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1. Intreduction

The binary Euclidean algorithm of Silver and Terzian
[62] and Stein [67] finds the greatest common divisor (GCD)
of two integers, using the arithmetic operations of subtrac-
tion and right shifting (i.e., division by 2). Unlike the
clagsical Euclidean algorithm, no divisions are required.
Thus, an iteration of the binary algorithm is faster than an
iteration of the classical algorithm on many binary computers,

The classical algorithm has been exhaustively analyzed
from the time of Gauss: see, for example, Dixon [70, 71],
Gauss [12], Heilbronn [68], Khinchin [35a, 35b, 36], Kusmin
[28], Lévy [29], Szlsz [61], Tonkov [74] and Wirsing [74].
A good survey is given in Knuth [69]., The theory of the
binary algorithm is much less satisfactory. Knuth [69] ana-
lyzed a "lattice-point" model which is, unfortunately, only
a4 crude and pessimistic approximation to the actual algorithm,
In this paper we analyze a continuous model of the binary al-
gorithm and find the expected number of iterations. The re-
sults agree with the observed behavior of the algorithm much
better than those predicted by Knuth's "lattice-point" model,

The binary Euclidean algorithm for finding the GCD of
positive integers u and v iz given in Knuth [69, Seec, 4.5.2,
Alg. B]. After steps Bl to BS of the algorithm have been

performed once, the problem is reduced to that of finding
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the GCD of two odd integers., Thus, we assume here that u

and v are odd, and the algorithm is as follows,

RS Binary Algorithm

[a+=0;]
Ll1: t + ju - v[;

if £ = 0 then return u as the GCD and halc;
L2: t = t/2;

if ¢t iz even then go to LI;

L3: [m=n+ 1;]
if u = v then u = t else v + t;

go to L1,

The statements in square brackets are not essential. We say
that one "iteration" is one execution of step L3, so n counts
the number of iteratioms, To distinguish the different wval-
ues taken by the variables u and v, we let u_ be the value of
u at iteration n, etc., Step LZ is executed twice as often as
step L3, on the average, but the LZ loop merely shifts t
right until it becomes odd, and this may be done efficiently
on & binary computer.

Let X = min(un, vn}fmax(un, 1.rn}, and let Fn(xj be the
probability distribution function of X . We assume that Uy
and v, are uniformly and independently distributed in (0, K
{with the constraint that they are odd), and consider the
continuous approximation obtained by letting W - =, In Sec-
tion 2 we derive a recurrence relation for the continuous
distributions FH{K}. .

In Section 3 we show that Fn(x} = un{x}lg{x} + Bn{x),
where qn(x} and Bn{x) are analytic and satisfy certain recur-

rence relations. An explicit expression for an(x} is given

x
Throughout this paper, lg(x) denotes logzix)-
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in Section 4.

In Section 5 we consider the equivalent recurrence
fn+] = Tfn for the probability density functions

1 -
£ (x) = F/(x). We show that fnlf for a

I g~ Equn I < s
certain norm. Numerical evidence, described in Section 7,
suggests that convergence is rapid. Thus, it is likely that
fn tends to & limiting density £, though we have not been
able to prove this.

The expected number of iterations is asymptotically
Klg(M¥) for large W, and an expression for the constant K is
derived in Section 6., The theoretical value of K ~ 0,706
agrees with values obtained numerically for moderate values
of N. The numerical results are described in Section 7.

Finally, in Section 8 we consider another algorithm
which uses only shifts and subtractions. The algorithm uses
left shifts (i.e., multiplication by 2) instead of right
shifts, so we call it the left-shift binary Euclidean algo-
rithm (LS algorithm for short). We show that the expected
number of iterations is slightly greater than for the (right-
shift) binmary Euclidean algorithm., Howewver, the LS algorithm
is worth considering for use on a computer with a "normalize"
instruction, as the left-shifting loop may be replaced by one
instruction. Either of the binary algerithms could be imple-
mented in hardware (or microprogrammed) with approximately
the same expense as integer divisien,

We consider only single-precision integer GCD computa=-
tions here. For polynomial and multiple-precision integer
GCD algorithms, see Collins [74], Schgnhage [71] and Knuth
[69].

2. The Recurrence for F

1l

For notational simplicity we write u for u and u' for
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u_ ;s etc. Also, there is no loss of gemerality in assuming
n
that u = v, The iteration terminates if u = v, 50 we assume

=k
that u > v. Thus, x = v/u, t = 27 (u-v), and
x' = min{t,v)/max(t,v), where k = 1 is chosen so that t is an

odd integer.
Let P(E) denote the probability of an event E. By defi-
nition, Fn+1{y} = P(x' =y}, but x' = min(t/v, v/t}, so

(2.1) F () = Pitfv sy v v/t =¥
(2.2) = P(t s vy Vv Sty

It may be shown that, for K = 1,2,...,

(2.3) 1lim P(k = K) = 27K,
Nt
Thus,
=]

