
An E�cient Scheduling Algorithm for Multiprogramming on
Parallel Computing Systems

Zhou B. B., Brent R. P. and Qu X.
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia
fbing,rpb,quxung@cslab.anu.edu.au

Abstract
In conventional coscheduling, or gang scheduling
of parallel workloads a round-robin queueing algo-
rithm is adopted and the length of scheduling slots is
�xed. However, the characteristics of parallel work-
loads can be quite di�erent from sequential work-
loads. The system may not perform e�ectively us-
ing the simple round-robin algorithm. In this pa-
per we introduce a new queueing algorithm. Our
new system consists of two queues, a service queue
which can hold more than one processes and a wait-
ing queue which has multiple levels. This system
has several potential advantages over some conven-
tional queueing systems in scheduling parallel work-
loads. For example, it may achieve a higher system
throughput and also a higher cache hit ratio, so the
problems encountered in conventional coscheduling
are alleviated. The issue of implementation of our
algorithm is also discussed.

Keywords Multiprogramming, process schedul-
ing and parallel computing systems.

1 Introduction
Many scheduling schemes for multiprogramming on
parallel machines have been proposed in the lit-
erature. The simplest scheduling method is local
scheduling. With local scheduling there is only a
single queue in each processor. Except for higher
(or lower) priorities being given, processes associ-
ated with parallel jobs are not distinguished from
those associated with sequential jobs. Thus there
is no guarantee that the processes belonging to the
same parallel jobs can be executed at the same
time across the processors. When many parallel
programs are simultaneously running on a system,
processes belonging to di�erent jobs will compete
with each other for the resource and then some
processes have to be blocked when communicating
or synchronising with non-scheduled processes on

rpb169: In Proceedings of the 20th Australasian
Computer Science Conference, Sydney, Australia,
February 5{7 1997, pp 336{345.

other processors. This e�ect can lead to a great
degradation in overall system performance [1, 2, 5,
6, 10].

One method to alleviate this problem is to use
two-phase blocking [14] or adaptive two-phase block-
ing algorithms [4]. In this method a process waiting
for communication spins for some time, and then
blocks if the response is still not received. The
reported experimental results show that for parallel
workloads this scheduling scheme performs better
than the simple local scheduling. However, the
system performance will be degraded for �ne-grain
parallel programs and it is not clear how e�ective
the method is for mixed parallel and sequential
workloads.

Another method commonly used in practice is
that the system only allows one or two parallel
programs running at a time. Once a parallel job
enters the service, it will continuously be serviced
(and may time-share the service with sequential
jobs) until �nished and all other parallel jobs have
to wait in a batch queue outside of the system. If
the number of parallel jobs waiting in the batch
queue is large, however, it is likely that short jobs
may be blocked by several longer ones. However, it
is desirable from the system performance point of
view that short jobs should be allowed to run �rst.

Coscheduling [12] (or gang scheduling [5]) of par-
allel programs may be a better scheme in adopting
short-job-�rst policy. Using this method a number
of parallel programs are allowed to enter a service
queue (as long as the system has enough memory
space). The processes of the same job will run
simultaneously across the processors for only cer-
tain amount of time which is called scheduling slot.
When a scheduling slot is ended, the processors will
context-switch at the same time to give the service
to processes of another job. All programs in the
service queue take turns to obtain the service in
a coordinated manner across the processors. Thus
parallel programs never interfere with each other
and short jobs are likely to be completed more
quickly.

The characteristics of parallel workloads can be
quite di�erent from those of sequential workloads.



For example, parallel workloads are usually asso-
ciated with relatively larger data sets, and also
require longer time to complete. With conven-
tional coscheduling processes are cycled in a round-
robin fashion to access the service and the length
of scheduling slots is �xed. This simple approach
may not be ideal in scheduling parallel workloads.

Assume that the scheduling slot is �xed at 30
seconds. It is likely that a job requiring a service
of 10 seconds will take about 300 seconds, or 5
minutes to complete if there are 10 jobs running
at the same time. Thus the scheduling slot should
not be too long. The problem may be alleviated by
reducing the length of the scheduling slot. With a
very short scheduling slot, however, the overhead
of context switch may dramatically be increased.
For example, a job requiring a service of 3 minutes
is context-switched 6 times during the computation
if the scheduling slot is 30 seconds. If the length
of the scheduling slot is reduced to 3 seconds, how-
ever, the job will encounter 60 context switches.
This increase in total number may greatly degrade
the performance. Therefore, it is desirable to give
long jobs longer scheduling slots to reduce the over-
head of context switch, but less number of times
to access the service so that short jobs will not fre-
quently be blocked by longer ones and may be com-
pleted quickly [3]. The lack of 
exibility in varying
the scheduling slot and in determining the nature of
processes may make the conventional coscheduling
algorithm not very e�cient.

