
Job Scheduling Strategies for Networks of

Workstations

B. B. Zhou1, R. P. Brent1, D. Walsh2, and K. Suzaki3

1 Computer Sciences Laboratory, Australian National University,
Canberra, ACT 0200, Australia

2 CAP Research Program, Australian National University,
Canberra, ACT 0200, Australia

3 Electrotechnical Laboratory, 1-1-4 Umezono,
sukuba, Ibaraki 305, Japan

Abstract. In this paper we first introduce the concepts of utilisation ra-
tio and effective speedup and their relations to the system performance.
We then describe a two-level scheduling scheme which can be used to
achieve good performance for parallel jobs and good response for inter-
active sequential jobs and also to balance both parallel and sequential
workloads. The two-level scheduling can be implemented by introducing
on each processor a registration office. We also introduce a loose gang
scheduling scheme. This scheme is scalable and has many advantages
over existing explicit and implicit coscheduling schemes for scheduling
parallel jobs under a time sharing environment.

1 Introduction

The trend of parallel computer developments is toward networks of worksta-
tions [3], or scalable parallel systems [1]. In this type of system each processor,
having a high-speed processing element, a large memory space and full function-
ality of a standard operating system, can operate as a stand-alone workstation
for sequential computing. Interconnected by high-bandwidth and low-latency
networks, the processors can also be used for parallel computing. To establish
a truly general-purpose and user-friendly system, one of the main problems is
to provide users with a single system image. By adopting the technique of dis-
tributed shared memory [12], for example, we can provide a single addressing
space for the whole system so that communication for transferring data between
processors is completely transparent to the client programs. In this paper we
discuss another very important issue relating to the provision of single system
image, that is, effective job scheduling strategies for both sequential and parallel
processing on networks of workstations.

Many job scheduling schemes have been introduced in the literature and
some of them implemented on commercial parallel systems. These scheduling
schemes for parallel systems can be classified into either space sharing, or time
sharing, or a combination of both. With space sharing a system is partitioned
into subsystems, each containing a subset of processors. There are boundary

Dror G. Feitelson, Larry Rudolph (Eds.): JSSPP’98, LNCS 1459, pp. 143–157, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



144 B. B. Zhou et al.

lines laid between subsystems and so only processors of the same subsystem
can be coordinated to solve problems assigned to that subsystem. During the
computation each subsystem is allocated only for a single job at a time.

The space partition can be either static, or adaptive. With static partition-
ing the system configuration is determined before the system starts operating.
The whole system has to be stopped when the system needs to be reconfig-
ured. With adaptive partitioning processors in the system are not divided before
the computation. When a new job arrives, a job manager in the system first
locates idle processors and then allocates certain number of those idle proces-
sors to that job according to some processor allocation policies, e.g., those de-
scribed in [2,10,14,15,17,18,20]. Therefore, the boundary lines are drawn during
the computation and will disappear after the job is terminated. Normally the
static partitioning is used for very large systems, while the adaptive partitioning
is adopted in systems, or subsystems of small to medium size. One disadvantage
of space partitioning is that short jobs can easily be blocked by long ones for
a long time before being executed. However, in practice short jobs usually de-
mand a short turnaround time. To alleviate this problem jobs can be grouped
into classes and a special treatment will be given to the class of short jobs [15].
However, it can only partially solve the problem. Thus time sharing needs to be
considered.

Many scheduling schemes for time-sharing of a parallel system have been
proposed in the literature. They may be classified into two basic types. The
first one is local scheduling. With local scheduling there is only a single queue
on each processor. Except for higher (or lower) priorities being given, processes
associated with parallel jobs are not distinguished from those associated with
sequential jobs. The method simply relies on existing local schedulers on each
processor to schedule parallel jobs. Thus there is no guarantee that the processes
belonging to the same parallel job can be executed at the same time across the
processors. When many parallel programs are simultaneously running on a sys-
tem, processes belonging to different jobs will compete for resources with each
other and then some processes have to be blocked when communicating or syn-
chronising with non-scheduled processes on other processors. This effect can lead
to a great degradation in overall system performance [4,6,9,11,13]. One method
to alleviate this problem is to use two-phase blocking [8,22] which is also called
implicit coscheduling in [8]. In this method a process waiting for communication
spins for some time in the hope that the process to be communicated with on
the other processor is also scheduled, and then blocks if a response has not been
received. The reported experimental results show that for parallel workloads this
scheduling scheme performs better than the simple local scheduling. However,
the problem is that the scheduling policy is based on communication require-
ments. Then it tends to give special treatment to jobs with a high frequency of
communication demands. The policy is also independent of service times. The
performance of parallel computation is thus unpredictable.

