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Abstract. We consider the numerical stability/instability of fast algo-
rithms for solving systems of linear equations or linear least squares
problems with a low displacement-rank structure. For example, the ma-
trices involved may be Toeplitz or Hankel. In particular, we consider
algorithms which incorporate pivoting without destroying the structure,
such as the Gohberg-Kailath-Olshevsky (GKO) algorithm, and describe
some recent results on the stability of these algorithms. We also com-
pare these results with the corresponding stability results for algorithms
based on the semi-normal equations and for the well known algorithms
of Schur/Bareiss and Levinson.

1 Introduction

It is well known that systems of n linear equations with a low displacement rank
(e.g. Toeplitz or Hankel matrices) can be solved in O(n2) arithmetic operations1.
For positive definite Toeplitz matrices the first O(n2) algorithms were introduced
by Kolmogorov [30], Wiener [43] and Levinson [31]. These algorithms are related
to recursions of Szegö [40] for polynomials orthogonal on the unit circle. Another
class of O(n2) algorithms, e.g. the Bareiss algorithm [2], are related to Schur’s
algorithm for finding the continued fraction representation of a holomorphic
function in the unit disk [34]. This class can be generalized to cover unsymmetric
matrices and more general “low displacement rank” matrices [28]. In this paper
we consider the numerical stability of some of these algorithms. A more detailed
survey is given in [29].

In the following, R denotes a structured matrix, T is a Toeplitz or Toeplitz-
type matrix, P is a permutation matrix, L is lower triangular, U is upper trian-
gular, and Q is orthogonal. In error bounds, On(ε) means O(εf(n)), where f(n)
is a polynomial in n.
1 Asymptotically faster algorithms exist [1, 8], but are not considered here.
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2 Classes of Structured Matrices

Structured matrices R satisfy a Sylvester equation which has the form

∇{Af ,Ab}(R) = AfR−RAb = ΦΨ , (1)

where Af and Ab have some simple structure (usually banded, with 3 or fewer
full diagonals), Φ and Ψ are n × α and α × n respectively, and α is some fixed
integer. The pair of matrices (Φ, Ψ) is called the {Af , Ab}-generator of R.

α is called the {Af , Ab}-displacement rank of R. We are interested in cases
where α is small (say at most 4).

Cauchy matrices

Particular choices of Af and Ab lead to definitions of basic classes of matrices.
Thus, for a Cauchy matrix

C(t, s) =
[

1
ti − sj

]
ij

,

we have
Af = Dt = diag(t1, t2, . . . , tn) ,

Ab = Ds = diag(s1, s2, . . . , sn)

and
ΦT = Ψ = [1, 1, . . . , 1] .

More general matrices, where Φ and Ψ are any rank-α matrices, are called
Cauchy-type.

Toeplitz matrices

For a Toeplitz matrix T = [tij ] = [ai−j ], we take

Af = Z1 =



0 0 · · · 0 1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0

 , Ab = Z−1 =



0 0 · · · 0 −1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0

 ,

Φ =
[

1 0 · · · 0
a0 a1−n + a1 · · · a−1 + an−1

]T

,

and

Ψ =
[

an−1 − a−1 · · · a1 − a1−n a0

0 · · · 0 1

]
.

We can generalize to Toeplitz-type matrices by taking Φ and Ψ to be general
rank-α matrices.



3 Structured Gaussian Elimination

Let an input matrix, R1, have the partitioning

R1 =
[

d1 wT
1

y1 R̃1

]
.

The first step of normal Gaussian elimination is to premultiply R1 by[
1 0T

−y1/d1 I

]
,

which reduces it to [
d1 wT

1

0 R2

]
,

where
R2 = R̃1 − y1w

T
1 /d1

is the Schur complement of d1 in R1. At this stage, R1 has the factorization

R1 =
[

1 0T

y1/d1 I

] [
d1 wT

1

0 R2

]
.

One can proceed recursively with the Schur complement R2, eventually obtaining
a factorization R1 = LU .

The key to structured Gaussian elimination is the fact that the displacement
structure is preserved under Schur complementation, and that the generators
for the Schur complement Rk+1 can be computed from the generators of Rk in
O(n) operations.

Row and/or column interchanges destroy the structure of matrices such as
Toeplitz matrices. However, if Af is diagonal (which is the case for Cauchy
and Vandermonde type matrices), then the structure is preserved under row
permutations.