The next problem associated with conventional
coscheduling is the cache reloading e�ect. When
the processes in the system are sharing the service
in a round-robin manner, the caches may lose any
useful contents related to an earlier computation,
which will result in a very low hit ratio [6, 11,
13]. Cache size has greatly been increased recently
with the rapid progress of VLSI technology, which
may alleviate the cache reloading e�ect to some
extent. When there is a large number of processes
in the system, however, the cache reloading e�ect
can still be signi�cant. To alleviate this problem we
may allow only certain processes to be more active
than the others in the queue. The data associated
with those processes can then remain in the cache
for a longer period of time and the processes are
more likely to complete before the data is cached
out. Therefore, the hit ratio may remain relatively
high. However, this cannot be achieved by using
simple round-robin scheduling. More sophisticated
scheduling schemes have to be considered.

Another potential problem, which is also as-
sociated with the simple round-robin scheduling
algorithm, can occur when a large number of long
processes is sharing the service. Assume that there
are 10 processes sharing the service in round robin
and that each process requires a service of 5 min-

utes. Then it will take about �fty minutes for each
process to complete. Obviously a batch processing
algorithm will be much more e�ective in this situ-
ation.

The most signi�cant drawback of the conven-
tional coscheduling algorithm is that it is designed
only for parallel jobs. In each scheduling slot there
is only one process running on each processor and
the process simply does busy-waiting during com-
munication/synchronisation. This will waste pro-
cessor cycles and greatly decrease the e�ciency of
processor utilisation.

We have designed an e�ective system for schedul-
ing mixed parallel and sequential workloads on scal-
able parallel computing machines [15]. The design
of this system is based on two principles, that is,

� parallel programs may scheduled in a coordi-
nated manner so that they will not severely
interfere with each other and

� parallel programs should time-share resources
with sequential programs so that the e�ciency
of processor utilisation can greatly be enhanced.

Thus there are essentially two levels of scheduling
for parallel workloads. At the �rst, or global level
parallel programs are scheduled in a coordinated
way across the processors, while at the second, or
local level processes associated with parallel jobs
are scheduled together with processes associated
with sequential jobs so that they can time-share
resources on each processor. Multiprogramming
on parallel systems will be e�ective if processes at
both levels are e�ciently managed. The overall
structure of our scheduling system and a scheme
for scheduling processes at the second level are de-
scribed in [15]. In this paper we discuss how to
e�ectively coschedule parallel workloads at the �rst
level.

The paper is organised as follows. Section 2
brie
y describes the organisation of a registration
o�ce which is used at the �rst scheduling level
to coordinate parallel workloads across the proces-
sors. In Section 3 we analyse a simple two-queue
scheduling system which is used to alleviate the
cache reloading e�ect and to prevent a large num-
ber of long processes from sharing the service in
round robin. The multilevel two-queue scheduling
system is then derived in Section 4 and the issue
of its implementation discussed in Section 5. The
conclusions are given in Section 6.

2 The Organisation of a Registration
O�ce

In this section we brie
y describe how the sys-
tem discussed in [15] handles parallel workloads.
The two-level process scheduler on each processor
consists of two queues, a sequential or conventional



servant

process 2process 1 process 3 process 4

IN

algorithm timer

registration o�ce

manager

node 1 node 2 node 3 node 4H T

IN OUT IN

process dispatched

P

Figure 1: The organisation of a registration o�ce.

queue and a queue, which is called parallel queue
for coscheduling parallel workloads. The parallel
queue is actually a linked list which is called regis-
tration o�ce, as shown in Fig. 1. When a parallel
job is initiated, each associated process will enter
the conventional queueing system the same way as
sequential processes on the corresponding proces-
sor. However, it has to be registered in the regis-
tration o�ce, that is, on each processor the linked
list will be extended with a new node which has a
pointer pointing to the process just being initiated.
Similarly, when a parallel job is terminated, it has
to check out from the o�ce, that is, the correspond-
ing node on each processor will be deleted from
the linked list. If nodes associated with the same
parallel job are always added at the same place in
each list, the linked lists on di�erent processors will
at any time remain identical in terms of the order
of parallel workloads.

