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Abstract

In this paper we introduce a method for designing efficient
Jacabi-like algorithms for eigenvalue decomposition of a
real normal matrix. Thealgorithmsuse onlyreal arithmetic
and achieve ultimate quadratic convergence. A theoretical
analysis is conducted and some experimental results are
presented.

1 Introduction

A rea matrix A is said to be normdl if it satisfies the
equation
AAT = AT A
where AT isthe transpose of matrix A. Thiskind of matrix
has the property that it can be reduced to a diagonal form
through unitary similarity transformations

QAQT =D

where () is unitary and D is diagonal. In this paper we
consider how to design a scal able Jacobi-like algorithm for
efficient paralel computation of the eigenval ue decomposi-
tion of areal normal matrix over thereal field. Real normal
matrices are generalisations of real symmetric matrices. A
real symmetric matrix isnormal, but areal norma matrix is
not necessarily symmetric. We shall focus our attention on
the unsymmetric case athough the method to be described
appliesto both cases.

The standard sequential method for eigenvalue decom-
position of thiskind of matrix is the QR agorithm. When
massively parallel computation is considered, however, the
parallel version of the QR a gorithmfor solving unsymmet-
ric eigenvalue problems may not be very efficient because
the agorithmis sequential in nature and not scalable.

One alternative to the QR method is a Jacobi method.
Jacobi-based algorithms have recently attracted a lot of at-
tention asthey have ahigher degree of potential parallelism.

The Jacobi method, though originally designed for symmet-
ric eigenvalue problems, can be extended to solve eigen-
value problems for unsymmetric norma matrices [3, 7].
However, one problemisthat we have to use complex arith-
metic even for real-valued normal matrices. Complex op-
erations are expensive and should be avoided if possible. A
guaternion-Jacobi method was recently introduced [4]. In
this method a 4 x 4 symmetric matrix can be reduced to
a2 x 2 block diagonal form using one orthogonal similar-
ity transformation. This method can also be extended to
compute eigenval ues of agenera normal matrix. However,
the problems are that the original matrix has to be divided
into a sum of a symmetric matrix and a skew-symmetric
matrix, which is not an orthogonal operation, and that the
algorithm cannot be used to solve the eigenvaue problem
of near-normal matrices. Another parallel Jacobi-like al-
gorithm, named the RTZ (which stands for Real Two-Zero)
algorithm, was al so proposed recently [5]. Thismethod uses
real arithmetic and orthogona similarity transformations. It
is claimed that quadratic convergence can be obtained when
computing eigenvalues of a real near-norma matrix with
real distinct eigenvalues. However, a serious problem with
thismethod i sthat the process may not convergeif thematrix
has complex eigenvalues.

In this paper we describe a method for designing effi-
cient Jacobi-like algorithms for eigenvalue decomposition
of areal normal matrix. The designed algorithms use only
real arithmetic and orthogona similarity transformations.
The theoretical analysis and experimenta results show that
ultimate quadratic convergence can be achieved for general
real normal matrices with distinct eigenvalues.

Since the RTZ agorithm uses a similar idea to our
method, an analysis of the RTZ algorithm is presented in
Section 2. Our method is described in Section 3. In that
section a theoretical analysis of convergence is aso pre-
sented. Some experimental results are given in Section 4.
Section 5 isthe conclusion.


IPPS '96
ISSN 1063-7133/96 $5.00 C 1996 IEEE.


2 An Analysisof theRTZ Algorithm

We now show that when applying the RTZ algorithm,
we can only obtain at best a linear convergence rate if the
matrix has complex eigenval ues.

Inthefollowinga4 x 4 matrix

a1l a12 a1z a4
a a a a
A= 21 a2 a3 44 (1)
a3l az2 as3z az4
G41 Q42 a43 Q44

or its block form
A Ap
A=
( A Az ) ’

is used to show how the convergence rate may be affected
when applying the RTZ agorithm.

