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Integer Factorization

Richard P. Brent
Computer Sciences Laboratory

Summary

The problem of finding the prime factors of large composite numbers has always been of mathe-
matical interest. With the advent of public key cryptosystems it is also of practical importance,
because the security of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA)
system, depends on the difficulty of factoring the public keys.

In recent years the best known integer factorization algorithms have improved greatly, to the
point where it is now easy to factor a 60-decimal digit number, and possible to factor numbers
larger than 120 decimal digits, given the availability of enough computing power. However, the
problem of integer factorization still appears difficult, both in a practical sense (for numbers of
more than about 80 decimal digits), and in a theoretical sense (because none of the algorithms
run in polynomial time).

We outline several recent integer factorization algorithms, including the elliptic curve algo-
rithm (ECM), the multiple polynomial quadratic sieve (MPQS), and the special/general number
field sieve (NFS), give examples of their use, and mention some applications.

Public key cryptography

Large primes have at least one practical application – they can be used to construct public key
cryptosystems (also known as asymmetric cryptosystems and open encryption key cryptosys-
tems) [12, 13]. The security of such systems depends on the (assumed) difficulty of factoring the
product of two large primes. This is a practical motivation for the current interest in integer
factorisation algorithms.

Parallel algorithms

We would hope that an algorithm which required time T1 on a computer with one processor could
be implemented to run in time TP ∼ T1/P on a computer with P independent processors. This
is not always the case, since it may be impossible to use all P processors effectively. However,
it is true for many integer factorisation algorithms, provided that P is not too large.

Integer factorization algorithms

There are many algorithms for finding a nontrivial factor f of a composite integer N . The most
useful algorithms fall into one of two classes –

A. The run time depends mainly on the size of N, and is not strongly dependent on the size of
f . Examples are –

• Lehman’s algorithm [5], which has worst-case run time O(N1/3).

• The Continued Fraction algorithm [9] and the Multiple Polynomial Quadratic Sieve
algorithm [11], which under plausible assumptions have expected run time

O(exp(c(log N log log N)1/2)),

where c is a constant (depending on details of the algorithm).
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• The (special) Number Field Sieve algorithm [6], which under plausible assumptions
has expected run time

O(exp(c(log N)1/3(log log N)2/3)),

where c is a constant, provided N has a suitable form.

B. The run time depends mainly on the size of f, the factor found. (We can assume that
f ≤ N1/2.) Examples are –

• The trial division algorithm, which has run time O(f · (log N)2).

• Pollard’s “rho” algorithm [10], which under plausible assumptions has expected run
time O(f1/2 · (log N)2).

• Lenstra’s Elliptic Curve algorithm [8], which under plausible assumptions has ex-
pected run time

O(exp(c(log f log log f)1/2) · (log N)2),

where c is a constant.

In these examples, the time bounds are for a sequential machine, and the term (log N)2 is a
generous allowance for the cost of performing arithmetic operations on numbers which are O(N)
or O(N2).

Due to space limitations we can not describe the algorithms in detail here. The interested
reader is referred to the references given above and, for more details on implementations, [2, 3,
4, 14].

Examples

The elliptic curve algorithm (ECM) is the best known algorithm for finding moderately large
factors of very large numbers. For example, ECM was used to complete the factorisation of the
617-decimal digit Fermat number F11 = 2211

+ 1:

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564

where the 21-digit and 22-digit prime factors were found using ECM, and p564 is a 564-decimal
digit prime. The factorisation required about 360 million multiplications mod N , which took
less than 2 hours on a Fujitsu VP 100 vector processor [1, 2]. ECM is ideal for parallel imple-
mentation, because it involves many pseudo-random trials which may be performed in parallel
on different processors, with little communication required.

The multiple-polynomial quadratic sieve algorithm (MPQS) is currently the best general-
purpose algorithm for factoring moderately large numbers N whose factors are in the range
N1/3 to N1/2. For example, A. K. Lenstra and M. S. Manasse recently found

3329 + 1 = 22 · 547 · 16921 · 256057 · 36913801 · 177140839 · 1534179947851 ·
24677078822840014266652779036768062918372697435241 · p67 ,

where the penultimate factor is a 50-digit prime, and the largest factor p67 is a 67-digit prime.
The computation used a network of workstations for “sieving”, and a supercomputer for the
final solution of a very large linear system.

Our numerical examples have involved numbers of the form

ae ± b,

3



for small a and b, although the ECM and MPQS factorisation algorithms do not take advantage
of this special form. The (special) number field sieve (NFS) is a new algorithm which does take
advantage of this special form. In concept it is similar to the quadratic sieve algorithm, but
it works over an algebraic number field defined by a, e and b. We refer the interested reader
to [6] for details, and merely give an example to show the power of the algorithm. Consider the
155-decimal digit Fermat number

F9 = N = 229
+ 1.

Using NFS, Lenstra et al [7] found

F9 = 2424833 · 7455602825647884208337395736200454918783366342657 · p99,

where p99 is an 99-digit prime. The 7-digit factor was already known, although this did not
help much. The collection of relations took less than two months on a network of about 700
workstations. A sparse system with 226,688 rows and 199,203 columns was reduced to a dense
matrix with about 72,413 rows and 72,213 columns. Using Gaussian elimination, dependencies
(mod 2) between the rows were found in three hours on a 65,536-processor Connection Machine
(CM2), and gave the desired factorisation of F9.

There is currently much interest in extending the number field sieve algorithm to handle
general numbers (i.e. not just numbers of a special form). This appears to be possible in
theory, but it is not yet certain if all the practical difficulties can be overcome [6]. If they can,
the (general) number field sieve algorithm should become the algorithm of choice for factoring
integers larger than about 120 decimal digits. For smaller integers the MPQS algorithm will
probably be faster (and certainly simpler) than NFS.
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