The second type of scheduling schemes for time sharing is coscheduling [16]
(or gang scheduling [9]), which may be a better scheme in adopting short-job-first



Job Scheduling Strategies for Networks of Workstations 145

policy. Using this method a number of parallel programs is allowed to enter a
service queue (as long as the system has enough memory space). The processes
of the same job will run simultaneously across the processors for only certain
amount of time which is called scheduling slot. When a scheduling slot is ended,
the processors will context-switch at the same time to give the service to pro-
cesses of another job. All programs in the service queue take turns to receive
the service in a coordinated manner across the processors. Thus programs never
interfere with each other and short jobs are likely to be completed more quickly.
There are also certain drawbacks associated with coscheduling. A significant one
is that it is designed only for parallel workloads. For networks of workstations we
need an effective scheduling strategy for both sequential and parallel processing.
The simple coscheduling technique is not a suitable solution.

The future networks of workstations should provide a programming-free en-
vironment to general users. By providing a variety of high-performance com-
puting libraries for a wide range of applications plus user-friendly interfaces for
the access to those libraries, parallel computing will no longer be considered
just as client’s special requests, but become a natural and common phenomenon
in the system. Along with many other critical issues, therefore, highly effective
job management strategies are required for the system to meet various client’s
requirements and to achieve high efficiency of resource utilisation. Because of
the lack of efficient job scheduling strategies, most networks of workstations are
currently used exclusively either as an MPP for processing parallel batch jobs,
or as a group of separate processors for interactive sequential jobs. The poten-
tial power of this type of system are not exploited effectively and the system
resources are not utilised efficiently under these circumstances.

In this paper we discuss some new ideas for effectively scheduling both se-
quential and parallel workloads on networks of workstations. To achieve a de-
sired performance for a parallel job on a network of workstations with a variety
of competitive background workloads, it is essential to provide a sustained ra-
tio of CPU utilisation to the associated processes on each processor, to allocate
more processors to the job if the assigned utilisation ratio is small and then to
coordinate the execution across the processors. We first introduce the concepts
of utilisation ratio and effective speedup and their relations to the system per-
formance in Section 2. In this section we also argue that, because the resources
in a system are limited, one cannot guarantee every parallel job to have a sus-
tained CPU utilisation ratio in a time sharing environment. One way to solve
the problem is that we give short jobs sustained utilisation ratios to ensure a
short turnaround time, while to each large job we allocate a large number of pro-
cessors and assign a utilisation ratio which can vary in a large range according
to the current system workload so that small jobs will not be blocked and the
resource utilisation can be kept high. we then present in Section 3 a two-level
scheduling scheme which can be used to achieve good performance for paral-
lel jobs and good response for interactive sequential jobs and also to balance
both parallel and sequential workloads. The two-level scheduling can be imple-
mented by introducing on each processor a registration office which is described



146 B. B. Zhou et al.

in Section 4. We discuss a scalable coscheduling scheme – loose gang schedul-
ing in Section 5. This scheme requires both global and local job managers. It
is scalable because the coscheduling is mainly controlled by local job managers
on each processor so that frequent signal-broadcasting for simultaneous context
switch across the processors is avoided. Using a global job manager we believe
that the system can work more efficiently than those using only local schedulers.
With a local job manager on each processor the system will become more flexible
and more effective in handling more complicated situations than those adopting
only the conventional gang scheduling policy. Finally the conclusions are given
in Section 6.

2 Utilisation Ratio and Effective Speedup

Assuming that the overall computational time for a parallel job on p dedicated
processors is Td(p), the conventionally defined speedup is then obtained as

Sd(p) =
Td(1)
Td(p)

. (1)

This speedup can only be achieved by using dedicated processors. It may be
impossible to achieve on a network of workstations because there a parallel job
usually has to time-share resources with other sequential/parallel jobs. If we
provide a sustained ratio of CPU utilisation for a job on each processor and use
more processors, however, we can still achieve the desired performance in terms
of time.