There is a servant working in the o�ce. The
servant has a pointer P. When this pointer points
to a node in the linked list, the process associated
with that node is said being dispatched and can then
enter the sequential queue and receive a service. A
process is marked out if the corresponding node is
pointed by pointer P, but all other processes are
marked in so that they are kept in the parallel
queue. Therefore, at any time there is only one
process being dispatched.

When the scheduling slot is ended for the cur-
rent process, the servant is moved to a new place,
or pointer P is shifted to point to a new node.
The associated process can then be served next.
However, the movement of the servant is totally
controlled by an o�ce manager which has a timer

Q2 Q1 cpu

Figure 2: A simple two-queue system.

to determine when the pointer is to move and an
algorithm to determine which node the pointer is
to point to. Thus coscheduling parallel workloads
becomes programming the pointer (the servant) to
move around a linked list (the registration o�ce)
on each processor.

The o�ce manager can be either centralised,
or distributed. A detailed description of this and
other important issues can be found in [15]. In the
following sections we just focus on the design of ef-
�cient scheduling algorithms for parallel workloads
to enhance the system throughput and to alleviate
the cache reloading e�ect.

3 A Simple Two-Queue System
In this section we consider a simple two-queue

system, as shown in Fig. 2. In this system there
is a primary (or service) queue Q1 which can only
hold a maximum of N processes. The processes
in this queue are serviced in a round-robin fashion.
If there are more than N processes in the system,
the remaining will be queued in a secondary (or
waiting) queue Q2 and can enter Q1 only if the
number of processes in Q1 is less than N . It should
be noted that all processes in the system are in
runnable state. However, we purposely make the
�rst N processes more active. The system becomes



Process 1:
Process 2:
Process 3:
Process 4:
Process 5:
Process 6:
Process 7:
Process 8:
Process 9:
Process 10:
Process 11:
Process 12:

Process 13:

time

Figure 3: Time threads (M = 6 and N = 3). Solid (or dash) lines denote processes in Q1 (or Q2).

a simple round-robin queue if N is set to be in�nity
and a simple batch queue when N = 1.

Using this system each time we allow only N
processes to share the service. If N is not large, the
cache hit ratio may remain relatively high and the
problem of large numbers of long processes sharing
the service in round robin can also be avoided. In
the following we do a simple analysis to see how
the system throughput changes as N varies, which
leads to our e�cient scheduling system.

Assume that there are large numbers of pro-
cesses in the system and that the scheduling slot
for each process in the service queue is �xed. If a
process requires a service of T0 second for T0 greater
than one scheduling slot, the time spent by this
process in the service queue is then

T (0)
s = NT0 (1)

which includes a required service time T0 and a
wasted time (N � 1)T0 because the process always
share the service with other N � 1 processes in
the service queue. It should be stressed that this
does not mean that decreasing N will reduce the
turnaround time of each process, or increase the
system throughput. To obtain the turnaround time
of each process we need also to calculate the time
spent by each process in the waiting queue. When
processes are placed in an increasing order in terms
of their required service times, that is, Tj � Tk if
j > k where Ti denotes the required service time
of the ith process, it can be seen that the system
throughput will monotonically increase as N de-
creases. We give a simple deterministic analysis
below.

In the following analysis we assume that the
system is perfectly balanced, that is, at any time

instant the number of processes in the system is a
constant, say M for M � N , and that each process
requires at least one scheduling slot to complete.
To further simplify the discussion we also assume
that M = LN for L an integer greater than one.

