
The LINPACK Benchmark on the Fujitsu AP 1000∗

Richard P. Brent†

Computer Sciences Laboratory
Australian National University

Canberra, Australia

Abstract

We describe an implementation of the LINPACK
Benchmark on the Fujitsu AP 1000. Design consider-
ations include communication primitives, data distri-
bution, use of blocking to reduce memory references,
and effective use of the cache. Some details of our
blocking strategy appear to be new. The results show
that the LINPACK Benchmark can be implemented ef-
ficiently on the AP 1000, and it is possible to attain
about 80 percent of the theoretical peak performance
for large problems.

1 Introduction

This paper describes an implementation of the LIN-
PACK Benchmark [6] on the Fujitsu AP 1000. Pre-
liminary results were reported in [2].

The LINPACK Benchmark involves the solution
of a nonsingular system of n linear equations in n
unknowns, using Gaussian elimination with partial
pivoting and double-precision (64-bit) floating-point
arithmetic. We are interested in large systems since
there is no point in using a machine such at the
AP 1000 to solve single small systems.

The manner in which matrices are stored is very
important on a distributed-memory machine such as
the AP 1000. In Section 2 we discuss several matrix
storage conventions, including the one adopted for the
benchmark programs.

Section 3 is concerned with the algorithm used for
parallel LU factorization. Various other aspects of the
design of the benchmark programs are mentioned in
Section 4. For example, we discuss the use of blocking
to improve efficiency, effective use of the cache, and
communication primitives.

In Section 5 we present results obtained on AP 1000
machines with up to 512 cells. Some conclusions are
given in Section 6.

∗Appeared in Proc. Frontiers ’92 (McLean, VA, October
1992), IEEE Press, 1992, 128–135. c© 1992, IEEE.

†E-mail address: rpb@cslab.anu.edu.au

1.1 The Fujitsu AP 1000

The Fujitsu AP 1000 (also known as the “CAP 2”)
is a MIMD machine with up to 1024 independent 25
Mhz SPARC1 processors which are called cells. Each
cell has 16 MByte of dynamic RAM and 128 KByte
cache. In some respects the AP 1000 is similar to the
CM 5, but the AP 1000 does not have vector units,
so the floating-point speed of a cell is constrained
by the performance of its Weitek floating-point unit
(5.56 Mflop/cell for overlapped multiply and add in
64-bit arithmetic). The topology of the AP 1000 is a
torus, with hardware support for wormhole routing [5].
There are three communication networks – the B-net,
for communication with the host; the S-net, for syn-
chronization; and the T-net, for communication be-
tween cells. The T-net is the most significant for us.
It provides a theoretical bandwidth of 25 MByte/sec
between cells. In practice, due to overheads such as
copying buffers, about 6 MByte/sec is achievable by
user programs. For details of the AP 1000 architecture
and software environment, see [3, 4].

1.2 Notation

Apart from the optional use of assembler for some
linear algebra kernels, our programs are written in
the C language. For this reason, we use C index-
ing conventions, i.e. rows and columns are indexed
from 0. Because we often need to take row/column
indices modulo some number related to the machine
configuration, indexing from 0 is actually more con-
venient than indexing from 1. In C a matrix with
m ≤ MMAX rows and n ≤ NMAX columns may be de-
clared as a[MMAX][NMAX], where MMAX and NMAX are con-
stants known at compile-time. The matrix elements
are a[i][j], 0 ≤ i < m, 0 ≤ j < n. Rows are stored in
contiguous locations, i.e. a[i][j] is adjacent to a[i][j+1].
(Fortran conventions are to store columns in contigu-
ous locations, and to start indexing from 1 rather than
from 0.)

1SPARCTM is a trademark of Sun Microsystems, Inc.
rpb130 typeset using LATEX

When referring to the AP 1000 configuration as
ncelx by ncely, we mean that the AP 1000 is con-
figured as a torus with ncelx cells in the horizon-
tal (X) direction (corresponding to index j above)
and ncely cells in the vertical (Y) direction (cor-
responding to index i). Here “torus” implies that
the cell connections wrap around, i.e. cell (x, y) (for
0 ≤ x < ncelx, 0 <= y < ncely) is connected to cell
(x ± 1 mod ncelx, y ± 1 mod ncely). Wrap-around is
not important for the LINPACK Benchmark – our al-
gorithm would work almost as well on a machine with
a rectangular grid without wrap-around.