(2.4) Fnﬂ{y) = ZZ-R P(E-k(u-u) Syy Vv s E-E(u-v}y)
k=1

(2.5) = Z 2 M) sxyvx < 2-k(1—x)y).
k=1

- ) k

Since x € (0,1), we have 2 “(1-x) = xy iff x = 1/(142°y), and
X = E-k{l-x}y iff x = lf(1+2kfy}. Also, assuming y € (0,1},
we have 1{{1+2khr) < 1/0142%). Thus, from (2.5),

(2.6) F . (y) = EE“REI-P{U(Hz"fﬂ <x < 1!(l+2k:.r))].
k=1

Since ¥ has distribution function Fn’ this gives the interest-

ing recurrence relation
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-k 1
F (y)-1+22 [F**—I—-F—'—:l
1 #*
(2.7) " k=1 an"'Y "2ty
Fu(y) =¥,

for n 2 0 and v € [0,1].

The corresponding recurrence for the classical algorithm
is

(2.8) G, () = ) [6,(1/K) = 6_(1/Ge#)) 1.
k=1

This was derived by Gauss [12], who conjectured that

(2.9) lin 6_(x) = 1g(1+x),

n=+m

which was proved by Kusmin [28], Sharper results were later
obtained by Lévy [29] and Szusz [61]. Finally, Wirsing [74]
proved that

(2.10) 6_(x) = 1g(1+x) + 0\ % (1-x))

as n = =, uniformly for all x € [0,1], where A ~ 0,3036630029
is & certain constant in (0,7},

We conjecture that a similar result holds for Fn(x}.

For & reason which will be clear later, the term x(1=-%x) in

{2.710) must be replaced by x|1n(x)

Conjecture 2,1

There exists F_(x) = lim Fn(x), and
-

(2.11) F () = F () + 00"z [1n(x) )

d4s n = =, uniformly for all x £ (0,1], where % is some
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constant in (0,1).

The theoretical evidence for Conjecture 2.1 is given in
the next three sections, and some numerical evidence is given
in Section 7.

Differentiating (2,7), we obtain the recurrence

- L5 2 (G “GR)]

fG(x} = 1

(2.12)

for the probability density functions fn(x} = F;(x},
x € (0,1], n = 0.

equivalent, but in Section 3 we prefer to work with (2.7) and

The recurrences (2.7) and (2.12) are

consider the form of Fn(x}. Results for fn{x} are easily de-

duced by differentiation,

3, The Distribution Functions F

Il

The following theorem gives the form of Fn{x) for finite

n.

Thearem 3.1
For all n =z 0 and = £ (0,1],

(3.1) Fn(x) = an(leg{x} + Bn(x),

where un{x} and Bn(x} are analytic and regular in |x| < 1,
and un(U} - Ehfﬂ} = (, Also, ab(x} = [ and

X
n+T(x) = oh(siia - 3fn(l}x.

(3.2} 2an+](2xj -

Proof

Define DD(H} = | and
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(3.3) D ,(x) = ZZ (l

We assume that

+2

(3.4) Fm(:n) = um(x)lg{x} + B 00,
{3.5) Dm{x} =1+ yh(x)lg(x) + Qm(x)’

(3.6) D (1/x) = ¢ (x)1g(x) + § (x),

and
(3.7) F (%l— =14 )

for m < n, where qm(x},...,T[m{x) are analytic
|x| < 1, and vanish at x = 0. We shall prove
ing result for m = n, so (3.1) will follow by
results (3.4) to (3.7) are trivially true for
may assume n > 0,

From (2.7) and (3.3) we have
(3.8) F_(x) =1+D (1/x) =D _(x),
so if an(x),...,ﬁn(x} are regular at = = 0 we

(3.9 -:rn(x) = en(x) - 'vn[?':‘.l
and
(3.10) B_(x) = ﬁn{xl - 5 0o

From (3,3) we also have

(3.11) znn(iT;) - nnC—E)= Fn_T(ﬁ) ,

so in the same way we find that

and regular

327

for

the correspond-

induction.

m= 0, so we

must have

The
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X
(3.12) 26 (2%) - ¢ (x) = "nﬂ(ﬁ;)
and

(3.13) 2e_(2x) + 26 (2x) - @ (x)

0 () 20 () 18000

By the inductive hypothesis, the right sides of (3.12) and
{3.13) are analytic and regular at x = (0, Let the Taylor

expansion of cpm{x) he

{3.]4} nﬁm(x} = z qm,jxj
=1

and similarly for Em{x),...,’l“h(x). By equating coefficients
we see that analytic solutions sn{xj and fin(:-:} satisfying
(3.12) and (3.13) exist, and ave given by

.‘L.U‘__
(3.15) e 4" SR z -1* e k(

and

] .i"" (- Ujﬂen k

(3.16) jrjrn,ji= 2j+1:]- -2 >: T{?‘" T
J+k i1
X D78 k( 1)

k=1

where § = 1,2,... . Thas, E‘.n{x} and ﬂn(x} are determined by

a-‘;-'ll:x} and Bn_.‘(x}, and are analytic and regular in ixJ < 1,

From (3.3) and (3.8),
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e

1
(3.17) Fn{y) =1- 2_ n- T(’l+2}r)