It is known that the number of processes in
the system is M at any time. The ith process
enters the waiting queue as the (i �M)th process
departs from the system. At the same time the
(i �M + N)th process is allowed to enter the ser-
vice queue because the service queue can hold N
processes. The ith process can leave the waiting
queue for the service queue immediately after the
(i � N)th process departs from the system. The
total time spent by the ith process in the waiting
queue is thus the time di�erence between when
the (i � N)th process departs from and when the
(i � M + N)th process enters the service queue.
(The �rst N processes can enter the service queue
without any delay. However,we are interested in
more general cases, that is, the cases when i >
M .) It can be �gured out that the (i � N)th pro-
cess enters the service queue immediately after the
(i� 2N)th process departs, the (i� 2N)th process
entered this queue immediately after the (i�3N)th
process departed, and so on. Therefore, the time
spent by the ith process in the waiting queue is

T (i)
w =

L�1X
k=1

T (i�kN)
s = N

L�1X
k=1

Ti�kN : (2)

The turnaround time of the ith process is thus

T (i) = T (i)
w + T (i)

s = N
L�1X
k=0

Ti�kN : (3)



f0 CPU

Q1

Service Box

N

q1

q0

Level 1

Level 0

Q2

Figure 4: A modi�ed two-queue system.

We give an example of M = 6 and N = 3 in
Fig. 3. In this �gure the sold lines denote processes
in the service queue, while the dash lines denote
processes in the waiting queue. At any time instant
there are only six processes in the system, three in
the service queue and the other three in the waiting
queue. Since L = M=N = 2, it is easy to see that
the time for the ith process in the waiting queue is
equal to the time for the (i � 3)th process in the
service queue, that is, T (i)

w = T (i�3)
s .

Given the equation in (3), we can show that
the system throughput will decrease as N increases.
Assume that

M = L1N1 = L2N2

and that
N1=N2 = L2=L1 = c

for c an integer greater than one. Let N1 and N2
be two di�erent values for N . We then have

N1

L1�1X
k=0

Ti�kN1 = N2

L1�1X
k=0

cTi�kcN2

and

N2

L2�1X
k=0

Ti�kN2 = N2

L1�1X
k=0

c�1X
j=0

Ti�(kc+j)N2 :

Since processes are placed in an increasing order in
terms of their required service times, then for j > 0
we have

Ti�(kc+j)N2 < Ti�kcN2 :

Thus
c�1X
j=0

Ti�(kc+j)N2 < cTi�kcN2 :

Therefore, it is easy to see from the above equations
that the ith process will have shorter turnaround
time when N = N2.

More sophisticated analysis may be done to show
that in general cases the system throughput will
monotonically decrease as N increases if processes
are placed in an increasing order in terms of their
required service times. However, it is easy to see
that, because short processes always enter the ser-
vice queue before longer ones, they will share re-
sources there with a smaller number of succeeding
longer processes and can then be completed more
quickly as N becomes smaller.

In the above discussion we assumed that pro-
cesses enter the system in an increasing order based
on their required service times. However, this con-
dition can hardly be satis�ed in practice. If pro-
cesses are in an arbitrary order, the throughput
of the two-queue system may not be as high as
the simple round-robin system because the service
queue may be �lled with long processes and so short
processes can be blocked in the waiting queue for
a long time. This two-queue system is essentially a
so called sel�sh scheduling system [8]. Theoretical
studies show that this system may give short pro-
cesses on the average even longer turnaround times
than the simple round-robin system if processes
are in an arbitrary order. However, the above dis-
cussion is still worthwhile because it tells us that
the system throughput may greatly be enhanced if
we can dynamically determine the nature of each
process and arrange processes accordingly so that
they enter the service queue in a more proper order.
This motivates us to design a multilevel two-queue
system which is discussed in the next section.

4 A Multilevel Two-Queue System
We �rst consider a modi�ed two-queue system, as
shown in Fig. 4. In this system the waiting queue
now has two levels. New arrivals will �rst come
to the higher level, level 0 where they are each
assigned a number of scheduling slots f0 with each
slot being of length q0. New arrivals enter the ser-
vice queue in a �rst-come-�rst-serve order. When



a new process is allowed to enter the service box, it
will time-share with other N�1 processes in round
robin and receive a service of f0 scheduling slots. If
it cannot be completed within f0 scheduling slots,
the process will be moved back to the waiting queue
where it is placed at the lower level, level 1. To
adopt the short-process-�rst policy, processes at
level 0 are implicitly assigned higher priorities than
those at level 1, and the values of f0 and q0 are
chosen such that there is a su�cient time for an
average short process to complete.