Define utilisation ratio β for 0 ≤ β ≤ 1 as the ratio of CPU utilisation for
a given job on each processor. By a given β the job on a processor can on the
average obtain a service time β∆T in each unit of time ∆T . In our scheduling
strategy each parallel job will be assigned a utilisation ratio which is usually
determined based on the current system working conditions. Different ratios can
also be given on different processors for naturally unbalanced parallel jobs to
achieve better system load-balancing.

Assume that the same utilisation ratio β is assigned to a parallel job across
all the associated processors and that the job’s processes are gang scheduled.
The turnaround time Te(p) for that job can then be calculated as

Te(p) =
Td(p)

β
(2)

where Td(p) is the computational time obtained on p dedicated processors.
Defining effective speedup Se(p) as the ratio of Td(1) and Te(p), then

Se(p) =
Td(1)
Te(p)

= β
Td(1)
Td(p)

= βSd(p). (3)

where Sd(p) is the conventional speedup obtained on p dedicated processors.



Job Scheduling Strategies for Networks of Workstations 147

To achieve a desired performance, we may set a performance target γ and
require

Td(1) ≥ γTe(p), (4)

or
Se(p) ≥ γ. (5)

If the effective speedup for a given job is lower than that target, the performance
will be considered unacceptable.

¿From equations in (3) and (5) we can obtain

Sd(p) ≥ γ

β
. (6)

Using the above inequality we can easily determine how many processors
should be allocated to a given job in order to achieve a desired performance
when a particular β is given. Assuming γ = 2 and β = 0.5, for example, Sd(p)
must be greater than, or equal to 4. Allocating 5 processors or more to that job
can then achieve a desired performance if Sd(5) ≥ 4. When the current system
workload is not heavy, we may need to use less number of processors to achieve
the same performance. If there are several idle processors, we may set β = 1 in
the above example. Then only 3 processors may be required if Sd(3) ≥ 2.

In practice the exact speedup Sd(p) may not be known except for those
programs in standard general-purpose parallel computing libraries. Thus the
values can only be approximate in those cases. However, good approximations
can often be obtained. For example, the results of the Linpack Benchmark [7]
can be used as a good approximation for problems of matrix computation.

The utilisation ratios of the existing jobs may be decreased whenever a new
job enters the system to time-share the resources. The problem is how to ensure
a sustained ratio of CPU utilisation for each job so that the performance can be
predictable in a time sharing environment. Since the resources in a system are
really limited, the answer to this question is simply that we cannot guarantee
every job to have a sustained ratio when the system workload is heavy.

One way to solve the above problem is to adopt the following scheme. First we
set a limit to the length of each scheduling round ∆T (or a limit to the number of
jobs in the system). A common misunderstanding about time-sharing for parallel
jobs is that good performance will be obtained as long as parallel jobs can enter
the system and start operation quickly. As we mentioned previously that the
resources in a system are limited, however, good performance just cannot be
guaranteed if the length of scheduling round is unbounded. Consider a simple
example when several large jobs are time-sharing the resources in a round robin
manner. In this case the conventional gang scheduling simply fail to produce
good performance in terms of turnaround time.

Because of the limit to the length of each scheduling round short jobs still
can be blocked for a long time. We then adopt a scheduling policy, that is, small
jobs should have sustained utilisation ratios to ensure a short turnaround time,
while each large job should be assigned a large number of processors, but given a
utilisation ratio which can vary in a large range according to the current system



148 B. B. Zhou et al.

workload. In this way we think that small jobs will not be blocked, the resource
utilisation can be kept high and reasonably good performance for large jobs may
also be obtained.

Based on the above ideas a multi-class time/space sharing system is designed.
A detailed description of this system is beyond the scope of this paper. Interested
readers may refer [24] for more details.