Ty
2
70,2y + 5 (
Substituting vy = 1/(14+x) gives
(3.18) H'—x - F
-Hc n -1 3+x n-1 3+2K
-—D[( +—D(2+2:-c)
By the inductive hypothesis,
(319 F. {y) = o I—|*y1<-|—+y>+== L
: n-1 3 -1\ 3 3 "n-A37)?

so substituting v =Q(§iﬂ\;’ and 3(;42_;:{}

T4+ 1 .
for Fn“](m and Fh*le'ﬁ_zb respectively. Also,

RRCORIC YO RIC

gives power series

and

(3.21) D_(242x) = 'En(ﬁ 1g(242x) + gn@

LN o
Thus, Fn('l+x) 1+ T&I(x} '

whare '%(x} is analytic and regular in |x| < 1,

It remains to consider '\rn{x} and E.n(:r.]l. From (3.,3),

3.22) 20(5)-D () =1+ T (),

50

(.23 2v(F) - v (0 =0

329
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and

(3.26) 25(F) - 8 (x) - 2y(3) = Mg G-

Thus, we have the analytic solutions

(3.25) O = vy g% = = Mg 0% = fug (D=

and
(3.26) 5
C )T‘n 1,3
for § = 2. The constant 6, may be determined from the re-
*
lations En,l = an,] - E'n,'l and

(3.27) Fr(%) =1- ;_ Fn-{%) B f]&_Fn-I(;-)"- -C% D, (2),
obtained from (3.10) and (3,17) respectively.

We have now proved (3.4) to (3.7) for m = n, so the
first part of the theorem follews by induction. (3.2) fol-
lows easily from (3.9), (3.12) and (3.23), so the proof is
complete.

It is interesting to obtain an explicit formula for

FI(x}. First we need a lemma.

Lemma 3,1
If

(3.28) DG = ) 27/ 42,
k=1
then -
2
- X _x - (=xM
(3.29) D.I(x) xlgx + 1 + 2 " 1= Z zj_-l !
j=2 -

for 0 < x < 2, and
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-3

]

=K

(3.30) D, (1/%) = - E 33—;%--
2 =1
i=1
for |x| < 2.

Proof

From (3,5) and (3.6}, we have

(3.31) D'I (x) =1+ ﬁ(ll[x)lg(x} + .5] {x)

and

(3.32) D (1/x) = e, ()1g(x) + B, (x).

Since % {x) = 0 and B (x} = x, (3,15} gives 5 {x) = 0, and
(3,16) gives ﬂl e (= 'J}jﬂf(ijﬂ 1}). This establlshes (3.30).

From (3.25), v, (%) = x. Also, since Tj(x) = 1/(4+x),
(3.26) gives

(3.33) & =(-1ij(21'j-13

1.3
for j =22, Thus

fr=]
i
=X
(3.34) Dl(x) = xlgx + 1 + 6],]1& - z %ﬁ":j .
j=2

The series in &3.3#} converges for ]x] < 1, Subtracting and

adding h = z (-:-:}j gives

i=2
2 - j
= X (ex)”
£3,35) l:l,1 (=) = xlgx + 1 + 5? 1* - = Z Ej_T.-'E s

j=2

where the last series converges for |x| < 2, By analytic
continuation, (3.35) holds for 0 < % < 2, The constant
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1
1 = 3 may be determined by equating (3,30) and (3.35) with

i
£l

x =1, Thus, (3.29) follows.

Corollary 3.2

= i3
- x(5=-1) {~x)- 2
FI(:-:} -xlg(x) + 6010 + BE -1 s
=2 (2 =1)(2 =1)

Ll

Proof
This follows from (3.8) and Lemma 3,1,

In principle we could obtain szxj, FB{x), ete, in the
same way as Fl(x}. However, the details become very compli-
cated, The situation is similar for the classical algorithm:
see Knuth [69].

Corollary 3.3
For all n = 0 and some x € [0,1], Fn+]{x} # Fn{x).

Proof
Suppose, by way of contradiction, that Fn+](x) = Fn(x}
for all x € [0,1]. From Corollary 3,2, n ¥ 0, From Theorem

3.0, o ) = o (x). Thus, from (3.2),

NC

(3.36) o () - 3 £, (Dx = o (Fi) - 3, (Dx

for le < 1,

Substituting y = x/(14x) we obtain
(3.37) o () = @ () = 3(£ () - £, (Ny/(-y)

i
for |y| < 7+ By analyric continuation, (3.37) holds for
|¥| < 1. However, from (3.2) it follows that a, (¥) and

a_1(¥) are regular at y = 1, so we must have £Q) = fn_1(T),
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and thus wn(y} = un_l(YJ. Continuing in this way, we finally
obtain u]{K) = aU(x}, which contradicts Corollary 3.2

(ulfx) = X, aD(x} = 0}, Thus, the original assumption was
false,and Fn+|(x} # Fn(x] for some x & [0,1].