The total number of cells is P = ncelx ·ncely. The
aspect ratio is the ratio ncely : ncelx. If the aspect
ratio is 1 or 2 we sometimes use s = ncelx. In this
case ncely = s or 2s and P = s2 or 2s2.

1.3 Restrictions

Our first implementation was restricted to a square
AP 1000 array, i.e. one with aspect ratio 1. Later this
was extended in an ad hoc manner to aspect ratio 2.
This was sufficient for benchmark purposes since all
AP 1000 machines have 2k cells for some integer k,
and can be configured with aspect ratio 1 (if k is even)
or 2 (if k is odd). For simplicity, the description in
Sections 3 and 4 assumes aspect ratio 1.

A minor restriction is that n is a multiple of ncely.
This is not a serious constraint, since it is easy to add
up to ncely−1 rows and columns (zero except for unit
diagonal entries) to get a slightly larger system with
essentially the same solution.

2 Matrix storage conventions

On the AP 1000 each cell has a local memory which
is accessible to other cells only via explicit message
passing. It is customary to partition data such as ma-
trices and vectors across the local memories of several
cells. This is essential for problems which are too large
to fit in the memory of one cell, and in any case it
is usually desirable for load-balancing reasons. Since
vectors are a special case of matrices, we consider the
partitioning of a matrix A.

Before considering how to map data onto the
AP 1000, it is worth considering what forms of data
movement are common in Gaussian elimination with
partial pivoting. Most other linear algebra algorithms
have similar data movement requirements. To perform
Gaussian elimination we need –

Row/column broadcast. For example, the pivot
row has to be sent to processors responsible for
other rows, so that they can be modified by the

addition of a multiple of the pivot row. The col-
umn which defines the multipliers also has to be
broadcast.

Row/column send/receive. For example, if piv-
oting is implemented by explicitly interchanging
rows, then at each pivoting step two rows may
have to be interchanged.

Row/column scan. Here we want to apply an
associative operator θ to data in one (or more)
rows or columns. For example, when selecting
the pivot row it is necessary to find the index of
the element of maximum absolute value in (part
of) a column. This may be computed with a scan
if we define an associative operator θ as follows:

(a, i) θ (b, j) =
{

(a, i), if |a| ≥ |b|;
(b, j), otherwise.

Other useful associative operators are addition (of
scalars or vectors) and concatenation (of vectors).

It is desirable for data to be distributed in a “nat-
ural” manner, so that the operations of row/column
broadcast/send/receive/scan can be implemented effi-
ciently [1].

A simple mapping of data to cells is the column-
wrapped representation. Here column i of a matrix
is stored in the memory associated with cell i mod P ,
assuming that the P cells are numbered 0, 1, . . . , P−1.

Although simple, and widely used in parallel im-
plementations of Gaussian elimination [13, 14, 18, 19],
the column-wrapped representation has some disad-
vantages – lack of symmetry, poor load balancing, and
poor communication bandwidth for column broad-
cast – see [1]. Similar comments apply to the anal-
ogous row-wrapped representation.

Another conceptually simple mapping is the blocked
representation. Here A is partioned into at most P
blocks of contiguous elements, and at most one block
is stored in each cell. However, as described in [1],
the blocked representation is inconvenient for matrix
operations if several matrices are stored with different
block dimensions, and it suffers from a load-balancing
problem.

Harder to visualize, but often better than the
row/column-wrapped or blocked representations, is
the scattered representation [8], sometimes called dot
mode [17] or cut-and-pile. Assume as above that the
cells form an s by s grid. Then the matrix element ai,j

is stored in cell (j mod s, i mod s) with local indices
(bi/sc, bj/sc). The matrices stored locally on each cell
have the same shape (e.g. triangular, . . .) as the global
matrix A, so the computational load on each cell is ap-
proximately the same.