The basicideafor computing the eigenva ue decomposi-
tionof a4 x 4 matrix using the RTZ algorithmisas follows:
The first leading diagonal element a13 in Aj; is chosen to-

gether with thefirst row in A1, the first columnin A,; and
thewhole of A,, toform a3 x 3 matrix, that is,

a1 13 @14
Ai1=| aa ass axu |.
a4l 43 (44

It is known that any real 3 x 3 matrix has at least one rea
eigenvalue. An eigenvector associated with a rea eigen-
value of the above matrix can be obtained and used to gen-
erate a Householder matrix which isthen applied to update
the matrix A so that two off-diagonal e ements az; and a4y
are annihilated. After that the second leading diagonal ele-
ment a, ischosen (together with A,,, thesecond row in A,
and the second column in A1) and another 3 x 3 matrix

axp a3 ax
A= azx azz az
as2 w43 Qs

is formed. A Householder matrix is generated from an
eigenvector (associated with areal eigenvaue) of this3 x
3 matrix so that two other lower triangular off-diagona
elements az; and a4y are eiminated through a similarity
transformation. However, thisdestroysthe zerosintroduced
previously. The two leading diagonal elements are thus
chosen aternately and the process continues until al the
elementsin A,; are smal enough to be considered as zero.

In the following discussions ¢ denotes a small positive
number close to zero. If certain elements of a matrix are
written as ¢, we mean that the values of these elements are
small and of the same order of ¢, but they are not necessarily
the same.

If the above RTZ procedure converges, al the eements
in A, and A1, become ¢ after afew iterationsand each 3x 3
matrix will thus have the same form as

b]_]_ € €
B = € by b3 R (2)
€ bz b3

Assume that B is close to a normal block-diagona matrix
and written as
B=D+¢cF

wherethe dementsin F satisfy | f;;| < 1 and D hasaform

di1 O 0
D= 0 dx dxs |.
0 dzp ds3

If theeigenvaluesof D arewell separated, itiseasy toprove
according to the perturbationtheory [10] that there existsan
eigenvalue of B which satisfies the equation

|d11 = Al = O(e) (3)
An eigenvector v associated with A will also satisfy
o=l = O(e) (4)

for v/ an eigenvector associated with d;, areal eigenvalue
of D. Therefore, we have the following lemma.

Lemmal Let a 3 x 3 matrix have a form as that in (2)
and satisfy all the above mentioned conditions. Then there
exists a real eigenvalue A, such that

|d11 - /\| = O(E)
An eigenvector associated with this eigenvalue has a form
v=_(vy € ). (5

Proof. The first part of the lemma is directly obtained
from (3). Let v/ = (v1/, v7, vg’)T be an eigenvector asso-
ciated with d11. Then

(D — d]_]_[)vl = O,

or

divy + Ovy’ + Ovs’ =0
Ovi' + dovy + dogvd’ = O
Ovi' + dav) + dawsd = 0

where d; = d;; — di1. Since the eigenvalues of D are well
separated, the determinant of the coefficient matrix from the
second and the third equations will not be equa to zero.
Thus vo’ and v3’ must be zero. We then have

v = (vll, 0, O)T .



From (4), therefore, v will havetheform asthatin (5). [

Since the RTZ agorithm uses Householder transforma-
tions, it can be seen in the following that it is crucia for
eigenvectors generated at each step to have the form asthat
in (5) in order to obtain ultimate quadratic convergence.

Wenow show how thelower triangul ar off-diagonal norm
isaffected when thegenerated Househol der matrix isapplied
to update certain rows and columns of the matrix.

