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Abstract

This paper describes an implementation of Level 3 of the Basic Linear Algebra Subpro-
gram (BLAS-3) library and the LINPACK Benchmark on the Fujitsu AP1000. The perfor-
mance of these applications is regarded as important for distributed memory architectures
such as the AP1000. We discuss the techniques involved in optimizing these applications
without significantly sacrificing numerical stability. Many of these techniques may also be
applied to other numerical applications. They include the use of software pipelining and
loop unrolling to optimize scalar processor computation, the utilization of fast communica-
tion primitives on the AP1000 (particularly row and column broadcasting using wormhole
routing), blocking and partitioning methods, and ‘fast’ algorithms (using reduced floating
point operations). These techniques enable a performance of 85-90% of the AP1000’s the-
oretical peak speed for the BLAS Level 3 procedures and up to 80% for the LINPACK
benchmark.

1 Introduction

The Basic Linear Algebra Subprogram (BLAS) library is widely used in many supercomputing
applications, and is used to implement more extensive linear algebra subroutine libraries, such
as LINPACK and LAPACK. To take advantage of the high degree of parallelism of architectures
such as the Fujitsu AP1000, BLAS Level 3 routines (matrix-matrix operations) should be used
where possible.

The LINPACK Benchmark involves the solution of a nonsingular system of n linear equations
in n unknowns, using Gaussian elimination with partial pivoting and double-precision (64-bit)
floating-point arithmetic. The performance of the LINPACK Benchmark and the BLAS-3 are
both regarded as good indicators of a parallel computer’s potential in numeric applications.

The AP1000 2,3) is a distributed memory MIMD machine with up to 1024 independent
SPARC processors which are called cells, connected via a toroidal topology using wormhole
routing. Each processor has a 128KB direct-mapped copy-back cache, 16MB of memory and a
FPU of theoretical peak of 8.3 MFLOPs (single precision) and 5.6 MFLOPs (double precision).
Details of the AP1000 architecture and software environment are discussed elsewhere in this
issue.

High level design issues, most importantly the distribution of matrices over the AP1000,
are discussed in Section 2. Techniques for the optimization of matrix computations on single
AP1000 cells are given in Section 3. Section 4 describes the implementation of parallel matrix
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multiply-add operations on the AP1000, discussing issues such as communication, cache, non-
square matrix shapes, and so-called ‘fast’ multiplication methods. The implementation of the
LINPACK Benchmark is discussed in Section 5, emphasizing the need for ‘blocking’ together
small computations into larger ones. The application of this and techniques from Section 4 to
the similar problem of BLAS-3 triangular matrix update is given in Section 5.3. Conclusions
are given in Section 6.

1.1 The BLAS Level 3

The BLAS Level 3 4) implement matrix-matrix operations, which, for n × n matrices, involve
O(n3) arithmetic operations on O(n2) data items. This yields is a higher ratio of arithmetic
operations to data than for the BLAS Level 2 (BLAS-2) 5), although degenerate cases of the
BLAS-3 routines yield all BLAS-2 routines. The use of BLAS-3 is attractive on parallel machines
such as the AP1000 because the cost of a data transfer may be amortized over the cost of O(n)
arithmetic operations.

The BLAS-3 perform multiply-add operations of the form:

C ← αÃB̃ + βC

where Ã can be either A or AT (and similarly for B̃); multiply-add operations for symmetric
matrices, eg.:

C ← αAAT + βC, C ← αAT A + βC

where C is symmetric; and triangular matrix update operations of the form:

B ← αÃB, B ← αBÃ

where A is triangular and Ã can be A, AT , A−1 or A−T . Matrices may be general rectangular,
symmetric or triangular but there is no special form of “packed” storage for symmetric or
triangular matrices.

1.2 The LINPACK Benchmark

The LINPACK Benchmark involves the solution of a nonsingular system of n linear equations
in n unknowns, using Gaussian elimination with partial pivoting and double-precision (64-bit)
floating-point arithmetic. Three cases are considered:

1. n = 100 – the original benchmark.

