
Vector and Parallel Algorithms for Integer Factorisation

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Canberra, ACT 2601

Abstract
The problem of finding the prime factors of large composite numbers is of practi-

cal importance since the advent of public key cryptosystems whose security depends
on the presumed difficulty of this problem. In recent years the best known integer
factorisation algorithms have improved greatly. It is now routine to factor 60-decimal
digit numbers, and possible to factor numbers of more than 110 decimal digits.

We describe several integer factorisation algorithms, and consider their suitability
for implementation on vector processors and parallel machines.

1. Introduction
Any positive integer N has a unique prime power decomposition

N = pα1
1 pα2

2 · · · p
αk

k (1.1)

(p1 < p2 < · · · < pk primes, αj > 0). To compute the prime power decomposition we
need –

1. An algorithm to test if an integer N is prime.
2. An algorithm to find a nontrivial factor f of a composite integer N .

Given these components there is a simple recursive algorithm to compute the
prime power decomposition (1.1).
Primality testing

There are deterministic primality testing algorithms whose worst-case running
time on a sequential computer is O((log N)c log log log N), where c is a moderate con-
stant. These algorithms are practical for numbers N of several hundred decimal
digits.12 If we are willing to accept a very small probability of error, then faster
(polynomial-time) probabilistic algorithms are available.6,14 Thus, in this paper we
shall assume that primality testing is easy and concentrate on the more difficult
problem of factorising composite integers.
Public key cryptography

Large primes have at least one practical application – they can be used to con-
struct public key cryptosystems (also known as asymmetric cryptosystems and open
encryption key cryptosystems).29,30 The security of such systems depends on the (as-
sumed) difficulty of factoring the product of two large primes. This is a practical
motivation for the current interest in integer factorisation algorithms.

Appeared in Proc. Third Australian Supercomputer Conference (Melbourne, December 1990).
Copyright c© 1990, 3ASC Organising Committee.
E-mail address: rpb@cslab.anu.edu.au rpb122 typeset using TEX

Parallel algorithms
We would hope that an algorithm which required time T1 on a computer with

one processor could be implemented to run in time TP ∼ T1/P on a computer with
P independent processors. This is not always the case, since it may be impossible
to use all P processors effectively. However, it is true for many integer factorisation
algorithms, provided that P is not too large.

The speedup of a parallel algorithm is S = T1/TP and the efficiency is E = S/P .
We aim for a linear speedup, i.e. S = Ω(P). If the speedup is linear in the number
of processors, then each processor is being used with efficiency bounded below by a
positive constant.

2. Multiple-Precision Arithmetic

Before describing any integer factorisation algorithms, we comment on the imple-
mentation of multiple-precision integer arithmetic on vector processors and parallel
machines. Multiple-precision arithmetic is necessary because the number N which we
want to factorise or test for primality may be much larger than can be represented in
a single computer word.
Carry propagation and redundant number representations

To represent a large positive integer N , it is customary to choose a convenient
base or radix β and express N as

N =
t−1∑
0

djβ
j , (2.1)

where d0, . . . , dt−1 are “base β digits” in the range 0 ≤ dj < β. We choose β large,
but small enough that β − 1 is representable in a single word.1,14 Consider multiple-
precision addition (subtraction and multiplication may be handled in a similar way).
On a parallel machine there is a problem with carry propagation because a carry can
propagate all the way from the least to the most significant digit. Thus an addition
takes worst case time Ω(t), and average time Ω(log t), independent of the number of
processors.

The carry propagation problem can be reduced if we permit digits dj outside
the normal range. Suppose that we allow −2 ≤ dj ≤ β + 1, where β > 4. Then
possible carries are in {−1, 0, 1, 2} and we need only add corresponding pairs of digits
(in parallel), compute the carries and perform one step of carry propagation. (It is
only when comparisons of multiple-precision numbers need to be performed that the
digits have to be reduced to the normal range by fully propagating carries.) Thus,
redundant number representation is useful for speeding up multiple-precision addition
and multiplication. On a parallel machine with sufficiently many processors, such a
representation allows addition to be performed in constant time.
High level parallelism

Rather than try to perform individual multiple-precision operations rapidly, it is
often more convenient to implement the multiple-precision operations in bit or word-
serial fashion, but perform many independent operations in parallel. For example, a
trial of the elliptic curve algorithm (Section 7) involves a predetermined sequence of

2

additions and multiplications on integers of bounded size. Our implementation on a
Fujitsu VP 100 performs many trials concurrently in order to take advantage of the
machine’s vector pipelines.

