An algorithm with guaranteed convergence for finding

a zero of a function
R. P. Brent*

Computer Science Department, Stanford University, Stanford, California 94305, USA

An algorithm is presented for finding a zero of a function which changes sign in a given interval.
The algorithm combines linear interpolation and inverse quadratic interpolation with bisection.
Convergence is usually superlinear, and is never much slower than for bisection. ALGOL 60

procedures are given.
(Received August 1970, Revised March 1971)

1. Introduction

Let f be a real-valued function, defined on the interval [a, b],
with f(a) f(b) < 0. f need not be continuous on [a, b]: for
example, f might be a limited-precision approximation to some
continuous function (see Forsythe, 1969). We want to find an

approximation £ to a zero { of £, to within a given positive
tolerance 24, by evaluating f at a small number of points. Of
course, if f'is discontinuous then there may be no zero in [a, b],
so we shall be satisfied if f takes both non-negative and non-

A A A
positive values in [{ — 26, { + 28] ~ [a, b]. Clearly, such a {
may always be found by bisection in about log, [(b — @)/8]
steps, and this is the best that we can do for arbitrary /. We
shall describe an algorithm which is never much slower than
bisection, but which has the advantage of superlinear converg-
ence to a simple zero {, if we ignore rounding errors and
suppose that f'is continuously differentiable near {. This means
that, in practice, convergence is often much faster than for
bisection.

2. Dekker’s algorithm

The algorithm described here is similar to an algorithm, which
we call Dekker’s algorithm for short, variants of which have
been given by van Wijngaarden, Zonneveld, and Dijkstra
(1963), Wilkinson (1967), Peters and Wilkinson (1969), and
Dekker (1969). We wish to emphasise that, although these
variants of Dekker’s algorithm have proved satisfactory in
most practical cases, none of them guarantees convergence in
less than about (b — a)/ function evaluations (examples are
given in Section 3 below). Our algorithm, on the other hand,
must converge within about (log, [(b — a)/6])* function
evaluations. For example, typically we might have b — a = 1
and 6 = 1072, giving 10'2 and 1,600 function evaluations
respectively. On well-behaved functions, e.g. polynomials of
moderate degree with well-separated roots, our algorithm has
proved to be at least as fast as Dekker’s, often slightly faster,
so there is no extra price to pay for the improvement in the
guaranteed rate of convergence. Of course, both our algorithm
and Dekker’s are much faster than bisection on well-behaved
functions,

3. The algorithm

To avoid repetition, we assume that the reader is familiar with
Peters and Wilkinson (1969) or Dekker (1969), and merely
point out the differences between our algorithm and Dekker’s.
The algorithm is defined precisely by the ALGOL 60 procedure
zero given in the Appendix.

At a typical step we have three points a, b and ¢ such that
J®). f(c) <0, [f(b)] <|f(c)l, and a may coincide with ¢. The
points a, b and c change during the algorithm, but there should
be no confusion if we omit subscripts. & is the best approxi-

mation so far to {, a is the previous value of b, and { must lie
between b and c (initially @ = ¢).

If f(b) = 0 then we are finished (the ALGOL procedure given
by Dekker (1969) does not recognise this case, and can take a
large number of small steps if f vanishes on an interval, which
may happen because of underflow).

If f(b) # O then let m = 4(c — b). We prefer not to return

A

with { = 4(b + ¢) as soon as |m| < 23, for if superlinear
convergence has set in then & is probably a much better
approximation to { than 3(b + ¢) is. Instead, we return with
A

{ = b if |m| < & (so the error is no more than § if, as is often
true, f is nearly linear between b and c), and otherwise inter-
polate (or extrapolate) f linearly between a and b, giving a new
point i (see Section 4 for inverse quadratic interpolation). To
avoid the possibility of overflow or division by zero we find i as
b + p/q, and the division is not performed if 2| p| > 3|m.q], for
then i is not needed anyway. The reason why the simpler
criterion |p| > |m.q| is not used is explained in Section 4.
Since 0 < [f(b)| < |f(a)| (see Section 4), we can safely compute
s =fB)/f(a),p = t(a— b)s,and g = F(1 -).
” iif i lies between b and b + m (‘interpolation’),

Define " = b + m otherwise (‘bisection’),
_Jbif|b — b > 4,
~ b + 4. sign(m) otherwise (a ‘step of &’).

