
.
y
lia
Constructing the Spanners of Graphs in Parallel

Weifa Liang Richard P. Brent

Department of Computer Science Computer Sciences Lab
Australian National University Australian National Universit
Canberra, ACT 0200, Australia Canberra, ACT 0200, Austra

Email:wliang@cs.anu.edu.au Email:rpb@cslab.anu.edu.au
n

t
,

s

a

e
T
e
h
T
a
d

[2
l

s-

-
-

in
-
i-

l-
-

-

ion
rs

y,
Abstract

Given a connected graphG = (V;E) with n vertices, a sub-
graphG0 is an approximatet-spanner ofG if, for every u, v
2 V , the distance betweenu andv in G0 is at mostf(t) times
longer than the distance inG, wheref(t) is a polynomial func-
tion oft andt � f(t) < n. In this paper parallel algorithms for
finding approximatet-spanners on both unweighted graphs a
weighted graphs withf(t) = O(tk+1) andf(t) = O(Dtk+1)
respectively are given, whereD is the maximum edge weigh
of a minimum spanning tree ofG, k is a fixed constant integer
and1 � k � logt n. Also, an NC algorithm for finding a2t-
spanner on a weighted graphG is presented. The algorithm
are for a CRCW PRAM model.

1 Introduction

Given a connected graphG = (V;E) with n vertices, a sub-
graphG0 is a t-spanner(an approximate t-spanner) of G if, for
everyu, v 2 V , the distance betweenu andv in G0 is at most
t (f(t)) times longer than the distance inG, wheref(t) is a
polynomial function oft and1 � t � f(t) < n. The value of
t andf(t) are called thefactorsof G. There are two criteria to
measure the sparseness of a spanner, that is, thesize, defined as
the number of edges in the spanner, and theweight, defined as
the sum of the edge weights in the spanner. The minimum sp
ning tree (MST) ofG is obviously the sparsest spanner in term
of both size and weight, but its factor can be as bad asn � 1

[1]. For convenience, we denote by,wt(MST), the sum of the
edge weight of the MST. Usually the sparseness of a spann
judged by comparing it to the size and the weight of the MS

Much effort has been made in recent several pap
[1,6,9,12] regarding spanners on some special graphs suc
Euclidean graphs, geometry graphs and chordal graphs.
spanner concept has a number of applications. For ex
ple, the sparse spanner of unweighted graphs is used in
tributed computing and communication network design
5,13-14]. Cohen [7] once suggested a randomized paralle
gorithm for finding at-spanner with sizeO(n1+

2+�

t) on a
d

n-
s

r is
.
rs
as

he
m-
is-
-
al-

weighted graph which needsO(Wmax

Wmin
�2 log2 n) expected time

with O(n1=�m� log2 n) work on an EREW PRAM, where
� = t=(2+�=2), wherewt(e) is the weight of edgee,Wmax =

maxfwt(e) j e 2 Eg, Wmin = minfwt(e) j e 2 Eg, and� is
a small constant.

Despite the existence of several efficient sequential and di
tributed algorithms for finding a sparset-spanner of graphs, we
have not seen any deterministic parallel algorithm for this prob
lem. In this paper, we first relax the restriction of the prob
lem by introducing anapproximatet-spannerconcept, and then
present simple parallel algorithms for finding approximatet-
spanners on both unweighted graphs and weighted graphs
terms of both size and weight. The algorithms exhibit a trade
off between the running time and the factor of the spanner. F
nally we present an NC algorithm for finding a2t-spanner on a
weighted graphG.

The remaining parts of this paper are organized as fo
lows. In Section 2 we introduce the tree decomposition con
cept. The algorithms for finding an approximatet-spanner
for both unweighted graphs and weighted graphs with fac
torsO(tk+1) andO(Dtk+1) respectively are presented in Sec-
tion 3, whereD = maxfwt(e) j e 2 MSTg. If G is un-
weighted, the algorithm requiresO(n

tk
logn) time andM(n)

processors, whereM(n) is the number of processors needed
to find a Breadth-First Search tree in a graph withn vertices in
timeO(logn). The approximatet-spanner delivered has size of
O((n

tk
)1+1=t+n). Otherwise, the algorithm requiresO((n

tk
)2+

(n
tk
)1+2=(t�1) logn) time andO(n2) processors. The approx-

imate t-spanner delivered has size ofO((n
tk
)1+2=(t�1) + n),

weight of ((n
tk
)
2+�
t�1 + 1)wt(MST). In Section 4, we suggest

an NC algorithm for constructing a2t-spanner on a weighted
graphG with sizeO(minfm; n

