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Abstract

The Basic Linear Algebra Subprogram (BLAS) library is widely used in many super-
computing applications, and is used to implement more extensive linear algebra subroutine
libraries, such as LINPACK and LAPACK. The use of BLAS aids in the clarity, portabil-
ity and maintenance of mathematical software. BLAS level 1 routines involve vector-vector
operations, level 2 routines involve matrix-vector operations, and level 3 routines involve
matrix-matrix operations. To take advantage of the high degree of parallelism of architec-
tures such as the CAP-II, BLAS level 3 routines are desirable. These routines are not I/O
bound; for n× n matrices, the order of arithmetic operations is O(n3) whereas the order of
I/O operations is only O(n2).

We are concerned with implementing BLAS level 3 for real matrices on the CAP-II,
with emphasis on obtaining the highest possible performance, without sacrificing numerical
stability. While the CAP-II has many features that make it very well-suited for this purpose,
there are also many new challenges in implementing BLAS level-3 on a distributed memory
parallel computer (these are currently being considered also by the authors of BLAS-3, who
designed it primarily for cache and shared memory architectures).

One such challenge is its external interface: BLAS-3 subroutines can be called by the host
program, with the CAP array used like a (very powerful) floating point unit. Alternatively,
(CAP cell equivalents of) BLAS-3 subroutines may be called by the cell programs; this
approach is more efficient but deviates from the BLAS standards. These issues will be
discussed.

We also discuss the high-level design of basic parallel matrix multiplication, transposition
and triangular matrix inversion algorithms to be used by the BLAS-3 subroutines. With
the efficient row/column broadcast available on the CAP-II using wormhole routing, “semi-
systolic” algorithms, with a low startup time, appear to be superior to other algorithms. It is
hoped that the input from the workshop can help to finalize details of the high-level design.

On the lower levels of design, optimization of cell program codes (e.g. optimizing inner
product or gaxpy loops, use of the SPARC cache) must also be considered. Also relevant is
the degree of optimization possible from the available CAP-II cell program compilers.

∗Appeared in Proc. First Fujitsu-ANU CAP Workshop (edited by R. P. Brent and M. Ishii), Fujitsu Research
Laboratories, Kawasaki, Japan, November 1990. Copyright c© 1990, ANU and Fujitsu Laboratories Ltd.

†E-mail addresses: {peter,rpb}@cs.anu.edu.au rpb121 typeset using LATEX



1 Introduction

Libraries of linear algebra routines such as LINPACK [6] and LAPACK [1, 4] have been imple-
mented using certain basic linear algebra subprograms (BLAS) as primitives. The motivation
for this is a combination of portability and efficiency – the high-level routines are written in a
machine-independent manner in a widely-available language (usually Fortran 77), but the BLAS
may be coded in a machine-dependent manner in a high or low-level language. When porting
the linear algebra libraries to a new machine, it is easy to get them running by using a portable
(but possibly inefficient) implementation of the BLAS. Higher efficiency can then be obtained
by recoding the BLAS to take better advantage of the machine architecture.

1.1 Different Levels of BLAS

Three distinct levels of BLAS have been proposed:
Level 1 BLAS are the original BLAS [6, 13, 14] and implement elementary vector operations,

e.g.
y ← αx + y

and
s← xT y

(where x and y are vectors of the same dimension n, and α, s are scalars). Such operations
involve O(n) arithmetic operations on O(n) data items.

Level 2 BLAS [9, 10] implement matrix-vector operations, e.g.

y ← αAx + βy

(where A is a matrix, x and y are vectors of compatible dimensions – for simplicity we assume
here that A is n by n). Such operations involve O(n2) arithmetic operations on O(n2) data items.
Use of level 2 BLAS can give greater efficiency on vector processors than is possible with level 1
BLAS, because of the reduction in procedure calling overheads, vector register loads/stores, etc.
Implementations of level 2 BLAS on MIMD machines such as the CAP-II could be inefficient
because a large proportion of the execution time would be spent transferring data between cell
processors or between the host and cell processors.

