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Abstract

In this paper we introduce a method for designing efficient
Jacobi-like algorithms for eigenvalue decomposition of a
real normal matrix. The algorithms use only real arithmetic
and achieve ultimate quadratic convergence. A theoretical
analysis is conducted and some experimental results are
presented.

1 Introduction

A real matrix A is said to be normal if it satisfies the
equation

AAT = ATA

where AT is the transpose of matrix A. This kind of matrix
has the property that it can be reduced to a diagonal form
through unitary similarity transformations

QAQ̄T
= D

where Q is unitary and D is diagonal. In this paper we
consider how to design a scalable Jacobi-like algorithm for
efficient parallel computation of the eigenvalue decomposi-
tion of a real normal matrix over the real field. Real normal
matrices are generalisations of real symmetric matrices. A
real symmetric matrix is normal, but a real normal matrix is
not necessarily symmetric. We shall focus our attention on
the unsymmetric case although the method to be described
applies to both cases.

The standard sequential method for eigenvalue decom-
position of this kind of matrix is the QR algorithm. When
massively parallel computation is considered, however, the
parallel version of the QR algorithm for solving unsymmet-
ric eigenvalue problems may not be very efficient because
the algorithm is sequential in nature and not scalable.

One alternative to the QR method is a Jacobi method.
Jacobi-based algorithms have recently attracted a lot of at-
tention as they have a higher degree of potential parallelism.
The Jacobi method, though originally designed for symmet-
ric eigenvalue problems, can be extended to solve eigen-
value problems for unsymmetric normal matrices [3, 7].
However, one problem is that we have to use complex arith-
metic even for real-valued normal matrices. Complex op-
erations are expensive and should be avoided if possible. A
quaternion-Jacobi method was recently introduced [4]. In
this method a 4 � 4 symmetric matrix can be reduced to
a 2 � 2 block diagonal form using one orthogonal similar-
ity transformation. This method can also be extended to
compute eigenvalues of a general normal matrix. However,
the problems are that the original matrix has to be divided
into a sum of a symmetric matrix and a skew-symmetric
matrix, which is not an orthogonal operation, and that the
algorithm cannot be used to solve the eigenvalue problem
of near-normal matrices. Another parallel Jacobi-like al-
gorithm, named the RTZ (which stands for Real Two-Zero)
algorithm, was also proposed recently [5]. This method uses
real arithmetic and orthogonal similarity transformations. It
is claimed that quadratic convergence can be obtained when
computing eigenvalues of a real near-normal matrix with
real distinct eigenvalues. However, a serious problem with
this method is that the process may not converge if the matrix
has complex eigenvalues.

In this paper we describe a method for designing effi-
cient Jacobi-like algorithms for eigenvalue decomposition
of a real normal matrix. The designed algorithms use only
real arithmetic and orthogonal similarity transformations.
The theoretical analysis and experimental results show that
ultimate quadratic convergence can be achieved for general
real normal matrices with distinct eigenvalues.

Since the RTZ algorithm uses a similar idea to our
method, an analysis of the RTZ algorithm is presented in
Section 2. Our method is described in Section 3. In that
section a theoretical analysis of convergence is also pre-
sented. Some experimental results are given in Section 4.
Section 5 is the conclusion.
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2 An Analysis of the RTZ Algorithm

We now show that when applying the RTZ algorithm,
we can only obtain at best a linear convergence rate if the
matrix has complex eigenvalues.

In the following a 4� 4 matrix

A =

0
BB@

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

1
CCA ; (1)

or its block form

A =

�
A11 A12

A21 A22

�
;

is used to show how the convergence rate may be affected
when applying the RTZ algorithm.