4., Solution of the Recurrence for o

In this section we solwe the recurrence (3.2) explicitly.
The method used here can obviously be generalized. However,
we have not been able to solve the recurrence for ﬁn(x}
analytically.,

Define p(0) = [,

p(2n) = p(n),

and p(2nt1) = pin) + 1.
Thus, p(n) is the number of one-bits in the binary representa-

tion of n = 0.

Theorem 4,1
Suppose aﬂ(x} = () and

x
(4.1} 2&h+1(23} - an+](x} = un(%xé) +oe g%

for n = 0, where CI'CZ"" are constants, ¢, = ¢_, = .., = o,

0

and ah+1(x} is analytic and regular at x = 0, Then
e 2%
k=0 4=0 27%jx

for all n = 0 and all x & (-=, -1].

Note

(4.1) is the same as (3,2) if 41
Thus, (4.2) gives an explicit solution of (3.2} in terms of
£, £,0),000, 8 (D).

= -3f (1) for n = 0,
n
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Proof of Theorem 4.1

The result is true for n = 0, and the analytic sclution
of (4,1) which is regular at x = 0 is clearly unique, Thus,
it is sufficient to verify that if ah(x} and un+1(x) are de-
fined by (4.2) then (4.1) holds., From (4.2) we have

X
24 (20 = g (0 - ﬂn(m)

o gk
= 5 27k _F,‘L.E;E(..u
=1 =0 2 +ix
= 2%
_ Z 5k z n+1 =p (i)
&
k=0 §=0 245
- ZIH'T_I
- f z Z-k z‘( Cat+1-p(1)
k
k=0 j=2 2744
Y S

since p(2k+j} =p(j) +1 for 0 = 3§ < Zk. Thus, the result

follows.

Corollary &.1
Suppose lim fn{l) = f_(1) exists. Then

e
i—i::. .:.-n(x) = n-“(x} exists, and
-3fu[l)
(4.3) a(x) = - ¥(x),

where
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@) yoo =% ) 27 E

k=0 =0 2 +jx
is analytic, regular for x ¢ (=%, =1], and satisfies

(4.5) 29(2x) = y(x) + ¢(ﬁx~ + 2%;

Also, §(x) = z (-UJ-Tﬁjxj, where = 1 and

i=1
n-1
(4.6) 4 = -1 )
noatn k_1
n=1
1 n
R ) _sz” ()
k=0 -

for n =2 2., [Here Bg’ Bi,... are Bernoulli numbers. ]

Proof
Let d = max [£ (1) - £,(1)], so dj =d, = .., and
man 0
1im d = 0, For convenience, let d 1= d g T oeee 0.,
e T - -
From (4.2),
-k -
“e8) o, () = o )] EJ_LZ 2 —“If'—(il
k=0 jeo  127+ix]
Thus, since p(j) =k for j < Ek, we have
2%
©.9) |o (x)a(x)]s—]—J—Z 2K _n_lr_
o | 254 5|

k=0 j=0
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For simplicity we assume x is real and positive, though
a similar proof goes through for complex x ﬂ (==, =1]. From
(4.9) we have

o

3 o=k
.10y Ja (0 - am(x)[s% ) 27

k=0

n=k

Given e > 0, there exists m such that dm = e. Thus,

for n = max(m, m+13{dufe)}, we have

S n=m w

-k Z -k z -k
Z 2 dn-k = 2 dn -k + 2 ::ln K
k=0 k=0 k=n-m+1

= 2e + Zm'“dﬂ < 3e

Thus, lim crn(x) exists, and the limit is given by (4.3) and
(4.4),"

The recurrence (%,5) may be verified as in the proof of
Theorem 4.1, and equating coefficients gives (4.6). Also,

substituting

k =

@y —=2Y (2"
2= n=0

in (4.4) and equating coefficients gives (for n = 1)

@ 2k
%.12) "Fn - ;_ Z 2-l;c{'r1+'|} z jn-],
k=1 j=1

so (4.7} follows from ex, 1.2.11.2.4 of Knuth [68].

Corcllary 4,2
Suppose lim fn{lj = fﬁ{l} exists, and that

==
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n
%.13) £.(1) = £,00) + 00"
4 n -+ =, where A £ (;—, 1%. Then

(4.14) o () = a_(x) + 0(\"%)
and

(4.15) o' (x) = al(x) + 00"
as n = =, uniformly for all x ¢ [0,1].

Proof

From (4,10},

g O = a0 ] = 0™ Zfzzu -,
k=0

and 2% > 1, so the last series is convergent. The proof of
(4.15) is similar,

5, Some Convergence Results

We define a linear operator T, mapping the Banach space
L1 (0,1) into itself, by

=z 2 2
1 x 1 1
(5.1} Tf({x) = f + f .
I:ZI Qk'i') (Zkﬁ':) Q+2 kx) (L+2 ky)

Thus, (2,12) is

(5.2) £, = TE .

We write £ 2 0 if f(x) = 0 for almost all x £ [0,1] (in
the sense of Lebesgue measure). MNote that T is a positive

operator, i.,e,, Tf = 0 whenever £ = 0.
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For £ € L,(0,1), [[E]| is the norm of f, i.e.,

Ie| = j:|f(x}|dx.
The norm of & linear operator L is defined by

il = supClLell [€ € Lyco,m, [l = 1.