2

t
log1+�(

Wmax

Wmin

)g) which re-

quiresO(log3 n log1+�(
Wmax

Wmin

)) time andO(n3) processors,
where� is a constant and0 < � < 1=2. All proposed paral-
lel algorithms run on a CRCW PRAM in which simultaneous
access by more than one processor to the same memory locat
for both read and write is allowed. In case several processo
attempt to write in the same memory location simultaneousl
an arbitrary one succeeds in doing the write.

IPPS '96
ISSN 1063-7133/96 $5.00 C 1996 IEEE.

r

o

ra

-

t
s

e
s

it

a
t
-
e

-

-
m
f

-

er

ind
es
2 Preliminaries

Let Xi � V and[si=1Xi = V , 1 � i � s � n. The set
H = fXi j 1 � i � sg is called thecoarse vertex coveronV if
there existsXi andXj such thatXi\Xj 6= �, i 6= j. Otherwise
H is called theexact vertex coveronV . If H is an exact vertex
cover onV , thenX 2 H is called avertex cluster. Otherwise
X is simply called apartial cover. For a vertexu, X is called
u'shome coverif u 2 X . Obviously, for an exact vertex cove
H, every vertexu 2 V has only one home cover. Aninverted
tree is a directed tree with the edges directed towards the ro
and the root has a directed self-cycle.

Let T (V;ET) be an inverted tree withn vertices, we define
the following restricted decomposition asthe tree decomposi-
tion in whichT is divided into a forest ofn0 inverted subtrees,
and every inverted subtree has no more thantwo levels (the root
of a tree is defined as thefirst level) wheren0 � bn=2c.

The tree decomposition can be easily implemented in pa
lel. We calculate the level number for every vertex inT . As
a result,V is divided into two disjoint subsetsV1 consisting of
all vertices withoddlevel numbers andV2 consisting of all ver-
tices withevenlevel numbers. IfjV1j � jV2j then all vertices
in V1 are selected as the roots of inverted subtrees. Letu 2 V1
be such a vertex, a vertexv 2 V2 belongs to the inverted sub
tree rooted atu iff the level number ofv is larger than that ofu
by oneandu is the parent ofv in T . Otherwise the vertices in
V2 are selected as the roots of these inverted subtrees. For
case, we assign the rootr of T to one of the inverted subtree
in which the root is one ofr's children inT .
Lemma 2.1 Let F be a forest of inverted trees such that th
number of vertices isn and each tree has two vertices at lea
Then the tree decompositions inF can be finished inO(logn)
time usingO(n) processors.
Proof. For every inverted treeT in F , we first calculate its ver-
tex level numbers andjVij, i = 1; 2. All of these operations can
be done inO(logn) time withO(n) processors. Then for every
tree with jV1j � jV2j, we apply the tree decomposition on
which can be done inO(1) time withO(n) processors. Finally
we apply the tree decomposition to those trees withjV2j � jV1j.
Therefore the restricted tree decomposition inF can be finished
in O(logn) time withO(n) processors.2

3 Finding An Approximate t-spanner

3.1 Unweighted Graphs

3.1.1 Finding a2t-spanner

Awerbuch presented a distributed algorithm for constructing
optimal synchronizer in [2]. In the following we show tha
a 2t-spanner with sizeO(n1+1=t) can be achieved by the algo
rithm of Awerbuch. The basic idea of his algorithm is describ
as follows. The vertex setV is partitioned into maximum sub-
sets of vertices calledclusterssuch that every cluster is con
nected, and the diameter of every cluster does not exceed
t,

l-

his

t.

n

d

the

logarithmof its cardinality. This guarantees that the total num
ber of the neighboring cluster pairs is linear, and the maximu
cluster diameter is logarithmic in the number of the vertices o
the graph. The following is a parallel version of his algorithm.