2

The blocked and scattered representations do not
require a configuration with aspect ratio 1, although
matrix multiplication and transposition are easier to
implement if the aspect ratio is 1 than in the general
case [20]. In the general case, the scattered represen-
tation of A on an ncelx by ncely configuration stores
matrix element ai,j on cell (j mod ncelx, i mod ncely).

Some recent implementations of the LINPACK
Benchmark use a blocked panel-wrapped representa-
tion [12] which may be regarded as a generalization of
the blocked and scattered representations described
above. An integer blocking factor b is chosen, the
matrix A is partitioned into b by b blocks Ai,j (with
padding if necessary), and then the blocks Ai,j are
distributed as for our scattered representation, i.e. the
block Ai,j is stored on cell (j mod ncelx, i mod ncely).
If b = 1 this is just our scattered representation, but
if b is large enough that the “mod” operation has no
effect then it reduces to a straightforward blocked rep-
resentation.

The blocked panel-wrapped representation is dif-
ficult to program, but its use may be desirable on a
machine with high communication startup times. The
AP 1000 has a lower ratio of communication startup
time to floating-point multiply/add time than the In-
tel iPSC/860 or Intel Delta [12], and we have found
that it is possible to obtain good performance on the
AP 1000 with b = 1. Thus, for the benchmark pro-
grams we used the scattered representation as de-
scribed above, with b = 1. Our programs use a differ-
ent form of blocking, described in Section 4.1, in order
to obtain good floating-point performance within each
cell.

3 The parallel algorithm

Suppose we want to solve a nonsingular n by n lin-
ear system

Ax = b (3.1)

on an AP 1000 with ncelx = ncely = s. Assume
that the augmented matrix [A|b] is stored using the
scattered representation.

It is known [15] that Gaussian elimination is equiva-
lent to triangular factorization. More precisely, Gaus-
sian elimination with partial pivoting produces an up-
per triangular matrix U and a lower triangular matrix
L (with unit diagonal) such that PA = LU , where P
is a permutation matrix. In the usual implementation
A is overwritten by L and U (the diagonal of L need
not be stored). If the same procedure is applied to
the augmented matrix Ā = [A|b], we obtain PĀ = LŪ
where Ū = [U |b̄] and (3.1) has been transformed into
the upper triangular system Ux = b̄.

In the following we shall only consider the transfor-
mation of A to U , as the transformation of Ā to Ū is
similar.

If A has n rows, the following steps have to be re-
peated n−1 times, where the k-th iteration completes
computation of the k-th row of U –

1. Find the index of the next pivot row by finding
an element of maximal absolute value in the cur-
rent (k-th) column, considering only elements on
and below the diagonal. With the scattered rep-
resentation this involves s cells, each of which
have to find a local maximum and then apply
an associative operator. The AP 1000 provides
hardware and system support for such operations
(y damax).

2. Broadcast the pivot row vertically. The AP 1000
provides hardware and system support for such
row (or column) broadcasts (y brd, x brd) so
they only involve one communication overhead.
On machines without such support, row and col-
umn broadcasts are usually implemented via mes-
sage passing from the root to the leaves of s bi-
nary trees. This requires O(log s) communication
steps.

3. Exchange the pivot row with the current k-th row,
and keep a record of the row permutation. Gen-
erally the exchange requires communication be-
tween two rows of s cells. Since the pivot row
has been broadcast at step 2, only the current
k-th row has to be sent at this step. The ex-
changes can be kept implicit, but this leads to
load-balancing problems and difficulties in imple-
menting block updates, so explicit exchanges are
usually preferable.

4. Compute the “multipliers” (elements of L) from
the k-th column and broadcast them horizontally.

5. Perform Gaussian elimination (using the portion
of the pivot row and the other rows held in each
cell). If done in the obvious way, this involves
saxpy2 operations, but the computation can also
be formulated as a rank-1 update by combining
several saxpys. In Section 4.1 we describe how
most of the operations may be performed using
matrix-matrix multiplication, which is faster.

We can make an estimate of the parallel time TP

required to perform the transformation of A to upper
triangular form. There are two main contributions –

2A saxpy is the addition of a scalar multiple of one vector to
another vector.