Level 3 BLAS [7, 8] implement matrix-matrix operations, e.g.

C ← αAB + βC

(where A, B and C are compatible matrices – for simplicity we assume here that they are n
by n). Such operations involve O(n3) arithmetic operations on O(n2) data items. (We ignore
the possibility of reducing the number of operations by the use of “fast” matrix multiplication
algorithms: this may be of practical use if n is large [3, 5, 11, 15].) Note that there is a higher
ratio of arithmetic operations to data than for the level 2 BLAS. Use of level 3 BLAS is attractive
on parallel machines such as the CAP-II because the cost of a data transfer may be amortised
over the cost of O(n) arithmetic operations.

1.2 The Level 3 BLAS

The Level 3 BLAS (or BLAS3 for short) are fully described in [7, 8]. We restrict our attention
to operations on real matrices, since complex matrices introduce some inessential complications.
The BLAS3 perform matrix-matrix multiply-and-add operations of the form

C ← αÃB̃ + βC
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where Ã can be either A or AT (and similarly for B̃),

C ← αAAT + βC

where C is symmetric (and other forms of symmetric update),

B ← αT̃B

where T is triangular and T̃ can be T , T T , T−1 or T−T , and

B ← αBT̃

Matrices may be general rectangular, symmetric or triangular but there is no special form of
“packed” storage for symmetric or triangular matrices.

Within each of the six BLAS3 routines, there are either 4 or 8 different matrix ‘orienta-
tions’, each requiring a different variant of the basic algorithm used. Combining this factor
with the requirement that the BLAS3 routines, to be widely used by LAPACK, operate on
matrix ‘sub-blocks’ rather than on whole matrices themselves (see Figure 1), the difficulties in
implementation are considerable. Thus, some authors have suggested that BLAS3 routines on
a distributed memory computer should be implemented in terms of a matrix-matrix multiply
routine and the Level 2 BLAS [2, p10]. Our approach is not so extreme and it involves the
BLAS3 routines calling a small library of more primitive matrix-matrix routines, so that the
potentially large code size required by the BLAS3 routines can be kept manageable.

2 The External Interface

On a single processor the interface to the BLAS3 is via straightforward procedure calls. On a
machine such as the CAP-II there are several possibilities because the host and cell processors
have independent programs and memories. We have considered three possibilities –

1. Host only. BLAS3 are called only from host programs, and all matrices are stored on
the host. The implementation may scatter data to cells and gather results in the host, but this
should be transparent to the user. This approach is convenient for a user writing host programs,
but potentially inefficient because of data transfer overheads.

2. Host and cell. BLAS3 are called from the host, but operate on matrices stored in the
cell processors. As for case 1, the host must broadcast a request to the cells to perform the
appropriate local computations by calling the appropriate cell subroutines.

3. Cell only. BLAS3 are called from cell programs only, and operate on matrices stored in
the cell processors. As for case 2, a standard storage scheme has to be assumed, and routines
which move arrays between the host and cells are necessary. It is assumed that the cells execute
identical programs. This scheme has the potential to be the most efficient.

At this date, the authors of BLAS are still considering which external interface should be
used for distributed memory computers. While it seems likely that interface 2 will be the most
acceptable, we are pursuing interface 3 (which can be made into interface 2 if needed). For
implementing BLAS3 on a large CAP (eg. 8× 8, 16× 16 or 32× 32 CAP), there are two reasons
to prefer interfaces 2 and 3:

• With the assumption that 8M of data (matrix) memory be available in each CAP cell, the
total memory on the CAP array will easily exceed that on the CAP host.

• On a 16 × 16 CAP, 1GFLOP is a realistic target for BLAS3 performance. Assuming
a 50MBs−1 host to CAP array I/O bandwidth, and BLAS3 routines operating on n × n
matrix sub-blocks, then n ≥ 28 before computation time exceeds host to array I/O transfer
time.
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Furthermore, while a 32 × 32 CAP has ≈ 4 times the peak computational performance
of the CRAY Y-MP/8, the CRAY Y-MP/8 has an exceptionally high memory to CPU
I/O bandwidth of 16000MBs−1. In order for the CAP-II to exceed the CRAY Y-MP/8 in
overall performance, interfaces 2 or 3 must be chosen.