This observation leads to the GKO-Cauchy algorithm [21] for fast factoriza-
tion of Cauchy-type matrices with partial pivoting, and many recent variations
on the theme by Boros, Gohberg, Ming Gu, Heinig, Kailath, Olshevsky, M. Stew-
art, et al: see [7, 21, 23, 26, 35].

The GKO-Toeplitz algorithm

Heinig [26] showed that, if T is a Toeplitz-type matrix, then

R = FTD−1F ∗

is a Cauchy-type matrix, where

F =
1√
n

[e2πi(k−1)(j−1)/n]1≤k,j≤n



is the Discrete Fourier Transform matrix,

D = diag(1, eπi/n, . . . , eπi(n−1)/n),

and the generators of T and R are simply related.
The transformation T ↔ R is perfectly stable because F and D are unitary.

Note that R is (in general) complex even if T is real.
Heinig’s observation was exploited by Gohberg, Kailath and Olshevsky [21]:

R can be factorized as R = PT LU using GKO-Cauchy. Thus, from the factor-
ization

T = F ∗PT LUFD ,

a linear system involving T can be solved in O(n2) operations. The full proce-
dure of conversion to Cauchy form, factorization, and solution requires O(n2)
(complex) operations.

Other structured matrices, such as Hankel, Toeplitz-plus-Hankel, Vander-
monde, Chebyshev-Vandermonde, etc, can be converted to Cauchy-type matrices
in a similar way.

Error Analysis

Because GKO-Cauchy and GKO-Toeplitz involve partial pivoting, we might
guess that their stability would be similar to that of Gaussian elimination with
partial pivoting. Unfortunately, there is a flaw in this reasoning. During GKO-
Cauchy the generators have to be transformed, and the partial pivoting does not
ensure that the transformed generators are small.

Sweet and Brent [39] show that significant generator growth can occur if all
the elements of ΦΨ are small compared to those of |Φ||Ψ |. This can not happen for
ordinary Cauchy matrices because Φ(k) and Ψ (k) have only one column and one
row respectively. However, it can happen for higher displacement-rank Cauchy-
type matrices, even if the original matrix is well-conditioned.

The Toeplitz Case

In the Toeplitz case there is an extra constraint on the selection of Φ and Ψ , but
it is still possible to give examples where the normalized solution error grows like
κ2 and the normalized residual grows like κ, where κ is the condition number
of the Toeplitz matrix. Thus, the GKO-Toeplitz algorithm is (at best) weakly
stable2.

It is easy to think of modified algorithms which avoid the examples given
by Sweet and Brent, but it is difficult to prove that they are stable in all cases.
Stability depends on the worst case, which may be rare and hard to find by
random sampling.

The problem with the original GKO algorithm is growth in the generators.
Ming Gu suggested exploiting the fact that the generators are not unique. Recall
2 For definitions of stability and weak stability, see [5, 9, 10].



the Sylvester equation (1). Clearly we can replace Φ by ΦM and Ψ by M−1Ψ ,
where M is any invertible α×α matrix, because this does not change the product
ΦΨ . Similarly at later stages of the GKO algorithm.

Ming Gu [23] proposes taking M to orthogonalize the columns of Φ (that
is, at each stage we do an orthogonal factorization of the generators). Michael
Stewart [35] proposes a (cheaper) LU factorization of the generators. In both
cases, clever pivoting schemes give error bounds analogous to those for Gaussian
elimination with partial pivoting.

Gu and Stewart’s error bounds

The error bounds obtained by Ming Gu and Michael Stewart involve a factor
Kn, where K depends on the ratio of the largest to smallest modulus elements
in the Cauchy matrix [

1
ti − sj

]
ij

.

Although this is unsatisfactory, it is similar to the factor 2n−1 in the error bound
for Gaussian elimination with partial pivoting.

Michael Stewart [35] gives some interesting numerical results which indicate
that his scheme works well, but more numerical experience is necessary before a
definite conclusion can be reached.

In practice, we can use an O(n2) algorithm such as Michael Stewart’s, check
the residual, and resort to iterative refinement or a stable O(n3) algorithm in
the (rare) cases that it is necessary.

4 Positive Definite Structured Matrices

An important class of algorithms, typified by the algorithm of Bareiss [2], find
an LU factorization of a Toeplitz matrix T , and (in the symmetric case) are
related to the classical algorithm of Schur [20, 34].

It is interesting to consider the numerical properties of these algorithms and
compare with the numerical properties of the Levinson algorithm (which essen-
tially finds an LU factorization of T−1).

