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Abstract-With VLSI architecture, the chip area and design reg-
ularity represent a better measure of cost than the conventional gate
count. We show' that addition of n-bit binary numbers can be per-
formed on a chip with a regular layout in time proportional to log n
and with area proportional to n.

Index Terms-Addition, area-time complexity, carry lookabead,
circuit design, combinational logic, models of computation, parallel
addition, parallel polynomial evaluation, prefix computation, VLSI.
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I. INTRODUCTION

W E are interested in the design of parallel "carry look-
W ahead" adders suitable for implementation in VLSI

architecture. The addition problem has been considered by
many other authors. See, for example, [1], [4], [6], [7], [11],
[13], and [14]. Much attention has been paid to the tradeoff
between time and the number of gates, but little attention has
been paid to the problem of connecting the gates in an eco-
nomical and regular way to minimize chip area and design
costs. In this paper we show that a simple and regular design
for a parallel adder is possible.

In Section II we briefly describe our computational model.
Section III contains a description of the addition problem and
shows how it reduces to a carry computation problem. The
basis of our method, the reduction of carry computation to a
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"prefix" computation, is described in Section IV. Although
the same idea was used by Ladner and Fischer [8], their results
are not directly applicable because they ignored fan-out re-
strictions and used the gate count rather than area as a com-
plexity measure.

In Section V we use the results of Section IV to give a simple
and regular layout for carry computation. Our construction
demonstrates that the addition of n-bit numbers can be per-
formed in time O(log n), using area 0(n log n). The implied
constants are sufficiently small that the method is quite
practical, and it is especially suitable for a pipelined adder. In
Section VI we generalize the result of Section V, and show that
n-bit numbers can be added in time 0(n/w + log w), using
area O(w log w + 1), if the input bits from each operand are
available w at a time (for I < w < n). Choosing w - n/log n
gives the result that n-bit addition can be performed in time
0(log n) and area 0(n).

II. THE COMPUTATIONAL MODEL

Our model is intended to be general, but at the same time
realistic enough to apply (at least approximately) to current
VLSI technology. We assume the existence of circuit elements
or "gates" which compute a logical function of two inputs in
constant time. An output signal can be divided ("fanned out")
into two signals in constant time. Gates have constant area, and
the wires connecting them have constant minimum width (or,
equivalently, must be separated by at least some minimal
spacing). At most two wires can cross at any point.
We assume that a signal travels along a wire of any length

in constant time. This is realistic as propagation delays are
limited by line capacitances rather than the velocity of light.
A longer wire will generally have a larger capacitance, and thus
require a larger driver, but we can neglect the driver area as
it typically need not exceed a fixed percentage of the wire area
[10].
The computation is assumed to be performed in a convex

planar region, with inputs and outputs available on the
boundary of the region. Our measure of the cost of a design is
the area rather than the number of gates required. This is an
important difference between our model and earlier models
of Brent [1], Winograd [14], and others. For further details
of our model, see [3]; for motivation and discussion of models
similar to ours, see [9] and [ 12]. A feature of our approach is
that we strive for regular layouts in order to reduce design and
implementation costs. For VLSI, regularity is one of the most
important design criteria; so we shall not compromise the
regularity of a design for the sake of efficiency. Since "regu-
larity" is difficult to quantize, we have not included it in our
theoretical cost measure, although this would be desirable.

III. OUTLINE OF THE GENERAL APPROACH

Let ana--I al and b,b,- I ... bI be n-bit binary numbers
with sum sn+1nIs, s1. The usual method for addition com-
putes the si's by

co = 0,

Si = ai (13 bi (D3 Ci_ 1, i = 1,* * , n,

Sn+I = Cn

where E means the sum mod 2 and ci is the carry from bit
position i.

It is well known that the ci's can be determined using the
following scheme:

co = 0,

Ci = gi V (pi A Ci-1) (1)

where

gi= ai A bi
and

Pi = as C bi
for i = 1, 2, * *, n. One can view the gi and pi as the carry
generate and carry propagate conditions at bit position i. The
relation (1) corresponds to the fact that the carry ci is either
generated by as and bi or propagated from the previous carry

ci- 1 This is illustrated in Fig. 1.
In Section V we present a regular and area-efficient layout

design for computing all the carries in parallel assuming that
the g,'s and pi's are given. The design of a parallel adder is then
straightforward and is illustrated in Fig. 2. Notice that in Fig.
2(b) the bottom rectangle represents the combinational logic
that transforms the ai's and bi's into the gi's and pi's. For
computing the s,'s we use the fact that si = pi CD ci,- for i =
1, n.

IV. REFORMULATION OF THE CARRY CHAIN
COMPUTATION

We define an operator "o" as follows:

(g, p)o(g', p') = (g V (p A g'), p A p')

for any Boolean variables g, p, g', and p'.
Lemma 1: Let

(Gi Pi) = J(gi)oPi) if i = 1,

(g, pi)o(G,i- , P,-1) if 2 < i <n.