3

A. Floating-point arithmetic. The overall computa-
tion involves 2n3/3 + O(n2) floating-point opera-
tions (counting additions and multiplications sep-
arately). Because of the scattered representation
each of the P = s2 cells performs approximately
the same amount of arithmetic. Thus floating-
point arithmetic contributes a term O(n3/s2) to
the computation time.

B. Communication. At each iteration of steps 1-5
above, a given cell sends or receives O(n/s) words.
We shall assume that the time required to send or
receive a message of w words is c0+c1w, where c0

is a “startup” time and 1/c1 is the transfer rate.3
With this assumption, the overall communication
time is O(n2/s) + O(n), where the O(n) term is
due to startup costs.

On the AP 1000 it is difficult to effectively over-
lap arithmetic and communication when the “syn-
chronous” message-passing routines are used for com-
munication (see Section 4.4). Ignoring any such over-
lap, the overall time TP may be approximated by

TP ' αn3/s2 + βn2/s + γn, (3.2)

where α depends on the floating-point and memory
speed of each cell, β depends mainly on the commu-
nication transfer rate between cells, and γ depends
mainly on the communication startup time. We would
expect the time on a single cell to be T1 ' αn3, al-
though this may be inaccurate for various reasons –
e.g. the problem may fit in memory caches on a par-
allel machine, but not on a single cell.

3.1 Solution of triangular systems

Due to lack of space we omit details of the “back-
substitution” phase, i.e. the solution of the upper tri-
angular system Ux = b̄. This can be performed in time
much less than (3.2): see [8, 18, 20]. For example, with
n = 1000 on a 64-cell AP 1000, back-substitution takes
less than 0.1 sec but the LU factorization takes about
3.4 sec. Implementation of back-substitution is rela-
tively straightforward. The main differences between
the back-substitution phase and the LU factorization
phase are –

1. No pivoting is required.

2. The high-order term αn3/s2 in (3.2) is reduced
to O(n2/s2), so the low-order terms become rela-
tively more important.

3The time may depend on other factors, such as the distance
between the sender and the receiver and the overall load on the
communication network, but our approximation is reasonable
on the AP 1000.

4 Design considerations

In this section we consider various factors which in-
fluenced the design of the LINPACK Benchmark pro-
grams.

4.1 The need for blocking within cells

On many serial machines, including the AP 1000
cells, it is impossible to achieve peak performance if
the Gaussian elimination is performed via saxpys or
rank-1 updates. This is because performance is lim-
ited by memory accesses rather than by floating-point
arithmetic, and saxpys or rank-1 updates have a high
ratio of memory references to floating-point opera-
tions. Closer to peak performance can be obtained
for matrix-vector or (better) matrix-matrix multipli-
cation [7, 10, 11, 20].

It is possible to reformulate Gaussian elimination so
that most of the floating-point arithmetic is performed
in matrix-matrix multiplications, without compromis-
ing the error analysis. Partial pivoting introduces
some difficulties, but they are surmountable. There
are several possibilities – the one described here is a
variant of the “right-looking” scheme of [7]. The idea
is to introduce a “blocksize” or “bandwidth” parame-
ter ω. Gaussian elimination is performed via saxpys or
rank-1 updates in vertical strips of width ω. Once ω
pivots have been chosen, a horizontal strip of height ω
containing these pivots can be updated. At this point,
a matrix-matrix multiplication can be used to update
the lower right corner of A.

The optimal choice of ω may be determined by ex-
periment, but ω ' n1/2 is a reasonable choice. For
simplicity we use a fixed ω throughout the LU factor-
ization (except at the last step, if n is not a multiple
of ω). It is convenient to choose ω to be a multiple
of s where possible.