2. n = 1000 – gives more opportunity for vector pipeline machines (and to some extent
parallel machines) to exhibit high performance.

3. n as large as desired – gives maximum opportunity for vector pipeline and parallel machines
to exhibit high performance.

We are only concerned with the cases 2 and 3 here, since case 1 is trivial to solve on a machine
as powerful as the AP1000.

1.3 Conventions and Restrictions

We use the C language for implementation, as it permits better access to the low-level details of
the AP1000, which is useful for optimizations. Thus, we use C conventions for matrices, stored in
row-major ordering with indices starting from 0. Associated with the row-major storage scheme
for an m×n (cell sub-) matrix A is the last dimension of A, denoted ldA, where n <= ldA. This
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enables A to be identified as a sub-matrix of a larger m′ × ldA matrix A′, where m <= m′. Let
Ai. denote the ith row and A.j denote the jth column of the matrix A.

Let Nx (Ny) be the number of cells across a row (column) of an AP1000 configuration, and
P = NyNx be the total number of processors. Our algorithms are will be first described for a
square (Nx×Nx) AP1000, and then generalizations to other AP1000 configuration will be given.
A minor restriction is that for an m × n matrix to be distributed over the AP1000, we must
have Ny|m and Nx|n (if necessary, matrices can be padded with ‘dummy’ rows and columns to
satisfy this restriction).

2 High-level Design Issues

On non-distributed memory machines, calls to the BLAS-3 and LINPACK routines reference
global matrices; to achieve the same effect on a distributed memory machine, we must have all
AP1000 cells calling, in SPMD mode, the corresponding routine with references to the cell’s
respective sub-matrix of the global matrix. This unfortunately means that uniprocessor codes
involving these routines cannot be directly ported to AP1000 cell programs.

To consider the optimal matrix distribution strategy, let us first consider what communi-
cation patterns are needed for these applications. These include, most importantly, (grouped)
row/column broadcasts, row/column send/receive (for pivot row interchange for LINPACK and
matrix rotation for ‘systolic’ matrix multiply) and finally row/column scan (eg. vector maximum
for LINPACK).

For reasons of symmetry, high bandwidth for the row and column broadcasts, and good load
balancing (especially for operation on triangular matrices and contiguous sub-blocks of larger
global matrices), matrices are distributed over AP1000 cells by the cut-and-pile or scattered
strategy, rather than storage by rows, by columns, or by contiguous blocks. In the scattered
strategy, in which matrix element ai,j is stored in cell (i mod Ny, j mod Nx), assuming that
there are Ny ×Nx cells in the AP1000 array.

A generalization of all these distribution strategies is the ‘blocked panel-wrapped’ strategy,
which is sufficient for all dense linear algebra applications in practice 6). We have not im-
plemented our algorithms for this more general strategy, as it introduces considerable coding
difficulties. Also, due to the the relatively low communication startup overheads on the AP1000,
it would not yield significantly better performance.

3 Optimizing Computation on SPARC processors

To optimize floating point computation on AP1000 cells, we have implemented kernels which
are essentially a subset of uniprocessor BLAS-2 and BLAS-3 routines, optimized for the SPARC
architecture used in AP1000 cells and written in SPARC assembly language. For this purpose,
the following techniques were used:

1. write SPARC “leaf” routines to minimize procedure call overheads 16).

2. keep all variables and array elements in registers, to re-use as much as possible; this enables
a low load/store to floating point operation ratio (denoted R).

3. use software pipelining, ie. separate loads, multiplies, adds, and stores which depend on
each other by a sufficiently large number of instructions so that their operands are always
available when needed.

Techniques 2 and 3 were achieved by using typically a 4 × 4 (for single precision) and a 4 × 2
(for double precision) loop unrolling.
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The most important of such kernels was the Level 3 UpdateRect() routine which, for single
precision, involves a matrix multiply-add C ← C + AB where A is 4 × k and B is k × 4. This
routine would initially load C into the FPU registers, and, upon the ith iteration, update it
using A.iBi., 0 ≤ i < k.

