Supplement to
A New Lower Bound for Odd Perfect Numbers

By Richard P. Brent and Graeme L. Cohen

Notation:
N is an odd perfect number (if one exists) and p a prime.
p^a \rightarrow a is a power of p.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.
\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.

\sigma(N) = (p^a + 1)(p^b + 1) \cdots (p^k + 1) is the sum of divisors of N.
\sigma(p^a) = \frac{p^{a+1} - 1}{p - 1} is the sum of divisors of p^a.
\sigma(p^a) = \sigma(p^a) + 1 is the sum of divisors of p^a.