Algorithm 1
1. Initialization.A(i) := 0; B(i) := 0; count := 0.
/* A(i) = 0 means vertexi is not in any cluster yet.*/
/* B(i) means vertexi is explored by clusterB(i),*/
/* andcountis the number of clusters. */
2. while there exists a vertexi with A(i) = 0 do
2.1.count := count+ 1; select a vertexi such that
A(i) = 0 andB(i) = maxfB(j) : j = 1; : : : ; ng;
A(i) := 1 andB(i) := count.
2.2. generate a BFS subtreeTi rooted ati such that
Ti's diameter doesn' t exceed the logarithm of its cardinality.
2.3. for every vertexv in Ti, A(v) := 1.
for eachu in the rejected level ofTi, B(u) := count.
endwhile

Lemma 3.1. Let G(V;E) be an unweighted graph. A
2t-spanner ofG with size O(n1+1=t) can be generated in
O(n logn) time withM(n) processors.
Proof. By Algorithm 1, generating a cluster and labeling this
cluster can be done inO(logn) time with M(n) processors,
currently the best result ofM(n) = n2:376 [9]. Selecting the
center for a new cluster needsO(logn) time andO(n= logn)
processors by prefix computation. While the number of itera
tions of thewhile loop is at mostO(n). Obviously the total
number of edges in all BFS trees is at mostn � 1. By the step
2.2, for a cluster withn0 vertices, there are at mostpn0 edges
connected with other clusters. Therefore the resulting spann
hasO(n� 1 + pn) = O(n1+1=t) edges.

The factor of this spannerG0 is considered as follows. For an
edge(u; v) 2 E is not inG0, if u andv are in the some cluster
centered atw, Cw, then the distance betweenu andv in G0 is at
most the distance betweenu andw plus the distance betweenv
andw. So, the distance betweenu andv in G0 is no more than
2 logp n = 2t. Otherwiseu 2 Cu andv 2 Cv, then the distance
betweenu andv is one, and(u; v) 2 G0 by the algorithm.2

3.1.2 Finding an approximatet-spanner

Our algorithm consists of several phases. The basic idea beh
our algorithm is that, in each phase, we compress those vertic
whose distances are not far away from each other into asuper-
vertex(also called a cluster), form asupergraphG(V ; E) where
V consists of all supervertices, and there is an edge inE iff there
is at least one edge inG between two supervertices. So, the
approximate spanner, denote bySP (G), ofG can be expressed
asSP (G) [fthe tree edges in clustersg recursively. In the
following we give the detailed algorithm. The functionD onV
defines a forest of inverted trees in whichD(v) is the parent of
v.

Algorithm 2

ir

e
-

e
f

S

g

e

n

th
d

,
o-

ate
ted

al-
g

hs
i := 1; V := V .
while i � k do

for j := 1 to blog3 tc do
1. for each vertexv in V , setD(v) := v;
2. for each vertexv, find a neighboru with
the smallest index,D(v) := u;
if D(D(v)) = v andD(v) 6= v then
if D(v) > v thenD(v) := v elseD(D(v)) := D(v).

This leads to a forestF of inverted trees in
which each tree has at leasttwovertices.
3. generate another forestF 0 of inverted trees
by applying the tree decomposition toF .
Denote byEi;j the edge set inF 0.
4. construct a supergraphG(V ; E) such that
each inverted tree inF 0 is a supervertex and
an edge inE exists if there is an edge inG
between vertices in these two supervertices.
endfor

i := i+ 1

endwhile
5. Find a2t-spannerG0 of G(V ; E) by Algorithm 1.
6. The approximatet-spanner,SP (G), ofG is

G(V;[
j=1;:::;blog3 tc
i=1;:::;k Ei;j) [G

0.

Theorem 3.1.Given an unweighted, connected graphG(V;E),
an approximatet-spanner with factorO(tk+1) can be con-
structed inO(n

tk
logn) time usingM(n) processors, and the

spanner has size ofO((n
tk
)1+1=t + n), and factor ofO(tk+1),

wherek is a fixed constant,1 � k � c logt n andc < 1.
Proof. By Algorithm 2, thewhile loop can be finished in
O(k log3 t logn) time using at mostO(m+n) processors. The
step 5 can be done inO(n

tk
logn) time usingM(n) processors

by Lemma 3.1 which is also the dominant step of the ent
algorithm.