UpdateRect() has R = 0.375 (double precision) and R = 0.25 (single precision); the latter
can be effectively reduced further to R = 1/6 using the SPARC load double word instruction.
When used to perform an n×n matrix multiplication (with a ‘warm’ cache), UpdateRect() can
sustain 7.7 MFLOPs (80 ≤ n ≤ 160) for single precision, and 5.1 MFLOPs (56 ≤ n ≤ 120) for
double precision.

The next most important kernel is the Level 2 Rank1Update(), which implements the
multiply-add C ← C + ab where a is m × 1 and b is 1 × n. A naive implementation would
have R = 1.5; however, for single precision, using a 4 × 4 loop unrolling, this can be reduced
to 1.125, again effectively reducible to slightly less than unity using the load double word in-
struction. Rank1Update() can sustain 5.9 MFLOPs (64 ≤ n ≤ 128) for single precision, and 4.0
MFLOPs (48 ≤ n ≤ 100) for double precision.

The other Level 2 routines, vector-matrix multiply and matrix-vector multiply, can sustain
7.3 MFLOPs (single precision) and 5.0 MFLOPs (double precision) for matrix multiplication.

These routines can achieve about the same percentage of the theoretical peak on the SPARC
Station 1+ and SPARC 2 processors. An exception is Rank1Update(), which operates about
25% slower on these architectures, due to their ‘write-through’ caches.

The implications of these results for the following sections are as follows:

• use UpdateRect() wherever possible, even if it requires re-organization of the algorithm.

• using UpdateRect() to perform C ← C + AB means that only A and B are significant
with respect to the cache. This make good cache utilization much easier. For parallel
algorithms, it is better to chose an algorithm not involving the communication of C, as
message receipt of C may then displace either A or B from the cache.

4 Implementing BLAS-3 Parallel Matrix Multiply-Adds

In this section, parallel matrix multiply-add operations, eg. C ← C +AB where A,B,C are ma-
trices distributed over the AP1000 cells, are considered, firstly for an Nx×Nx AP1000, and then
for a general AP1000 configuration (Section 4.4). The simplest parallel matrix multiplication
algorithm, which we call the ‘non-systolic’ method, is as follows:

for (k = 0; k < Nx; k++)
y-broadcast B cell sub-block from row k;
x-broadcast A cell sub-block from column k;
perform local cell sub-block multiplication;

A variation is the ‘semi-systolic’ method 14) where B cell sub-blocks are broadcast from the
kth diagonal (instead of from the kth row), and each A cell sub-block is shifted right one unit
(instead of broadcast). A third variation is the ‘full-systolic’ method (also known as Cannon’s
algorithm) in which both A and B sub-blocks are rotated at each step; this however has the
overhead that both A and B must be initially ‘aligned’.

Table 1 indicates the relative efficiency of each method for single precision. The overhead of
the initial matrix alignment of the ‘full-systolic’ method makes it the slowest.

To compute C ← C + AT B without using explicit transposition, variations of the ‘semi-
systolic’ and the ‘systolic’ methods can be used where C’s cell sub-blocks are communicated in
place of those of B (similarly for C ← C+ABT ). This has a small overhead in extra disturbance
of the cache, as explained in Section 3.
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For explicit matrix transposition, the simplest method of exchanging matrix sub-blocks be-
tween cells appears to be the most efficient. The bottleneck for this algorithm is at the diagonal
cells, through each of which Nx−1 messages must pass and change direction, so that the time is
expected to be proportional to Nx− 1 (for constant n/Nx). Transposition has a communication
rate of 1.4MB s−1 per cell for an 8×8 AP1000 (64 ≤ n/Nx ≤ 256), which implies a small relative
overhead (for n/Nx ≈ 128, the overhead is about 0.5%).

Table 1 indicates that for square matrices, there is little difference between the explicit and
implicit methods, except for small matrices, which favour the implicit method. This is due
to the high relative speed of the AP1000 communication routines, which make the choice of
communication patterns less critical.