The basic idea for computing the eigenvalue decomposi-
tion of a 4�4 matrix using the RTZ algorithm is as follows:
The first leading diagonal element a11 in A11 is chosen to-
gether with the first row in A12, the first column in A21 and
the whole of A22 to form a 3� 3 matrix, that is,

A1 =

0
@ a11 a13 a14

a31 a33 a34

a41 a43 a44

1
A :

It is known that any real 3 � 3 matrix has at least one real
eigenvalue. An eigenvector associated with a real eigen-
value of the above matrix can be obtained and used to gen-
erate a Householder matrix which is then applied to update
the matrix A so that two off-diagonal elements a31 and a41

are annihilated. After that the second leading diagonal ele-
ment a22 is chosen (together withA22, the second row inA12

and the second column in A21) and another 3� 3 matrix

A2 =

0
@ a22 a23 a24

a32 a33 a34

a42 a43 a44

1
A

is formed. A Householder matrix is generated from an
eigenvector (associated with a real eigenvalue) of this 3 �
3 matrix so that two other lower triangular off-diagonal
elements a32 and a42 are eliminated through a similarity
transformation. However, this destroys the zeros introduced
previously. The two leading diagonal elements are thus
chosen alternately and the process continues until all the
elements in A21 are small enough to be considered as zero.

In the following discussions � denotes a small positive
number close to zero. If certain elements of a matrix are
written as �, we mean that the values of these elements are
small and of the same order of �, but they are not necessarily
the same.
If the above RTZ procedure converges, all the elements
inA21 andA12 become � after a few iterations and each 3�3
matrix will thus have the same form as

B =

0
@ b11 � �

� b22 b23

� b32 b33

1
A : (2)

Assume that B is close to a normal block-diagonal matrix
and written as

B = D + �F

where the elements in F satisfy jfijj < 1 and D has a form

D =

0
@ d11 0 0

0 d22 d23

0 d32 d33

1
A :

If the eigenvalues ofD are well separated, it is easy to prove
according to the perturbation theory [10] that there exists an
eigenvalue of B which satisfies the equation

jd11 � �j = O(�) (3)

An eigenvector v associated with � will also satisfy

kv � v0k = O(�) (4)

for v0 an eigenvector associated with d11, a real eigenvalue
of D. Therefore, we have the following lemma.

Lemma 1 Let a 3 � 3 matrix have a form as that in (2)
and satisfy all the above mentioned conditions. Then there
exists a real eigenvalue �, such that

jd11 � �j = O(�):

An eigenvector associated with this eigenvalue has a form

v = (v1 � �)T : (5)

Proof. The first part of the lemma is directly obtained
from (3). Let v0 =

�
v1

0; v2
0; v3

0

�T
be an eigenvector asso-

ciated with d11. Then

(D � d11I)v
0 = 0;

or 8<
:

d1v1
0 + 0v2

0 + 0v3
0 = 0

0v1
0 + d2v2

0 + d23v3
0 = 0

0v1
0 + d32v2

0 + d3v3
0 = 0

where di = dii � d11. Since the eigenvalues of D are well
separated, the determinant of the coefficient matrix from the
second and the third equations will not be equal to zero.
Thus v2

0 and v3
0 must be zero. We then have

v0 =
�
v1
0; 0; 0

�T
:



From (4), therefore, v will have the form as that in (5).

Since the RTZ algorithm uses Householder transforma-
tions, it can be seen in the following that it is crucial for
eigenvectors generated at each step to have the form as that
in (5) in order to obtain ultimate quadratic convergence.

We now show how the lower triangular off-diagonal norm
is affected when the generated Householder matrix is applied
to update certain rows and columns of the matrix.

Assume that a Householder vector v is chosen based on
vector b = (b1 b2 b3)T , that is, v = (v1 b2 b3)T for v1 = b1+

sign(b1)kbk and kbk =

q
b2

1 + b2
2 + b2

3. The Householder

matrix is then obtained as H = I � 2vvT =vTv.
Suppose that the values of b2 and b3 are of order �, but b1

is “large”. We have

1
kbk =

1

sign(b1)b1

q
1 + (b2

2 + b2
3)=b

2
1

� 1

sign(b1)b1

p
1 + �2

� 1
sign(b1)b1

(1� �2):

It is easy to verify that the Householder matrix has the
structure

H �
0
@ �1 + �2 � �

� 1� �2 �2

� �2 1� �2

1
A : (6)

When using this matrix to update (left multiply) a column
vector (x1 0 0)T , it is easy to see that, if x1 is of order �,
the zero elements will become of order �2. If x1 is “large”,
however, after the updating, the zero elements will become
O(�), rather than O(�2).