Theorem 5,1

For all f € 1L,(0,1),

(5.3) |reel| = [l

Also, if £ = 0 then

5.5y |l = [I£]].

Proof

From (5. 1},

(5.5) |lr£] = (

(.,,2 Q

in the first integral,

G x)

With the change of variables y =

1 274x
and v = m in the second, this gives
142 %
-1
=k ‘|+2k
|l = Zz | £¢y) |y + I If(y}ldy’
k-i U __WZ
1+2

Ez Pt lay = lll

k=
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This proves (5.3). To prove (5.4), we merely note that all
the inequalities in the proof of (5.3) become equalities if
f =0,

C llar 1

efl = 1.

Proof

This is immediate from Theorem 5.1 and the definition of
Izl

We would like to prove that the iteration (5.2) con-
verges to 4 fixed-point of T. Unfortinately, the theorems of
Schauder (see Simmons [63]) and Krein and Rutman [43] are not
applicable, because {f ¢ L]{ﬂ,1)|”f” = 1} is not compact.
Thus, we have only been able to prove the weaker result given
in Corcllary 5.2,

Theorem 5.2

Suppose that f is continuous on (0,1), changes sign at
least once, does not vanish on any finite subinterval of
(0,1), and there exists e > 0 such that f(x) = 0 has no solu-
tion x € (0,e]. Then

(5.6)

Proof

Suppose, by way of contradiction, Thus,

all inequalities in the proof of Thecrem 5.1 must be equali-
ties. Hence, for all k = 1 and all x € (0,1), we have

(5.7) f({i)f(l ;k) =0
+

By assumption, f(x) changes sign at some point ¢ € (0,17,
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There exists K 2 1 such that ¢ > ! = Suppose k = K, so
1+2

1
v T . Then there exists X, £ (0,1) satisfying
1+2

@ = If{1+2k }. Thus, from (5.7), f must also change sign
at y, = kaEE +xk} < E-k. Since k may be arbitrarily large,
this contradicts the hypotheses of the theorem. Thus, (5.6)
must hold,

Corollary 5.2

Let En = fn+l - fn. Then

5.8 oyl < le, |

for all n = 0.

Proof

From (5.2), e = Ten, so we have only to show that e

ot
satisfies the conditions of Theorem 5.2, From Theorem 3.1,
en(x) = &n(leg(x) + ﬁn(x), where &n(x} and %1[x} are analyt-
ic. Also, from Corcllary 3.3, en{x) does not vanish iden-
tically. Thus, en(x} is continuous on (0,1) and does not
vanish on any finite subinterval of (0,1).

Since

1 1 1
(5.9) J“n e (x)dx = I:] £ 4y (Kdx - u["J £ (x)dx = 0

but ]hn|J} 0, e (x) must change sign at least once on (0,1).
Finally, from Theorem 3.1 we see rhat en(xj has constant
sign on (0,e], for some sufficiently small € > 0, Thus, the
conditions of Theorem 5.2 are satisfied, and the result fol-
lows.

From numerical evidence we conjecture that
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for some % £ (0,1)., Unfortunately, Corollary 5.2 does not
imply (5.10), If (5,10) is true then (fn} is a Cauchy se=

quence and the limit f_ exists,

Corollary 5.3
For all n = 20, and all = ¢ [0,1],

=10
(5.1 |F ) - F ()] = ]ren||< 10",
Proof
e
JFn+i{x} - Fn(x)l = | " e (y¥y|= |l |L but numerical re-
Yo | n -10
sults (described in Section 7) show that |#20|i{ 10, so
the result follows from Corollary 5.2.
From now on we assume that the limiting distribution
F_(x) exists. In view of Corollary 5.3, we may use FEG(x}

instead of F_(x) for all practical purposes.

6., The Expected Mumber of Iterations

We use the notation of Section 2, Let s = utv and
§' = u'+y', HNote that

(6.1) s/s' = (uhv)/(u'+') = Zk[_l:_x"‘ .
1+(27=1)x

Since k =2 1, s/s' = 2, so the maximum number of iterations is
at most |lg(W)]. The example u = zm-m, v = ] shows that this
bound is actainable. For another example see Knuth [69],
exs, &,5,2,27-28,

Let En be the expected wvalue of ln(sfs‘]. From (6.1},

V=0 k

s k
I e R T R I
1+(2%-1)x] ™
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= i 2'“[1::2 f1(—'— ———zk'1 )F {x}dx]
- = »
oNTF pekonx/ B
k=1
50

(6.2) E_=1n2+ .T; 3GOF_(x)dx,

where

1
(6.3) #(x) = [ ]- .
Z 142" 2(14x)

n=1
The expected value of ln[sufsn} is E: Ej' Thus, assum=-
j=0
ing the existence of E_ = lim E , the expected number of

j
iterations for odd integers Ugs Vg = N is asymptotically
K lg(n) as N = =, vhere

(6.4) K= 1n(2)/E_.