3 High Level Design Choices

In this section we consider some choices which have to be made regarding storage of matrices in
cells, the multiplication and the transposition of matrices, etc.

3.1 Distribution of Matrices

Matrices could be distributed over cells of the CAP-II by rows, by columns, by contiguous blocks,
or by the cut and pile strategy, in which matrix element ai,j is stored in cell (i mod s, j mod t),
assuming that there are s× t cells in the CAP array (see Figure 1). The cut and pile strategy is
similar to the “dot mode” of image storage used in [12] and has similar advantages. It gives a
good load distribution when performing operations on triangular or symmetric matrices (since
each CAP cell would have a triangular sub-block). Thus, for efficiency we prefer the cut and
pile strategy, even though it is inconvenient for matrix representation on the host (so conversion
may be required before/after scatter/gather operations).

c00 c02 c04 c06 c01 c03 c05 c07

c20 c22 c24 c26 c21 c23 c25 c27

c40 c42 c44 c46 c41 c43 c45 c47

c60 c62 c64 c66 c61 c63 c65 c67

c10 c12 c14 c16 c11 c13 c15 c17

c30 c32 c34 c36 c31 c33 c35 c37

c50 c52 c54 c56 c51 c53 c55 c57

c70 c72 c74 c76 c71 c73 c75 c77

Figure 1: Distribution of an 8 × 8 matrix C on a 2 × 2 CAP; C ′ is the 4 × 4 matrix sub-block
of C whose upper-left corner is at position (2, 4)

3.2 Parallelism within or outside of BLAS3 routines

For implementing BLAS3 on the CAP, parallelism can be used in two ways:

• using all CAP cells in parallel to execute a single BLAS-3 routine call.

• executing independent BLAS-3 routine calls over different groups of CAP-II cells.

While both ways are important, the second is difficult on the CAP since the basic matrix
multiplication and transposition algorithms (see below) use the whole of the torus network. The
choice of the cut-and-pile matrix distribution makes this way even more difficult.

Thus, we design the BLAS3 for the CAP so that only parallelism within the BLAS3 routines
is used.

3.3 Matrix Transposition

Most of the BLAS3 routines require the ability to form matrix products using operands which
may be transposed. It is not obvious whether or not matrix operands should be explicitly
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transposed: by taking advantage of the wormhole routing and torus topology of the CAP-II,
it should be possible to implement a fast matrix transpose. On the other hand, the overhead
involved in avoiding transposition is probably very low if only one operand must be transposed,
at least if s = t and a “semi-systolic” matrix multiplication scheme is used (see below).

It seems better, however, to use explicit matrix transposition to form C ← αAT BT + βC,
using the fact that C ′ = AT BT = (BA)T . Here, the cell matrix sub-blocks of C ′′ = BA from
each CAP cell must be passed through the main diagonal cell (on the same row) before reaching
its destination. Since the CAP Routing Controller only allows one message to pass through a
cell when the message is changing its direction, the main diagonal cells form the bottleneck for
the transpose. Thus, the simplest matrix transposition algorithm is probably the most efficient:

r asend(getncely(), getncelx(), tid, ANY TYPE, C ′′,m ∗ n);
C ′ = r arecv(getncely(), getncelx(), tid, ANY TYPE);

For the symmetric matrix multiplication, and for multiplication by a transposed inverse of
a triangular matrix, ‘half-transpose’ operations (eg. copying a lower triangular matrix into its
upper triangular half) are required; in this case, greater efficiency can be obtained by routing
half of the messages in two stages (first vertically, then horizontally) to ensure that the same
number of messages pass through each main diagonal cell.