Assume that a Householder vector » is chosen based on
vector b = (b]_ by bg)T, thatis, v = (U]_ by bg)T forvy = b1+

sign(b1)||b]| and ||b]] = /b3 + b3+ b3. The Householder

matrix isthen obtainedas H = I — 2vv? /vT 0.
Supposethat the values of b, and b3 are of order ¢, but b;
is“large’. We have

1 1
111 sign(ba)by/1+ (b2 + b2) /b2
N 1
- sign(b1)b1v/1+ €2
1
A ——(1—€?).
s )
It is easy to verify that the Householder matrix has the
structure
—14¢€? € €
H = € 1-¢2 2 ) (6)
€ 2 1—¢?

When using this matrix to update (Ieft multiply) a column
vector (z1 0 0)7, it is easy to see that, if z; is of order e,
the zero elements will become of order 2. If x4 is“large’,
however, after the updating, the zero elements will become
O(e), rather than O(€?).

Suppose that all the elements in the off-diagonal blocks
become small after a few sweeps and that the last two ele-
mentsin thefirst column have been eliminated by theimme-
diate previousiteration in which a1 and the corresponding
3 x 3matrix are chosen. The updated matrix thenhasaform

Now we choose a, and the corresponding 3 x 3 matrix as

a2 € €
€ a3z a34
€ a4z as

and apply the RTZ procedure again to annihilate the last
two elements in the second column of matrix A. Assume

that this3 x 3 matrix has the same properties as the matrix
described in Lemma 1. The eigenvector will bein the same
form as that in (5). Therefore, the generated Househol der
matrix is of theform like (6).

The last three elements in the first column of matrix A
will be affected in the updating procedure using this House-
holder matrix. If A3 has two real eigenvalues, we may
reasonably assumethat ay; and ay, are of order e. (If not, an
orthogonal similarity transformation can be applied to anni-
hilate a»1 without using complex arithmetic as A1; hastwo
real eigenvalues.) When thisHousehol der matrix isapplied,
thevalues of the zero elementsin thefirst column will be of
order ¢2. Quadratic convergence may then be achieved. If
Aq; (aswell as Ap) hastwo complex elgenval ues, however,
the value of a»; may no longer be small. The values of the
zero elements in thefirst column will be increased to O(¢)
as we discussed above. The convergence rate is thus only
linear at best.

In the above we only considered a very simple problem,
that is, the 4 x 4 case. When the matrix Size is much
larger, the dow local convergence can significantly affect
the global convergence. In many cases the process may not
even converge.

3 Our Method

To simplify our discussion, we assume that the matrix
sizeis even. The basic idea of our method is described as
follows: A real normal matrix is first divided into blocks.
To avoid using complex arithmetic the size of each block
is chosen to be 2 x 2 so that each pair of conjugate com-
plex eigenvalues can be grouped into the same block. A
sequence of orthogona similarity transformations is then
applied to annihilate the off-diagonal blocks in the lower
triangle and this process continues until al the lower trian-
gular off-diagonal blocks are considered as zero. The basic
structure of the algorithmisdepicted in Fig. 1.

In Fig. 1 NITN denotes the number of lower triangular
off-diagonal blocks, or number of iterations in a sweep,
whichisequal ton(n—2)/8for n thesizeof theproblem. A
counter NZCONT isused to check how many off-diagonal
blocks in the lower triangle are zero. If thisis equa to
NITN, the process stops. The cyclic ordering is used for
sequential computation.  If we consider each block as a
single element, The action of thisalgorithmisjust the same
as that of a nonblocked algorithm. Therefore, any existing
efficient paralel orderings, for example, thosein[1, 2, 8, 9,
11, 12], can beadopted toforman efficient parallel algorithm
for solving the problem.

It should be noted that in thefigurewedo not show how to
generatetheorthogonal transformation matrices ). Thisisa
very important issuerelating to performance. Weshall show



NITN =n(n-2)/8
NZCONT =0
REPEAT UNTIL NZCONT =NITN
DOi=1,n,2
DOj=j+2,n,2
_ [ A Ay
=1 a4y
IF (|| 4;:]| not zero) THEN
1. Find an orthogonal matrix
such that B isreduced to a block
triangular form through a similarity
transformation.
2. Update the corresponding rows
and columns of A using (.
ELSE
NZCONT = NZCONT + 1
END IF
END DO
END DO
IF (NZCONT # NITN) NZCONT =0
END REPEAT

Figure 1: The basic structure of our Jacobi-like algorithm.

that the quadratic convergence is achieved only through
properly choosing the transformation matrices during the
computation. In the following we discuss the convergence
property of the algorithm.