4.1 Effect of Communication

Comparison of Table 1 with the results of Section 3 shows that the effect of communication on
performance is appreciable, at least for moderate matrix sizes.

In the AP1000’s xy communication routines, copying of matrices is avoided on message send;
however, upon message receipt, messages are copied from a ‘ring buffer’ to user space. Message
copying creates a twofold overhead, since message transfer (in hardware) on the AP1000 is almost
as fast as a corresponding memory transfer, and message copying may disturb the cache. We
made slight modifications to the xy routines so that the A and B cell sub-blocks were accessed
directly from the ring buffer, thus avoiding the copy.

The performance of this optimization was tested for the non-systolic multiply-add method,
and generally halved the communication overhead. Thus, for n/Nx = 128, a performance of 7.5
MFLOPs/cell (single precision) was achieved, 90% of the theoretical peak.

4.2 Optimizing Cache Utilization and Partitioning

BLAS-3 routines generally operate on sub-blocks of larger matrices, rather than whole matrices
as such. Using the scattered distribution strategy, these sub-blocks are generally not contiguous
in memory when mapped to the AP1000 cells, which is inconvenient for both message passing
and cache management. Furthermore, the matrix multiply-add operation may involve scaling
by constants α and β. Finally, distributed implementations of the BLAS-3 C ← αAAT + βC
imply copying of A cell sub-blocks, even if α = 1.

These problems can be most easily overcome by copying (parts of) the A, B and in some
cases C sub-blocks into contiguous blocks in a BLAS-3 ‘workspace’ area, where they may then
be scaled if necessary. However, the workspace need not be O(n2) for n × n matrices; be-
low we present an ‘outer product’-based O(n) workspace partitioning method, capable of high
asymptotic performance by full utilization of the cache.

Consider an m × n global matrix A having an m′ × k′ (sub-) matrix A′ on a particular
AP1000 cell, where m′ = m/Ny, k

′ = k/Nx. Partition A′ into k0 × k0 sub-blocks denoted A′
ij

where 0 ≤ i ≤ dm′/k0e, 0 ≤ j ≤ dk′/k0e and the optimal block size k0 = 128 (for single precision)
is chosen from Table 1. Let B be a k × n global matrix partitioned in a similar way.

The method involves at step l copying the ‘block-column’ A′
0l, A

′
1l, . . . , A

′
(m′−1)l into a con-

tiguous workspace, for l = 0, . . . , k′/k0−1. On the jth sub-step (j = 0, . . . , n′−1), B′
lj is copied

to the workspace and is multiplied by each of the k/k0 A′ sub-blocks already there. The layout
of these sub-blocks in the workspace is shown in Figure 1. Here, one can see that A′

il and B′
lj

map into different areas of the AP1000’s 128KB direct-mapped cache. For this reason, almost
half of the workspace is unused. The total size of the workspace is k0(m′ + n′ − 1) words per
cell, and it can be seen that the cost of copying (with scaling, if needed) a sub-block into the
workspace is amortized over the k/k0 times it is used to perform a multiply-add.
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C ← C + AB by C ← C + AT B by
(-systolic) method: (-systolic) method:

n/Nx full- semi- non- semi- (implicit) non- (explicit)
16 4.2 4.4 4.4 4.3 4.1
32 5.8 6.0 6.0 5.9 5.8
64 6.5 6.7 6.8 6.7 6.7
96 7.0 6.9 7.0 6.9 6.9

128 7.1 7.2 7.2 7.1 7.1
160 7.1 7.2 7.1 7.1 7.1

Table 1. Speed in MFLOPs/cell of parallel multiply-add methods on an 8×8 AP1000 with n×n
matrices (single precision)

A′
0l B′

lj A′
1l A′

2l . . . A′
(m′/k0−1)l

Fig. 1– The workspace for a partitioned multiply-add operation
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This idea can easily be integrated into the parallel ‘non-systolic’ multiply-add, thus amortiz-
ing communication costs. The performance of this partitioning method is given in Table 2. As
the maximum matrix size corresponds to 4MB, results for a 4×4 AP1000 are given; however the
results for an 8 × 8 AP1000 appear identical for the corresponding matrix sizes. These results
indicate the performance achievable for the BLAS-3 general multiply operation C ← αAB+βC,
over 90% of the theoretical peak on the AP1000.