3.4 Matrix Multiplication

As mentioned above, BLAS3 routines operate on sub-blocks of global matrices (eg. C ′ in Figure
1), rather than whole matrices as such. The part of C ′ in each cell is generally not contiguous,
and for the requirements of message-passing, must be compressed into a contiguous form first.
Thus, for any matrix multiplication operation of the form C ← αÃB̃ +βC, the global high-level
algorithm is as follows:

compress A, B sub-blocks into A′, B′;
C ′′ ← Ã′B̃′;
C ← α(de-compressed version of C ′′) + βC

Thus, storage needs to be allocated for the ‘temporary’ sub-blocks A′, B′ and C ′′.
Furthermore, the optimal matrix multiplication algorithm depends on the sub-block size. For

large sub-block sizes, the ‘inner product’ algorithm is optimal; for (very) small block sizes (ie.
< getncelx()), an ‘outer product’ algorithm, like that used for matrix inversion (next section),
should be considered.

Consider the formation of the matrix C = AB in terms of its cell sub-blocks Cij :

Cij = ΣN−1
k=0 AikBkj

where N = getncelx(). Here, the (i, j)th cell sub-block corresponds to that allocated on CAP
cell (i, j)1.

The full systolic method consists of simulating a skewed input of A from the east, and that of
B from the north, and accumulating Cij in cell (i, j) as each Aik and Bkj passes through. This
method involves only shifting of the cell sub-blocks, but has a considerable startup overhead (in
the simulated matrix input).

The semi-systolic method also consists of accumulating Cij in cell (i, j) but using the products
Ai,j+kBj+k,j (addition is cyclic modulo the CAP array size). This involves, on the kth step,
shifting the (rows of the) A cell sub-blocks one unit west, and a column broadcast of the kth
diagonal of B (the 0th diagonal is the main diagonal, the first is the one below concatenated
with the upper-right corner element, etc). The high-level cellprogram algorithm is as follows:

1The matrix multiplication and transposition algorithms are the same for the cut-and-pile and the contiguous
matrix distribution strategies. It will be easier, for this section, to assume that the contiguous strategy is used.
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B00 B11 B22

A00 A01 A02

A10 A11 A12

A20 A21 A22

B10 B21 B02

A01 A02 A00

A11 A12 A10

A21 A22 A20

B20 B01 B12

A02 A00 A01

A12 A10 A11

A22 A20 A21

(a) k=0 (b) k=1 (c) k=2

Figure 2: Formation of C = AB on a 3× 3 CAP (note: Cij is in cell (i, j))

for (k=0; k < N-1; k++)
y-broadcast B cell sub-block from kth diagonal cells;
send A cell sub-block to western neighbour cell;
perform local cell sub-block multiplication;
recv new A cell sub-block from eastern neighbour cell;

y-broadcast B cell sub-block from (N-1)th diagonal cells;
perform local cell sub-block multiplication;

The disadvantages of this method is the (small) extra overhead in using broadcasts (rather
than send to neighbours), and also that the broadcasts cannot be overlapped with the local cell
sub-block multiplication. Figure 2 shows the algorithm for a 3× 3 CAP.

There are full systolic methods for computing C = ABT (C = AT B) without requiring any
explicit transpose; here, the result matrix and one of the operand matrices are rotated, and the
overhead is a small amount of extra start-up.

The semi-systolic method for computing C = ABT (C = AT B) is performed by adding the
product Ai,j−k(Bj,j−k)T ((Ai+k,i)T Bi+k,j) to Cij . Here, only local transposition of cell matrix
sub-blocks is required and the C matrix is cyclically shifted at each step one unit west (south),
and the kth diagonal of B (−kth diagonal of A) being column (row) broadcasted. The only
extra overhead involved here is that it is more difficult to overlap the communication of the C
matrix with the local cell sub-block multiplication.

However, for the BLAS-3 symmetric update routines, since the result matrix is symmetric
and need only be represented by its upper or lower triangular part, avoiding explicit transpose
has the advantage that inter-cell communication is reduced by 25% to 37.5%.

