficient 

bit-wise arithmetic operations. For large-scale n x n PAs, an o(n) host-PA I/O 

bandwidth requires a considerable a..'Ilount of local memory in each PA cell (or in 

each PA data buffer cell) to offset the mismatch between the PA's I/O and com

putational bandwidths [25]. This determines the minimum granularity of the PA 

suitable for PAC implementation (finer-grained PAs may be best implemented 

as microprogrammed ISAs). Thus, PAC is targeted for MIMD PAs of finer than 

microprocessor-sized granularity with reasonably simple instruction sets. These 

PAs would implement array algorithms as sequences of matrix subroutines, as 

required for applications such as vision processing, where hundreds of these may 

be routinely used [10, pI]. 

Future research on PAC includes developing wavefront interleaving as a pro

gramming concept, and investigating the incorporation of LSGP partitioning into 

PAC. Also, the application of the macro structure of Section 4.6 should be ex

tended to PAs; a particular challenge here is for the case of wavefront interleaving. 

In summary, this chapter has demonstrated that compression and micropro

gramming techniques can improve overall performance, area efficiency and flexi

bility of large-scale, relatively simple Processor Arrays. 
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7.A Appendix: Definition of PAC 

This appendix gives a definition of a PAC program in terms on its projection 

onto arbitrary cells of a PA. 

For integers i', m', ml, ... , ml and k (where 1 ~ i' ~ m' ~ m and the row 

selection boundarie~8 satisfy the constraints 1 ~ ml ~ mz ~ ... ~ ml and 

mdm'), the PA instruction 'ins' and the PAC programs PI,"" PI, the PAC row 

projection function R is defined by the equations, 

~'m' ( ins) = IllS 

if 0 < i' ~ ml 
if ml < i' ~ mz 

if ml-l < i' ~ ml 

(7.9) 

where x modI Y = (x - 1) mod Y T 1. For PAC row projections P{, ... , P{ (ie. 

PAC programs containing no row selections and no occurrences of the column 

number i), and integers j', n', nl, ... , nl and k (where 1 ~ j' ~ n' ~ n and the 

column selection boundaries satisfy the constraints 1 ~ nl ~ nz ~ ... ~ nl and 

ndn'), the PAC column projection function C is given similarly by: 

Cj'n' ( ins) = IllS 

= 

(Cj'n,(PD)k 

{ 

Cjln,(PD 
Cj2n,(P~) 

CU,n, (PI) 

if 0 < j' ~ nl 

if nl < J" < n~ 
- ~ 1.10) 

lBln P, these boundaries must be integers. Were they integer expressions dependent on j, 

the evaluation of R;o,m(P(i/io)) could not proceed. However, the column selection boundaries 

can be integer expressions dependent on i, since these can be evaluated before Cio,n( ... ) is 

evaluated. 
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where i'mod1 n/. i2=(j'-nt} modI n/ • ...• i/=(j'-n/_dmod
1 

n/ 

These equations are virtually a higher-level form of a two-dimensional extension 

to the definition of ISAC. Note that for divide-and-conquer programs, a parame

terized repetition construct needs to be introduced to PAC as it was introduced 

to ISAC. For the sake of simplicity, this feature is omitted here. 

Example 1: the SIMD wavefront RedSquares program at cell (1 , 3) for a 3 x 3 

PA is given by (cf. Figure 7.1(b)): 

C33(R13(([- 210 3] [~ :] )2)) = C33(([- 210 3] R13( [~ :] ))2) 

= (0 j)2 

Example 2: for the delay part of the SymEigen program on a 5 x 5 PA (cf. Figure 

7.3(a)), the program loaded at cell (4,2) is given by: 

C2S (RtS([(0)i-i i-II il(o)i -i S]) (i/4)) (j/2)) 

= C2S ([(0)4-i 31 41(0)i-4 s]) (j/2)) 

= C2S ([( 0)2 31 41(0 t2 s]) 

= (0)2 

1.B Appendix: The PAC transitive closure pro-

gram compressed 

The PAC encoding of the transitive closure program of Section 7.3.4 is: 

[(C)i-1C'(C)i-i-1C"(Ct-i i-II 

(C)i- 1CIII(Ct- i ;j 

(C)i- 1C"(C)i-i-1c,,(c)n-i n] 

It is possible to rewrite the C, . . . ,CIII macros to have length p. = (7 = 4 with 

the same instructions as the p. = (7 = 5 microprogrammed ISA transitive closure 

program of Section 3.5.2. This illustrates the gain in efficiency due to the extra 

flexibility of a PA over the microprogrammed ISA. The rewritten macros are 
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(lower micros are executed first) 

