
E�cient Implementation of Sorting Algorithms on
Asynchronous Distributed-Memory Machines�

B. B. Zhou, R. P. Brent and A. Tridgell
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Abstract

The problem of merging two sequences of elements
which are stored separately in two processing ele-
ments (PEs) occurs in the implementation of many
existing sorting algorithms. We describe e�cient al-
gorithms for the merging problem on asynchronous
distributed-memory machines. The algorithms reduce
the cost of the merge operation and of communication,
as well as partly solving the problem of load balanc-
ing. Experimental results on a Fujitsu AP1000 are
reported.

1 Introduction

This paper considers an important aspect of par-
allel sorting algorithms on asynchronous distributed-
memory machines. The algorithms of interest to
us �rst perform a local sort on each processing el-
ement (PE), then perform a sequence of merges to
globally sort the data. Each merge involves pairs of
PEs. The two PEs in a pair merge their two sorted
sequences, and each PE keeps half of the merged se-
quence. It is known that this \merge-split" scheme
can be applied to achieve high e�ciency if a large sort-
ing problem is to be solved on a machine with many
relatively small processing elements [1, 3].

The most straightforward method for merging is
�rst to transfer a sequence of elements from one PE
to the second PE, then to merge the two sequences in
the second PE, and �nally to transfer the upper half
(or lower half) back to the �rst PE. This method is
ine�cient, both because of its memory requirements,
and because of the load imbalance { only one PE in
each pair is active during the merging. The e�ciency
�Appeared in Proc. International Conference on Parallel

and Distributed Systems (Hsinchu, Taiwan, Dec. 1994), IEEE
Computer Society Press, California, 1994, 102-106. Copyright
c 1994, IEEE. rpb142 typeset using LaTEX

can be improved by taking advantage of the following
observations.

To merge two sequences of elements, it is only nec-
essary for each PE to transfer a portion of its se-
quence to the associated PE. In many sorting meth-
ods, e.g., odd-even transposition sort [3], Batcher's
merge-exchange sort [2], and parallel Shell sort [6], the
entire set of elements becomes more nearly sorted af-
ter each iteration, so the portion of the sequence to be
transferred from a PE tends to decrease. If we have an
algorithm which can e�ciently �nd the exact number
of elements to be transferred between any pair of PEs,
we may reduce the cost of the merge operation and
communication, as well as partly solving the problem
of load balancing. Our �rst algorithm (Algorithm 1
below) �nds the exact number of elements to be trans-
ferred in log2N communication steps, where N is the
length of the sequence stored in each PE's local mem-
ory. At each communication step one element is sent
and received by each PE. The algorithm works well on
distributed memory machines such as the Thinking
Machines CM5 and the Fujitsu AP1000 [7], because
these machines have a small \startup" time for com-
munication and a small message latency, so the time
for running the procedure is small in comparison to
the total communication time. On a machine with a
high message latency, the algorithm would be costly.
Our second algorithm (Algorithm 2 below) requires
only log�N communication steps (for � � 2) to �nd
the exact number of elements to transfer, if we allow
��1 elements to be transferred at each step. By prop-
erly choosing �, the running time of the algorithm can
be reduced.

In Section 2 algorithms for �nding the exact num-
ber of elements to be transferred are derived. Exper-
imental results on the Fujitsu AP1000 are given in
Section 3. We use the odd-even transposition sorting
method as an example to show the e�ciency gained
by using the algorithm. The odd-even transposition



sort requires only nearest-neighbour communication
in a one-dimensional array, so is applicable to most
special-purpose machines with restricted communica-
tion topologies. Conclusions are drawn in Section 4.

2 Algorithms

To simplify our discussion, we assume in the fol-
lowing that the elements are distinct, are sorted in
increasing order in each PE, and that each PE has the
same number (N) of elements. A processing element
is referred to as PE1 (or PE2) if it stores the �rst
half (or the second half) of the total elements after a
merge. The elements in each PE are enumerated from
0 to N � 1. The (k+ 1)th element in PE1 (or PE2) is
referred to as ek (or e0k), for 0 � k < N .

In the following Lemma we set e�1 and e0�1 to �1
and eN and e0N to +1 so that the inequalities still
hold in two extreme cases when K = 0, that is, no
element in PE1 is smaller than any element in PE2;
and when K = N , that is, no element in PE1 is greater
than any element in PE2.