Suppose that all the elements in the off-diagonal blocks
become small after a few sweeps and that the last two ele-
ments in the first column have been eliminated by the imme-
diate previous iteration in which a11 and the corresponding
3�3 matrix are chosen. The updated matrix then has a form

A =

0
BB@

a11 a12 � �

a21 a22 � �

0 � a33 a34

0 � a43 a44

1
CCA :

Now we choose a22 and the corresponding 3� 3 matrix as0
@ a22 � �

� a33 a34

� a43 a44

1
A

and apply the RTZ procedure again to annihilate the last
two elements in the second column of matrix A. Assume
that this 3 � 3 matrix has the same properties as the matrix
described in Lemma 1. The eigenvector will be in the same
form as that in (5). Therefore, the generated Householder
matrix is of the form like (6).

The last three elements in the first column of matrix A

will be affected in the updating procedure using this House-
holder matrix. If A11 has two real eigenvalues, we may
reasonably assume that a21 and a12 are of order �. (If not, an
orthogonal similarity transformation can be applied to anni-
hilate a21 without using complex arithmetic as A11 has two
real eigenvalues.) When this Householder matrix is applied,
the values of the zero elements in the first column will be of
order �2. Quadratic convergence may then be achieved. If
A11 (as well as A22) has two complex eigenvalues, however,
the value of a21 may no longer be small. The values of the
zero elements in the first column will be increased to O(�)

as we discussed above. The convergence rate is thus only
linear at best.

In the above we only considered a very simple problem,
that is, the 4 � 4 case. When the matrix size is much
larger, the slow local convergence can significantly affect
the global convergence. In many cases the process may not
even converge.

3 Our Method

To simplify our discussion, we assume that the matrix
size is even. The basic idea of our method is described as
follows: A real normal matrix is first divided into blocks.
To avoid using complex arithmetic the size of each block
is chosen to be 2 � 2 so that each pair of conjugate com-
plex eigenvalues can be grouped into the same block. A
sequence of orthogonal similarity transformations is then
applied to annihilate the off-diagonal blocks in the lower
triangle and this process continues until all the lower trian-
gular off-diagonal blocks are considered as zero. The basic
structure of the algorithm is depicted in Fig. 1.

In Fig. 1 NITN denotes the number of lower triangular
off-diagonal blocks, or number of iterations in a sweep,
which is equal ton(n�2)=8 forn the size of the problem. A
counter NZCONT is used to check how many off-diagonal
blocks in the lower triangle are zero. If this is equal to
NITN, the process stops. The cyclic ordering is used for
sequential computation. If we consider each block as a
single element, The action of this algorithm is just the same
as that of a nonblocked algorithm. Therefore, any existing
efficient parallel orderings, for example, those in [1, 2, 8, 9,
11, 12], can be adopted to form an efficient parallel algorithm
for solving the problem.

It should be noted that in the figure we do not show how to
generate the orthogonal transformation matricesQ. This is a
very important issue relating to performance. We shall show



NITN = n(n-2)/8
NZCONT = 0
REPEAT UNTIL NZCONT = NITN

DO i = 1, n, 2
DO j = j+2, n, 2

B =

�
Aii Aij

Aji Ajj

�
IF (kAjik not zero) THEN

1. Find an orthogonal matrix Q
such that B is reduced to a block
triangular form through a similarity
transformation.
2. Update the corresponding rows
and columns of A using Q.

ELSE
NZCONT = NZCONT + 1

END IF
END DO

END DO
IF (NZCONT 6= NITN) NZCONT = 0

END REPEAT

Figure 1: The basic structure of our Jacobi-like algorithm.

that the quadratic convergence is achieved only through
properly choosing the transformation matrices during the
computation. In the following we discuss the convergence
property of the algorithm.