It is possible to use partitioning without workspaces, where the overall matrix multiply is
split into a series of sub-multiplications that minimize cache conflicts 15). However, with a
direct-mapped cache this cannot always yield maximum performance (eg. a k×n matrix B with
kldB exceeding the cache size will mean that some elements in a single column of B will map
into the same place in the cache).

4.3 ‘Fast’ Methods

The above implementations are all based on standard (O(n3)) matrix multiplication algorithms;
however, with an ‘acceptable’ loss of numerical stability (in terms of the BLAS-3 error bounds 8)),
it is possible to implement matrix multiply algorithms with a reduced number of arithmetic
operations. One such algorithm, Strassen’s method 8), has asymptotically O(n2.81) operations.

In Strassen’s method, matrices are split into 4 sub-matrices; products of the sums and
differences of these sub-matrices may be combined in such a way that only 7 (instead of 8) sub-
matrix multiplies need be computed. Thus, considerable workspace area is needed. If the matrix
dimensions are powers of 2, this process can be easily repeated recursively. However, for n× n
matrices, we have found it more efficient to apply only the first log2(n/(Nxk0)) stages of the
method, where k0 is defined in Section 4.2, and hence it is only appropriate for large matrices.
Table 2 gives the results of our implementation; in parentheses are the MFLOPs rating if 2n3

arithmetic operations are assumed. The actual efficiency decreases primarily because the FPU
can operate at no more than half speed during the matrix addition and subtraction operations.

4.4 Adaption to a General AP1000 Configuration and the BLAS Level 2
Limit

We now describe an implementation of C ← C + AB, where C is m × n, A is m × k and B is
k × n, for a general Ny ×Nx AP1000 configuration; this implementation is also efficient in the
cases where a matrix becomes a vector, hence the term ‘BLAS Level 2 limit’.

In these cases, it is important to communicate the smaller of the matrices, so as to reduce
communication costs. This may require transposition of the matrix beforehand (cf. the implicit
transpose operations of Section 4). An efficient matrix transpose operation A′ ← AT is nontrivial
if Nx 6= Ny, and involves blocking and permuting matrix segments 15). Our implementation, for
a 1000× 1000 matrix, achieves speeds on a 4× 8, 7× 8 and 8× 8 configurations of (respectively)
1.02, 0.59 and 1.30 MB s−1 per cell.

The following three algorithms, based on the ‘non-systolic’ multiply-add of Section 4, are
each suited to particular matrix shape:

A (for small k) perform k rank-1 updates to C, ie. C ← C +
∑

A.jBj.. The cells in column
j mod Nx of the AP1000 broadcast A.j horizontally, the cells in row j mod Ny of the
AP1000 broadcast Bj. vertically. Each cell accumulates a moderate number ω of these
broadcasts and then performs a single rank-ω update. The 2k broadcast startup overheads
involved here can be reduced by grouping if GCD(Ny, Nx) > 1.

B (for small n) transpose B, then broadcast each row of BT . Each cell computes a local
matrix-vector product, and the vector results are summed horizontally.
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partitioning Strassen’s
n/Nx yes no method

128 7.18 7.23 7.2 (7.2)
256 7.44 5.4 6.9 (7.9)
384 7.52 5.7 —
512 7.58 5.5 6.8 (8.8)
640 7.60 — —
728 7.59 — —
896 7.63 — —

1024 7.65 — 6.7 (10.0)

Table 2. Speed in MFLOPs/cell of parallel C ← C + AA using the non-systolic method on an
4× 4 AP1000 with n× n matrices (single precision)
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C (for small m) is simply the dual of B.