Use of real arithmetic

Most supercomputers were not designed to optimise the performance of exact
(multiple-precision) integer arithmetic. On machines with fast floating-point hard-
ware, e.g. pipelined 64-bit floating point units, it may be best to represent base β
digits in floating-point words. The upper bound on β is imposed by the multiplication
algorithm – we must ensure that β2 is exactly representable in a (single or double-
precision) floating-point word. For example, on the Fujitsu VP 100, which has a
56-bit fraction and 8-bit exponent, we use β = 226.

Redundant representations mod N

Many integer factorisation algorithms require operations to be performed mod N ,
where N is the number to be factorised. A straightforward implementation would
perform a multiple-precision operation and then perform a division by N to find the
remainder. However, it is faster to avoid explicit divisions. Usually it is not necessary
to represent the result uniquely. For example, consider the computation of x∗ymod N .
The result is r = x∗ y− q ∗N and it may be sufficient to choose q so that 0 ≤ r < 2N
(a weaker constraint than the usual 0 ≤ r < N). To compute r we multiply x by
the digits of y, most significant digit first, but modify the standard “shift and add”
algorithm to subtract single-precision multiples of N in order to keep the accumulated
sum bounded by 2N . Formally, a partial sum s is updated by s← β∗s+yj ∗x−qj ∗N ,
where qj is obtained by a division involving only a few leading digits of β ∗ s + yj ∗ x
and N .

Computing inverses mod N

In some factorisation algorithms we need to compute inverses mod N . Suppose
that x is given, 0 < x < N , and we want to compute z such that xz = 1 mod N . The
extended Euclidean algorithm14 applied to x and N gives u and v such that

ux + vN = GCD(x, N).

If GCD(x,N) = 1 then ux = 1 mod N , so z = u. If GCD(x, N) > 1 then GCD(x, N)
is a nontrivial factor of N . This is a rare case where failure (in finding an inverse)
implies success (in finding a factor) !

3

3. Integer Factorisation Algorithms

There are many algorithms for finding a nontrivial factor f of a composite inte-
ger N . The most useful algorithms fall into one of two classes –

A. The run time depends mainly on the size of N, and is not strongly dependent on
the size of f . Examples are –

Lehman’s algorithm,16 which has worst-case run time O(N1/3).

The Continued Fraction algorithm23 and the Multiple Polynomial Quadratic
Sieve algorithm,26 which under plausible assumptions have expected run time
O(exp(c(log N log log N)1/2)), where c is a constant (depending on details of
the algorithm).

The Number Field Sieve algorithm,17 which under plausible assumptions has
expected run time O(exp(c(log N)1/3(log log N)2/3)), where c is a constant,
provided N has a suitable form (see Section 9).

B. The run time depends mainly on the size of f, the factor found. (We can assume
that f ≤ N1/2.) Examples are –

The trial division algorithm, which has run time O(f · (log N)2).

Pollard’s “rho” algorithm,25 which under plausible assumptions has expected
run time O(f1/2 · (log N)2).

Lenstra’s Elliptic Curve algorithm,20 which under plausible assumptions has
expected run time O(exp(c(log f log log f)1/2) · (log N)2), where c is a con-
stant.

In these examples, the time bounds are for a sequential machine, and the term
(log N)2 is a generous allowance for the cost of performing arithmetic operations on
numbers which are O(N) or O(N2).

Our survey of integer factorisation algorithms in Sections 4–9 is necessarily cur-
sory. For more information the reader is referred to the literature.5,6,10,22,26,28

4

4. Pollard’s “rho” algorithm

Pollard’s “rho” algorithm2,25 uses an iteration of the form

xi+1 = f(xi) mod N, i ≥ 0,

where N is the number to be factored, x0 is a random starting value, and f is a
polynomial with integer coefficients, for example f(x) = x2 + a (a 6= 0 (mod N)).