We originally planned to use a distributed matrix-
matrix multiply-add routine for the block update
step. Such routines have been written as part of the
CAP BLAS project [20]. However, this approach in-
volves unnecessary communication costs. Instead, we
take advantage of each AP 1000 cell’s relatively large
memory (16 MByte) and save the relevant part of
each pivot row and multiplier column as it is broad-
cast during the horizontal and vertical strip updates.
The block update step can then be performed inde-
pendently in each cell, without any further communi-
cation. This idea may be new – we have not seen it
described in the literature. On the AP 1000 it im-
proves performance significantly by reducing commu-
nication costs. Each cell requires working storage of
about 2ωn/s floating-point words, in addition to the

4

(n2 + O(n))/s2 words required for the cell’s share of
the augmented matrix and the triangular factors.

To avoid any possible confusion, we emphasise two
points –

1. Blocking as described above does not change the
error bound for Gaussian elimination. Arithmeti-
cally, the only change is that certain inner prod-
ucts may be summed in a different order. Thus,
blocking does not violate an important rule of the
LINPACK Benchmark: that the algorithm used
must be no less stable numerically than Gaussian
elimination with partial pivoting. (This rule pre-
cludes the use of Gaussian elimination without
pivoting.)

2. Blocking with parameter ω in the LU factoriza-
tion is independent of blocking with parameter b
in the storage representation. Van de Geijn [12]
appears to use ω = b > 1, but we use ω > b = 1.
There is a tradeoff here: with ω = b > 1 the
number of communication steps is less but the
load balance is worse than with our choice of
ω > b = 1.

The effect of blocking with ω ' n1/2 and b = 1 is
to reduce the constant α in (3.2) at the expense of in-
troducing another term O(n5/2/s2) and changing the
lower-order terms. Thus, a blocked implementation
should be faster for sufficiently large n, but may be
slower than an unblocked implementation for small n.
This is what we observed – with our implementation
the crossover occurs at n ' 40s.

4.2 Kernels for single cells

As described in [20], it is not possible to obtain peak
performance when writing in C, because of deficiencies
in the C compiler which is currently used (the stan-
dard Sun release 4.1 cc compiler). A simple-minded
C compiler, which took notice of register declarations
and did not attempt to reorder loads, stores, and
floating-point operations, would perform better than
our current optimizing compiler on carefully written
C code.

We wrote some simple loops (essentially a subset
of the level 1 and level 2 BLAS) in assembly language
in order to obtain better performance. In all cases
an equivalent C routine exists and can be used by
changing a single constant definition.

The key to obtaining high performance in simple
floating-point computations such as inner and outer
products is –

1. Write “leaf” routines to minimise procedure call
overheads [21].

2. Keep all scalar variables in registers. The routines
are sufficiently simple that this is possible.

3. Separate loads, floating multiplies, floating adds,
and stores which depend on each other by a suffi-
ciently large number of instructions that operands
are always available when needed. This process
can be combined with loop unrolling.

Even when written in assembler, the kernels for sax-
pys and rank-1 updates are significantly slower than
the kernels for matrix-vector products, and these are
slightly slower than the kernels for matrix-matrix mul-
tiplication. The important parameter here is the num-
ber R of loads or stores from/to memory per floating-
point operation [7, 10]. A saxpy has R ≥ 1.5, since
there are two loads and one store for each floating-
point multiply and add; inner products and rank-1
updates have R > 1; matrix-vector multiplication has
R > 0.5. As described in [20], matrix-matrix multi-
plication can be implemented with R << 1. A lower
bound on R is imposed by the number of floating-
point registers (32 in single-precision, 16 in double-
precision). Our current implementation has R = 0.25
(single-precision) and R = 0.375 (double-precision).

4.3 Effective use of the cache

Each AP 1000 cell has a 128 KByte direct-mapped,
copy-back cache, which is used for both instructions
and data [4]. Performance can be severely degraded
unless care is taken to keep the cache-miss ratio low.
In the LU factorization it is important that each cell’s
share of the vertical and horizontal strips of width
ω should fit in the cell’s cache. This implies that ω
should be chosen so that ωn/s2 is no greater than the
cache size. If ωn/s exceeds the cache-size then care
has to be taken when the block update is performed
in each cell, but this is handled by the single-cell BLAS
routines, so no special care has to be taken in the LU
factorization routine.