The service queue can only hold N processes.
When the service queue is �lled up and there is
a new arrival, one process from level 1 has to be
moved from the service queue back to the waiting
queue because it has a lower priority. Thus there
are two di�erent types of process feedback from the
service box to the waiting queue, that is,

� a process will be moved back to the waiting
queue if it is not completed after f0 scheduling
slots and

� a process from level 1 will be moved out of the
service queue when the service queue is full
and there is a new arrival at level 0.

Now the tricky questions are

� where the process is to be queued when being
moved back to the waiting queue and

� which process should be moved out of the ser-
vice queue if there is a number of processes
from level 1 and only one to be moved.

For a process having used up its f0 scheduling
slots we simply place it to the tail of the queue at
level 1. This is because the process will no longer
be considered as a short one, and so lose its priority.
As a new comer to level 1, it should then follow the
�rst-come-�rst-serve order.

For a process which is moved back from the ser-
vice queue because there is a new arrival at level 0
we adopt a longest-service-time-�rst policy, that
is, the process which has so far received the least
service is moved out from the service queue and
placed to the head of the queue at level 1. This
decision is made under the consideration for re-
ducing the cache reloading e�ect. When a process
has been executed for a long time, it is hoped that
most useful information may have been stored in
the cache. Then the cache hit ratio will be high
and this high hit ratio is also relatively stable if
the system continues to give the service to that
process. On the other hand, a process may still be
in a transit state and then the cache hit ratio will be
low if it is so far received only a short service. Thus
a process should still be maintained in the service
queue if it has already received a relatively longer
period of service. For the same reason a process

with the longest attained service should be dis-
patched �rst from level 1. With the longest-service-
time-�rst policy processes are actually dispatched
from the waiting queue to the service queue in
a last-come-�rst-serve order. This is a signi�cant
di�erence from conventional multilevel scheduling
systems which adopt at each level the �rst-come-
�rst-serve policy [7].

To ensure that each process will receive a service
of at least one scheduling slot once being dispatched
to the service box, the feedback of processes from
the service queue to the waiting queue is allowed
only at the end of each scheduling round which
contains N scheduling slots.

It is easy to see from the above discussion that
our modi�ed system works just like a simple two-
queue system, except it gives new processes a spe-
cial treatment, that is, it allows new processes to
receive the service earlier. If it is a short one, a
new process can be completed in f0 scheduling slots
without being blocked by long processes for a long
time. If not, the new process will lose this priority,
be moved back to level 1 of the waiting queue and
then treated the same way as that in the simple
two-queue system.

Our modi�ed system may even be capable of
discriminating more in favor of short processes than
the simple round-robin system. This is because
in the simple round-robin system short processes
have to wait for longer time to receive the �rst ser-
vice and then round-robin with a relatively greater
number of processes to obtain further services if the
number of processes in the system is large.

The two-queue system can be made more e�ec-
tive by adopting multilevel feedback technique [9].
This comes to our multilevel two-queue system, as
depicted in Fig. 5.

In our multilevel two-queue system the service
queue is the same as the one in the modi�ed two-
queue system. However, the waiting queue is fur-
ther divided into multiple levels. A process at level i
will be assigned a number of scheduling slots fi,
each having length qi. When a process from level i
has received a service of fi scheduling slots, it will
be moved back to the waiting queue, placed at the
next lower level, level i + 1 and further assigned
fi+1 scheduling slots, each being of length qi+1.

If we set N = 1 and fi = 1 for all i, the system
simply becomes a well known FB or foreground-
background scheduling network [7]. In this system
a process at a higher level is assigned a higher
priority. Thus each time only the �rst one at the
highest nonempty level is allowed to receive a ser-
vice. After the scheduling slot is ended, the process
will be preempted and placed at the next lower
level if not completed. The most distinct feature
of the FB scheduling algorithm is that it is capable
of discriminating most in favor of short processes



f0

Service Box

Level 0

Level 1

Level 2

CPU

Q2

Q1

q0

q1

q2

f1

f2

N

Figure 5: A multilevel two-queue system.

and thus can yield the highest system throughput.
If the system always gives the service to the pro-
cess with the least attained service, however, the
waiting time for long processes may be arbitrarily
large. This is a major problem associated with the
FB scheduling algorithm.

Because of multiple levels our system has similar
characteristics of the FB system, that is, a process
at higher level will implicitly be assigned a higher
priority. Thus each time only a process at the
highest nonempty level can be dispatched to the
service queue. Our multilevel system also works
quite di�erently from conventional multilevel sys-
tems because the service queue can hold more than
one process, there are processes moving back and
forth between the service queue and the waiting
queue and the movement is controlled by adopting
the longest-service-time-�rst policy.