In Table 3 we give speeds for the combination of methods A, B and C on three different
configurations. The speed exceeds 50 percent of the theoretical peak speed (8.33 MFLOPs/cell)
except for the case min(m, n, k) = 1.

5 Implementing the LINPACK Benchmark

Suppose we want to solve a nonsingular n by n linear system:

Ax = b (5.1)

on an Nx×Nx AP1000. The augmented matrix [A|b] is stored using the scattered representation.
It is known 11,13) that Gaussian elimination is equivalent to triangular factorization. More

precisely, Gaussian elimination with partial pivoting produces an upper triangular matrix U and
a lower triangular matrix L (with unit diagonal) such that:

PA = LU (5.2)

where P is a permutation matrix. In the usual implementation A is overwritten by L and U (the
diagonal of L need not be stored). If the same procedure is applied to the augmented matrix
Ā = [A|b], we obtain

PĀ = LŪ (5.3)

where Ū = [U |b̄] and (5.1) has been transformed into the upper triangular system

Ux = b̄ (5.4)

In the following we shall only consider the transformation of A to U , as the transformation of b
to b̄ is similar.

If A has n rows, the following steps have to be repeated n− 1 times, where the kth iteration
completes computation of the kth column of U :

1. Find the index of the next pivot row by finding an element of maximal absolute value in
the current (kth) column, considering only elements on and below the diagonal.

2. Broadcast the pivot row vertically.

3. Exchange the pivot row with the kth row, and keep a record of the row permutation.

4. Compute the “multipliers” (elements of L) from the kth column and broadcast horizontally.

5. Perform Gaussian elimination (a rank-1 update using the portion of the pivot row and the
other rows held in each cell).

We can estimate the parallel time TP involved:

TP ' αn3/N2
x + βn2/Nx + γn, (5.5)

where the first term is due to the 2n3/3+O(n2) floating point operations, the second term is due
to the total volume of communication, and the third due to the communication startup (eg. O(n)
row/column broadcasts). The terms are additive as it is difficult to overlap computation with
the AP1000’s xy communication. As we would expect the time on a single cell to be T1 ' αn3,
the efficiency EP is:

EP '
1

1 + (1 + γ̄/n′)β̄/n′ '
1

1 + nhalf/n
, (5.6)
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m k n 4× 8 7× 8 8× 8
1 1000 1000 4.1 3.5 3.8
10 1000 1000 4.8 4.6 4.6

1000 1 1000 3.1 3.0 2.9
1000 10 1000 5.7 5.4 5.5
1000 1000 1 4.2 3.5 3.8
1000 1000 10 5.0 4.6 4.5
1000 1000 1000 6.2 6.4 6.8

Table 3. Speed (MFLOPs/cell) of matrix multiply-add on rectangular AP1000 configurations
(single precision)
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where β̄ = β/α is proportional to the ratio of communication to computation speed, γ̄ = γ/β
measures the importance of the communication startup time, n′ = n/Nx, and nhalf = β̄Nx is
the problem size giving efficiency 0.5 (this approximation is valid if γ̄ is negligible). ¿From (5.6),
the efficiency is close to 1 only if n′ � β̄.

We omit details here of the “back-substitution” phase, ie. the solution of the upper triangular
system (5.4), because this can be performed in time much less than (5.5) (see 9,12)). For example,
with n = 1000 on an 8 × 8 AP1000, the back-substitution phase takes 0.1s as opposed to the
LU factorization phase, which takes 3.5s. A generalization of the back-substitution phase (with
the vector b becoming a matrix) will be discussed in Section 5.3.

To adapt this algorithm to an Ny × Nx AP1000 with Ny = 2Nx, our ad hoc solution was
to simulate a Ny ×Ny AP1000 by each physical AP1000 cell simulating two virtual cells in the
x-direction. This ensured full processor utilization and optimal communication speed, but due
to the significant costs of context switching on AP1000 cells, the simulation was hard coded
rather than using two tasks per cell.