By Lemma 2.1, the number of supervertices in a sup
graph is at mosthalf of the number of supervertices of its im
mediately precedent supergraph, assumingG is the initial su-
pergraph. Let the number of supervertices of current sup
graph beni (n1 = n). Then the number of supervertices o
the resulting supergraph after finishing thefor loop is at most
O(ni

t
). Therefore the final supergraph hasO(n

tk
) supervertices

after finishing thewhile loop. Following Lemma 3.1, the2t-
spanner of the final supergraph has sizeO((n

tk
)1+1=t). Note

that, for fixedi, jEi;j j � jEi;j�1j=2 and jE1;1j � n � 1 be-
cause eachEi;j is the edge set of a forest of inverted trees.
Pblog3 tc

j=1 jEi;j j � O(n
ti
). Therefore the size of the resultin

approximate spanner isO((n
tk
)1+1=t + n).

Now we calculate the factor. Letdl be the maximum diam-
eter of a cluster in thelth iteration of variablej for fixed i in
the algorithm above. Initially every vertex inG is a supervertex
and the diameter of every supervertex isd0 (= 0) wheni = 0.
The equation is described as follows.

dl = 3dl�1 + 2, 1 � l � blog3 tc.
e

r-

r-

o

Thendblog3 tc = t � 1 by the equation above. Therefore th
maximum distance between two adjacent vertices inG belong-
ing to the same supervertex is at mostO(tk), and the factor of
the resulting spanner isO(2t(c0tk + 1)) = O(tk+1), wherec0

is a constant.2

3.2 Weighted Graphs

3.2.1 Finding at-spanner

Assume thatdG(x; y) is the weight of the shortest path betwee
verticesx andy in graphG. Althőfer et al. [1] first consid-
ered the problem of finding a sparset-spannerG0(V;E0) in an
non-negative weighted graphG(V;E), and presented a simple
greedy algorithm for this problem described as follows.

Algorithm 3
1. Initialization

1.1. sortE by non-decreasing weight;
1.2.G0 := (V;�);

2. for every edgee = (u; v) from the sorted listdo
2.1. computedG0(u; v) betweenu andv in G0;
2.2. if dG0(u; v) > t� dG(u; v)

thenE0 := E0 [f(u; v)g; G0 := (V;E0)

endfor
3. OutputG0

If we use the fastest algorithm for finding the shortest pa
between two vertices [12], Algorithm 3 can be implemente
in O(mm + mn logn) = O(n4) time. The size ofG0 is
O(n1+2=(t�1)), and the weight is less than(n

t�1+1)wt(MST)

[1]. By a considerably improved analysis of this algorithm
Chandra et al. [7] show that the running time of this alg
rithm isO(n3+4=(t�1)), and the weight ofG0 is no more than

O(n
2+�
t�1wt(MST)), where� > 0 is an any arbitrarily small

constant.
The naive parallel version of Algorithm 3 requiresO(m +

Rn logn) time if O(n2) processors are available, whereR is
the size ofG0. Here we observe thatG0 is such an augmented
graph, each time we just put a new edge into it and re-calcul
the shortest path between a pair of vertices on the augmen
graph. Therefore, we can use the partially dynamic parallel
gorithm for finding all pairs shortest paths, developed by Lian
et al. [13], which claims that maintaining all pairs shortest pat
can be done inO(logn) time usingO(n2= logn) processors
when inserting an edge to a graph. Hence we have
Lemma 3.2. Given a weighted, connected graphG(V;E),
finding a sparset-spanner ofG can be done inO(m +

n1+2=(t�1) logn) time usingO(n2) processors. The size and
the weight of the spanner generated areO(n1+2=(t�1)) and

O(n
2+�
t�1wt(MST)) respectively, where� > 0 is an any arbi-

trarily small constant.
Proof. Initially we compute the distance matrix ofG. It can be
easily done inO(n logn) time usingO(n2) processors. Then
we constructn single source shortest path trees forG0 (see [13]

r

c

m

f

a

e

t a

n

ze

of

es

s,

at
)

er is
for details). When a new edge is inserted intoG0, we update
the distance matrix ofG0 which can be done inO(1) time using
O(n2) processors, then the maintenance of the data structu
for n single source shortest path trees forG0 requiresO(logn)
time andO(n2= logn) processors. There are at mostR edges
to be inserted intoG0 andR = O(n1+2=(t�1)) [1]. While
deciding whether an edge ofG belongs toG0 can be done in
O(1) time by checking the corresponding entries in the distan
matrices of bothG andG0. Therefore this algorithm requires
O(m+ n1+2=(t�1) logn) time provided thatO(n2) processors
are available.2

3.2.2 Finding an approximatet-spanner

The idea for finding an approximatet-spanner on weighted
graphs is similar to that for unweighted graphs. The algorith
is same as the Algorithm 2 except the following steps.