In general our multilevel two-queue system has
several advantages over conventional queueing sys-
tems for scheduling parallel workloads. By using
multiple levels the system is made more in favor of
short processes and more capable of determining
the nature of each process. Thus the system can
achieve a higher system throughput than the simple
round-robin system. Since the service queue can
hold more than one process, processes from di�er-
ent levels can round-robin in the service box at the
same time. Long processes may not su�er too heav-
ily in contrast with the situation in conventional
multilevel scheduling systems. The system has two
queue and the longest-service-time-�rst policy is
adopted. It tends to let certain processes be more
active and then the cache reloading e�ect and the
problem of large numbers of long processes sharing
the service in round robin may also be alleviated.

By properly adjusting the parameters our mul-
tilevel two-queue system can be made very e�ec-

tive for coscheduling parallel workloads on parallel
machines. If we set q0 = 5sec and f0 = 1, then
only processes which require a service of longer
than 5sec will go to the lower levels. If we also set
q1 = 15sec, f1 = 8, q2 = 25sec, f2 = 7 and so on, it
is easy to see that a process which requires a service
of �ve minutes may be preempted �fteen times.
In contrast to conventional coscheduling where the
scheduling slot is �xed, the cost for context switch
can greatly be decreased. A simple example is that,
if the scheduling slot is �xed to 5sec, a process
which requires a service of only two minutes may be
preempted upto twenty four times in conventional
scheduling.

The size of the service queue can also be made
adaptive to further enhance the system performance.
Assume that N = 6 and the parameters qi and
fi are set as above. It is likely that the service
queue is �lled up with processes all from level 3
and below. If N is �xed, it is possible that a new
process has to wait for over two minutes to receive
its �rst service. This problem can be alleviated if
we allow new arrivals to be inserted into the current
scheduling round. At the end of each scheduling
slot the system will check if there is a new process
at level 0. If there is one, the next scheduling slot
is assigned to that new arrival. If the process is not
a short one, it will be moved back to the waiting
queue and placed at the next lower level. The sys-
tem will then continue the normal procedure for the
current scheduling round. By adopting this special
treatment to new arrivals, very short processes can
be serviced and completed more quickly.

As we mentioned before, the system will per-
form badly when a large number of long processes
is sharing the service in round robin. This problem
has already been alleviated using our two-queue
system. However, the results can further be im-



P

P

P

P

1, 12, 12, 23, 1

3, 2

2, 03, 2 3, 0

new arrival

process departed

(a)

(b)

(c)

(d)

1, 02, 02, 12, 43, 1

3, 0

1, 22, 22, 33, 0

2, 32, 4

0, 0

2 143

3214

4 2 3 1

1432

Figure 6: The movement of the pointer in four consecutive scheduling rounds.

proved by making the size of the service queue
adaptive, that is, the size of the service queue may
be decreased/increased when most of processes are
at the lower/higher levels. Because the scheduling
algorithm has to be deterministic when the dis-
tributed coscheduling scheme is applied [15], this
adaptation can then be achieved by limiting the
number of processes from each level to enter the
service queue.

It should be noted that the parameters set in
the above examples are purely imaginary. In prac-
tice extensive experiments are required in properly
choosing the values for those parameters.

5 The Issue of Implementation
It seems that the multilevel two-queue system is
complicated because there are two types of process
feedback from the service box to the waiting queue.
However, the system is simple to implement. In
Section 2 we described that by introducing a reg-
istration o�ce, scheduling processes becomes pro-
gramming a pointer to move on a linked list. In
the following we discuss how to move this pointer
according to our multilevel two-queue scheduling
algorithm. It should be noted that we can also use
multiple lists for a multilevel queue, that is, each
level is given an independent list. When a process
is moved to the next lower level, it is �rst detached

from the current list and then linked to a list which
is associated with the new level. The use of a single
list here is just for the description to be simpler.

To make the algorithm work correctly, we have
to add two variables l and f to the information �eld
of each node on the linked list. Variable l denotes
the current level the associated process is at, while
f denotes the service in number of scheduling slots
the process has so far received since it comes to that
level. The values of l and f will be updated each
time the node is visited by the pointer. We also
give the manager a counter which count scheduling
slots for each scheduling round. With those items
introduced the pointer is ready to move according
to our scheduling algorithm.