5.1 The Need for Blocking

As discussed in Section 3, peak performance cannot be reached using rank-1 updates. It is
possible to reformulate Gaussian elimination so that most of the floating-point arithmetic is
performed in matrix-matrix multiplications, without compromising the error analysis. Partial
pivoting introduces some difficulties, but they are surmountable. The idea is to introduce a
“blocksize” or “bandwidth” parameter ω. Gaussian elimination is performed via rank-1 updates
in vertical strips of width ω. Once ω pivots have been chosen, a horizontal strip of height ω can
be updated. At this point, a matrix-matrix multiplication can be used to update the lower right
corner of A. The optimal choice of ω is best determined by experiment, but

ω ' n1/2

is a reasonable choice, with ω a multiple of Nx.
Here, we take advantage of each AP1000 cell’s relatively large memory (16 MB) and save the

relevant part of each pivot row and multiplier column as it is broadcast during the horizontal
and vertical strip updates. The block update step can then be performed independently in each
cell, without any further communication. Each cell requires working storage of about 2ωn/Nx

floating-point words, in addition to the (n2 + O(n))/N2
x words required for the cell’s share of

the augmented matrix and the triangular factors. If 2ωn/Nx exceeds the cache size, partitioning
methods for the matrix multiply need to be employed (see Section 4.2).

The effect of blocking is to reduce the constant α in (5.5) at the expense of increasing the
lower-order terms. Thus, a blocked implementation should be faster for sufficiently large n, but
may be slower than an unblocked implementation for small n. This is what we observed – with
our implementation the crossover occurs at n ' 40Nx.

5.2 Results

The benchmark programs perform Gaussian elimination with partial pivoting (and check the
size of the residual). All results are for double-precision. Single-precision is about 50 percent
faster.

As discussed in Table 3 of 1), a gain in efficiency of up to 40% is achieved by blocking over
non-blocking for large matrices. Also, a version the blocked algorithm was implemented where
the AP1000’s hardware-supported row/column broadcast and scan operations were simulated in
software. This version ran 7% slower even for large matrices, indicating the need for hardware
support for these operations.
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The results in Table 4 are for n = 1000 and should be compared with those in Table 2 of 7).
The results in Table 5 are for n almost as large as possible (constrained by the storage of 16
MB/cell), and should be compared with those in Table 3 of 7). In Table 5:

nmax is the problem size giving the best performance rmax,

nhalf is the problem size giving performance rmax/2, and

rpeak is the theoretical peak performance (ignoring everything but the speed of the floating-
point units).

The results for the AP1000 are good when compared with reported results for other distributed
memory MIMD machines such as the nCUBE, Intel iPSC/860, and Intel Delta, if allowance is
made for the different theoretical peak speeds. For example, the 1024-cell nCUBE 2 achieves
2.59 sec for n = 1000 and 1.91 GFLOPs for n = 21376 7) with rpeak = 2.4 GFLOPs. Our
results indicate that a P -cell AP1000 is consistently faster than a 2P -cell nCUBE 2. The 512-
cell Intel Delta achieves 13.9 GFLOPs but this is less than 70 percent of its theoretical peak
of 20 GFLOPs 10). The 128-cell Intel iPSC/860 achieves 2.6 GFLOPs, slightly more than the
512-cell CAP, but this is only 52 percent of its theoretical peak of 5 GFLOPs. For large n the
AP1000 consistently achieves in the range 79 to 82 percent of its theoretical peak (with the ratio
slightly better when the number of cells is a perfect square, e.g. 64 or 256, than when it is not).

An encouraging aspect of the results is that the AP1000 has relatively low nhalf . For example,
on the 64-cell AP1000 at ANU we obtain at least half the maximum performance (i.e. at least
145 MFLOPs) for problem sizes in the wide range 648 ≤ n ≤ 10000. (On the 64-cell Intel Delta,
the corresponding range is 2500 ≤ n ≤ 8000 10).) As expected from (5.6), nhalf is roughly
proportional to P 1/2.

Because of the influence of the cache and the effect of blocking, the formula (5.5) gives a
good fit to the benchmark results only if n is sufficiently small and ω is fixed (or blocking is not
used).