Dekker’s algorithm takes b’ as the next point at which f is
evaluated, forms a new set {a, b, ¢} from the old set {b, c, b'},
and continues. Unfortunately, it is easy to construct a function
Jf for which steps of é are taken every time, so about (b — a)/é
function evaluations are required for convergence. For
example, let

2P fora+ 8 <x<b,
b—a-96

7@ = '(_5_
arbitrary fora < x < a + 4.

and b

L2 for x = a,

The first linear interpolation gives the point b — &, the next
(an extrapolation) gives b — 24, the next b — 34, and so on.

Even if steps of & are avoided, the asymptotic rate of converg-
ence of successive linear interpolation may be very slow if f has
a zero of sufficiently high multiplicity. An example for which
convergence is worse than linear (Brent, 1971) is

0ifx =0,

flx) = {x.exp(—x‘z) ifx #0,
on an interval containing the origin. These examples are rather
artificial, and unless an extended exponent range is used (see
Section 8) we may be saved by underflow, but it is clear that
with Dekker’s algorithm convergence may occasionally be very
slow.

Our main modification of Dekker’s algorithm ensures that

*Present Address: P.O. Box 218, Yorktown Heights, New York 10598, USA.

The Computer Journal

a bisection is done at least once in every 2.log, (|b — ¢|/)
consecutive steps. The modification is this: let ¢ be the value of
plq at the step before the last one. If |e] < & or |p/q] > }le]
then we do a bisection, otherwise we do either a bisection or an
interpolation just as in Dekker’s algorithm. Thus |e| decreases
by at least a factor of two on every second step, and when
le] < & a bisection must be done. After a bisection we take
e = m for the next step.

A simpler idea is to take e as the value of p/g at the last step,
but this slows down convergence for well-behaved functions
by causing unnecessary bisections. With the better choice of e,
our experience has been that convergence is always at least as
fast as for Dekker’s algorithm.

4. Inverse quadratic interpolation

If the three current points @, b and ¢ are distinct, we can find
the point i by inverse quadratic interpolation, i.e. fitting x as a
quadratic in y, instead of by linear interpolation using just a
and b. For well-behaved functions this device saves about 0-5
function evaluations per zero on the average. Inverse inter-
polation is used because with direct quadratic interpolation
we have to solve a quadratic equation for i. Cox (1970) gives
another way of avoiding this problem. (See also Ostrowski
(1966), Ch. 11.)

Care must be taken to avoid overflow or division by zero when
computing the new point i. Since b is the most recent approxi-
mation to the root and a is the previous value of b, we do a
bisection if | f(b)| = | f(a)|. Otherwise we have | f(b)| < |f(a)| <
|/(c)|, so a safe way to find 7 is to compute

ry = f@[f(c), r2 = fB)f(c), rs = f(B)/f(a),
p=xrflc=b)rry —r) — (b —a)r, — 1],
and
g=F(r —), — D(rs — D.

Theni = b + p/q, but as before we do not perform the division
unless it is safe to do so (if bisection is to be done then i is not
needed anyway). When inverse quadratic interpolation is used,
the interpolating parabola cannot be a good approximation to
funless it is single-valued between (b, f(b)) and (c, f(c)), so it is
natural to accept the point i if it lies between b and ¢ and up to
three-quarters of the way from b to c¢ (consider the limiting
case where the interpolating parabola has a vertical tangent
at ¢ and f(b) = —f(c)). Thus i/ will be rejected if

3
2pl =5 |(e=byl-

5. Superlinear convergence

Ostrowski (1966) shows that if fis C? in a neighbourhood of a
simple zero {, then successive linear interpolation from a
sufficiently good approximation gives superlinear convergence
to ¢, with order at least 3(1 + /5)=1-618 We remark that
this result holds under the weaker hypothesis that f has a
Lipschitz continuous derivative near {. In fact, convergence
is superlinear, in the sense that lim |x, — {|/" = 0, if fis C!
n—0

near {. If f* is Lipschitz continuous near { then the order is at
least 1-618... when inverse quadratic interpolations are
performed in place of some of the linear interpolations. For
proofs of these results, see Brent (1971).