It is better to show how the algorithm works
by examples. In our particular example, as shown
in Fig. 6, we assumed N = 4, f1 = 3 and f2 = 5.
(Other parameters are not important in our discus-
sion). The �gure shows four consecutive scheduling
round. The two numbers written in each node are
the corresponding values of l (the �rst one) and f
(the second one), while the number associated with
each arrow denotes the order in which the pointer P
is to move within each scheduling round.

In Fig. 6(a), the �rst of these four consecutive
scheduling rounds, there are �ve nodes which asso-
ciate �ve processes. Each node has values of l and f



which will be updated each time the node is visited
by the pointer. After the �rst round, for example,
the values in the rightmost node is updated from
(1, 0) to (1, 1), while those in the leftmost node
remains unaltered because the node is not visited
in that scheduling round. Since a process at a
higher level is given a higher priority, the pointer
must go to the highest level at the beginning of
each round. At the same level the pointer always
moves from left to right because the longest-service-
time-�rst policy is adopted. Note that the value in
the second leftmost node is updated from (2, 4) to
(3, 0) as the associated process has received the
service of f2 = 5 scheduling slots and so is moved
to the next lower level of the waiting queue. At
that level (l = 3) a process associated with the
leftmost node has already received a service of one
scheduling slot. Thus the pointer will �rst visit the
leftmost node when coming to that level, as shown
in Fig. 6 (b). When reaching the rightmost node of
the current level before the end of the scheduling
round, the pointer will visit nodes at the next lower
level. This is to ensure that each process, once
entering the service queue, can receive a service of
at least one scheduling slot. When the size of the
service queue is �xed, or nonadaptive, a new arrival
has to wait in the waiting queue before the cur-
rent scheduling round is ended (Fig. 6 (b)). Since
the new arrival is placed at the highest level, it
will be serviced �rst in the next scheduling round
(Fig. 6 (c)). Assume that this new arrival is a
short process and can complete within just one
scheduling slot. The system will then return to
serve long processes. It can be seen that the same
processes are serviced in the second and the fourth
scheduling round (Fig. 6 (b) and (d)). If the cache
size is large enough, the cache may lose little useful
contents to the process associated with the leftmost
node. Then a relatively high cache hit ratio may
be obtained. This is a potential advantage over
conventional multilevel scheduling schemes which
may give the service to processes at the same level
in a round-robin manner.

To summarise, the pointer always points to the
leftmost node of the highest level at the begin-
ning of each scheduling round and then move right-
ward to visit the nodes at the same level. When it
reaches the end of the current level, the pointer
will come to the next lower level and travel the
same way. The value of f is incremented by one
each time the node is visited by the pointer. When
reaching the required number, f is reset to zero
and l incremented by one. The associated process
will then restart at the next lower level. The proce-
dure continues until the current scheduling round is
ended. A new round is scheduled exactly the same
way.

In order to make the algorithm work correctly
the counter has to be reset once the pointer reaches
the head node of the linked list so that the proper
order for l and f can be maintained, that is, the
values of l, as well as f at the same level, are always
in a nonincreasing order in the linked list.

Finally, it should be noted that the procedure
will become a bit more complicated when the size
of the service queue is made adaptive.

6 Conclusions
The characteristics of parallel workloads are usu-
ally di�erent from those of sequential workloads.
Problems may occur when the simple round-robin
queueing system is adopted in coscheduling paral-
lel workloads on parallel computing machines. To
alleviate those problems we derived a new queueing
system. Our new system consists of two queues, a
service queue which can hold more than one pro-
cess and a waiting queue which has multiple levels.
This system has several potential advantages over
some conventional systems in coscheduling parallel
workloads:

1. By adopting multilevel feedback technique the
system is made more in favor of short processes
and can then obtain a higher system through-
put than the simple round-robin system.

2. Because the service queue can hold more than
one process, several processes from di�erent
levels can receive service in the same schedul-
ing round. Then long processes may not su�er
too heavily as is the case in applying conven-
tional multilevel systems.