Lemma?2 If a (real) normal matrix A is block triangular,
it must be block diagonal, where the blocks on the main
diagonal of A areeither 1 x 1, or 2 x 2.

The proof of the abovelemmaissimpleand thus omitted
(to save space). From thislemmawe see that, if we can find
an orthogona matrix which reduces a real normal matrix
to a block upper triangular form through a similarity trans-
formation, the transformed matrix must be block diagonal.
Therefore, it is possible just to try to reduce a real norma
matrix to a block upper triangular form using orthogonal
similarity transformations (over the real field). The matrix
will eventually be reduced to block diagonal if the process
converges.

Weshow inthefoll owing threelemmasthat, if theorthog-
onal transformation matrices are chosen properly and if the
process converges for a normal matrix with distinct eigen-
values, the convergence rate will ultimately be quadratic.

In the following discussion || A|| denotes the Frobenius
norm of A.

Lemma3 If a normal matrix A is divided into a block
matrix, then the main diagonal blocks have the following

property:

|Au AL = AT AR <D (AR + 1Al (7)
k#i

where A;; istheblock inthe i** row and ;' column of A.

Proof. Let C = AAT and ¢/ = AT A. We have C;; =
S A AL and €7 = S0, AT Ay, Since matrix A is
normal,

Cii —C'y = ZAH@A% - ZA%AM =0,
% %

or
A Al — Al A = (AL Ak — Au ATL).
k#i
Thus
|4 Al = AT Aull < D IIAF Ak — A AL
k#i
< O AL Al + 1A AL
k#i
< Y UARIP + 1Al
k#i

O

It can be seen from this lemma that each block on the
main diagonal will be very close to a normal matrix if the
norm of each off-diagonal block issmall, that is,

|4 AY; — Al Asi|| = O(e?)

if max(||4;;]|) < efori#j.

The next lemma showsthat, when the lower off-diagonal
block of a 2 x 2 block matrix is annihilated through an
orthogonal similarity transformation, the norm of its upper
off-diagonal block will also be decreased if thisblock matrix
iscloseto normal.

Lemma4 Assumethata?2 x 2 block matrix B, withthesize
of each block being 2 x 2, is close to a normal matrix and
has the property

IBBT — BT B|| = O(n) (8)

where 7 is a small positive number, and that B has four
distinct nonzero eigenvalues A;, which satisfy

mn|A;| >c1 >0 (9)

and

As
‘1—; >c2>0 (10)

J




for ¢ # j. If Bisreduced to ablocktriangular formthrough
an orthogonal similarity transformation, that is,

QTBQ =D (11)

where () isareal orthogonal matrix and
_( Du Dr
D_( ; D) (12)

we then have
|1 D12]| = O(n).

Proof. Since B = QDQT and BT = QDT Q7, we have

|BBT — B B|| = [|Q(DD" — D" D)Q"||.
Thus

IDDT — DT D|| = O(n). (13)

It is easy to see that the second block of the first column
in DDT — DT D is Dy DL, — DL, Dy We know that
[|D12]| # 0. Otherwise, B will beanormal matrix according
toLemma2andthentheproblemistrivial. Since|| D12|| # O
and the eigenvalues are nonzero and distinct, Dzszz —
DY, D11 must also be nonzero. It is easy to see, from (13),
that its norm should be of order 7, that is,

|D22D%, — DL, Dyl = O(n). (14)

Since B hasfour nonzero eigenva ues, both D11 and Dy,
have full rank. The following inequality holds:

| D1, — D3, D1, D1|| < |[D3H || D22 DY, — Dy D).