Let p be the smallest prime factor of N , and j the smallest positive index such
that x2j = xj (mod p). Making some plausible assumptions, it is easy to show that
the expected value of j is E(j) = O(p1/2). The argument is related to the well-known
“birthday” paradox – the probability that x0, x1, . . . , xk are all distinct mod p is
approximately (1−1/p) · (1−2/p) · · · (1−k/p) ∼ exp(−k2/(2p)), and if x0, x1, . . . , xk

are not all distinct mod p then j ≤ k.
In practice we do not know p in advance, but we can detect xj by taking greatest

common divisors. We simply compute GCD (x2i − xi, N) for i = 1, 2, . . . and stop
when a GCD greater than 1 is found.

An example of the success of a variation of the Pollard “rho” algorithm is the
complete factorisation of the Fermat number F8 = 228

+ 1 by Brent and Pollard.8 In
fact

F8 = 1238926361552897 · p62,

where p62 is a 62-digit prime.
Parallel implementation of the “rho” algorithm does not give linear speedup.

It does not seem possible to use parallelism to speed up the computation of the
sequence (xi) by a significant amount. A plausible use of parallelism is to try several
different pseudo-random sequences (generated by different polynomials f). If we have
P processors and use P different sequences in parallel, the probability that the first k
values in each sequence are distinct mod p is approximately exp(−k2P/(2p)), so the
speedup is O(P 1/2) and the efficiency is only O(P−1/2).

5. The advantages of a group operation

The Pollard rho algorithm takes xi+1 = f(xi) mod N where f is a polynomial.
Computing xn requires n steps. Suppose instead that xi+1 = x0 ∗ xi where “∗” is an
associative operator, i.e. x∗ (y ∗z) = (x∗y)∗z . Then we can compute xn in O(log n)
steps by the binary powering method.14

Let m be some bound assigned in advance, and let E be the product of all
maximal prime powers qe, qe ≤ m. Choose some starting value x0, and consider the
cyclic group <x0> consisting of all powers of x0 (under the associative operator “∗”).
If this group has order g whose prime power components are bounded by m, then g|E
and xE

0 = I, where I is the group identity.
We may consider a group defined mod p but work mod N , where p is an un-

known divisor of N . This amounts to using a redundant representation for the group
elements. When we compute the identity I, its representation mod N may allow us
to compute p via a GCD computation (compare Pollard’s rho algorithm). We give
two examples below: Pollard’s p− 1 algorithm and Lenstra’s elliptic curve algorithm.

5

6. Pollard’s p− 1 algorithm

Pollard’s “p − 1” algorithm24 may be regarded as an attempt to generate the
identity in the multiplicative group of Fp = GF (p). Here the group operation “∗” is
just multiplication mod p, so (by Fermat’s theorem) g|p− 1 and

xE
0 = I ⇒ xE

0 = 1 (mod p)⇒ p|GCD (xE
0 − 1, N)

The “p − 1” algorithm is very effective in the fortunate case that p − 1 has no
large prime factors. For example, Baillie found the factor

p25 = 1155685395246619182673033

of the Mersenne number M257 = 2257 − 1 (claimed to be prime by Mersenne) using
the “p− 1” algorithm. In this case

p25 − 1 = 23 · 32 · 192 · 47 · 67 · 257 · 439 · 119173 · 1050151

In the worst case, when (p − 1)/2 is prime, the “p − 1” algorithm is no better
than trial division. Since the group has fixed order p− 1 there is nothing to be done
except try a different algorithm.

Parallel implementation of the “p − 1” algorithm is difficult, because the inner
loop seems inherently serial. At best, parallelism can speed up the multiple precision
operations by a small factor (depending on log N but not on p). In the next section
we show that it is possible to overcome the main handicaps of the “p− 1” algorithm,
and obtain an algorithm which is easy to implement in parallel and does not depend
on a lucky factorisation of p− 1.

6

7. Lenstra’s elliptic curve algorithm
If we can choose a “random” group G with order g close to p, we may be able

to perform a computation similar to that involved in Pollard’s “p − 1” algorithm,
working in G rather than in Fp. If all prime factors of g are less than the bound m
then we find a factor of N . Otherwise, repeat with a different G (and hence, usually, a
different g) until a factor is found. This is the motivation for H. W. Lenstra’s elliptic
curve algorithm (usually denoted “ECM”).