A .... A+B CE,A .... A+ cE C;,A -A+C; cE .... A 

C: B .... BC; 
C': cE .... CEC; C" : 

c; .... c;cE C"': 
C;,A .... A+C; 

B,CE .... CW CE .... cw cE .... cw c; .... c;cw 
C; .... CN c; -CN c; -CN c; -CN 

The correctness of this program can be established using the microprogramming 

timing rules of Section 4.4.2, with f1. = U = 4. For iteration k of the algorithm, cell 

(i,j) reads the value v of the Cs register of cell (i -1,j) only on (micro)cycle 1, 

(just) before cell (i -1, j) first updates it for iteration k+ 1. Since the final update 

for iteration k of this register must have occurred by the previous microcycle, it 

can be established (providing the rest of the program is correct) inductively that 

v is the value of Akj after it has passed through row i - 1. A similar argument 

applies to the reading of the CE register of cell (i , j - 1). 
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Chapter 8 

Conclusions 

Seemingly insatiable demands for higher and higher performance in the super

computing and real-time signal processing areas force the required degree of par

allelism to a larger scale. The questions of appropriate high-level programming 

languages, processor architectures and processor granularity for parallel comput

ing are still open. However, as long as the current constraints of VLSI and WSI 

remain, the mesh-connected network of processing elements will be widely used, 

even if only as an underlying architecture for implementing more general inter

connection topologies. 

The key issue of confident and efficient programmability has been addressed 

here mainly from the aspect of control structures. As advances in VLSI and WSI 

make the production of larger-scale meshes feasible, control structures based on 

uniprocessor or small-scale system concepts will prove inadequate and will have 

to be redesigned. The control structures proposed herein are designed for the 

(microprogrammed) Instruction Systolic Array and Processor Array models of 

mesh. They share these meshes' suitability for VLSI in terms of regularity, locality 

of data and control, modularity and expandability. They can be designed with 

modest area overheads for large-scale and fine- to medium-grained meshes, and 

can substantially improve their overall cost , performance and programmability. 

Detailed conclusions regarding control structures and other related aspects 

of mesh programmability are given in the concluding sections of the preceding 

chapters. Considering this work as a whole, several main conclusions emerge: 
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• Efficient, partitionable mesh interfaces are feasible 

Partitionable mesh data interfaces (ie. data buffers), whose control structures 

support partitioning and data formatting/ordering, can enhance the period effi

ciency of mesh systems. From the control structures developed for ISA and PA 

program compression, area-efficient and partitionable program interfaces can be 

designed. 

• Program compression enhances the ISA 

Program compression techniques are important for efficient storage and loading 

of mesh programs. Because of their amply high compression rates, the 'optimal' 

program compression methods (Subroutining and ISAC) substantially reduce the 

overall I/O bandwidth (and pin count) of an ISA system, while reducing its 

hardware costs. Vector-orientated SIMD meshes can benefit similarly from these 

methods. The non-'optimal' program compression methods can increase the sim

plicity (SISA) and flexibility (microprogramming) of the ISA model. Combining 

'optimal' and non-'optimal' techniques to give an effective combination of these 

advantages should be considered for any medium to large-scale ISA system. 

Ofthe 'optimal' methods, the wavefront-based method of Subroutining/ISADL 

should be chosen for the (microprogrammed) ISA, on the grounds of its demon

strated high effective flexibility in implementing program compression, surpris

ingly modest control structure overhead, compatibility with both high-level ISA 

languages (which are also wavefront-based) and ISA microprogramming, and very 

high program loading performance. 

• Microprogramming the ISA offers many advantages 

The dynamic form of vertical microprogramming used by the (microprogrammed) 

ISA forms an important step in developing the ISA model for general-purpose 

matrix computations. Having this motivation, the microprogrammed ISA is the

oretically and practically demonstrated to be more powerful (ie. flexible) than 

the SIMD mesh or (non-microprogrammed) ISA, making it a unique application 

of microprogramming. With modest control structures, the microprogrammed 
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ISA can emulate an arbitrary instruction granularity ISA, which leads to a pro

gramming methodology for the ISA model which abstracts from instruction set 

details. 

Efficient emulation of programs based on more general topologies (ie. hex

connected arrays) using an orthogonally-connected mesh is possible using these 

microprogramming techniques. For general-purpose matrix computations, use of 

such emulations is more area-period efficient than implementing these (expensive 

and occasionally used) topologies directly. 

The microprogrammed ISA can be given a simple formal definition using 

the weakest precondition semantics. Practical verification of wavefront-based 

microprogrammed ISA programs is made possible by a wavefront-based proof 

method, which was developed from the microprogrammed ISA's semantic defini

tion. The compactness of the proofs of these programs compares favourably with 

their uniprocessor counterparts, and both the semantics and the proof method 

can be easily extended to more general wavefront-based mesh programs . 