Lemma 2 If a (real) normal matrix A is block triangular,
it must be block diagonal, where the blocks on the main
diagonal of A are either 1� 1, or 2� 2.

The proof of the above lemma is simple and thus omitted
(to save space). From this lemma we see that, if we can find
an orthogonal matrix which reduces a real normal matrix
to a block upper triangular form through a similarity trans-
formation, the transformed matrix must be block diagonal.
Therefore, it is possible just to try to reduce a real normal
matrix to a block upper triangular form using orthogonal
similarity transformations (over the real field). The matrix
will eventually be reduced to block diagonal if the process
converges.

We show in the following three lemmas that, if the orthog-
onal transformation matrices are chosen properly and if the
process converges for a normal matrix with distinct eigen-
values, the convergence rate will ultimately be quadratic.

In the following discussion kAk denotes the Frobenius
norm of A.

Lemma 3 If a normal matrix A is divided into a block
matrix, then the main diagonal blocks have the following
property:

kAiiA
T

ii
� AT

ii
Aiik �

X
k 6=i

(kAkik2 + kAikk2) (7)

where Aij is the block in the ith row and jth column of A.

Proof. Let C = AAT and C0 = ATA. We have Cii =P
k
AikA

T

ik
and C0

ii =
P

k
AT

ki
Aki. Since matrix A is

normal,

Cii � C0

ii =
X
k

AikA
T

ik
�
X
k

AT

ki
Aki = 0;

or
AiiA

T

ii
� AT

ii
Aii =

X
k 6=i

(AT

ki
Aki � AikA

T

ik
):

Thus

kAiiA
T

ii
�AT

ii
Aiik �

X
k 6=i

kAT

ki
Aki �AikA

T

ik
k

�
X
k 6=i

(kAT

ki
Akik+ kAikA

T

ik
k)

�
X
k 6=i

(kAkik2
+ kAikk2

):

It can be seen from this lemma that each block on the
main diagonal will be very close to a normal matrix if the
norm of each off-diagonal block is small, that is,

kAiiA
T

ii
� AT

ii
Aiik = O(�2)

if max(kAijk) � � for i 6= j.
The next lemma shows that, when the lower off-diagonal

block of a 2 � 2 block matrix is annihilated through an
orthogonal similarity transformation, the norm of its upper
off-diagonal block will also be decreased if this block matrix
is close to normal.

Lemma 4 Assume that a 2�2 block matrixB, with the size
of each block being 2 � 2, is close to a normal matrix and
has the property

kBBT �BTBk = O(�) (8)

where � is a small positive number, and that B has four
distinct nonzero eigenvalues �k which satisfy

min j�kj > c1 > 0 (9)

and ����1� �i

�j

���� > c2 > 0 (10)



for i 6= j. IfB is reduced to a block triangular form through
an orthogonal similarity transformation, that is,

QTBQ = D (11)

where Q is a real orthogonal matrix and

D =

�
D11 D12

0 D22

�
; (12)

we then have
kD12k = O(�):

Proof. Since B = QDQT and BT = QDTQT , we have

kBBT �BTBk = kQ(DDT �DTD)QT k:

Thus
kDDT �DTDk = O(�): (13)

It is easy to see that the second block of the first column
in DDT � DTD is D22D

T

12 � DT

12D11. We know that
kD12k 6= 0. Otherwise,B will be a normal matrix according
to Lemma 2 and then the problem is trivial. SincekD12k 6= 0
and the eigenvalues are nonzero and distinct, D22D

T

12 �
DT

12D11 must also be nonzero. It is easy to see, from (13),
that its norm should be of order �, that is,

kD22D
T

12 �DT

12D11k = O(�): (14)

SinceB has four nonzero eigenvalues, bothD11 and D22

have full rank. The following inequality holds:

kDT

12 �D�1
22 D

T

12D11k � kD�1
22 kkD22D

T

12 �DT

12D11k:

According to one of our assumptions, that is, the smallest
eigenvalue of matrix B is greater than c1, kD�1

22 k will be
less than 1=c1. We thus have

kDT

12 �D�1
22 D

T

12D11k = O(�):

Let
D11 = Q1R1Q

H

1

and
D�1

22 = Q2R2Q
H

2

be the eigenvalue decompositions of D11 and D�1
22 for Q1

and Q2 orthonormal and R1 and R2 upper triangular, and
define

QH

2 DT

12Q1 = E:

we then have

kE �R2ER1k = kQ2(E � R2ER1)Q
H

1 k
= kDT

12 �D�1
22 D

T

12D11k
= O(�):
Let

E =

�
e11 e12

e21 e22

�
;

R1 =

 
r
(1)
11 r

(1)
12

0 r
(1)
22

!

and

R2 =

 
r
(2)
11 r

(2)
12

0 r
(2)
22

!
:

Expanding G = E � R2ER1, we have the following four
elements:

g11 = (1� r
(2)
11 r

(1)
11 )e11 � r

(2)
12 r

(1)
11 e21;

g12 = (1� r
(2)
11 r

(1)
22 )e12 � r

(2)
11 r

(1)
12 e11 �

r
(2)
12 r

(1)
12 e21 � r

(2)
12 r

(1)
22 e22;

g21 = (1� r
(2)
22 r

(1)
11 )e21

g22 = (1� r
(2)
22 r

(1)
22 )e22 � r

(2)
22 r

(1)
12 e21:

Since r(1)
ii

and 1=r(2)
ii

are eigenvalues of B and all the above
elements should be of order �, it is then easy to verify by
using (9) and (10) that all the elements in E must be of
order �. Therefore, we obtain

kD12k = kQ2EQ
H

1 k
= kEk
= O(�):

Assume that a normal matrix is divided into blocks of
size 2 � 2 and that the norm of each off-diagonal blocks
is of order �. We further assume that each Aij in (7) is a
2� 2 block submatrix. Thus the norm of each off-diagonal
submatrix Aij for i 6= j must also have an order of �. From
Lemma 3 we may obtain

kAiiA
T

ii
� AT

ii
Aiik = O(�2):

After an orthogonal similarity transformation which reduces
Aii to a block upper triangular matrix, the norm of the up-
per off-diagonal block in Aii should have the same order as
kAiiA

T

ii
� AT

ii
Aiik according to the above lemma. There-

fore, it will be of order �2.
Since the off-diagonal norm of Aii is reduced from O(�)

to O(�2) and the norms of other Aijs in (7) are not affected
during the updating procedure, we thus obtain a steady de-
crease in off-diagonal norm during the computation. In the
following we show that, if the orthogonal transformation
matrices are chosen properly, ultimate quadratic conver-
gence can be achieved.



Explicitly write matrices B and Q described in Lemma 4
as 2� 2 matrices, that is,

B =

�
B11 B12

B21 B22

�

and

Q =

�
Q11 Q12

Q21 Q22

�
:

and assume that kB12k = O(�) and kB21k = O(�). Then
we have the following lemma.

Lemma 5 Assume that the eigenvalues of B11, B22, D11

and D22 are 
i1, 
i2, �i1 and �i2 for i = 1; 2, respectively.
If �ij > c1 > 0 for i; j = 1; 2 and����1� 
jk

�il

���� > c2 > 0

for l 6= k, the norms of both Q12 and Q21 in the generated
orthogonal matrix will then be of order �, that is,

kQ12k = O(�)

and
kQ21k = O(�):

Proof. From (11) we have�
B11 B12

B21 B22

��
Q11 Q12

Q21 Q22

�
=

�
Q11 Q12

Q21 Q22

��
D11 D12

0 D22

�
: (15)

Thus
B21Q11 +B22Q21 = Q21D11;

or
B21Q11 = Q21D11 � B22Q21;

or
B21Q11D

�1
11 = Q21 � B22Q21D

�1
11 (16)

and
B11Q12 + B12Q22 = Q11D12 +Q12D22;

or

(B12Q22 � Q11D12)D
�1
22 = Q12 �B11Q12D

�1
22 : (17)

Since kB21k = O(�), kB12k = O(�) and kD12k = O(�2)

from Lemma 4 with � = �2, the norms of the left-side of the
equations in (16) and (17) must be of order �. We thus have

kQ21 �B22Q21D
�1
11 k = O(�)

and
kQ12 �B11Q12D

�1
22 k: = O(�)
With the same technique used in Lemma 4, we may easily
obtain kQ21k = O(�) and kQ12k = O(�).