Algorithm 4
...

2. for each vertexv, find a neighboru
with the minimum weight, and setD(v) := u.

...
4. Construct a weighted supergraphG(V ; E)
such that each tree is a supervertex and(u; v) 2 E
is selected as an edge ofE if (i) u 2 Cu andv 2 Cv;
(ii) the weight of the edge(u; v) is minimum
among all such edges betweenCu andCv;

...
5. Find at-spannerG0 on the resulting supergraph
G(V ; E) by Lemma 3.2.

...
Theorem 3.2. Given a weighted graphG(V;E) with a fixed
k, let D be the maximum edge weight of the MST ofG.
Then finding an approximatet-spanner with factorO(Dtk+1)
requiresO(n

tk
)2 + (n

tk
)1+2=(t�1) logn) time andO(n2) pro-

cessors. The approximatet-spanner generated has size o

O((n
tk
)1+2=(t�1)+n), weight ofO(((n

tk
)
2+�

t�1 +1)wt(MST)),
where� > 0 is an any arbitrarily small constant.
Proof. Similar to Theorem 3.1, omitted.2

4 NC Algorithms for 2 t-spanners

4.1 Unweighted graphs

In the following we present an NC algorithm for finding a2t-
spanner of unweighted graphsG with sizeO(maxfm;n2=tg).
The motivation that we develop this algorithm is to use it as
subroutine to devise an NC algorithm for finding a2t-spanner
on weighted graphs.

Let G(V;E) be an unweighted graph andd(u; v) the dis-
tance between verticesu andv in G. Assuming thatG does
not contain degree-one vertices. Otherwise we can delete th
es

e

se

vertices first. We then put them back to the resultingt-spanner
of the graph formed by the remaining vertices. We construc
new graphGi(V;Ei) from the graphG(V;E) such that an edge
(u; v) 2 Ei if and only if d(u; v) � 2i, 0 � i � logn.

Denote byUi a maximal independent set of vertices o
G(V;Ei), andT (u; i) a Breadth-First Search tree rooted atu
with height2i in G(V;E).
Lemma 4.1.Given the graphG(V;E), the graphGi(V;Ei) can
be constructed inO(i) time usingO(n3) processors,0 � i �
logn.
Lemma 4.2. For any two non-adjacent verticesu andv in the
graphGblog tc�1(V;Eblog tc�1), d(u; v) > 2blog tc�1 � t=4.
Lemma 4.3. n

�blog tc�1+1
� jUblog tc�1j �

4n
t

.

Algorithm 5
1. Construct the graphGblog tc�1(V;Eblog tc�1).
2. Find aUblog tc�1 in Gblog tc�1.
3. For everyu 2 Ublog tc�1, construct theT (u; blog tc).
4. The2t-spanner ofG is [u2Ublog tc�1

T (u; blog tc).

Let Cover(u; blog tc) be a set consisting of all vertices in
T (u; blog tc), andu be defined as thecenterof this set. By
the definition in Section 2,Cover(u; blog tc) is a partial cover
andH = fCover(u; blog tc) j u 2 Ublog tc�1g is a coarse ver-
tex cover onV .
Theorem 4.1.The spanner generated by Algorithm 5 has si
of O(minfm;n2=tg), and factor of2t.
Proof. By Lemma 4.3,jUblog tc�1j � 4n=t, and a vertexv 2 V
belongs to at most4n=t home covers, and therefore the size
the resulting spanner isO(minfm; n2

t
g).