5.3 Optimizations for BLAS-3 Triangular Matrix Updates

If B is an m × n matrix, to form B ← A−1B, where A is an m ×m upper triangular matrix
with unit diagonal, we can perform the corresponding (parallel) rank-1 updates:

B ← B − Ã.jBj., for j = m− 1, ..., 1

where Ã = A−I. A straightforward (‘unblocked’) implementation on the AP1000 uses row/column
broadcasts and rank-1 updates. However, performance can be improved by grouping w updates
together, as described in Section 5.1.

Table 6 gives results for this computation for single precision, with ω = 4Ny

√
n/(2Ny). For

the unblocked algorithm, the performance does not even approach that of Rank1Update(), due
to communication overheads (for small n) and the fact that rank-1 update is a Level 2 operation
and hence makes poor use of the cache (for large n). For the blocked algorithm, performance is
better but still does not approach that of UpdateRect(), due to the fact that the optimal ω is
a tradeoff between seeking a higher proportion of the computation in UpdateRect() (needing a
low ω) and seeking a high number of iterations in each call to UpdateRect() (needing a high
ω).

A value of ω ' k0 (Section 4.2) is optimal for UpdateRect(). The tradeoff mentioned
above can be overcome by recursively applying the blocking process described in Section 5.1, for
ω ' k0, k0/2, k0/4, etc. As larger values of ω are now used, the partitioning methods of Section
4.2 must also be employed. The performance for moderate sized matrices of this ‘super-blocked’
scheme is given in Table 6; for larger matrices, performance steadily improves up to 7.3 MFLOPs
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Time for cells time speedup efficiency
one cell (sec)

160 512 1.10 147 0.29
160 256 1.50 108 0.42
160 128 2.42 66.5 0.52
160 64 3.51 46.0 0.72
160 32 6.71 24.0 0.75
160 16 11.5 13.9 0.87
160 8 22.6 7.12 0.89
160 4 41.3 3.90 0.97
160 2 81.4 1.98 0.99

Table 4. LINPACK Benchmark results for n = 1000

cells rmax nmax nhalf rpeak rmax/
GFLOPs order order GFLOPs rpeak

512 2.251 25600 2500 2.844 0.79
256 1.162 18000 1600 1.422 0.82
128 0.566 12800 1100 0.711 0.80
64 0.291 10000 648 0.356 0.82
32 0.143 7000 520 0.178 0.80

Table 5. LINPACK Benchmark results for large n
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for n/Nx = 1024. These results indicate that the AP1000 can perform BLAS-3 triangular matrix
updates at 85% of the its theoretical peak speed.

While the coding of such a recursive blocking scheme is complex, it could be similarly applied
to the more complex LINPACK benchmark, with similar improvements in performance to be
expected.

6 Conclusions

In this paper, we have described implementations of the BLAS-3 and the LINPACK Benchmark
on the Fujitsu AP1000. Many of the techniques presented, such as the design of SPARC BLAS-2
and BLAS-3 kernels (Section 3), partitioning methods for direct-mapped caches (Section 4.2),
and blocking (Sections 5.1 and 5.3) are also applicable to the implementation of other linear
algebra applications, on the AP1000 and on similar architectures.

The LINPACK Benchmark and BLAS-3 results show that the AP1000 is a good machine for
numerical linear algebra, and that on moderate to large problems we can consistently achieve
close to 80% of its theoretical peak performance, for the former, and 85-90% for the latter. They
signify that the AP1000 architecture is well balanced on all levels, with respect to floating point
computation. The main reason for this is the high ratio of communication speed to floating-
point speed compared to machines such as the Intel Delta and nCUBE. The high-bandwidth
hardware row/column broadcast capability of the AP1000, extremely useful in linear algebra
applications, and the low latency of the send/receive routines are also significant. As shown in
Table 1, the speed of the former make the use of ’systolic’ versions of linear algebra algorithms
unnecessary. The large, direct-mapped cache, while requiring extra effort for full optimization,
and the large cell memory are also very important features.
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