3 Two-Level Scheduling

It can be seen from the previous section that our scheduling strategy is based
on the utilisation ratios assigned to parallel jobs. In this section we introduce a
two-level scheduling scheme for balancing the workloads for both sequential and
parallel processing,

At the top level, or global level the gang scheduling, or a loose gang scheduling
scheme to be discussed in the next section, is adopted to coordinate parallel
computing. Each scheduling round ∆T is divided into time slots. An example
of the time distribution for different processes on each processor is shown in
Fig. 1. In the figure time slot ∆t

(i)
s is allocated only to sequential processes

associated with sequential jobs, while slot ∆t
(i)
p is assigned to a single parallel

process associated with a parallel job. A parallel process may share its time
slots with sequential processes through the scheduling at the bottom level, or
local level. However, no parallel processes will share the same time slots. This
is to avoid many different types of parallel jobs competing for resources at the
same time and then to guarantee that each parallel process can obtain its proper
share of resources. The relation between a scheduling round and those time slots
satisfies the following equation

∆T = ∆Ts +
n∑

i=1

∆t(i)p (7)

where ∆Ts =
∑m

i=1 ∆t
(i)
s is the total time dedicated for sequential jobs in a

scheduling round and is distributed to gain good response to interactive clients.

�t
(1)
p �t

(1)
s

�t
(2)
p �t

(2)
s

�t
(3)
p �t

(3)
s

�t
(4)
p �t

(4)
s

�T

Fig. 1. The time distribution in a scheduling round.

The width of each time slot is determined by the corresponding utilisation
ratio β

(i)
p , or β

(i)
s . We can then calculate the width of each time slot as

∆t(i)p = β(i)
p ∆T (8)



Job Scheduling Strategies for Networks of Workstations 149

and
∆Ts = βs∆T (9)

where βs =
∑m

i=1 β
(i)
s .

There are many ways to distribute ∆Ts. For example, each slot for a parallel
process can be followed by a small slot for sequential processes and ∆Ts is
uniformly distributed across the whole scheduling round. Then

∆t(i)s =
∆Ts

n
. (10)

We can also distribute ∆Ts proportionally to the width of each time slot for
parallel processes, that is,

∆t(i)s =
β

(i)
p

∑n
j=1 β

(j)
p

∆Ts. (11)

The calculation for proportional distribution is a bit more complicated than
that for uniform distribution. However it is useful when a proper-share policy,
which will be described later in the section, is applied at the local level.

Different local policies can be adopted to schedule processes within each time
slot. In those time slots dedicated for sequential processing conventional local
scheduling schemes of any standard operating system will be good enough. In
the following we discuss how to schedule processes in each time slot ∆t

(i)
p in

which parallel processing is involved.
To ensure that a parallel process can obtain its assinged share of CPU util-

isation, the whole slot ∆t
(i)
p may be dedicated just to the associated parallel

process. In that case a very high priority will be given and the process simply
does busy-waiting, or spins during communication/synchronisation so that no
other processes can disturb its execution within each associated time slot. One
problem associated with this policy is that the performance of sequential jobs,
especially of those which demand good interactive response, may significantly be
affected. Therefore, its use will be treated as special cases under the environment
of networks of workstations to achieve certain client’s special requests .

To prevent great performance degradation of sequential interactive jobs, im-
plicit coscheduling scheme can be adopted. However, a potential problem is that
the execution of a parallel process may be disturbed by several sequential pro-
cesses and then it is possible that certain parallel processes may not receive their
proper shares in their associated time slots.

The above problem may be alleviated by adopting a proper-share policy. In
this policy we do not consider individual shares allocated for each sequential job.
Except for special ones, e.g., multimedia workloads, which may be treated in the
same way as parallel jobs to achieve constant-rate services, only a combined
share of sequential processes ∆t

(i)
s is considered. Each distributed time slot for

sequential processes ∆t
(i)
s is also integrated with its associated time slot ∆t

(i)
p to

form a single time slot of width ∆t(i), that is,

∆t(i) = ∆t(i)p + ∆t(i)s . (12)



150 B. B. Zhou et al.

In each integrated time slot implicit coscheduling is applied to support both
parallel and sequential processing. When its allocated share is not used up in
time ∆t

(i)
p , a parallel process can still obtain services till the end of the integrated

time slot ∆t(i) though ∆t(i) is longer than ∆t
(i)
p . When a parallel process has

consumed its share before the end of an integrated time slot, however, it will be
blocked and the services in the remaining time slot then dedicated to sequential
processes. With this policy parallel processes and sequential processes as a whole
may be guaranteed to obtain their proper shares during the computation.