• Program compreSSlOn enhances fine- to medium

grained Processor Arrays 

Although Processor Arrays implicitly incorporate program compression using the 

cellprogram concept, the explicit use of (ISAC-based) program compression con

cepts can significantly reduce program loading delays and program memory area 

for these meshes. An area and period-efficient alternative to relying on a large cell 

program memory, capable of storing many programs, is to use efficient program 

loading techniques on a 'minimal' cell program memory. This can be enhanced 

by performing load-time evaluation of cell position dependent expressions and 

overlapping program loading and execution. This improves the attractiveness of 

constructing finer-grained (and hence larger-scaled) Processor Arrays. 

A medium-level programming language called PAC supports this alternative 

using control structures of modest area and using logic no more complicated than 

the cell program memories themselves. Vertical (wavefront) interleaving, again 

requiring only modest control structures, can be incorporated in PAC and is 

capable of significantly improving the flexibility of a Processor Array. 
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• Broader issues for program compression should be con

sidered 

While explicit program compression techniques can be developed for non-mesh ar

chitectures, they are most important for instruction systolic architectures, such as 

the (microprogrammed) ISA. This is because a systolic flow of control information 

means that (i) program compression is not implicitly incorporated through the 

cellprogram concept; (ii) the control structures implementing program compres

sion can be 'factored out ll ; and (iii) the architecture can be made larger-scaled 

due to its finer granularity. However, as any parallel architecture becomes large 

scale, with thousands or more cells, efficient program storage and loading, and 

hence explicit program compression concepts, must be considered. 

While program compression techniques offer an inexpensive solution to the 

reduction of program input bandwidth, achieving a high overall performance re

quires a solution to the problem of a high data I/O bandwidth. A general solution 

to this problem is beyond the scope of this thesis, but is likely to be expensive. 

Even in this case, program compression techniques can significantly improve the 

cost-effectiveness of a parallel architecture . 

• The ISA is superior to the SIMD mesh 

For the case of a boolean ISA, even a simple ISA instruction set can imple

ment a wide range of algorithms. The ISA's disadvantages over the SIMD mesh 

- the critical nature of its instruction granularity and its extra program input 

bandwidth - are mitigated by area-efficient control structures derived from the 

(abstraction aspect of) microprogramming and 'optimal' program compression 

techniques. Microprogramming also enhances the ISA's chief advantage (apart 

from the locality of its control paths) over the SIMD mesh: its superior han

dling of nontransmittent data. With the development of high-level programming 

facilities, which have begun with ISA Subroutining and microprogramming, the 

ISA/SISA model will be in all ways superior to the SIMD mesh. 

lie. one for each control path , rather than one for each of the more numerous processing 

elements. 
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• The wavefront programming model IS appropriate for 

meshes 
The underlying wavefront programming model is useful in discussing mesh con

trol structure issues, and can be supported by efficient mesh control structures2 • 

Macro-level wavefronts can then be efficiently supported by imposing software 

constraints. The success of the microprogrammed ISA's wavefront-based proof 

method demonstrates that the wavefront is a suitable 'semantic unit' . This, com

bined with the use of Subroutining as a high-level ISA language, indicates that 

the wavefront model can provide a suitable basis for mesh high-level languages 

and verification techniques. 

The wavefront model is based on the systolic array approach, which enables 

very high performance, hardware-efficient implementations that are unfortunately 

rather esoteric, ie. expensive in terms of 'brainware' . Thus, the development of 

high-level programming and abstraction concepts is essential for the widespread 

use of architectures based on this approach3 . The similarities between the seman

tic modelings of the non-systolic (in terms of control flow) SIMD mesh and the 

microprogrammed ISA indicate that such abstraction concepts should be possible. 

The wavefront model may well prove to be useful in this respect. 

In summary, this thesis has examined the issue of confident and efficient pro

grammability, with its aspects of high-level languages, control structures and pro

gram verification, for fine- to medium-grained, communication register-based and 

deterministic meshes, using the wavefront programming model. These meshes ' 

high performance potential makes them attractive candidates for large-scale par

allel computer systems, but I/O limitations, lack of flexibility and difficulty of 

programming have been perceived as critical impediments to their wider applica

tion. Taken together, the contributions reported herein represent a significant step 

towards overcoming these limitations. 

2Instruction/selector queues, in the case of the (microprogrammed) ISA, and PAC delay 

programs, in the case of PAs, support basic wavefronts. PAC selection constructs and vertical 

interleaving support partitioned and interleaved wavefronts, respectively. 

3The W2 language of the Warp processor uses such abstraction concepts [27, Ch.3J. 
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