4.4 Communication primitives

The AP 1000 operating system CellOS provides
both “synchronous” (e.g. xy send, x brd) and “asyn-
chronous” (e.g. r rsend) communication routines. In
both cases the send is non-blocking, but for the syn-
chronous routines the receive is blocking. Because
of the manner in which the communication routines
are currently implemented [4], both synchronous and
asynchronous routines give about the same transfer
rate (about 6 MByte/sec for user programs), but the
synchronous routines have a much lower startup over-
head (about 15 µsec) than the asynchronous routines.

5

4.5 Context switching and virtual cells

Our description has focussed on the case of aspect
ratio 1. This is the simplest case to understand and is
close to optimal because of the balance between com-
munication bandwidth in the horizontal and vertical
directions. Due to space limitations, we refer to [2] for
a discussion of design considerations for aspect ratio
greater than 1, including the use of “virtual cells” to
simulate a virtual machine with aspect ratio 1.

5 Results on the AP 1000

In this section we present the LINPACK Bench-
mark results. As described above, the benchmark
programs are written in C, with some assembler for
the single-cell linear algebra kernels. The programs
implement Gaussian elimination with partial pivoting
and check the size of the residual on the cells, so the
amount of data to be communicated between the host
and the cells is very small. All results given here are
for double-precision.4

The AP 1000 cells run at 25Mhz and the time for
overlapped independent floating-point multiply and
add operations is 9 cycles, giving a theoretical peak
speed of 5.56 Mflop per cell when performing compu-
tations with an equal number of multiplies and adds.5

The results in Table 1 are for n = 1000 and should
be compared with those in Table 2 of [6]. The results
in Table 2 are for n almost as large as possible (con-
strained by the storage of 16 MByte/cell), and should
be compared with those in Table 3 of [6]. In Table 2 –

nmax is the problem size giving the best perfor-
mance rmax,

nhalf is the problem size giving performance
rmax/2, and

rpeak is the theoretical peak performance, ignor-
ing everything but the speed of the floating-point
units. rpeak is sometimes called the “guaranteed
not to exceed” speed.

The results for the AP 1000 are good when com-
pared with reported results [6, 12] for other distributed
memory MIMD machines such as the nCUBE 2, Intel
iPSC/860, and Intel Delta, if allowance is made for
the different theoretical peak speeds. For example –

The 1024-cell nCUBE 2 achieves 2.59 sec for
n = 1000 and 1.91 Gflop for n = 21376 with

4Single-precision is about 50 percent faster.
5The peak double-precision speed is 6.25 Mflop per cell if

two adds are performed for every multiply.

rpeak = 2.4 Gflop. Our results indicate that a P -
cell AP 1000 is consistently faster than a 2P -cell
nCUBE 2.

The 512-cell Intel Delta achieves 1.5 sec for n =
1000 (an efficiency of 3 percent). It achieves
13.9 Gflop for n = 25000 but this is less than
70 percent of its theoretical peak of 20 Gflop.6

The 128-cell Intel iPSC/860 achieves 2.6 Gflop,
slightly more than the 512-cell AP 1000, but
this is only 52 percent of its theoretical peak of
5 Gflop.7

For large n the AP 1000 consistently achieves in the
range 79 to 82 percent of its theoretical peak, with the
figure slightly better when the aspect ratio is 1 than
when it is not.

An encouraging aspect of the results is that the
AP 1000 has relatively low nhalf . For example, on a
64-cell AP 1000 at ANU we obtained at least half the
best performance for problem sizes in the wide range
648 ≤ n ≤ 10000.7 As expected from (3.2), nhalf is
roughly proportional to P 1/2.

Table 3 gives the speed (as a percentage of the the-
oretical peak speed of 356 Mflop) of the LINPACK
Benchmark program on a 64-cell AP 1000, for various
problem sizes n, with and without blocking, and with
four different compilation options –

1. The fastest version, with assembler kernels for
some single-cell BLAS.

2. As for 1, but with carefully written C code re-
placing assembler kernels.

3. As for 2, but using “simple” C code without any
attempt to unroll loops or remove dependencies
between adjacent multiplies and adds.