A curve of the form
y2 = x3 + ax + b (7.1)

over some field F is known as an elliptic curve. A more general cubic in x and y
can be reduced to the form (7.1), which is known as the Weierstrass normal form, by
rational transformations.

There is a well-known way of defining an Abelian group (G, ∗) on an elliptic curve
over a field. Formally, if P1 = (x1, y1) and P2 = (x2, y2) are points on the curve, then
the point P3 = (x3, y3) = P1 ∗ P2 is defined by –

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1), (7.2)

where

λ =
{

(3x2
1 + a)/(2y1) if P1 = P2

(y1 − y2)/(x1 − x2) otherwise.

The identity element I in G is the “point at infinity”, (∞,∞).
The geometric interpretation of P1 ∗P2 is straightforward: the straight line P1P2

intersects the elliptic curve at a third point P ′
3 = (x3,−y3), and P3 is the reflection

of P ′
3 in the x-axis. We refer the reader to a suitable text13,15 for an introduction to

the theory of elliptic curves.
In Lenstra’s algorithm20 the field F is the finite field Fp of p elements, where

p is a prime factor of N . The multiplicative group of Fp, used in Pollard’s “p − 1”
algorithm, is replaced by the group G defined by (7.1) and (7.2). Since p is not known
in advance, computation is performed in the ring Z/NZ of integers modulo N rather
than in Fp. We can regard this as using a redundant group representation.

A trial is the computation involving one random group G. The steps involved
are –

1. Choose x0, y0 and a randomly in [0, N). This defines b = y2
0− (x3

0 +ax0) mod N .
Set P ← P0 = (x0, y0).

2. For prime q ≤ m set P ← P qe

in the group G defined by a and b, where e is
an exponent chosen as in Section 5. If P = I then the trial succeeds as a factor
of N will have been found during an attempt to compute an inverse mod N .
Otherwise the trial fails.
The work involved in a trial is O(m) group operations. There is a tradeoff

involved in the choice of m, as a trial with large m is expensive, but a trial with small
m is unlikely to succeed.

Given x ∈ Fp, there are at most two values of y ∈ Fp satisfying (7.1). Thus,
allowing for the identity element, we have g = |G| ≤ 2p + 1. A much stronger result,
the Riemann hypothesis for finite fields, is known –

|g − p− 1| < 2p1/2. (7.3)

7

Making the (incorrect, but close enough) assumption that g behaves like a random
integer distributed uniformly in (p− 2p1/2, p + 2p1/2), we may show that the optimal
choice of m is m = p1/α, where

α ∼ (2 ln p/ ln ln p)1/2 (7.4)

It follows that the expected run time is

T = p2/α+o(1/α). (7.5)

For details, see Lenstra20 and Brent.3 The exponent 2/α in (7.5) should be compared
with 1 (for trial division) or 1/2 (for Pollard’s “rho” method). Because of the over-
heads involved with ECM, a simpler algorithm such as Pollard’s “rho” is preferable for
finding factors of size up to about 1010, but for larger factors the asymptotic advantage
of ECM becomes apparent. The following two examples illustrate the power of ECM.

1. A perfect number is a number N equal to the sum of its divisors (including 1
but not N itself), e.g. 28 = 1 + 2 + 4 + 7 + 14. It is not known if any odd
perfect numbers exist, but it has been shown7 that any odd perfect number must
be larger than 10300. The proof required many factorisations of numbers of the
form pn − 1, where p and n are prime. Most of these factorisations were found
by ECM, e.g. the factorisation

4089568263561830388113662969166474269 · p65

of the 101-digit number (46741 − 1)/(466 · 1022869).
2. We recently completed the factorisation of the 617-decimal digit Fermat number

F11 = 2211
+ 1. In fact

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564

where the 21-digit and 22-digit prime factors were found using ECM, and p564

is a 564-decimal digit prime. The factorisation required about 360 million mul-
tiplications mod N , which took less than 2 hours on a Fujitsu VP 100 vector
processor.4