Now we show that the factor of the resulting spanner is2t.
To achieve this bound, we only show that for every two vertic
u andv such thatd(u; v) � 2blog tc�1, there exists at least a
home coverX 2 H including these two vertices. That mean
the distance betweenu andv in the spanner is no more than
2t. The proof is as follows. By Lemma 4.2, it is impossible th
bothu andv are inUblog tc�1. So we discuss it by four cases. (i
If either one of them is inUblog tc�1, sayu 2 Ublog tc�1, then
v is in the home cover ofu becaused(u; v) � 2blog tc. As a
result, the distance between these two vertices in the spann
no more than2blog tc � t. (ii) If neitheru norv is inUblog tc�1

but their common neighborw ofGblog tc�1 is inUblog tc�1, then
w is the center of their home cover becaused(v; w) � 2blog tc�1

andd(u;w) � 2blog tc�1, the theorem follows. (iii) Ifw is a
neighboring vertex ofu butv inGblog tc�1. We claim thatv also
belongs to the home cover centered atw, becaused(v; w) �
d(w; u) + d(u; v) � 2blog tc�1 + 2blog tc�1 � 2blog tc. (iv)
Otherwise, the distance between a vertex inUblog tc�1 andu
(or v) in Gblog tc�1 is at least larger than 2. Then eitheru or
v must belong toUblog tc�1 becauseUblog tc�1 is a maximal
independent set of graphGblog tc�1. Contradiction.2.

.

c
s
n
e

te
e

r

n
e

t

d
ed.

one
es
in

s 6

es,

-

l

ew

and
-

n

4.2 Weighted graphs

Cohen [7] introduced thepairwise coverconcept, and pre-
sented an efficient sequential algorithm and a randomized pa
lel algorithm for finding a sparset-spanner in weighted graphs
The basic idea of Cohen's algorithm is to employ a logarithm
number of pairwise covers for different values ofW to con-
struct spanners. Define theradii of a partial coverX by the
distance from the center ofX to the farthest vertex in it. Let�0

be any constant bounded by0 < �0 < 1=2. Cohen's algorithm
is described as follows.

Algorithm 6
1. Initialization.

1.1.Wmax := maxfwt(e) j e 2 Eg;
Wmin := minfwt(e) j e 2 Eg;
R := dlog1+�0(

Wmax

Wmin

)e;
1.2. for i := 0 toR do in parallel

Wi :=Wmin(1 + �0)i

endfor
2. for i := 0 toR do in parallel

Construct a coarse vertex coverHi such that
the radii of every partial coverX 2 Hi is
no more than2blog tcWi.
endfor

3. The spanner generated is
[ri=1fTi(u; blog tc) j u is the center ofX and X 2 Hig.

The key part of this algorithm is how to efficiently constru
a coarse vertex cover onV (called pairwise cover in Cohen'
algorithm) in parallel. As for this, Cohen [8] introduces ra
domness to chose the centers of covers. However, it se
not easy to transform this randomized parallel algorithm in
a deterministic version. Here we present an efficient, de
ministic parallel algorithm for constructing such a coarse v
tex cover by extending our technique for unweighted graphs
weighted graphs. LetA be the adjacent weighted matrix ofG
andAi = Ai�1

J
Ai�1, where

J
operation is defined as fol-

lows: ai(u;v) = minw2V fa
i�1
(u;v); a

i�1
(u;w) + ai�1(w;v)g and an entry

ai(u;v) of Ai represents the distance betweenu andv with at
most2i edges. LetA0 = A. Then a coarse vertex coverHi is
constructed as follows.

Algorithm 7
1. Construct an auxiliary graphGi(V;E

�), an edge
(u; v) is added toE� iff d(u; v) � 2blog tc�1Wi.

2. Find a maximal independent setU(i; blog tc � 1) of
Gi(V;E

�) in parallel.
3. Build a shortest path tree rooted atu, Ti(u; blog tc)

with height2blog tcWi in G(V;E) for each
u 2 U(i; blog tc � 1) such that a vertexv is
included in this tree iffd(u; v) � 2blog tcWi.