4. As for 1, but not using the system routines x brd,
y brd, y damax, x dsum etc. Instead, these rou-
tines were simulated using binary tree algorithms
and the basic communication routines xy send,
xy recvs.

Table 3 shows that coding the single-cell BLAS in
assembler is worthwhile, at least if the alternative is
use of the current C compiler. The “simple” C code
(option 3) is significantly slower than the more sophis-
ticated code (option 2) for saxpys and rank-1 updates,
but not for matrix multiplication. This is because the

6Assuming 40 Gflop per cell, although 60 Gflop per cell is
sometimes quoted as the peak.

7On the 64-cell Intel Delta, the corresponding range is
2500 ≤ n ≤ 8000.

6

Time for cells time speedup efficiency
one cell (sec)

160 512 1.10 147 0.29
160 256 1.50 108 0.42
160 128 2.42 66.5 0.52
160 64 3.51 46.0 0.72
160 32 6.71 24.0 0.75
160 16 11.5 13.9 0.87
160 8 22.6 7.12 0.89
160 4 41.3 3.90 0.97
160 2 81.4 1.98 0.99

Table 1: LINPACK Benchmark results for n = 1000

cells rmax nmax nhalf rpeak rmax/
Gflop order order Gflop rpeak

512 2.251 25600 2500 2.844 0.79
256 1.162 18000 1600 1.422 0.82
128 0.566 12800 1100 0.711 0.80
64 0.291 10000 648 0.356 0.82
32 0.143 7000 520 0.178 0.80
16 0.073 5000 320 0.089 0.82

Table 2: LINPACK Benchmark results for large n

Problem With blocking Without blocking
size n 1 2 3 4 1 2 3 4
200 15 13 12 5 14 13 11 5
400 28 24 24 13 27 24 19 14
1000 53 40 39 35 44 37 26 32
2000 64 47 46 46 35 30 24 28
4000 74 52 51 61 37 31 25 33
8000 80 55 55 73 38 32 25 36
10000 82 56 55 75 37 32 25 35

Table 3: Speeds (% of peak) on 64-cell AP 1000

C compiler fails to use floating-point registers effec-
tively in the matrix multiplication routine, resulting
in unnecessary loads and stores in the inner loop.

Option 4 (avoiding x brd etc) shows how the
AP 1000 would perform without hardware/CellOS
support for x brd, y brd, y damax etc. Performance
would be significantly lower, especially for small n.

As n increases the performance without blocking
first increases (as expected) but then decreases or fluc-
tuates. This is because of the effect of finite cache size.
The rank-1 updates run slowly if the result does not fit
in the cache. This effect is not noticeable if blocking is
used, because our choice of ω and our implementation
of single-cell matrix multiplication take the cache size
into account (see Section 4.3).

Because of the influence of the cache and the effect
of blocking, the formula (3.2) gives a good fit to the
benchmark results only if n is sufficiently small and
either ω is fixed or blocking is not used. Neverthe-
less, it is interesting to estimate the constant γ due to
communication startup costs (for both LU factoriza-
tion and backsubstitution). For aspect ratio 1 there
are approximately 8n communication startups, each
taking about 15 µsec, so γ ' 120 µsec.8 Thus, about
0.12 sec of the time in the third column of Table 1 is
due to startup costs. Use of a blocked panel-wrapped
storage representation would at best decrease these
startup costs, so it could not give much of an improve-
ment over our results.

6 Conclusion

The LINPACK Benchmark results show that the
AP 1000 is a good machine for numerical linear al-
gebra, and that we can consistently achieve close to
80 percent of its theoretical peak performance on mod-
erate to large problems. The main reason for this
is the high ratio of communication speed to floating-
point speed compared to machines such as the Intel
Delta and nCUBE 2. The high-bandwidth hardware
row/column broadcast capability of the T-net (x brd,
y brd) and the low latency of the synchronous com-
munication routines are significant.

Acknowledgements

Support by Fujitsu Laboratories, Fujitsu Limited,
and Fujitsu Australia Limited via the Fujitsu-ANU
CAP Project is gratefully acknowledged. Thanks are
due to Takeshi Horie and his colleagues at Fujitsu Lab-
oratories for assistance in running the benchmark pro-
grams on a 512-cell AP 1000, to Peter Strazdins for

8For aspect ratio 2, γ is about 50 percent larger.