The condition set in Lemma 5 implies that implicit per-
mutation on rows and columns between blocks is not al-
lowed when applying orthogonal similarity transformations
to B. If this condition is satisfied, both kQ12k and kQ21k
will be of order �. Using this orthogonal transformation
matrix to update a vector (v1 v2 0 0)T , the zero elements in
the vector will be of order �2 if both v1 and v2 are of order �.

We now summarize the results obtained from the above
three lemmas. Under the conditions that the process con-
verges and the matrix to be decomposed has distinct eigen-
values, we have proved that, when annihilating the lower
off-diagonal block of submatrix B in Fig 1, the norm of the
upper-diagonal block is reduced from O(�) to O(�2). Thus
the off-diagonal norm of the matrix has a steady decreasing
during the computation. We have also proved that the zero
blocks in the lower triangle will be of order �2 through up-
dating stages if the orthogonal transformation matrices are
chosen properly. If a reasonable and systematic ordering
is also applied, the off-diagonal norm of the matrix will be
decreased from O(�) to O(�2) after each sweep of compu-
tation. Thus ultimate quadratic convergence is obtained.

It should be noted that in proving the above lemmas we
assumed that B in Fig. 1 is generated from the adjacent
blocks, that is, we set j = i+ 1. If this condition is not sat-
isfied, we may use permutation matrices. Since permutation
matrices are orthogonal, the results will not be affected.

4 Experimental Results

Through our discussion we do not give any particular
method for obtaining orthogonal transformation matrices.
Any method which may generate orthogonal transformation
matrices satisfying the condition set in Lemma 5 can be used.
One scheme is as follows: When the eigenvalues of either
Aii or Ajj in submatrix B in Fig. 1 are real, we can apply
the RTZ procedure so that a local quadratic convergence is
achieved and the generated orthonormal matrix will have
the form described in Lemma 5. When both eigenvalues
of Aii and Ajj are complex, we can simply use the QR
procedure to reduce B to a block triangular form. With
a combination of these two procedures we can obtain an
efficient Jacobi-like algorithm.

The algorithm described above has been implemented
on a sequential machine. The stopping criteria used in our
experiment is the same as that in EISPACK [6], that is, an
off-diagonal element aij is considered as zero if jaijj �
(jaiij + jajjj) � �mach for �mach the machine precision.
A block is considered as zero if all the elements in it are
considered as zero and the computation stops if all the lower
triangular off-diagonal blocks are considered as zero.



The test matrices used in the experiment are generated
by computingQDQT , whereQ is an orthogonal matrix and
D is a block diagonal matrix. Each block in D is of size
2� 2, that is,

Dii =

�
d1 d2

d3 d4

�

where the four elements are positive random numbers
smaller than one. When d2 = �d3 and d1 = d4, we
have two complex eigenvalues d1 � id2. Otherwise, we
set d2 = d3 = 0 for two real eigenvalues.

In our experiment we choose four different matrices. The
first matrix has distinct real eigenvalues, the second one has
half of its eigenvalues real and the other half complex. and
the third contains distinct complex eigenvalues. The fourth
matrix is similar to the second matrix except it has three real
eigenvalues of multiplicity four.