Ignoring the effect of rounding errors and the tolerance 4,
we see, as in Dekker (1969), that the algorithm will eventually
stop doing bisections when it is approaching a simple zero of a
C! function, so convergence will be superlinear. In practice,
convergence for well-behaved functions is fast, and the stopping
criterion is usually satisfied in a few steps once superlinear
convergence sets in.

Volume 14 Number 4

6. The tolerance

As in Peters and Wilkinson (1969), the tolerance (26) is a com-
bination of a relative tolerance (4¢) and an absolute tolerance
(2¢). At each step we take & = 2¢|b| + 1, where b is the current
best approximation to {, & = macheps is the relative machine
precision (B'~° for t-digit truncated floating-point arithmetic
with base B, and half this for rounded arithmetic), and ¢ is a
positive absolute tolerance. Since & depends on b, which could
lie anywhere in the given interval, we should replace é by its
positive minimum over the interval in the upper bound for the
number of function evaluations required. In the ALGOL
procedures the variable tol is used for 4.

7. The effect of rounding errors

The ALGOL procedures have been written so that rounding
errors in the computation of i, m etc. cannot prevent converg-
ence with the above choice of 8. The number 2¢ in the definition
of & (Section 6) may be increased if a higher relative error is
acceptable, but it should not be decreased, for then rounding
errors might prevent convergence.

The bound for |{ — {| has to be increased slightly if we take
rounding errors into account. Suppose that, for floating-point
numbers x and y, the computed arithmetic operations satisfy

Alx x y) = xx(1 + &)
and

Alx £ y) = x(1 + &) £ y(1 + &),
where |g;| < efor i=1,2 and 3 (see Wilkinson, 1963). We also
assume that fI(|x|) = |x| exactly, for any floating-point number
x. The algorithm computes approximations
i =05 x (c — b))

and

0l = fl(2 x e x |b] + 1)
to m and tol, where [lies between b and ¢, and the algorithm

A
terminates with { = b only when
Im| < 16!

(unless f(b) = 0, when E = { = b). Our assumptions give
|| = 4[le — B| — e(lb] + [cDI (1 — o),
and similarly
0l < 2elb] + (A + ¢)?,
so |m| < 16l implies that
<

lc — bl (-].i_s) Qelbl + 1)1 + €)° + e(bl + lel).

Since lz -l <lc—bland b = 2, this gives

18— ¢l < 6elt] + 21,
neglecting terms of order &f and £?|{|. Usually the error is less
than half this bound (see Section 3).

Of course, it is the user’s responsibility to consider the effect
of rounding errors in the computation of f. The ALGOL
procedures only guarantee to find a zero { of the computed
function f to the accuracy discussed above, and { may be
nowhere near a root of the mathematically defined function
that the user is really interested in.

8. Extended exponent range

In some applications the range of f may be larger than is
allowed for standard floating-point numbers. Hence, in the
Appendix we give an ALGOL procedure (zero2) which accepts
f(x) represented as a pair (¥(x), z(x)), where f(x) = y(x).2:®
(y real, z integer). Thus zero2 will accept functions in the same
representation as is assumed by Peters and Wilkinson (1969),
although zero2 does not require that 1/16 < |y(x)| <1
(unless p(x) = 0), and could be simplified slightly if this
assumption were made.