Similar to the one described in [5], the policy may be realised by applying
the proportional-share technique which are originally used for real-time appli-
cations [19,21]. However, our scheduling scheme is much simpler and easier to
implement because only the proper share of a single parallel process is considered
against a combined share of sequential processes in each time slot.

Now the problem is how to distribute the total time ∆Ts allocated for pro-
cessing sequential jobs. The uniform distribution using the equation in (10) is
easy to calculate. However, the resulting ∆t

(i)
s may be too small to compen-

sate the lost share of parallel processes which have large β
(i)
p s. Therefore, the

proportional distribution using (11) may be a more proper one.
Normalising ∆T , that is, setting ∆T = 1, the equation in (7) will become

1 = βs +
n∑

i=1

β(i)
p . (13)

Using equations in (8), (9), (11) and (13), we obtain

∆t(i) = ∆t(i)s + ∆t(i)p =
β

(i)
p

∑n
j=1 β

(j)
p

∆T. (14)

The width of an integrated time slot ∆t(i) can directly be obtained by using
the equation in (14) and thus there is no need to explicitly calculate ∆t

(i)
s s.

4 Registration Office

When a parallel process has used up its time slot, it will be preempted at the
global level and another parallel process be dispatched. After being dispatched,
parallel processes may time-share resources with sequential processes on each
processor. Just like sequential processes, parallel processes will then be either
in running state, or ready and blocked states, which is controlled by a local
scheduler. Because in our two-level scheduling the execution of parallel processes
are controlled at both global and local levels, special care has to be taken to
avoid potential scheduling conflicts. For example, the global scheduler wants to
preempt a parallel process which is currently not in running state. To solve this
problem we introduce a registration office on each processor.



Job Scheduling Strategies for Networks of Workstations 151

servant

procs 2procs 1 procs 3 procs 4

IN

alg. timer

registration o�ce

manager

node 1 node 2 node 3 node 4H T

IN OUT IN

process dispatched

P

Fig. 2. The organisation of a registration office.

The registration office is constructed by using a linked list as shown in Fig. 2.
When a parallel job is initiated, each associated process will enter the local se-
quential queueing system the same way as sequential processes on the corre-
sponding processor. Just like sequential processes, parallel processes can be ei-
ther in running state, or in ready state requesting for service, or in blocked state
during communication/synchronisation. However, every parallel process has to
be registered in the registration office, that is, on each processor the linked list
will be extended with a new node which has a pointer pointing to the process
just being initiated. Similarly, when a parallel job is terminated, it has to check
out from the office, that is, the corresponding node on each processor will be
deleted from the linked list.

As we discussed in the previous section, certain parallel processes may be as-
signed a very high priority so that they can occupy the whole time slots allocated
to them. In that case the execution of sequential workloads can be seriously de-
teriorated. To alleviate this problem we may introduce certain time slots ∆t

(i)
s

which are dedicated to sequential jobs only. This can be done by introducing
dummy nodes in the linked list. A dummy node is the same type of nodes in a
linked list except its pointer points to NULL, the constant zero, instead of a real
parallel process. It seems that there is a dummy parallel process associated with
that node. When a service is given to that dummy parallel process, the whole
time slot will be dedicated to sequential processes.

There is a servant working in the office. When the servant comes to a place,
or a node in the linked list, the process associated with that node can receive
services, or be dispatched. When a process is dispatched, it will be marked out.
Other processes which are not dispatched will be marked in. In practice a process
may be blocked if it is marked in. Therefore, a parallel process can come out of the
blocked status only if it is ready for service (controlled by the local scheduler) and
the event out occurs (controlled by the top level scheduler). By letting only one



152 B. B. Zhou et al.

parallel process be marked out on each processor at any time, we can guarantee
that only one parallel process time-shares resources with sequential processes in
each time slot.