Some experimental results are presented in Tables 1
and 2. Table 1 gives the lower block triangular norms after
each sweep for computing eigenvalues of the matrices of
size 40 � 40. It can be seen that ultimate quadratic con-
vergence can be obtained for decomposing a matrix with
distinct eigenvalues, especially for matrices with only real
eigenvalues where the convergence is better than quadratic.
We can also see from both tables that is will take a few more
sweeps to converge for a matrix with complex eigenval-
ues. The more complex eigenvalues, the slower the speed
though the quadratic convergence property is maintained in
the extreme case when all eigenvalues are complex.

For a matrix with repeated eigenvalues, however,
quadratic convergence can only be observed at a few middle
sweeps. This result holds for problems with different sizes.
This phenomenon needs to be studied further.

5 Conclusions

In this paper we first gave an analysis of the RTZ algo-
rithm. We showed that at most a linear convergence rate can
be obtained when this algorithm is applied to decompose a
normal matrix which has complex eigenvalues. However,
our analysis indicates that quadratic convergence may be
achieved if the given matrix has only real eigenvalues. Thus
the algorithm is still useful for eigenvalue decomposition of
a normal or near normal matrix if the matrix has only real
eigenvalues.

We then proposed a method for designing efficient
Jacobi-like algorithms for eigenvalue decomposition of a
real normal matrix. Both theoretical analysis and experi-
mental results show that ultimate quadratic convergence can
be achieved even if the given matrix has complex eigenval-
ues. It is expected that ultimate quadratic, or near-quadratic
convergence is achievable when the algorithms are applied
Sweep Lower Block Triangular Norm
Matrix 1 Matrix 2

0 2.002949651 2.491182060
1 0.9298566189 1.658914630
2 0.3230377708 0.9562437960
3 8.148755450D-02 0.3041956127
4 2.272463954D-02 5.732517299D-02
5 5.984053421D-04 2.915087621D-03
6 1.583025639D-08 1.729400600D-06
7 4.396127327D-16 1.214607626D-13
8 4.396127327D-16 2.996108412D-16
9 2.996108412D-16

Sweep Lower Block Triangular Norm
Matrix 3 Matrix 4

0 2.785430894 2.162572292
1 1.975427113 1.622702464
2 1.424859846 1.137339662
3 0.9068788996 0.5313679428
4 0.5020392998 0.1254582065
5 0.1631977468 8.449010583D-03
6 2.753458690D-02 2.825586595D-05
7 2.454913944D-04 1.090020755D-08
8 2.197732988D-08 4.401366214D-10
9 2.682697256D-16 3.441166540D-14

10 2.408358962D-16 2.180213396D-16
11 2.408358962D-16 2.180213396D-16

Table 1: Sweeps and lower blocks triangular norms for
40� 40 matrices.

Matrix size 40 80 120 160 200
Matrix 1 8 9 10 11 11
Matrix 2 9 11 11 12 13
Matrix 3 11 12 13 13 14
Matrix 4 11 12 13 13 13

Table 2: Sweeps taken for matrices of various sizes.



to compute the eigenvalue decomposition of a near-normal
matrix.

The algorithm we used in the experiment combines the
RTZ algorithm and the QR algorithm. When the testing
matrices have distinct eigenvalues, we can obtain quadratic
convergence, which is consistent with our theoretical anal-
ysis. However, only near-quadratic convergence was ob-
served in the experiment when a matrix has repeated eigen-
values. An interesting problem is thus if we can obtain
quadratic convergence when using Jacobi-like algorithm for
computing (over the real field) the eigenvalue decomposi-
tion of a normal matrix with repeated eigenvalues.

It should be noted that the algorithm used in our ex-
periment is not the only candidate for an efficient Jacobi-
like algorithm. Through our discussion we did not restrict
ourselves to use any particular method for generating or-
thogonal transformations. Any method which generates the
required transformation matrices can be used. For example,
the QR procedure may be used not only in the case that all
the eigenvalues of the 2 � 2 block matrix B in Fig. 1 are
complex, but also in cases that some or all of the eigenval-
ues are real. However, a naive implementation using the
QR procedure may lead to very slow convergence. Special
care has to be taken in order to achieve ultimate quadratic
convergence. This issue is discussed in [13].
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