Lemma 1 To merge two sorted sequences of N ele-
ments each stored in one PE, the exact number of ele-
ments to be transferred between the two PEs is N�K,
for 0 � K < N , if and only if the following inequalities
are satis�ed: �

eK > e0N�K�1;
eK�1 < e0N�K :

(1)

Proof. Our aim is to merge two sorted sequences
and store the �rst half in PE1 and the second half
in PE2. Suppose that K is chosen so that the two
inequalities in (1) are satis�ed. Since the original se-
quences are sorted, we have eK > eK�1 and e0N�K >
e0N�K�1. We transfer the last N �K elements from
PE1 to PE2 and the �rst N �K elements from PE2
to PE1. It is easy to see that, after the transfer, the
largest element in PE1 is max(eK�1; e0N�K�1), and
the smallest element in PE2 is min(eK ; e0N�K). Thus,
no element in PE1 is greater than any element in PE2.
On the other hand, if K is chosen so that either of the
two inequalities in (1) is not satis�ed, there must be
at least one element in PE1 that is greater than the
smallest element in PE2 after the transfer.

Corollary 1 Given an arbitrary index k, 0 � k < N ,
we have �

ek < e0N�k�1 if 0 � k < K;
ek > e0N�k�1 if K � k < N: (2)

0

K�1
K

k

N�1

0

N�K�1
N�K

N�k�1

N�1

0

K�1
K

k

N�1

(a) K � k < N

N�K�1

0

N�k�1

N�K

N�1

(b) 0 � k < K

Figure 1: A graphical expression of Corollary 1.

0

K

K0

N�1

K�1

K0�1

0

N�K0
N�K0�1

N�K�1
N�K

N�1

0

N�K0

N�K�1
N�K

N�1

N�K0�1

(a) K0 > K (b) K0 < K

0

K

K0
K0�1

K�1

N�1

Figure 2: A graphical expression of Corollary 2.

Proof. An illustration of the proof is given in
Fig. 1. The two vertical lines represent the two se-
quences, while an arrow line pointing from the left
(or right) sequence to the right (or left) sequence in-
dicates ex > e0N�x�1 (or ex < e0N�x�1). Assume
that there is an index k for k � K. We have
ek � eK and e0N�K�1 � e0N�k�1, since the original
sequences are sorted. However, it is known from (1)
that eK > e0N�K�1. Thus the element ek must be
greater than e0N�k�1. The proof for the �rst inequal-
ity is similar.

Corollary 2 The index K in (1) is unique.

Proof. Suppose that there is another index K 0 sat-
isfying the inequalities (1), as shown in Fig. 2. If
K 0 > K, we have K 0 � 1 � K, and thus the ele-
ment eK0�1 is greater than e0N�K0 , by Corollary 1.
Similarly, eK0 is smaller than e0N�K0�1 if K 0 < K.
In either case the result is a contradiction. Thus K 0
satis�es the inequalities (1) if and only if K 0 = K.



(a) emid < e0N�mid�1 (b) emid > e0N�mid�1

K�1
K

mid

top

N�1
bottom

0

�
N�K
N�K�1

N�mid�1

N�top�1

N�bottom�1

N�1

�

�

�
N�K�1
N�K
N�mid�1

N�bottom�1

N�top�1

N�1

0 0

mid
K�1
K

N�1

top

bottom

0

�

�

�

�

Figure 3: Deciding the new search interval for the next
step.

Algorithm 1

Using the above lemmas, a simple \bisection" al-
gorithm can be derived to �nd the exact number of
elements to be transferred between two PEs, or more
speci�cally, to �nd the unique index K which satis�es
the inequalities (1). We outline the algorithm.

At any stage the index K is known to lie in a certain
range. The boundary indices, that is, the �rst and
last elements of the range, are called top and bottom
respectively1. Thus, K is known to be in (top; bottom].
PE1 sends the middle element of the interval, emid , to
PE2. This element is then compared with e0N�mid�1 in
PE2, and the result is sent back to PE1. If e0N�mid�1
is greater than emid , the index K must be in the half-
open interval (mid, bottom]; otherwise it must be in
the half-open interval (top, mid], by Corollary 1. This
is illustrated in Fig. 3. In either case the interval (top,
bottom] can be updated.

The procedure is applied until there is only one el-
ement in the interval. It is easy to see that dlog2Ne
steps2 are required to �nd the index K.

This algorithm has been implemented on both the
CM5 and the Fujitsu AP1000 [7]. The results are good
because both machines have a small message latency,
so the time for �nding K is small in comparison with
the total communication time. On a machine with a
high message latency, the communication costs due to
multiple small messages would be considerable.