The Bareiss algorithm for positive definite matrices

Bojanczyk, Brent, de Hoog and Sweet3 [6, 37] have shown that the numerical
properties of the Bareiss algorithm are similar to those of Gaussian elimination
(without pivoting). Thus, the algorithm is stable for positive definite symmetric
Toeplitz matrices.

The Levinson algorithm can be shown to be weakly stable for bounded n,
and numerical results by Varah [42], BBHS and others suggest that this is all

3 Abbreviated BBHS.



that we can expect. Thus, the Bareiss algorithm is (generally) better numerically
than the Levinson algorithm.

Cybenko [15] showed that if certain quantities called “reflection coefficients”
are positive then the Levinson-Durbin algorithm for solving the Yule-Walker
equations (a positive-definite system with special right-hand side) is stable.
However, “random” positive-definite Toeplitz matrices do not usually satisfy
Cybenko’s condition.

The generalized Schur algorithm

The Schur algorithm can be generalized to factor a large variety of structured
matrices – see Kailath et al [27, 28]. For example, the generalized Schur algorithm
applies to block Toeplitz matrices, Toeplitz block matrices, and to matrices of
the form TT T , where T is rectangular Toeplitz.

It is natural to ask if the stability results of BBHS (which are for the classical
Schur/Bareiss algorithm) extend to the generalized Schur algorithm. This was
considered by M. Stewart and Van Dooren [36] and by Chandrasekharan and
Sayed [12]. (The results were obtained independently by the two pairs of au-
thors, and the “generalized Schur algorithm” considered in each case is slightly
different – for details see [29].)

The conclusion is that the generalized Schur algorithm is stable for posi-
tive definite symmetric (or Hermitian) matrices, provided that the hyperbolic
transformations in the algorithm are implemented correctly. In contrast, BBHS
showed that stability of the classical Schur/Bareiss algorithm is not so dependent
on details of the implementation.

5 Fast Orthogonal Factorization

In an attempt to achieve stability without pivoting, and to solve m × n least
squares problems (m ≥ n), it is natural to consider algorithms for computing an
orthogonal factorization

T = QU

of T . The first such O(n2) algorithm4 was introduced by Sweet [37]. Unfortu-
nately, Sweet’s algorithm is unstable: it depends on the condition of a submatrix
of T – see Luk and Qiao [32].

Other O(n2) algorithms for computing the matrices Q and U or U−1 were
given by Bojanczyk, Brent and de Hoog5 [4], Chun et al [14], Cybenko [16], and
Qiao [33], but none of them has been shown to be stable, and in several cases
examples show that they are unstable.

Unlike the classical O(n3) Givens or Householder algorithms, the O(n2) al-
gorithms do not form Q in a numerically stable manner as a product of matrices
which are (close to) orthogonal.

4 More precisely, O(mn). For simplicity, in the time bounds we assume m = O(n).
5 Abbreviated BBH.



For example, the algorithms of Bojanczyk, Brent and de Hoog [4] and Chun
et al [14] depend on Cholesky downdating, and numerical experiments show that
they do not give a Q which is close to orthogonal.

The generalized Schur algorithm, applied to TT T , computes the upper tri-
angular matrix U but not the orthogonal matrix Q.

Use of the semi-normal equations

It can be shown that, provided the Cholesky downdates are implemented in a
certain way (analogous to the condition for the stability of the generalized Schur
algorithm), the BBH algorithm computes U in a weakly stable manner [5]. In
fact, the computed upper triangular matrix Ũ is about as good as can be obtained
by performing a Cholesky factorization of TT T , so

‖TT T − ŨT Ũ‖/‖TT T‖ = Om(ε) .

Thus, by solving
ŨT Ũx = TT b

(the so-called semi-normal equations) we have a weakly stable algorithm for the
solution of general Toeplitz systems Tx = b in O(n2) operations. The solution
can be improved by iterative refinement if desired. Note that the computation of
Q is avoided, and the algorithm is applicable to full-rank Toeplitz least squares
problems.

Computing Q stably

It is difficult to give a satisfactory O(n2) algorithm for the computation of Q in
the factorization

T = QU (2)

Chandrasekharan and Sayed give a stable algorithm to compute the factor-
ization

T = LQU (3)

where L is lower triangular. Their algorithm can be used to solve linear equations,
but not least squares problems, because T has to be square, and in any case the
matrix Q in (3) is different from the matrix Q in (2). Because their algorithm
involves embedding the n× n matrix T in a 2n× 2n matrix[

TT T TT

T 0

]
,

the constant factors in the operation count are large: 59n2 + O(n log n), which
should be compared to 8n2+O(n log n) for BBH and the semi-normal equations.
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