4. The coarse vertex cover is built, where
Hi = fCoveri(u; blog tc) j u 2 U(i; blog tc � 1)g.
ral-

ic

t

-
ms

to
r-
r-
to

Lemma 4.7. Given a weighted graphG(V;E) with respect
to parameterst andWi, it can be done inO(log3 n) time us-
ingO(n3) processors for constructing a coarse vertex coverHi

such that two verticesu andu are included in one home cove
X at least ifd(u; v) � 2blog tc�1Wi for fixed i, whereX 2 Hi.
Proof. By Algorithm 7, the step 1 can be finished i
O(logn log t) time usingO(n3) processors. The details ar
as follows. First compute the matrixAblog tc�1 which requires
O(logn log t) time usingO(n3) processors. Then construc
the graphGi(V;E

�) which requiresO(1) time usingO(n3)
processors. The step 2 can be done inO(log3 n) time us-
ingO(n2= logn) processors by the algorithm of Goldberg an
Spencer [18]. The processing of the step 3 is more involv
For every vertexu 2 U(i; blog tc � 1), we build an inverted
tree rooted atu, Ti(u; blog tc), initially. Then we check a
vertex v 2 V to see whetherv 2 Ti(u; blog tc) by testing
ai(u;v) � 2blog tcWi. If it does, we find the parentp(u; v) of

v in this tree, wherep(u; v) is such a vertexw that ai(u;v) =

ai(u;w) + wt((w; v)). There are at mostjU(i; blog tc � 1)j � n
trees, and for each vertex finding its parent in a tree can be d
in O(logn) time usingO(n) processors. So, the step 3 requir
O(logn) time andO(n2) processors. Step 4 can be done
O(1) time usingO(n2) processors.2.
Theorem 4.2. For a weighted connected graphG(V;E) with
non-negative weights, the spanner generated by Algorithm
and 7 has size ofO(minfm; n

2

t
log1+�(

Wmax

Wmin
)g) and factor of

2t, where� is a constant and0 < � < 1=2.
Proof. Similar to Theorem 4.1, omitted.2

References

[1] I. Alth őfer, G. Das, D. Dobkin, D. Joseph and J. Soar
On sparse spanners of weighted graphs,Disc. and Comp.
Geometry,Vol. 9, 1993, 81-100.

[2] B. Awerbuch, Complexity of network synchronization,J.
ACM, Vol. 32, 1985, 805-823.

[3] B. Awerbuch, A. Bar-Noy, N. Linial and D. Peleg, Com
pact distributed data structures for adaptive routing,Proc.
21st ACM Sympo. on Theory of Computing, 1989, 479-
489.

[4] B. Awerbuch and D. Peleg, Routing with polynomia
communication-space trade-off,SIAM J. Discrete Math.,
Vol. 5, 1992, 151-162.

[5] B. Awerbuch and D. Peleg, Sparse partitions,Proc. 31st
IEEE Sympo. on Founda. of Computer Sci., 1990, 501-
513.

[6] B. Chandra, G. Das, G. Narasimhan and J. Soares, N
sparseness results on graph spanners,Proc. 8th ACM
Sympo. on Comput. Geometry, 1992, 192-201.

[7] E. Cohen, Fast algorithms for constructing t-spanners
paths with t,Proc. 34th IEEE Sympo. on Founda. of Com
put. Sci., 1993, 648-658.

[8] D. Coppersmith and S. Winograd, Matrix multiplicatio
via arithmetic progressions,Proc. 19th ACM Sympo. on
Theory Comput., 1987, 1-6.

-

d
,

d

-

[9] G. Das and G. Narasimhan, A fast algorithm for construct
ing sparse Euclidean spanners,Proc. 10th ACM Sympo. on
Comput. Geometry, 1994, 132-139.

[10] M. L. Fredman and R.E. Tarjan, Fibonacci heaps an
their uses in improved network optimalization problems
J. ACM, Vol.34, 1987, 596-615.

[11] W. Liang, B. McKay and H. Shen, NC algorithms for dy-
namically solving the all pairs shortest path problem and
related problems, Unpublished manuscript, Aug., 1995.

[12] D. Peleg and A. A. Sch˝affer, Graph spanners,J. Graph
Theory, Vol. 13, 1989, 99-116.

[13] D. Peleg and J. Ullman, An optimal synchronizer for the
hypercube,SIAM J. Comput., Vol. 18, 1989, 740-747.

[14] D. Peleg and E. Upfal, A trade-off between space an
efficiency for routing tables,J. ACM, Vol. 36, 1989, 510-
530.

[15] M. Goldberg and T. Spencer, Constructing a maximal in
dependent set in parallel,SIAM J. Discrete Math., Vol. 2,
1989, 322-328.