A modi�cation of Algorithm 1 can reduce the search
interval by more than a factor of two at each step,
and thus reduce communication startup costs. The

1Note that with our conventions top � bottom.
2A single step requires communication in both directions be-

tween PE1 and PE2. By alternating the roles of PE1 and PE2,
s steps could be performed with s+ 1 communications.

k0

K
K�1

N�1

k

0

N�K

N�1

N�k�1

N�k"�1
N�K�1

0

N�1

0

k"
K

K�1

k

(a) ek < e0N�k�1 (b) ek > e0N�k�1

N�k�1

N�K�1
N�K

N�1

0

N�k0�1

Figure 4: A graphical expression of Lemma 2

modi�cation follows from Lemma 2. In the lemma,
if ek > e0N�top�1, we de�ne k0 = top, and if ek <
e0N�bottom�1, we de�ne k00 = bottom.

Lemma 2 Suppose that K is within the inter-
val (top; bottom] and that k is an index in the interval.
If ek is greater than e0N�k�1 and e0N�k0�1 is the �rst
element in PE2 which is greater than ek for k0 in the
interval and k0 < k, then index K must be in the half-
open interval (k0; k]. If ek is smaller than e0N�k�1 and
e0N�k00�1 is the �rst element in PE2 which is smaller
than ek for k00 in the interval and k < k00, then index
K must be in the half-open interval (k; k00].

Proof. We only prove the case ek < e0N�k�1. The
proof for ek > e0N�k�1 is similar.

Since ek < e0N�k�1, we have k < K by Corollary 1,
and so eK�1 � ek. We know from (1) that e0N�K >
eK�1, so e0N�K > ek. Since ek > e0N�k00�1, we also
have e0N�K > e0N�k00�1. Thus ek00 > e0N�k00�1 and
K � k00 by Corollary 1. This gives k < K � k00 (see
Fig. 4).

Using Lemma 2, a search procedure is required at
each step in order to �nd the index k0 or k00. Since the
search interval may be reduced by more than half, the
number of steps may be less than the number required
by Algorithm 1. Note that the number of steps may
still be close to log2N in the worse case, which may
occur when K is close to 0 or N�1. In next paragraph
we describe a new algorithm (Algorithm 2), in which
� � 1 elements (� � 2) are allowed to be transferred
from PE1 to PE2 at each step, and the total number
of steps is about log�N . By properly choosing �, the
time to �nd K can be reduced signi�cantly.



Algorithm 2

Divide the search interval into � smaller intervals
with each of these intervals containing ci elements. We
may obtain ��1 elements in PE1. The original index
of the �rst of these elements is top+c1, and the original
index for the lth element is

Pl
i=0 ci, where c0 = top.

The ��1 elements are sent from PE1 to PE2. Once the
elements are received by PE2, a similar procedure to
that for �nding the exact number described previously
is applied to �nd, from the � � 1 elements, the index
of the kth element which satis�es the two inequalities�

eL > e0N�L�1
eL�ck < e0N�(L�ck)�1

(3)

where eL is the kth element and L is its original index.
Likewise eL�ck is the (k � 1)th element and L� ck is
its original index. The only di�erence between this
procedure and Algorithm 1 is that all computations
are performed locally and no extra communication is
required in the procedure since the ��1 elements have
already been sent from PE1 to PE2.

Lemma 3 If the above procedure is applied, the in-
dex K must be in the half-open interval (L� ck; L].

Proof. We prove that the two inequalities (3) cannot
both be satis�ed if index K is not in the interval. If
L < K � 1, we have eL < e0N�L�1 by Corollary 1. We
also have eL�ck > e0N�(L�ck)�1 if L � ck > K. It is
easy to see that in either case the inequalities in (3)
cannot both be satis�ed. Therefore, index K must be
in the interval L� ck < K � L.

Since �� 1 elements are sent to PE2 at each step,
a much smaller search interval can be decided for the
next step, and the total number of steps required to
�nd the exact number is decreased. Supposing that all
intervals have equal size at each step, the total num-
ber of steps is only log�N . If � is not very large, the
\startup" time for communication will be dominant
in the running time of Algorithm 2. Therefore, Algo-
rithm 2 will be more e�cient than Algorithm 1, by
a factor of about log2 �. Our experimental results on
the Fujistu AP1000 con�rm this prediction.