3. The system has two queues and the longest-
service-time-�rst policy is adopted in moving
processes back and forth between the waiting
queue and the service queue, It tends to let
certain processes be more active than the oth-
ers. Thus a higher cache hit ratio may be
achievable and the problem of large number
of long processes sharing the service in round
robin can be alleviated.

It is easy to see that the system becomes the simple
round-robin if f0 and N are set to in�nity and the
multilevel FB if N = 1 and fi = 1 for all i as we
mentioned previously. Thus the well known round-
robin and multilevel FB systems are just special
cases of our multilevel two-queue system. By prop-
erly adjusting the parameters the system can be
made very e�ective in coscheduling parallel work-
loads on parallel computing machines.

Although the scheduling algorithm is more com-
plicated than many existing ones, it is not di�cult
to implement. Extensive experiments, as well as
further theoretical studies, will be carried out in the



near future after this system is implemented on the
Fujitsu AP1000+, a distributed memory machine
located at the Australian National University.

References
[1] R. H. Arpaci, A. C. Dusseau, A. M. Vah-

dat, L. T. Liu, T. E. Anderson and D.
A. Patterson, The interaction of parallel
and sequential workloads on a network of
workstations, Proceedings of ACM SIGMET-
RICS'95/PERFORMANCE'95 Joint Interna-
tional Conference on Measurement and Mod-
eling of Computer Systems, May 1995, pp.267-
278.

[2] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc
and E. Markatos, Multiprogramming on mul-
tiprocessors, Proceedings of the Third IEEE
Symposium on Parallel and Distributed Pro-
cessing, Dec. 1991, pp.590-597.

[3] H. M. Deitel, An Introduction to Operat-
ing Systems, 2nd ed., Addison-Wesley, Mas-
sachusetts, 1990.

[4] A. C. Dusseau, R. H. Arpaci and D. E.
Culler, E�ective distributed scheduling of par-
allel workloads, Proceedings of ACM SIG-
METRICS'96 International Conference, 1996.

[5] D. G. Feitelson and L. Rudolph, Gang schedul-
ing performance bene�ts for �ne-grained syn-
chronisation, Journal of Parallel and Dis-
tributed Computing, 16(4), Dec. 1992, pp.306-
318.

[6] A. Gupta, A. Tucker and S. Urushibara, The
impact of operating system scheduling policies
and synchronization methods on the perfor-
mance of parallel applications, Proceedings of
SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May
1991, pp.120-132.

[7] L. Kleinrock, Queueing Systems, Volume II:
Computer Applications, Wiley-Interscience,
New York, 1976.

[8] L. Kleinrock and J. Hsu, A continuum of
computer processor-sharing queueing models,
Proceedings of the Seventh International Tele-
tra�c Congress, Stockholm, Sweden, June
1973, pp.431/1-431/6.

[9] L. Kleinrock and R. R. Muntz, Multilevel
processor-sharing queueing models for time-
shared models, Proceedings of the Sixth In-
ternational Teletra�c Congress, Aug. 1970,
pp.341/1-341/8.

[10] S.-P. Lo and V. D. Gligor, A comparative anal-
ysis of multiprocessor scheduling algorithms,
Proceedings of the 7th International Confer-
ence on Distributed Computing Systems, Sept.
1987, pp.205-222.

[11] J. C. Mogul and A. Borg, The e�ect of context
switches on cache performance, Proceedings
of 4th International Conference on Architect.
Support for Prog. Lang. and Operating Sys-
tems Apr. 1991, pp.75-84.

[12] J. K. Ousterhout, Scheduling techniques for
concurrent systems, Proceedings of Third In-
ternational Conference on Distributed Com-
puting Systems, May 1982, pp.20-30.

[13] A. Tucker and A. Gupta, Process control
and scheduling issues for multiprogrammed
shared-memory multiprocessors, Proceedings
of the 12th Symposium on Operating Systems
Principles, Litch�eld, AZ, Dec 1989, pp.159-
166.

[14] J. Zahorjan and E. D. Lazowska, Spinning
versus blocking in parallel systems with uncer-
tainty, Proceedings of the IFIP International
Seminar on Performance of Distributed and
Parallel Systems, Dec. 1988, pp.455-472.

[15] B. B. Zhou, X. Qu and R. P. Brent, E�ective
scheduling in a mixed parallel and sequential
computing environment, submitted to The
11th International Parallel Processing Sympo-
sium, Geneva, Switzerland, April 1997.