A second phase
Both the Pollard “p − 1” and Lenstra elliptic curve algorithms can be speeded

up by the addition of a second phase. The idea of the second phase is to find a factor
in the case that the first phase terminates with a group element P 6= I, such that
|〈P 〉| is reasonably small (say O(m2)). (Here 〈P 〉 is the cyclic group generated by P .)
There are several possible implementations of the second phase. One of the simplest
uses a pseudorandom walk in 〈P 〉. By the birthday paradox argument, there is a good
chance that two points in the random walk will coincide after O(|〈P 〉|)1/2 steps, and
when this occurs a nontrivial factor of N can usually be found. Details may be found
in Brent3 and Montgomery.22

The use of a second phase provides a significant speedup in practice, but does
not change the asymptotic time bound (7.5). Similar comments apply to other im-
plementation details, such as ways of avoiding most divisions and speeding up group

8

operations, ways of choosing good initial points, and ways of using preconditioned
polynomial evaluation.3,21,22

Parallel implementation of ECM
So long as the expected number of trials is much larger than the number P of

processors available, linear speedup is possible by performing P trials in parallel. In
fact, if T1 is the expected run time on one processor, then the expected run time on
an MIMD parallel machine with P processors is

TP = T1/P + O(T 1/2+ε
1) (7.6)

The bound (7.6) applies on single-instruction multiple-data (SIMD) machines if
we use the Montgomery-Chudnovsky form by2 = x3+ax2+x instead of the Weierstrass
normal form (7.1) in order to avoid divisions.22

In practice, it may be difficult to perform P trials in parallel because of stor-
age limitations. The second phase requires much more storage than the first phase.
Fortunately, there are several possibilities for making use of parallelism during the
second phase of each trial. Our implementation performs the first phase of P trials in
parallel, but the second phase of each trial sequentially, using P processors to speed
up the evaluation of the high-degree polynomials which constitute most of the work
during the second phase.

8. Quadratic sieve algorithms

Quadratic sieve algorithms belong to a wide class of algorithms which try to find
two integers x and y such that x 6= ±y (mod N) but

x2 = y2 (mod N) (8.1)

Once such x and y are found, then GCD (x− y,N) is a nontrivial factor of N .
One way to find x and y satisfying (8.1) is to find a set of relations of the form

u2
i = v2

i wi (mod N), (8.2)

where the wi have all their prime factors in a moderately small set of primes (called the
factor base). Each relation (8.2) gives a row in a matrix M whose columns correspond
to the primes in the factor base. Once enough rows have been generated, we can use
sparse Gaussian elimination in F2 (Weidemann33) to find a linear dependency (mod
2) between a set of rows of M . Multiplying the corresponding relations now gives a
relation of the form (8.1).

In quadratic sieve algorithms the numbers wi are the values of one (or more)
polynomials with integer coefficients. This makes it easy to factorise the wi by sieving.
For details of the process, we refer to several recent papers.11,19,26,27,31 The inner loop
of the sieving process looks like

9

while j < bound do
begin
s[j]← s[j] + c;
j ← j + q;
end

Here bound depends on the size of the (single-precision real) sieve array s, q is a
small prime or prime power, and c is a single-precision real constant depending on q
(c = Λ(q) = log p if q = pe, p prime). The loop can be implemented efficiently
on a pipelined vector processor. It is possible to use scaling to avoid floating point
additions, which is desirable on a small processor without floating-point hardware.

The best quadratic sieve algorithms such as the multiple polynomial quadratic
sieve algorithm MPQS26 can, under plausible assumptions, factor a number N in
time O(exp(c(log N log log N)1/2)), where c ∼ 1. The constants involved are such
that MPQS is usually faster than ECM if N is the product of two primes which both
exceed N1/3.

At first sight it is surprising that algorithms as different as MPQS and ECM have
similar expected time bounds. MPQS requires O(B) factorisations of numbers wi of
size O(N1/2+ε) over the factor base of size B, and the work per trial is small (because
of the efficiency of the sieving process). On the other hand, ECM requires only one
number (the order of the group G) to factor completely over primes not exceeding m,
but the work per trial is O(m). Use of “partial relations”, i.e. incompletely factored
wi, in MPQS is analogous to the second phase of ECM and gives a similar performance
improvement.
Parallel implementation of MPQS

Like ECM, MPQS is ideally suited to parallel implementation. Different pro-
cessors may use different polynomials, or sieve over different intervals with the same
polynomial. Thus, there is a linear speedup so long as the number of processors is
not much larger than the size of the factor base. The process requires very little
communication between processors. Each processor can generate relations and for-
ward them to some central collection point. This has been demonstrated most clearly
by A. K. Lenstra and M. S. Manasse19 who distribute their program and collect
relations via electronic mail. The processors are scattered around the world – anyone
with access to electronic mail and a C compiler can volunteer to contribute. The final
stage – Gaussian elimination to combine the relations – is not so easily distributed.
However, in practice it is only a small fraction of the computation.