Approximating E_ by Ehﬂ and evaluating the integral in
{6.2) numerically gives

(6.5) K ~ 0,705971246102,

In the next section we give some mumerical evidence which

suggests that the expected number of iterations is

K lg(n) + 0(1). This is not surprising if Conjecture 2.1
=n

holds, for then En =E_,+ 00 ).

7. HBumerical Results

The recurrence relation (2,7) was solved numerically by
three different methods, All computations were performed on
a Univac 1108 using double-precision (60-bit fractiom), &nd
the numerical results given by the different methods agreed

to the aceuracy expected,
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A, The Recursive Method

This is the most obvious method. Fn(x} is evaluated re-
eursively, using the recurrence (2.7) with the infinite sums
truncated after the terms become negligible., The method is
only useful for small n, as the computation time increases

exponentially with n,

E. The Discretization Method

If Fn[x} is known at a finite set of points, say
Xy = 0 < % < X, o x = 1, then we can use the recur-
rence (2.7) to approximate Fn+1(x} at the same set of points,
using linear or quadratic interpolation to approximate Fn(x)

at points x # x. for j = m. Computations were performed with

a uniform grid,ji.e., xj = jh, where h = 1fm. (It might be
more efficient to use a8 non-uniform grid, because of the log-
arithmic singularity of Fé{x} at the origin.} Using several
different h, we found that the error in the computed wvalue

of P (x) was O{h), for fixed n and x., The accuracy could be
umpruv&d to 0(h } or better by using Richardson extrapolation,
For example, using m = 1920, 3840 and 7680, we obtained Fn(x)

to eight decimal places (BD) for n = 20,

€. The Power Series Method

In Section 3 we showed that F (x) = uﬂ(u)lg(x} + 8 (%),
n

where the coefficients o and ﬂ

o I.'I,,j j
cenlfx} = z {;-n,jxj and Eu{x) = E E’n,jxj satisfy certain re-

j=0 j=0
currence relations, Thus, it is possible to compute the co-

in the power series

efficients %y and ﬂn j by working with suitably truncated
¥ )

power series, To avoid numerical difficulties it is essential

to stay well within the radius of convergence of each series,

which ensures that the truncated terms are negligible. This
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is always possible. With the series truncated after the
first 100 terms, we computed Fn{x} to 12D, and the results
agreed with those computed by the discretization method. The
value K = 0.705971246102 should be correctly rounded to 12D,
Table 7.1 gives anx} to 4D for x = 0,1(0,1)0.% and
n=1(1)5. It is clear that the distributions Fn(:-:} CONVErge
rapidly, Table 7.2 gives the limit ijx) to 10D for vafigus
*¥. The computed values of Fn{x} differ by less than 10
for all n = 20.

Table 7.3 gives the coefficients o i B and gm 3 in
2 ¥

w,j

the power series gﬂ{x), Bm(x}, and gm(x} = Fﬂ(1+ﬂ}, for

j =20, MNote that the coefficients alternate im sign, and

their absolute values decrease monotonically, for j = 2,
The values given in Tables 7.2 and 7.3 confirm several

identities which may be derived theoretically, for example:

?Fm(%ﬁ + Fw(%} = 2Fm{%a + 2Fw{%ﬁ + Fm(%ﬁ + 3,

agm’] = “65;“,2 = *ZQ‘W,_I,
and
188,  + 3B, 4 + (10 + 3/1n(2))a, 4 = 0.

Table 7,1: Values of F“(x} to 4D

X FT{R) thh} Fa(x) Fﬁ{xj ES{x)

0,3329 0.2871 0,2772  0.2753  0,2750
0.4967 0.4478  0,4370  0,4349  0,4346
0.6111 0.5666 00,5567 0.5548  0.5544
0.6989 0.6611 0.6526  0.6510 0.6507
0.7699 0.739  0.7325 0.,7312  0.7310
0.8294 0.8060 0,8007 0.7997 0,7995
0.8805 0.8637 0,8599 0.8592 0,8590
0.9251 0.9144 0,9720 0,9115 0.9114
0,9646 0.9595 0.9584 0.9581 0.9581

cooooo o oo
.
(=0 R = R I WU
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Table 7.2: Values of Fm(x} to 10D

% F_(x) x F_(x)
0.1 0.2750116116 1/3 0.5886652481
0.2 0.4345648990 2/3 0.8400418266
0.3 0.5544181563 1/4 0.4981238639
0.4 0,6507109442 3/4 0.8860223000
0.5 0.7309648721 1/6 0,3870894190
0.6 0.7994844345 5/6 0,9275771715
0.7 0.8590163978 112 0,2420627866
0.8 0.9114387997 5/12 0.6650572783
0.9 0,9580992159 7/12 0.7887496125
1.0 1,0000000000 11/12 0.9653900331

Table 7.3: The Coefficients o, I Bm 3 and €. .
E £l I‘.]