3.5 Triangular matrix inversion

Consider multiplying a rectangular matrix B by the inverse of a triangular matrix, A. Firstly,
we require the possible scaling of A (and hence B) so that A’s diagonal is unit (in BLAS3, it is
up to the user to ensure that this is possible, ie. that A is non-singular).

Let n be the number of rows or columns in A. If A is upper triangular, a column of zeroes can
be introduced in column J, J = n−1, ..., 1 in parallel by the row broadcasting of the Jth column of
A, A.J (and using the Jth row of A, AJ.; this need not be column broadcast since here AJ,k = 1.0
if k = J and is 0.0 otherwise); then, the ‘outer product’ update A← A− A.JAJ. is performed.
Each cell communicates O(k) data per O(k2) arithmetic operations, where k = n/getncelx() is
the cell sub-block size, so the algorithm is efficient.

The A.J correspond to a pre-multiplication by a ‘parallel’ elementary matrix (row update)
operation matrix E.J , so that A−1 = E1. . . . E(n−1).. Thus, using this to form B ← A−1B, we
can perform the corresponding (parallel) row updates on B:

B ← B −A.JBJ., for J = n− 1, ..., 1
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Similarly, we can introduce a row of zeroes in row I, I = 0, ..., N − 2 by the operation
A← A−A.IAI.; these operations correspond to a post-multiplication by a ‘parallel’ elementary
matrix (column update) operation matrix EI., so that A−1 = E0. . . . E(n−2).. Thus, using this
to form B ← BA−1, we can perform the corresponding (parallel) column update on B:

B ← B −B.IAI., for I = 0, ...n− 2

In this way, we can use the efficient row/column broadcast mechanisms in the CAP to
perform the ‘outer product’ update required, without the explicit formation of A−1. Outer
product updates may also be efficient for the multiplication of small matrix sub-blocks also.

4 Implementation issues

In this section, we discuss our ideas on the implementation of the BLAS3 in the CAP-II.

4.1 Source Language

Currently, we are using C as the source language; the reasons for this are that it has superior
handling of pointers, which may enhance code optimization. Note that the CAP-II cells represent
local matrix sub-blocks as one-dimesional arrays.

Since the SPARC provides, via ‘register windows’, very efficient subroutine call support, the
BLAS3 routines are organized so that common code is expressed as subroutines. This is to
reduce overall code size, a reasonably important consideration.

4.1.1 Workspace

Because of the communication protocols on the CAP-II, temporary storage for matrix sub-blocks
is required for their communication. This is at odds with the design of the authors of BLAS3
[1], who avoid (and see as undesirable) any large temporary storage.

Currently, all BLAS3 routines share static temporary matrix sub-block workspaces declared
externally (by the cellprogram); this is sufficient to store three sub-blocks of the largest required
size.

4.2 Local matrix product formation

Since SPARC chips have pipelined instruction sets and (a small number of) parallel floating
point coprocessors, a ‘gaxpy’ form (ie. i, k, j is the order of nesting of loops used to form cij =
Σn−1

k=0aikbkj).
Loop ‘unrolling’ may be an optimization which can speed up this process. Also, to minimize

cache misses (SPARC cache is 128K), the product formation can be broken down into the
formation of 32K sub-blocks; here, the ‘inner product’ (ie. i, j, k) loop order is used. Both of
these optimizations are regarded as advanced and will not be implemented until later.

5 Conclusions

Many of the CAP’s architectural features, such as wormhole routing (with efficient row/column
broadcasts), large cell memories and, most of all, the potential for massive parallelism make it
extremely promising for implementing BLAS3 for supercomputing applications. This is espe-
cially the case for large CAP and matrix sizes, for which our design is intended. The CAP-II can
also exploit most of the BLAS3 features that are motivated by efficiency; the main exception
being the CAP’s need for temporary matrix workspace (an inevitable result of asynchronous
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communication on a distributed memory machine). While an optimized implementation of the
BLAS3 is not easy, we feel that it would greatly enhance the CAP-II’s usability in supercom-
puting applications.
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