MPQS has been used to obtain many spectacular factorisations.9,27,31 Lenstra and
Manasse19 (with many assistants scattered around the world) have factorised several
numbers larger than 10100. For example, a recent factorisation was the 111-decimal
digit number

2484 + 1 = 38608979869428210686559330362638245355335498797441 · p61

Such factorisations require many years of CPU time, but a real time of only a month
or so because of the number of different processors which are working in parallel.

10

9. The number field sieve (NFS)
Our numerical examples have all involved numbers of the form

ae ± b, (9.1)

for small a and b, although the ECM and MPQS factorisation algorithms do not take
advantage of this special form.

The number field sieve (NFS) is a new algorithm which does take advantage of
the special form (9.1). In concept it is similar to the quadratic sieve algorithm, but
it works over an algebraic number field defined by a, e and b. We refer the interested
reader to Lenstra et al 17 for details, and merely give an example to show the power
of the algorithm. For an introduction to the relevant concepts of algebraic number
theory, see Stewart and Tall.32

Consider the 155-decimal digit number

F9 = N = 229
+ 1

as a candidate for factoring by NFS. Note that 8N = m5 + 8, where m = 2103. We
may work in the number field Q(α), where α satisfies

α5 + 8 = 0,

and in the ring of integers of Q(α). Because

m5 + 8 = 0 (mod N),

the mapping φ : α 7→ m mod N is a ring homomorphism from Z[α] to Z/NZ.
The idea is to search for pairs of small coprime integers u and v such that both

the algebraic integer u+αv and the (rational) integer u+mv can be factorised. (The
factor base now includes prime ideals and units as well as rational primes.) Because

φ(u + αv) = (u + mv) (mod N),

each such pair gives a relation analogous to (8.2).
The prime ideal factorisation of u + αv can be obtained from the factorisation

of the norm u5 − 8v5 of u + αv. Thus, we have to factor simultaneously two integers
u+mv and |u5−8v5|. Note that, for moderate u and v, both these integers are much
smaller than N , in fact they are O(N1/d), where d = 5 is the degree of the algebraic
number field. (The optimal choice of d is discussed in Lenstra et al.17)

Using these and related ideas, Lenstra et al 18 recently factorised F9, obtaining

F9 = 2424833 · 7455602825647884208337395736200454918783366342657 · p99,

where p99 is an 99-digit prime, and the 7-digit factor was already known. The collec-
tion of relations took less than two months on a network of several hundred worksta-
tions. A sparse system of about 200,000 relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination, dependencies (mod 2) between the
rows were found in three hours on a Connection Machine. These dependencies implied
equations of the form x2 = y2 mod F9. The second such equation was nontrivial and
gave the desired factorisation of F9.

11

10. Conclusion

We have sketched some algorithms for integer factorisation. The algorithms draw
on results in elementary number theory, algebraic number theory and probability the-
ory. As well as their inherent interest and applicability to other areas of mathematics,
advances in computing technology have given them practical applications in the area
of secure communications.

Despite much progress in the development of efficient algorithms, our knowledge
of the complexity of factorisation is inadequate. We would like to find a polynomial
time factorisation algorithm or else prove that one does not exist. Until a polynomial
time algorithm is found, large factorisations will continue to challenge the capabilities
of supercomputers.

Acknowledgement

Some of the numerical results quoted above were obtained with the assistance of
the Australian National University Supercomputer Facility.

References

1. R. P. Brent, “A Fortran multiple-precision arithmetic package”, ACM Transac-
tions on Mathematical Software 4 (1978), 57-70.

2. R. P. Brent, “An improved Monte Carlo factorisation algorithm”, BIT 20 (1980),
176-184.

3. R. P. Brent, “Some integer factorisation algorithms using elliptic curves”, Aus-
tralian Computer Science Communications 8 (1986), 149-163.