When a time slot is ended for the current parallel process, the servant will
move to a new node. The parallel process associated with that node can then
be serviced next. However, the movement of the servant is totally controlled
by an office manager which has a timer to determine when the servant is to
move and an algorithm to determine which node the servant is to move to. The
algorithm can be simple ones such as the conventional round-robin. (To obtain a
high system throughput, however, other more sophisticated scheduling schemes
may also be considered.) The timer is to ensure that processes can obtain their
allocated service times, that is, ∆t

(i)
p s, or ∆t

(i)
s s in each scheduling round.

The use of registration offices is similar to that of the two-dimensional ma-
trix adopted in the conventional coscheduling. Each column of the matrix cor-
responds to a time slot and each row to a processor. The coscheduling is then
controlled based on that matrix. It is easy to see that the linked list on each
processor plays the same role as a row of that matrix in coscheduling parallel
processes. However, the key difference is that our two-level scheduling scheme
allows both parallel and sequential jobs to be executed simultaneously.

5 Loose Gang Scheduling

The conventional gang scheduler is centralised. The system has a central con-
troller. At the end of each time slot the controller broadcasts a message to all
processors. The message contains the information about which parallel work-
load will receive a service next. The centralised system is easy to implement,
especially when the scheduling algorithm is simple. However, frequent signal-
broadcasting for simultaneous context switch across the processors may degrade
the overall system performance on machines such as networks of workstations
and space-sharing policies may not easily be adopted to enhance the efficiency
of resource utilisation. Because in our system there is a registration office on
each processor, we can adopt a loose gang scheduling policy to alleviate these
problems.

In our system there is a global job manager. It is used to monitor the work-
ing conditions of each processor, to locate and allocate processors and to assign
utilisation ratios to parallel jobs, and to balance parallel and sequential work-
loads. We believe that resources in networks of workstations cannot efficiently
be utilised without an effective global job manager. This global job manager is
also able to broadcast signals for the purpose of synchronisation to coordinate
the execution of parallel jobs. However, the signals need not be frequently broad-
cast for simultaneous context switch between time slots across the processors.
They are sent only once after each scheduling round, or even many scheduling
rounds to adjust the potential skew of the corresponding time slots (or simply
time skew) across the processors caused by using local job managers on each
processor.



Job Scheduling Strategies for Networks of Workstations 153

There is a local job manager on each processor. It is used to monitor and
report to the global job manager the working conditions on that processor. It
also takes orders from the global job manager to properly set up its registration
office and to coordinate the execution of parallel jobs with other processors.
With help of the global job manager the effective coscheduling is guaranteed by
using local job managers on each processor.

processor 1

processor 2

processor 3

processor 4

processor 5

�1 �2

�3 �4

�5

�6

Time

Space

�T

Fig. 3. The time/space allocation for six jobs on five processors.

In the following we give a simple example which demonstrates more clearly
the effectiveness of using the loose gang scheduling scheme and which also
presents another way of deriving the registration office for the scheme.

Our simple example considers the execution of six jobs on five processors.
We assume that the time/space allocation has already been done, that is, the
number of processor and the utilisation ratio have been assigned for each job,
as depicted in Fig. 3. For various reasons such as described in the previous
sections the shapes of time/space allocation may not be the same for each job as
indicated in the figure. This will make it very difficult for a centralised controller
to coschedule jobs. However, the problem can easily be solved by adopting our
loose gang scheduling.



154 B. B. Zhou et al.

On each processor we run a local job manager and we also set up a schedul-
ing table which is given by the global job manager. Parallel processes are then
scheduled according to this scheduling table. In our example there are three dif-
ferent scheduling tables, as shown in Fig. 4(a). The processes and the lengths
of their allocated time slots in a scheduling round are listed in each table in
an ordered manner. It is easy to see that, if the processors are synchronised
at the beginning of each scheduling round (It is also possible that the proces-
sors can be synchronised once many scheduling rounds.) and local job managers
schedule parallel processes according to the given scheduling tables, the correct
coscheduling across the processors is then guaranteed.

Because both content and size of each table vary from time to time during the
computation, it is quite natural to implement the scheduling tables using linked
lists, which results in our registration office. A registration office on processor 1
is depicted in Fig. 4(b). Note each node in the linked list has a pointer which
points at the corresponding process so that any unnecessary search for parallel
processes can be avoided.