7

many helpful discussions, to Peter Price for his assis-
tance in optimizing the assembler routines, and to the
referees for their assistance in improving the exposi-
tion.

References

[1] R. P. Brent, “Parallel algorithms in linear alge-
bra”, Proceedings Second NEC Research Sympo-
sium (held at Tsukuba, Japan, August 1991), to
appear. Available as Report TR-CS-91-06, Com-
puter Sciences Laboratory, ANU, August 1991.

[2] R. P. Brent, “The LINPACK Benchmark on the
AP 1000: Preliminary Report”, in [3], G1-G13.

[3] R. P. Brent (editor), Proceedings of the CAP
Workshop ’91, Australian National University,
Canberra, Australia, November 1991.

[4] R. P. Brent and M. Ishii (editors), Proceedings of
the First CAP Workshop, Fujitsu Research Lab-
oratories, Kawasaki, Japan, November 1990.

[5] W. J. Dally and C. L. Seitz, “Deadlock free
message routing in multiprocessor interconnec-
tion networks”, IEEE Trans. on Computers C-36
(1987), 547-553.

[6] J. J. Dongarra, “Performance of various com-
puters using standard linear equations software”,
Report CS-89-05, Computer Science Department,
University of Tennessee, version of June 2, 1992
(available from netlib@ornl.gov).

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen and
H. A. van der Vorst, Solving Linear Systems on
Vector and Shared Memory Computers, SIAM,
Philadelphia, 1990.

[8] G. C. Fox, M. A. Johnson, G. A. Lyzenga,
S. W. Otto, J. K. Salmon and D. W. Walker,
Solving Problems on Concurrent Processors, Vol-
ume 1, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1988.

[9] K. Gallivan, W. Jalby, A. Malony and H. Wij-
shoff, “Performance prediction for parallel nu-
merical algorithms”, Int. J. High Speed Comput-
ing 3 (1991), 31-62.

[10] K. Gallivan, W. Jalby and U. Meier, “The use of
BLAS3 in linear algebra on a parallel processor
with a hierarchical memory”, SIAM J. Sci. and
Statist. Computing 8 (1987), 1079-1084.

[11] K. A. Gallivan, R. J. Plemmons and A. H. Sameh,
“Parallel algorithms for dense linear algebra com-
putations”, SIAM Review 32 (1990), 54-135.

[12] R. A. van de Geijn, “Massively parallel LIN-
PACK benchmark on the Intel Touchstone Delta
and iPSC/860 systems”, Report TR-91-92, De-
partment of Computer Sciences, University of
Texas, August 1991.

[13] G. A. Geist and M. Heath, “Matrix factorization
on a hypercube”, in [16], 161-180.

[14] G. A. Geist and C. H. Romine, “LU factoriza-
tion algorithms on distributed-memory multipro-
cessor architectures”, SIAM J. Sci. and Statist.
Computing 9 (1988), 639-649.

[15] G. H. Golub and C. Van Loan, Matrix Compu-
tations, Johns Hopkins Press, Baltimore, Mary-
land, 1983.

[16] M. T. Heath (editor), Hypercube Multiprocessors
1986, SIAM, Philadelphia, 1986.

[17] M. Ishii, G. Goto and Y. Hatano, “Cellular array
processor CAP and its application to computer
graphics”, Fujitsu Sci. Tech. J. 23 (1987), 379-
390.

[18] G. Li and T. F. Coleman, “A new method for
solving triangular systems on distributed-mem-
ory message-passing multiprocessors”, SIAM
J. Sci. and Statist. Computing 10 (1989), 382-
396.

[19] C. Moler, “Matrix computations on distributed
memory multiprocessors”, in [16], 181-195.

[20] P. E. Strazdins and R. P. Brent, “The Implemen-
tation BLAS Level 3 on the AP 1000: Preliminary
Report”, in [3], H1-H17.

[21] Sun Microsystems, Sun-4 Assembly Language
Reference Manual, May 1988.

8