. Ye § Pee, 4 b,
0 0.000000 0.000000 1.000000
1 -0.596884 0.765619 0.397923
2 0.099481 0,347519  =0.198961
3 -0.056846  =0.191979 0.111631
4 0.035529 0.138115  -0.067966
5 =0,023839 =0.105276 0,044193
4] 0,01692 0.082567 =0,030365
7 =0, 012663 =0.066260 0.021861
8 0.009823 0.054283  =0.016369
9 =0,007853 =0,045299 0.012666
10 0,0065428 0.038517 =0,010072
11 -0.005361  =0.033033 0.008719%
12 0. 004540 0.028739  -0,006795
13 -0.003893  -0.025255 0.005725
14 0.003375 0.022384  -0,004890
15 -0.002953  -0.019989 0.004225
16 0.002605 0.017966  -0.003688
17 -0.002315  -0.016242 0.003247
18 0.002071 0.014760  -0.002881
19 -0.001864  -0.013476 0.002574
20 0.001686 0.012357  -0,002313

For integers u and v, let b{u,v) be the number of itera-
tions required by the binary Euclidean algorithm as described
in Section 7. Let
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B(N) = E: b(u,v)

O<v=u<l
u,v odd
and

Bon = 280/ (/21082 - 1)),

Thus,ﬂg(mj is the average number of iterations required for
distinct, odd u and v less than N. Table 7.4 gives B(N),
By and 4 =B -By/2) for w =27, 2%, ..., 2",

From the results of Sections 6 and 7, we expect A(N) to con-
verge to K = 0.705971246... as N - =, In fact, the values
given in Table 7.4 satisfy 0 < K - AW < 2 lg(n}fu, and give

the approximation

AN ~Klg(¥) - 0,93,

Table 7.4: Exact Counts for Small N (algorithm RS)

N B(N) @8 () A(N)
23 10 1.6667 0.6667
2 60 2.1429 0.4762
22 341 2.8417 0.6988
28 1701 3.4294 0.5878
2! 8254 4.0942 0.6648
28 18692 4.7603 0.6661
230 178046 5.4548 0.6945
211 804192 6.1475 0.6927
2,, 358623 6.8469 0.699
2,5 15822368 7.5484 0.7015
217 69216057 8.2532 0.7048
2% 300540247 8.9579 0.7047
215 1296893644 9.6632 0.7053

8, oOther "Binary" Euclidean Algorithms
As well as the algorithm described above, there are

several other "binary" variants of the Euclidean algorithm,
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For example, Harris [70] suggested an algorithm which uses
both division and right shifting, and requires less itera-
tions than the classical algorithm, on the average. Yao and
Knuth [75] considered the "subtractive" Euclidean algorithm,
which requires neither shifts nor divisions. In this section
we analyze the "left-shift" algorithm (LS) mentioned at the
end of Section 1. For positive integers u and v, even or
odd, the algorithm is as follows.

LS Binary Algorithm

LO: 1if u < v then interchange u and v;
if u=+v or v = 0 then return u as the GCD and halt;
L= v;

while 2t = u do t + 2¢;

Ll: u+*=wu = ¢;

go to I0.

The interchanging of u and v can be avoided by duplicat-
ing some of the code. The "while" loop merely shifts t left
until its leading one bit is in the same position as that of
u, or one position to the right of it., This may be done
with a flpoating-point "normalize" instruction, possibly fol-
lowed by one right shifrc,

We say that an iteration is one execution of step L1,
The expected number of iterations is given by the following
theorem,

Theorem 8.1

If integers u, v are chosen uniformly and independently
in (0,N], the expected number of iterations of algorithm LS
is asymptotically Kzlg(l{} as N -+ =, where

(8.1) Ky = 12(1n(2)/m? ¢ ~ 0.875837091,
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i 2

= L+

(8.2) ¢ p{j}lg[j(_ﬂ_z :I_.
j=1

and p(j) is defined in Section 4.

Eroof

We shall only sketch the proof. Suppose u> v > 0 and
we perform one iteration of the classical Euclidean algo-
rvithm, 1,e,, we find q = Lufv_], T = u=qv, set u = v and
v~ r. Then the new values of u and v would be obtained
after exactly p(q) iterations of algorithm L5, [Let

p (_q) m

q = 2

]

3=1

where m, > m, > .., > o (q) =0, If1 =j=plq), then the
j-th execution of step LI gf algorithm LS replaces the cur-
rent u by u-t, where t = 2 Jv.1

Let the regular continued fraction for u/v be
(8.3) w/v=qy+1/q +1/ sii +1/q,
k
so the classical algorithm requires k+] iteraiions. From

the above discussion, algorithm LS requires zl:-qu) itera=-
j=0
tions (actually one less if q = 1, because of our test
"ifu = L")
Let EE{NJ be the expected number of iterations for
algorithm LS, and EC(N) be the expected number for the class-

ical algorithm. Thus,
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(8.4) 1lim Ezinjjﬁc{m = 1im lim E{qn},

M~ =t M-

where Efqn] is the expected value of p(qn), From results
like those of Khinchin [35a, 35b, 36],