423

9. Practical tests

The ALGOL procedures zero (for standard floating-point
numbers) and zero2 (for floating-point with an extended
exponent range) were tested using ALGOL W (Wirth and
Hoare, 1966) on an IBM 360/67 and a 360/91 with machine
precision 16713 ==2.5 x 1078, The number of function
evaluations for convergence was never more than three times
greater than would be needed if bisection were used, even for
the pathological functions given in Section 3, and for these
functions Dekker’s algorithm takes more than 10% function
evaluations. Zero2 has been tested extensively with eigenvalue
routines, and in this application it usually takes the same or one
less function evaluation per eigenvalue than Dekker’s algor-
ithm, and considerably less than bisection (numerical results
are given in Brent, 1971).

10. Concluding remarks

Our algorithm appears to be at least as fast as Dekker’s on
well-behaved functions, and, unlike Dekker’s, it is guaranteed
to converge in a reasonable number of steps for any function.
The ALGOL procedures zero and zero2 given in the Appendix
have been written to avoid problems with rounding errors or
overflow, and floating-point underflow is not harmful as long
as the result is set to zero. (A FORTRAN translation of pro-
cedure zero is given in Brent (1971).)

A recent paper by Cox (1970) gives an algorithm which com-
bines bisection with interpolation, using both f and f’. This
algorithm may fail to converge in a reasonable number of
steps in the same way as Dekker’s. A simple modification,
similar to the one that we have given in Section 3 for Dekker’s
algorithm, will remedy this defect without slowing the rate of
convergence for well-behaved functions.

Finally, we note that golden section search and a method of
successive parabolic interpolation (Jarratt, 1967) can be
combined to give an algorithm for finding a local minimum of
a function of one variable, just as bisection and successive
linear interpolation can be combined to give an algorithm for
finding a zero. The minimisation algorithm always converges
nearly as fast as would Fibonacci search, and it converges
superlinearly if /" has a positive and continuous second deriv-
ative near the minimum (Brent, 1971).

Acknowledgement

The author wishes to thank Professors G. E. Forsythe and
G. H. Golub for their advice and encouragement, the referee
for his helpful comments, and the CSIRO for its support.

Appendix: Algol 60 procedures

real procedure zero (a, b, macheps, t, f);
value a, b, macheps, t; real a, b, macheps, t;
real procedure f;

begin comment :

Procedure zero returns a zero x of the function fin the given
interval [a, b], to within a tolerance 6macheps |x| + 2t,
where macheps is the relative machine precision and ¢ is a
positive tolerance. The procedure assumes that f(a) and f(b)
have different signs;

real ¢, d, e, fa, fb, fc, tol, m, p, q, 1, 5;
Ja = f(a); fb := f(b);
int:c:=a;fe:=fa,d:=e:=b —a;
ext: if abs(fc) < abs(fb) then

beginag :=b;b:=c;c:= a;

Ja:=fb;fb:= fe; fc:= fa

end;
tol := 2 x macheps x abs(b) + t; m := 05 x (c — b);
if abs(m) > tol A fb # O then

424

begin comment: See if a bisection is forced;
if abs(e) < tol v abs(fa) < abs(fb) thend := e := melse
begin s := fb/fa; if a = ¢ then
begin comment: Linear interpolation;
pi=2xmxs;qg:=1—s
end
else
begin comment: Inverse quadratic interpolation;
g := falfc; r := fb/fc;
pi=sx2xmxgx(g—r)—
(b—a)x(F—-1);
gi=@-Dx@r-Dx@E-1
end;
ifp > 0theng := —gelse p := —p;
s:=e;e:=d,
if2 xp<3xmxgq— abs(tol x g) A
p < abs(0:5 x s x g) then

d:=plgelsed:=e:=m
end;
a:=b; fa:=fb;
b := b + (if abs(d) > tol then d else if m > 0 then
tol else — tol);
Jb = f(b);
go to if /b > 0 = fc > O then int else ext
end;
zero := b
end zero

real procedure zero? (a, b, macheps, t, f);
value a, b, macheps, t; real a, b, macheps, t; procedure 1
begin comment:

Procedure zero2 finds a zero of the function f in the same
way as procedure zero does, except that the _procedure f(x, y, z)
returns y (real) and z (integer) so that f (x) = y.2% Thus
underflow and overflow can be avoided with a very large
function range;

real procedure pwr2 (x, n); value x, n; real x; integer n;
comment: This procedure is machine-dependent. It computes
x.2" for n < 0, avoiding underflow in intermediate results;
pwr2 :=if n > —200 then x x 2 1 n else
if n > —400 then (x x 21 (—200)) x
2 1 (n + 200) else
if n > —600 then ((x x 2 T (—200)) x
21(—200) x 21 (n + 400)
else 0;
integer ea, eb, ec;
real c, d, e, fa, fb, fc, tol, m, p, q, r, 5;
fla, fa, ea); f(b, fb, eb);
int:c:=a;fc:=fa;ec:=ea;d:=e:=b — a;
ext: if (ec < eb A pwr2(abs(fc), ec — eb) < abs(fb))
Vv (ec > eb A pwr2(abs(fb), eb — ec) > abs(fc)) then
begin a := b; fa := fb; ea := eb;
b:=c;fb:=fc;eb:= ec;
c:=a;fc:=fa;ec:=ea
end;
tol := 2 x macheps x abs(b) + t; m := 05 x (c — b);
if abs(m) > tol A fb # O then
begin if abs(e) < tol v
(ea < eb A pwr2(abs(fa), ea — eb) < abs(fb)) v
(ea > eb A pwr2(abs(fb), eb — ea) = abs(fa)) then
d:=e:=melse
begin s := pwr2(fb, eb — ea)/fa; if a = c then
beginp :=2 x m x s;¢g:=1 — send
else
begin g : = pwr2(fa, ea — ec)/fc;
r 1= pwr2(fb, eb — ec)/fc;
pi=sx2xmxgx(@—r)—(b—a)x(r-—-1);
gi=@-Dx@—-1)x(s—-1)
end;

The Computer Journal

ifp>0theng := —gelsep:= —p;s:=¢;e:=d;
if2 x p<3xmxgqg—abs(tol x g) A

p < abs(0-5 x 5 x g) then
d:=plgelsed:=e:=m
end;

a:=b;fa:=fb;ea:= eb;
b := b + (if abs(d) > tol then d else if m > O then
tol else —tol);

S(b, /b, eb);
go to if fb > 0 = fc < O then int else ext
end;

zero2 := b

end zero2

References

Brent, R. P. (1971). Algorithms for minimization without derivatives, Prentice Hall, Englewood Cliffs, New Jersey (to appear).

Cox, M. G. (1970). A bracketing technique for computing a zero of a function, The Computer Journal, Vol. 13, pp. 101-102.

Dexker, T. J. (1969). Finding a zero by means of successive linear interpolation, in Constructive aspects of the fundamental theorem of
algebra, edited by B. Dejon and P. Henrici, Interscience, New York.

ForsyTHE, G. E. (1969). Remarks on the paper by Dekker, in Constructive aspects of the fundamental theorem of algebra, edited by B. Dejon
and P. Henrici, Interscience, New York.

JARRATT, P. (1967). An iterative method for locating turning points, The Computer Journal, Vol. 10, pp, 82-84.

OSTROWSKI, A. M. (1966). Solution of equations and systems of equations, Academic Press, New York.

PETERS, G., and WILKINSON, J. H. (1969). Eigenvalues of Ax = ABx with band symmetric A and B, The Computer Journal, Vol. 12, pp.
398-404.

VAN WIINGAARDEN, A., ZONNEVELD, J. A., and DUKsTRA, E. W. (1963). Programs AP 200 and AP 230 de serie AP 200, edited by T. J.
Dekker, The Mathematical Centre, Amsterdam.

WILKINSON, J. H. (1963). Rounding errors in algebraic processes, HMSO, London.

WILKINSON, J. H. (1967). Two algorithms based on successive linear interpolation, Technical Report CS 60, Computer Science Department,
Stanford University.

WIRTH, N., and HoARE, C. A. R. (1966). A contribution to the development of ALGOL, CACM, Vol. 9, pp. 413-431.

Volume 14 Number 4 425