According to one of our assumptions, that is, the smallest
eigenvalue of matrix B is greater than ¢, || Do, will be
lessthan 1/¢;. Wethus have

|D1; — D3 Dz Dul| = O(1).

Let

Du = Q1RaQY
and

Dyt = Q2RQ%

be the eigenvalue decompositions of Dy; and Dz‘zl for Q1
and @, orthonormal and R; and R, upper triangular, and
define

QYDLQ=F

we then have

|E — RoERy| |Q2(E — RoER1)QY|
||D{2 - Dzle 2Dul|

Let
P ( e €1 ) ’
€21 €2
1 1
Ry = 7”51) 7”52)
0 1)
22
and

2 2
Ry = 7”51) 7”52) .
0 rgg)

Expanding G = E — RyF Ry, we have the following four
elements:

(1 (2) (1) ()()

gu = — Ty Ty )€1l — T1o 1y €21,

912 (1- 7”(11)7”(;))612 r(l)r(l Je1s —
B2 e

gn = (1- rgz)r(ll))eﬂ

g2 = (1- 7“22)7“(;))622 7“2 )T(l Jear.

Since rﬁj) and 1/ rl(f) areeigenvaluesof B and al the above
elements should be of order 7, it is then easy to verify by
using (9) and (10) that al the elements in £ must be of
order 7. Therefore, we obtain

1Q2EQT ||
1E]]

O(n).

[Del| =

O

Assume that a normal matrix is divided into blocks of
size 2 x 2 and that the norm of each off-diagona blocks
is of order ¢. We further assume that each A;; in (7) isa
2 x 2 block submatrix. Thusthe norm of each off-diagonal
submatrix A;; fori # j must aso have an order of ¢. From
Lemma 3 we may obtain

|4 AL — AL A = O(é).

After an orthogona similarity transformationwhich reduces
Aj;; to ablock upper triangular matrix, the norm of the up-
per off-diagonal block in A;; should have the same order as
||A: AL — AL A, according to the above lemma. There-
fore, it will be of order 2.

Since the off-diagonal norm of A;; isreduced from O(e)
to O(€?) and the norms of other A;;sin (7) are not affected
during the updating procedure, we thus obtain a steady de-
crease in off-diagona norm during the computation. In the
following we show that, if the orthogonal transformation
matrices are chosen properly, ultimate quadratic conver-
gence can be achieved.



Explicitly writematrices B and () described in Lemma 4
as 2 x 2 matrices, that is,

Bu B
B =
( By Bz )

Q= ( (u @ )
(n Qn )’
and assume that || B1o|| = O(e) and || Boi|| = O(e). Then
we have the following lemma.

Lemma5 Assume that the eigenvalues of Bi1, B2y, D11
and Dy, are v;1, 72, A;1 and Az for i = 1, 2, respectively.
IfA;; > c1>0for¢,j=1,2and
‘1— ik >c2>0
il

for I # k, the norms of both @12 and @21 in the generated
orthogonal matrix will then be of order ¢, that is,

Q]| = O(e)

and

Q] = O(e).

Proof. From (11) we have
( B B ) ( Qu Qw2 ) _
By B Qn Q2

Qu Qw2 Dy Do
( Q21 Q2 ) ( 0 D2 ) ' (15)

Thus

Bo1Q11 + B2 = QD11
or

Bo1Q11 = Q21D11 — B2Qa,
or

BnQuDT' = Qu — BaQau DGt (16)
and
B11Q12 + B1oQx» = Q1D + Q1oDa»,

or

(B12Q2 — QuD12) D3 = Q12 — BuQuDy, (17)

Since || Byl = O(e), || Bezl] = O(e) and || Dyal| = O(e?)
from Lemma4 with = ¢2, thenorms of theleft-side of the
equationsin (16) and (17) must be of order ¢. We thus have

|Q21 — B22Qa1 D3| = O(e)

and
|Q12 — BuuQ12D5Y||. = O(e)