Then
ci-= Gi for i= 1, 2, - n.

Proof: We prove the lemma by induction on i. Since co
= 0, (1) above gives

Ci = gl V (Pi A 0) = g, = GI
so the result holds for i = 1. If i > 1 and ci- I = Gi-1, then

(Gi, Pi) = gi, Pi)o(Gi- l Pi-,)
= (gi, pi)o(ci- I, Pi-1)

= (gi V (pi A Ci-i),Pi A Pi-1).

Thus

Gi= gi V (Pi A Ci-)

and from (1) we have

Gi = ci.

Ci = (ai A bi) V (ai A ci-1) V (bi A ci-I),
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The result now follows by induction. 0
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F. . Carr chain

gn Pn 9i'Pi 19J'PI

Fig. 1. Carry chain.

Tgnp (ap3Tg2p,
(a)

a i'I,b1ls
(b)

Fig. 2. (a) Abstraction of a parallel carry chain computation, and (b) ab-
straction of a parallel adder based on the design for the carry chain com-
putation.

Lemma 2: The operator "o" is associative.
Proof: For any (g3, p3), (g2, P2), (gI,PI), we have

[(g3, P3)o(g2, P2)]o(gl, PI)
= [g3 V (p3 A g2),P3 A P2]o(g1 PI)

= [g3 V (p3 A 92) V (p3 A P2 A gl),P3 A P2 A P1]
and

(g3, P3)o[(g2, P2)0(g1, P1)]
= (g3,P3)0[g2 V (P2 A g1),P2 A Pl]

= [g3 V (P3 A (g2 V (P2 A g))),P3 A P2 A P1].
One can check that the right-hand sides of the above two ex-
pressions are equal using the distributivity of " A " over " v ."
(The dual distributive law is not required.) a
To compute the ci's it suffices to compute all the (Ge, P1)'s, but
by Lemmas 1 and 2

(G1, Pi) = (g., pi)o(gi- , Pi-) * 0*(gi, PI)
can be evaluated in any order from the given gi's and pi's. This
is the motivation for the introduction of the operator "o."
(Intuitively, Gi may be regarded as a "block carry generate"
condition, and Pi as a "block carry propagate" condition.)

V. A LAYOUT FOR THE CARRY CHAIN COMPUTATION

Consider first the simpler problem of computing (Gi, Pi)
for i = n only. Since the operator "o" is associative, (Gn Pn)
can be computed in the order defined by a binary tree. This is
illustrated in Fig. 3 for the case n = 16. In the figure each black
processor performs the function defined by the operator "o"
and each white processor simply transmits data. The white and
black processors are depicted in Fig. 4. Note that for Fig. 3
each processor is required to produce only one of its two
identical outputs, and the units of time are such that one
computation by a black processor and propagation of the re-
sults takes unit time.

Consider now the general problem of computing the (Gi, Pi)
for all 1 < i < n. This computation can be performed by using
the tree structure of Fig. 3 once more, this time inverted (that

Fig. 3. Computation of (G16, P16) using a tree structure.

(gout0 Pout)( gout po) (gut, Pout) (gou0 Poup

>X9out9in' ; 90~~gut=9gin-(PinA 9n),
Pout Pin Pot'Pin" Pin

(gif|Pin) (gin.Pi n) AinP)

Fig. 4. (a) White processor, and (b) black processor.

is, the root is visited first). We illustrate the computation, for
the case n = 16, in Fig. 5. It is easy to check that at time T =
7, all the (Gi, Pi) are computed along the top boundary of the
network. As the final outputs, we only keep the G1 which are
the carries ci. From the layout shown in Fig. 5, we have the
following results.

Theorem 3: All the carries in an n-bit addition can be
computed in time proportional to log n and in area proportional
to n log n, n > 2, and so can the addition.

VI. A PIPELINE SCHEME FOR ADDITION OF LONG
INTEGERS

We define the width w of a parallel adder to be the number
of bits it accepts at one time from each operand. For the par-
allel adder corresponding to the network in Fig. 5, w = 16. We
have hitherto assumed that the width of a network is equal to
the number n of bits in each operand. Here we consider the
case w < n. We show that this case can be handled efficiently
using a pipeline scheme on a network which is a modification
of the one depicted in Fig. 5.