4. R. P. Brent, “Factorisation of the eleventh Fermat number (preliminary report)”,
AMS Abstracts 10 (1989), 89T-11-73.

5. R. P. Brent, “Parallel algorithms for integer factorisation”, in Number Theory and
Cryptography (edited by J. H. Loxton), London Mathematical Society Lecture
Note Series 154, Cambridge University Press, 1990, 26-37.

6. R. P. Brent, “Primality testing and integer factorisation”, The Role of Mathe-
matics in Science, Proceedings of a Symposium held at the Australian Academy
of Science, Canberra, April 1990, to appear.

7. R. P. Brent, G. L. Cohen and H. J. J. te Riele, “Improved techniques for lower
bounds for odd perfect numbers”, to appear in Mathematics of Computation.

8. R. P. Brent and J. M. Pollard, “Factorisation of the eighth Fermat number”,
Mathematics of Computation 36 (1981), 627-630.

9. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr.,
Factorisations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American
Mathematical Society, Providence, Rhode Island, second edition, 1985.

10. D. A. Buell, “Factoring: algorithms, computations, and computers”, J. Super-
computing 1 (1987), 191-216.

11. T. R. Caron and R. D. Silverman, “Parallel implementation of the quadratic
sieve”, J. Supercomputing 1 (1988), 273-290.

12. H. Cohen and H. W. Lenstra, Jr., “Primality testing and Jacobi sums”, Mathe-
matics of Computation 42 (1984), 297-330.

13. K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
Springer-Verlag, 1982, Ch. 18.

12

14. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, 2nd
edition, 1982.

15. S. Lang, Elliptic Curves – Diophantine Analysis, Springer-Verlag, 1978.
16. R. S. Lehman, “Factoring large integers”, Mathematics of Computation 28 (1974),

637-646.
17. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The num-

ber field sieve, Proc. 22nd Annual ACM Conference on Theory of Computing,
Baltimore, Maryland, May 1990, 564-572.

18. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, Complete
factorization of the ninth Fermat number, e-mail announcement, 15 June 1990.

19. A. K. Lenstra and M. S. Manasse, “Factoring by electronic mail”, to appear in
Proceedings Eurocrypt ’89.

20. H. W. Lenstra, Jr., “Factoring integers with elliptic curves”, Ann. of Math. (2)
126 (1987), 649-673.

21. P. L. Montgomery, “Modular multiplication without trial division”, Mathematics
of Computation 44 (1985), 519-521.

22. P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factori-
sation”, Mathematics of Computation 48 (1987), 243-264.

23. M. A. Morrison and J. Brillhart, “A method of factorisation and the factorisation
of F7”, Mathematics of Computation 29 (1975), 183-205.

24. J. M. Pollard, “Theorems in factorisation and primality testing”, Proc. Cam-
bridge Philos. Soc. 76 (1974), 521-528.

25. J. M. Pollard, “A Monte Carlo method for factorisation”, BIT 15 (1975), 331-334.
26. C. Pomerance, J. W. Smith and R. Tuler, “A pipeline architecture for factoring

large integers with the quadratic sieve algorithm”, SIAM J. on Computing 17
(1988), 387-403.

27. H. J. J. te Riele, W. Lioen and D. Winter, “Factoring with the quadratic sieve
on large vector computers”, Belgian J. Comp. Appl. Math. 27(1989), 267-278.

28. H. Riesel, Prime Numbers and Computer Methods for Factorisation, Birkhäuser,
Boston, 1985.

29. R. L. Rivest, A. Shamir and L. Adelman, “A method for obtaining digital dig-
natures and public-key cryptosystems”, Communications of the ACM 21 (1978),
120-126.

30. J. Seberry and J. Pieprzyk, Cryptography: An Introduction to Computer Security,
Prentice Hall, Sydney, 1989.

31. R. D. Silverman, “The multiple polynomial quadratic sieve”, Mathematics of
Computation 48 (1987), 329-339.

32. I. N. Stewart and D. O. Tall, Algebraic Number Theory, second edition, Chapman
and Hall, 1987.

33. D. Wiedemann, “Solving sparse linear equations over finite fields”, IEEE Trans.
Inform. Theory 32 (1986), 54-62.

13