�3 �4 �6

J3 J4 J6

processor 3, 4

�1 �2 �6

J1 J2 J6

processor 1, 2

�3 �5

J3 J5

processor 5

(a)

H T�1 �2 �6

J1 J2 J6

processor 1

(b)

Fig. 4. (a) The scheduling tables assigned for each processor and (b) The regis-
tration office on processor 1.



Job Scheduling Strategies for Networks of Workstations 155

With the collaboration of the global and local job managers the system can
work correctly and effectively. A potential disadvantage of the loose gang schedul-
ing is that there is an additional cost for executing the coscheduling algorithm
on each processor. However, in practice time slots ∆t

(i)
p , or ∆t(i) are usually in

order of seconds. This extra cost for running a process for coscheduling will be
relatively very small.

6 Conclusions

In this paper we discussed some new ideas for effectively scheduling both parallel
and sequential workloads on networks of workstations.

To achieve a desired performance in a system with a variety of competitive
background workloads, the key is to assign a sustained CPU utilisation ratio on
each processor to a parallel job so that the performance becomes predictable.
Because the resources in a system are limited, however, we cannot guarantee
that every job will be given a sustained utilisation ratio. One way to solve this
problem is that small parallel jobs are assigned a sustained ratio of resource
utilisation, while each large parallel job is allocated a large number of processors
and assigned a utilisation ratio which can vary in a wide range according to
the current system workload. Thus small jobs are not blocked by larger ones
and a short turnaround time is guaranteed, high efficiency of resource utilisation
can be achieved and reasonably good performance for large jobs may also be
obtained.

To balance the workloads for both sequential and parallel processing, we
introduced a two-level scheduling scheme. At the global level parallel jobs are
coscheduled so that they can obtain their proper shares without interfering with
each other and they can also be coordinated across the processors to achieve
high efficiency in parallel computation. At the local level many different policies,
e.g., the busy-waiting (or spinning) and the implicit coscheduling (or two-phase
blocking), can be considered to schedule both parallel and sequential processes.
We introduced a proper-share policy for effectively scheduling processes at the
local level. By adopting this policy we can obtain good performance for each
parallel job and also maintain good response for interactive sequential jobs. The
two-level scheduling can be implemented by adopting a registration office on
each processor. The organisation of the registration office (which is also described
in [23]) is simple and the main purpose is to effectively schedule parallel processes
at both global and local levels.

We also introduced a loose gang scheduling scheme to coschedule parallel jobs
across the processors. This scheme requires both global and local job managers.
The coscheduling is mainly controlled by local job managers on each proces-
sor, so frequent signal-broadcasting for simultaneous context switch across the
processors is avoided. There is only a bit extra work for global job manager to
adjust potential time skew. The name loose gang has two meanings. First the
coscheduling is achieved by mainly using local job managers but not just a cen-
tral controller and second parallel processes may time-share their allocated time



156 B. B. Zhou et al.

slots with sequential processes. Since both global and local job managers play
effective roles in job scheduling, we think this may lead a way for us to find
good strategies for efficiently scheduling both parallel and sequential workloads
on networks of workstations.

A new system based on these ideas is currently under construction on a
distributed memory parallel machine, the Fujitsu AP1000+, at the Australian
National University.

References

1. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias and M. Snir, SP2
system architecture, IBM Systems Journal, 34(2), 1995.

2. S. V. Anastasiadis and K. C. Sevcik, Parallel application scheduling on networks of
workstations, Journal of Parallel and Distributed Computing, 43, 1997, pp.109-124.

3. T. E. Anderson, D. E. Culler, D. A. Patterson and the NOW team, A case for
NOW (networks of workstations), IEEE Micro, 15(1), Feb. 1995, pp.54-64.

4. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson and D.
A. Patterson, The interaction of parallel and sequential workloads on a network of
workstations, Proceedings of ACM SIGMETRICS’95/PERFORMANCE’95 Joint
International Conference on Measurement and Modeling of Computer Systems,
May 1995, pp.267-278.

5. A. C. Arpaci-Dusseau and D. E. Culler, Extending proportional-share scheduling
to a network of workstations, Proceedings of International Conference on Parallel
and Distributed Processing Techniques and Applications, Las Vegas, Nevada, June
1997.