With the same technique used in Lemma 4, we may easily
obtain [|Qz1]| = O(c) and [|Q1zl| = O(e). 0

The condition set in Lemma 5 implies that implicit per-
mutation on rows and columns between blocks is not a-
lowed when applying orthogona similarity transformations
to B. If thiscondition is satisfied, both ||Q12|| and ||Q21]]
will be of order . Using this orthogona transformation
matrix to update avector (v1 v2 00)7, the zero elementsin
the vector will be of order €2 if both v; and v, are of order ¢.

We now summarize the results obtained from the above
three lemmas. Under the conditions that the process con-
verges and the matrix to be decomposed has distinct eigen-
values, we have proved that, when annihilating the lower
off-diagonal block of submatrix B in Fig 1, the norm of the
upper-diagonal block is reduced from O(e) to O(e?). Thus
the off-diagonal norm of the matrix has a steady decreasing
during the computation. We have also proved that the zero
blocks in the lower triangle will be of order ¢2 through up-
dating stages if the orthogonal transformation matrices are
chosen properly. If a reasonable and systematic ordering
is also applied, the off-diagonal norm of the matrix will be
decreased from O(¢) to O(¢?) after each sweep of compu-
tation. Thus ultimate quadratic convergence is obtained.

It should be noted that in proving the above lemmas we
assumed that B in Fig. 1 is generated from the adjacent
blocks, that is, weset j = ¢ + 1. If thisconditionis not sat-
isfied, we may use permutation matrices. Since permutation
matrices are orthogonal, the results will not be affected.

4 Experimental Results

Through our discussion we do not give any particular
method for obtaining orthogona transformation matrices.
Any method which may generate orthogonal transformation
matricessatisfying thecondition setinLemmab can beused.
One scheme is as follows: When the eigenvalues of either
Ay or A;; insubmatrix B in Fig. 1 are real, we can apply
the RTZ procedure so that aloca quadratic convergence is
achieved and the generated orthonormal matrix will have
the form described in Lemma 5. When both eigenvalues
of A;; and A;; are complex, we can simply use the QR
procedure to reduce B to a block triangular form. With
a combination of these two procedures we can obtain an
efficient Jacobi-like agorithm.

The algorithm described above has been implemented
on a sequential machine. The stopping criteria used in our
experiment is the same as that in EISPACK [6], that is, an
off-diagonal element «;; is considered as zero if |a;;| <
(lais| + |aj;]) * €macn TOr €macn the machine precision.
A block is considered as zero if al the elementsin it are
considered as zero and the computation stopsif al thelower
triangular off-diagonal blocks are considered as zero.



The test matrices used in the experiment are generated
by computing Q DQ” , where  is an orthogonal matrix and
D isablock diagona matrix. Each block in D is of size

2x 2, thatis,
[ d1 d2
Du_(ds d4)

where the four elements are postive random numbers
smadler than one. When d = —d3 and di = d4, we
have two complex eigenvalues di + id,. Otherwise, we
set dy = d3 = Ofor two real eigenvalues.

In our experiment we choosefour different matrices. The
first matrix has distinct real eigenvalues, the second one has
half of its eigenvalues red and the other half complex. and
the third contains distinct complex eigenvalues. The fourth
matrix issimilar to the second matrix except it hasthreereal
eigenvalues of multiplicity four.

Some experimental results are presented in Tables 1
and 2. Table 1 givesthelower block triangular norms after
each sweep for computing eigenvalues of the matrices of
size 40 x 40. It can be seen that ultimate quadratic con-
vergence can be obtained for decomposing a matrix with
distinct eigenvalues, especially for matrices with only real
eigenval ues where the convergence is better than quadratic.
We can al so see from both tablesthat iswill take afew more
sweeps to converge for a matrix with complex eigenval-
ues. The more complex eigenvalues, the slower the speed
though the quadratic convergence property ismaintained in
the extreme case when all eigenval ues are complex.