(8,5} lim lim ;-:-(qn] = g,
n=+= hN—om

where ¢ is given by (8.2). [Iptuitively, the probability

. i+1
that q, = q is about lg f%g:%?-, from (2.9).] Also,

(8.6) E_(M) ~12(1n(2)/m21W)
as N = = {(see Knuth [69]), Thus, the result follows from
(B.4),

The constant ¢ 1s difficult ro evaluate numerically

from {8.,2)., The following lemma is much better for numerical

purposes, Using (8.8), we found
(8.7} ¢ ~ 1.49930818096

very easily,

Lemma 8.1

If ¢ is defined by (8.2), then

(8.8) c =2+ Z 1g (142”4
i=1

5 ipcs

(8.9) =2 - 1 y - Z (-1)JC(3)
n(2) i

jmz 1E7-1)
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=y

e P

(8.10) =1 !
j23 231y

1
* 21nc2y
i=2

Here, + = 0,5772.,, is Euler's constant, [(x) is che Gamma

funetion, and [(j) is the Riemann Zeta function.

Sketch of Proof
Splitting the sum in (8,2} into odd and even indices,

and using p(23+1) = p(j) + 1 and p(2j) = p(j), gives

o 141/ 2 341 v . 1+1/(21)
811 c= ) 1g 1+1§{21+2) N 21:(3}151:”, (2j+2)
=0 i=1

Continuing the splitting process eventually gives

141/ (27 (145))
(8,12) ¢ = EE E: 1 — 1.
k=1 420 141/ (27 (3+1))

From Stirling's approximacion,

1]
(8.13)  T[ 0/ (34) ] ~ a'T () /T (xty)
j=0

ag n = =, so (8.12) gives

r(%arxi+z'k}

” .

B.14) c= ) lg|—25—
F(E+2 )

k=1
From the well-known identity

=

(8.15) T'(x) r{:url'%} - 1"(2::)1"(;—}21_2

Analysis of Binary Euclidean Algorithms 351

1 -k
with x = 54- 2 7, it is easy to show that

=]

1 -
(8.16) ) lglrd /G2 = 2,
k=1

s0 (8.8) follows from (8,14},

Suppose rxl <1, nz=1, We have

(8.17)  1ar(14=x)

n

n-1
an‘(lﬂ-x) - Y /i)

=lar(n) k=1

n=1
lim|xln(n) = Zi Ln(1+x/k)

e k=1

(8.18)

(8.19) yx + ) (- igll .
j=2

(8,9) follows from (8.8) by putting x = E-k in (8.19) and

summing over k = 1, 2, ,.. ., The proof of (8,10) is similar,

MHumerical Results for Algorithm LS

For integers u and v, let hZ(u,v} be the number of itera-

tions required by algorithm LS,
(8.20) B, = Z b, (u,v),
O<v=u =N

(8.21) @cm = 2B, (N) /[N(N-1) ],

and
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(8.22) 8, (N) =B, (W - B, (/2).

2 .3 12
Table 8.1 gives B,(N), #,(N) and a,(N) for N =27, 27,...,2

(compare Table 7.4 for algorithm RS).

Table 8,]1: Exact Counts for Small N (algorithm L§)

N BE(NJ &EE(N} ﬁz(ﬂ}
z§ 8 1.3333 0.3333
2 55 1.9643 0.6310
24 305 2.5417 0.5774
22 1625 1.2762 0.7345
25 8135  4.0352 0.7590
2 39282  4.8329 0.7977
2 184670 5.6578 0.8249
27, 851566 6.5096 0.8519
2.0 3860856 7.3712 0.8615
211 17268497 8.2383 0.8671
2 76392955 9.1090 0.8707

From Theorem 8.1, we expect

(8.23) ;ii &Z{N} =K, ~ 0.875837,

and the numerical results support this prediction,

Summazry
Table 8.2 summarizes the average and worst-case behavior

of four algorithms: the classical algorithm, the RS and LS
binary algorithms, and the subtractive algorithm of Yao and
Knuth [75]., The subtractive algorithm is of theoretical
interest only. The choice of which of the other three algo-
rithms is to be preferred depends on the instruction set and

instruction timing of the machine used.
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Iable 8,2: Comparison of Various Euelidean GCD Algorithms

Algorithm Average iteraticns* Maximum iterﬂtions*
Classical 0,58421g (M) 1.44041g(H)

RS Binary 0,70601g (W) L ()

LS Binary 0.87581g(N) 1.44041g (W)
Subtractive 0.2921(15(N))2 M

¥
Notes: 1. Lower order terms are neglected (in most cases
they are 0(1)).

Z. An iteration of one algorithm (e.g., the binary
algorithm) may take less time than an iteration
of another algorithm (e,g., the classical algo-
rithm).
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Minor Errata

In the definition of Dy(x) on the last line of page 326,
Dy(x) = 0 should be replaced by Do(z) = 1.

Z(Iﬁ—x)

In equation (6.3) on page 342, the term — should be replaced by 3

1
1+x) "

The above corrections have been made in the online version.

Major Errata

Some of the results are incorrect. For example, (3.1), (3.29), (3.34), (3.35) are wrong
(though a close approximation to the truth). Further details are given in
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub183.html .