6. M. Crovella, P. Das, C. Dubnicki, T. LeBlanc and E. Markatos, Multiprogramming
on multiprocessors, Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing, Dec. 1991, pp.590-597.

7. J. J. Dongarra, Performance of various computers using standard linear equations
software, Technical Report CS-89-95, Computer Science Department, University
of Tennessee, Nov. 1997.

8. A. C. Dusseau, R. H. Arpaci and D. E. Culler, Effective distributed scheduling of
parallel workloads, Proceedings of ACM SIGMETRICS’96 International Confer-
ence, 1996.

9. D. G. Feitelson and L. Rudolph, Gang scheduling performance benefits for fine-
grained synchronisation, Journal of Parallel and Distributed Computing, 16(4),
Dec. 1992, pp.306-318.

10. D. Ghosal, G. Serazzi and S. K. Tripathi, The processor working set and its use in
scheduling multiprocessor systems, IEEE Transactions on Software Engineering,
17(5), May 1991, pp.443-453.

11. A. Gupta, A. Tucker and S. Urushibara, The impact of operating system schedul-
ing policies and synchronisation methods on the performance of parallel applica-
tions. Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May 1991, pp.120-131.

12. K. Li, IVY: A shared virtual memory system for parallel computing, Proceedings
of International Conference on Parallel Processing, 1988, pp.94-101.

13. S.-P. Lo and V. D. Gligor, A comparative analysis of multiprocessor scheduling
algorithms, Proceedings of the 7th International Conference on Distributed Com-
puting Systems, Sept. 1987, pp.205-222.



Job Scheduling Strategies for Networks of Workstations 157

14. V. K. Naik, S. K. Setia and M. S. Squillante, Performance analysis of job schedul-
ing policies in parallel supercomputing environments, Proceedings of Supercomput-
ing’93, Nov. 1993, pp.824-833.

15. V. K. Naik, S. K. Setia and M. S. Squillante, Processor allocation in multipro-
grammed distributed-memory parallel computer systems, IBM Research Report
RC 20239, 1995.

16. J. K. Ousterhout, Scheduling techniques for concurrent systems, Proceedings of
Third International Conference on Distributed Computing Systems, May 1982,
pp.20-30.

17. E. Rosti, E. Smirni, L. Dowdy, G. Serazzi and B. M. Carlson, Robust partitioning
policies of multiprocessor systems, Performance Evaluation, 19(2-3), 1994, pp.141-
165.

18. S. K. Setia, M. S. Squillante and S. K. Tripathi, Analysis of processor allocation in
multiprogrammed, distributed-memory parallel processing systems, IEEE Trans-
actions on Parallel and Distributed Systems, 5(4), April 1994, pp.401-420.

19. I. Stoica, H. Abdel-wahab, K, Jeffay, S. Baruah, J. Gehrke and C. G. Plaxton,
A Proportional share resource allocation algorithm for real-time, time-shared sys-
tems, IEEE Real-Time Systems Symposium, Dec. 1996.

20. K. Suzaki, H. Tanuma, S. and Y. Ichisugi, Design of combination of time sharing
and space sharing for parallel task scheduling, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
Las Vegas, Nevada, Nov. 1997.

21. C. A. Waldspurger and W. E. Weihl, Stride scheduling: deterministic proportional-
share resource management, Technical Report MIT/LCS/TM-528, MIT Labora-
tory for Computer Science, MIT, June 1995.

22. J. Zahorjan and E. D. Lazowska, Spinning versus blocking in parallel systems
with uncertainty, Proceedings of the IFIP International Seminar on Performance
of Distributed and Parallel Systems, Dec. 1988, pp.455-472.

23. B. B. Zhou, X. Qu and R. P. Brent, Effective scheduling in a mixed parallel and
sequential computing environment, Proceedings of the 6th Euromicro Workshop on
Parallel and Distributed Processing, Madrid, Jan 1998.

24. B. B. Zhou, R. P. Brent, D. Walsh and K. Suzaki, A multi-class time/space sharing
system, Tech. Rep., DCS and CSLab, Australian National University, 1998, in
process.


	Introduction
	Utilisation Ratio and Effective Speedup
	Two-Level Scheduling
	Registration Office
	Loose Gang Scheduling
	Conclusions