It is worth noting that the two algorithms are ex-
actly the same if � is set to one and the two intervals at
each step are equally divided in Algorithm 2. There-
fore, Algorithm 1 is just a special case of Algorithm 2.

3 Experimental Results

We use the odd-even transposition sort as an exam-
ple to show that the e�ciency can be gained by adopt-
ing the algorithms described in Section 2. Our exper-
imental results were obtained on the Fujitsu AP1000
located at the Australian National University. The
Fujitsu AP1000 is a distributed memory MIMD ma-
chine with up to 1024 independent 25 MHz SPARC
processors for processing elements. (Our machine has
128 PEs.) Each PE has 16 MByte of dynamic RAM
and 128 KByte cache. The topology of the machine
is a torus, with hardware support for wormhole rout-
ing. The communication network (T-net) provides a
theoretical bandwidth of 25 Mbyte/sec between PEs,
and in practice about 6 MByte/sec is achievable. For
details of the AP1000 architecture and software envi-
ronment see [4, 5].

The odd-even transposition sort is not optimal for
the AP1000 (better methods are given in [7]), but we
use it because it only requires nearest-neighbour com-
munication in a one-dimensional array. The methods
of [7] take advantage of the wormhole routing and use
more general communication patterns (for example,
communication along the edges of a hypercube). In
our examples the 128 PEs are con�gured as a one-
dimensional array.

The original odd-even transposition sorting algo-
rithm described in [3], and the modi�ed algorithms
that utilise Algorithms 1 and 2, have been imple-
mented to sort large sets of 32-bit integers on 128
PEs. The algorithms described in Section 2 work al-
most equally well on the AP1000 for moderate values
of �. This is because the AP1000 has a small message
latency (less than 100 �sec). Thus, the cost of �nding
K is only a small portion of the total communication
cost, and the overall e�ciency gained by using � > 2
is small.

Some experimental results are given in Table 1. In
this table \Program 1" is the program implemented
for the original odd-even transposition sorting algo-
rithm, and \Program 2" is a modi�ed version which
incorporates Algorithm 2 (as discussed in Section 2)
with � = 10. It is clear that the use of Algorithm 2
approximately doubles the e�ciency of the sort.

4 Conclusions

We have described several algorithms for �nding
the exact number of elements to be transferred be-
tween two PEs when merging two sequences of ele-
ments stored separately in the PEs. Although the al-



Table 1: Experimental results.

Problem size Program 1 Program2
(millions) time (sec.) time (sec.)

1.280 12.58 6.688
5.120 58.57 29.96
10.24 118.8 61.96
12.80 148.9 77.94
25.60 298.0 156.1
38.40 447.4 235.2
51.20 496.7 313.5
64.00 746.0 394.8

gorithms require a number of communication steps to
send/receive small messages between the PEs, a large
gain in merging e�ciency can be obtained. This is
because the merge operations are performed by two
PEs instead of just one PE, the computational load
is better balanced, and the cost of transferring large
messages between the PEs may be reduced.

When the odd-even sorting method is implemented
on the AP1000, Algorithm 1 and Algorithm 2 (with
� > 2 but not too large) are almost equally e�ective in
reducing the merge time. This is because the AP1000
has low message latency. The di�erence between the
Algorithms 1 and 2 would be more signi�cant on a
machine with a high message latency.

References

[1] S. G. Akl, Parallel Sorting Algorithms, Academic
Press, Orlando, Florida, 1985.

[2] K. E. Batcher, \Sorting networks and their appli-
cations", Proc. AFIPS 1968 Spring Joint Comput.
Conf., 1968, 307{314.

[3] G. Baudet and D. Stevenson, \Optimal sorting al-
gorithms for parallel computers", IEEE Trans. on
Computers, C{27, 1978, 84{87.

[4] R. P. Brent (editor), Proceedings of the CAP
Workshop '91, Australian National University,
Canberra, Australia, November 1991.

[5] R. P. Brent and M. Ishii (editors), Proceedings of
the First CAP Workshop, Fujitsu Research Labo-
ratories, Kawasaki, Japan, November 1990.

[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga,
S. W. Otto, J. K. Salmon and D. W. Walker, Solv-

ing Problems on Concurrent Processors, Volume 1,
Prentice-Hall, Englewood Cli�s, New Jersey, 1988.

[7] A. Tridgell and R. P. Brent, An Implementation
of a General-Purpose Parallel Sorting Algorithm,
Report TR-CS-93-01, Computer Sciences Labo-
ratory, Australian National University, February
1993.