For simplicity, assume that n is divisible by w. One can
partition an n-bit integer into n/w segments, each consisting
of w consecutive bits. To illustrate the idea; suppose that w =

16. Then the carry chain computation corresponding to each
segment can be done on the network in Fig. 5, and the com-
putations for all the segments can be pipelined, starting from
the least significant segment. The results coming out from the
top of the network are not the final solutions, though. Results
corresponding to the ith least significant segment (i > 1) have
to be modified by applying (G(i-l)w,P(i-l)w) on the right using
the operator "o." To facilitate this modification, we super-
impose another tree structure on the top half of the network,
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Fig. 5. Computation of all the carries for n = 16.

as shown in Fig. 6. Using this additional tree, the contents of
the "square" processor (denoted by "a") are sent to all the
leaves, which are black processors. The square processor,
shown in Fig. 7, is an accumulator which initially has value (g,
p) = (0, 1), and successively has values (g, p) = (G(i-l),
P(i-l)w) for i = 2, 3, . At the time when a particular
(G(i- 1)w, P(i- l)w) reaches the leaves, it is combined with the
results just coming out from the old network there. By this
pipeline scheme, we have the following result.

Theorem 4: Let 1 < w < n. Then all the carries in an n-bit
addition can be computed in time proportional to (n/w) +
log w and in area proportional to w log w + 1, and so can the ad-
dition. When w = 1, the method outlined in this section is es-
sentially the usual serial carry-chain computation. From
Theorem 4 we have the following.

Corollary 1: The area-time product for n-bit addition is
0(n log w + w log2 w + 1), which is 0(n log2 n) when w = n, and
0(n log n) when w = n/log n, and 0(n) when w is a con-
stant.
One can similarly obtain an upper bound on A To, (where

A and T stand for area and time, respectively) for any a > 0,
and for each a one can choose w to minimize the upper bound
[2].

VII. SUMMARY AND CONCLUSIONS

The preliminary and final stages of binary addition with our
scheme (generation of (gi, pi) and computation of si = pj (@
ci1 I respectively) are straightforward. Figs. 4 and 5 illustrate
that the intermediate phase (fast carry computation) is con-
ceptually simple, and the layout illustrated in Fig. 5 is regular.
The design of the white processor is trivial, and the black
processor is about as complex as a one-bit adder. After these
two basic processors are designed, we can simply replicate
them and connect their copies in the regular way illustrated

T=5I

l llT-41I
I Th3is the sane left-most processowr at level T=4

of the network as in Figure 5.

Fig. 6. Additional tree structure to be superimposed on the top half of
the network in Fig. 5.

(gout-put) (go,ut,pout.)
grnout9in1 V(PinAg)

(g,P) PoUtr PinAP
z t9.~~~~~~gp)= (9out,pout)

(gin Pm)
Fig. 7. The "square" processor that accumulates (G(i-l)w, P(i-l)w).

TABLE I
COMPARISON OF PARALLEL AND SERIAL ADDITION TIMES

n Time
(parallel)

8 12
16 16
32 .20
64 24

Time
(serial)

15
31
63
127

in Fig. 5. We conclude that using the approach of this paper,
parallel adders with carry lookahead are well-suited for VLSI
implementation.
Mead and Conway [10] considered several lookahead

schemes, but concluded that "they added a great deal of
complexity to the system without much gain in performance."
To show that this comment does not apply to our scheme,
suppose that the operations " A ", " V " and "$13" take unit time.
Table I gives the computation time for our scheme and for a
straightforward serial scheme, where the ci are computed from
(1) for various n. (n is the number of bits in each operand.) For
n = 2 k the general formulas are 4k and 2n - 1, respectively.
Based on our scheme, L. Guibas and J. Vuillemin [5] have
designed a 32-bit parallel adder and implemented it on a chip
using NMOS. They estimate that with the particular tech-
nology they used, their 32-bit parallel adder is about 4 times
faster than a 32-bit straightforward serial adder.

In this paper we assumed a binary number system and re-
stricted our attention to two's complement arithmetic. Only
minor modifications of our results are required to deal with
one's complement arithmetic or sign and magnitude repre-
sentations of signed integers.

Brent and Kung [3] consider the problem of multiplying
n-bit integers, and show that the area A and time T for any
method satisfy

AT > K1n3/2
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and

AT2 2 K2n2
for certain constants Ki > 0 (assuming the model of Section
II with some mild additional restrictions). For binary addition
we can achieve

AT = 0(n)

by a trivial serial method, and

AT2 = 0(n log2 n)

by the results in Section VI. Thus, asymptotically speaking,
implementing binary multiplication is harder than imple-
menting binary addition if either A T or AT2 is used as the
complexity measure. More discussions on the area-time
complexity of binary arithmetic can be found in [2], where a
general measure A To for any a > 0 is used.

In deriving the layout of Fig. 5 we used only one distributive
law. Thus, the layout could be used to evaluate arithmetic
expressions of the form

gn +PnIgn-I +Pn-I[ P3(g2 +P2gl) .. (2)
where gi, pi are numbers and the black processor in Fig. 4(b)
now computes gout = gin + Pingin and Pout = Pir.Pin Note that
when P2 = = Pn = x expression (2) corresponds to the
polynomial

gn + gn-lx + ... + glxn1.
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