For a matrix with repeated eigenvalues, however,
guadratic convergence can only be observed at afew middle
sweeps. Thisresult holdsfor problems with different sizes.
This phenomenon needs to be studied further.

5 Conclusions

In this paper we first gave an analysis of the RTZ algo-
rithm. We showed that at most alinear convergence rate can
be obtained when this algorithm is applied to decompose a
norma matrix which has complex eigenvalues. However,
our analysis indicates that quadratic convergence may be
achieved if the given matrix hasonly real eigenvalues. Thus
theagorithmisstill useful for el genvalue decomposition of
anormal or near normal matrix if the matrix has only real
eigenvalues.

We then proposed a method for designing efficient
Jacobi-like algorithms for eigenvalue decomposition of a
real norma matrix. Both theoretical analysis and experi-
mental results show that ultimate quadratic convergence can
be achieved even if the given matrix has complex eigenval-
ues. It isexpected that ultimate quadratic, or near-quadratic
convergence is achievable when the algorithms are applied

Sweep

Lower Block Triangular Norm

Matrix 1

Matrix 2

©Coo~NOOUA~,WNELO

2.002949651
0.9298566189
0.3230377708

8.148755450D-02
2.272463954D-02
5.984053421D-04
1.583025639D-08
4.396127327D-16
4.396127327D-16

2491182060
1.658914630
0.9562437960
0.3041956127
5.732517299D-02
2.915087621D-03
1.729400600D-06
1.214607626D-13
2.996108412D-16
2.996108412D-16

2
&

Lower Block T

riangular Norm

Matrix 3

Matrix 4

RPBoo~N~ous~wNnRrO

2.785430894
1975427113
1.424859846
0.9068788996
0.5020392998
0.1631977468
2.753458690D-02
2.454913944D-04
2.197732988D-08
2.682697256D-16
2.408358962D-16
2.408358962D-16

2.162572292
1.622702464
1.137339662
0.5313679428
0.1254582065
8.449010583D-03
2.825586595D-05
1.090020755D-08
4.401366214D-10
3.441166540D-14
2.180213396D-16
2.180213396D-16

Table 1: Sweeps and lower blocks triangular norms for
40 x 40 matrices.

Matrix size | 40 | 80 | 120 | 160 | 200

Matrix 1 81910 11| 11

Matrix 2 9 |11 11 | 12 | 13
Matrix3 | 11| 12| 13 | 13 | 14
Matrix4 | 11| 12| 13 | 13 | 13

Table 2: Sweeps taken for matrices of various sizes.




to compute the eigenval ue decomposition of a near-normal
meatrix.

The algorithm we used in the experiment combines the
RTZ dgorithm and the QR agorithm. When the testing
matrices have distinct elgenval ues, we can obtain quadratic
convergence, which is consistent with our theoretical anal-
ysis. However, only near-quadratic convergence was ob-
served in the experiment when amatrix has repeated eigen-
values. An interesting problem is thus if we can obtain
guadratic convergence when using Jacobi-likeal gorithmfor
computing (over the real field) the eigenvalue decomposi-
tion of anormal matrix with repeated eigenval ues.

It should be noted that the algorithm used in our ex-
periment is not the only candidate for an efficient Jacobi-
like algorithm. Through our discussion we did not restrict
ourselves to use any particular method for generating or-
thogonal transformations. Any method which generates the
required transformation matrices can be used. For example,
the QR procedure may be used not only in the case that all
the eigenvaues of the 2 x 2 block matrix B in Fig. 1 are
complex, but also in cases that some or al of the eigenval-
ues are real. However, a naive implementation using the
QR procedure may lead to very slow convergence. Special
care has to be taken in order to achieve ultimate quadratic
convergence. Thisissueisdiscussed in[13].
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