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Abstract

In this paper, an improved version of the BiCGStab
(IBiCGStab) method for the solutions of large and
sparse linear systems of equations with unsymmetric
coefficient matrices is proposed. The method combines
elements of numerical stability and parallel algorithm
design without increasing the computational costs. The
algorithm is derived such that all inner products of a
single iteration step are independent and communica-
tion time required for inner product can be overlapped
efficiently with computation time of vector updates.
Therefore, the cost of global communication which rep-
resents the bottleneck of the parallel performance can
be significantly reduced. The resulting IBiCGStab algo-
rithm maintains the favorable properties of the original
method while not increasing computational costs. Data
distribution suitable for both irregularly and regularly
structured matrices based on the analysis of the non-
zero matrix elements is presented. Communication
scheme is supported by overlapping execution of com-
putation and communication to reduce waiting times.
The efficiency of this method is demonstrated by nu-
merical experimental results carried out on a massively
parallel distributed memory system.

1 Introduction

One of the fundamental task of numerical comput-
ing is the ability to solve linear systems. These systems
arise very frequently in scientific and engineering com-
puting, for example from finite difference or finite ele-
ment approximations to partial differential equations,
as intermediate steps in computing the solution of non-
linear problems or as subproblems in linear and non-
linear programming.

For linear systems of small size, the standard ap-
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proach is to use direct methods, such as LU decomposi-
tion which obtains the solution through a factorization
of the coefficient matrix. In contrast with direct meth-
ods, iterative methods use successive approximations
to obtain more accurate solutions to the linear systems
at subsequent steps. Iterative methods are computa-
tionally more attractive than the direct methods par-
ticularly for large and sparse systems [9].

A powerful iterative method for the solution of large
and sparse linear systems with unsymmetric positive
definite coefficient matrices is the family of Krylov sub-
space methods [8, 11] involving the coefficient matrix
only in the form of matrix-by-vector products. These
methods basically consist of the generation of a suitable
basis of a vector space called Krylov subspace and the
choice of the actual iterate within that space. In this
paper, We will be investigating the BiCGStab method
[13], a fast and smoothly converging variant of BiCon-
jugate Gradient method (BiCG) [8, 11] for the solutions
of large and sparse linear systems with unsymmetric
coefficient matrices.

The basic time-consuming computational kernels of
BiCGStab are usually: inner products, vector updates,
matrix-vector multiplications. In many situations, es-
pecially when matrix operations are well-structured,
these operations are suitable for implementation on
vector and shared memory parallel computers [7]. But
for parallel distributed memory machines, the matrices
and vectors are distributed over the processors, so that
even when the matrix operations can be implemented
efficiently by parallel operations, we still can not avoid
the global communication, i.e. accumulation of data
from all to one processor, required for inner product
computations. Vector updates are perfectly paralleliz-
able and, for large sparse matrices, matrix-vector mul-
tiplications can be implemented with communication
between only nearby processors. The bottleneck is usu-
ally due to inner products enforcing global communi-
cation. The detailed discussions on the communication



problem on distributed memory systems can be found
in [5, 6, 12, 16]. These global communication costs
become relatively more and more important when the
number of parallel processors is increased and thus they
have the potential to affect the scalability of the algo-
rithm in a negative way [5, 6, 16].

How to design an efficient parallel BiCGStab
method maintaining the favorable numerical proper-
ties while not increasing computational costs on the
parallel distributed memory architectures is the main
concern of the paper. Recently Jacques et al. [10] pro-
pose a new modified parallel version of the BiCGStab
method (referred to the MBiCGStab method). They
apply the new developed solver with preconditioner to
linear systems from electromagnetic scattering mod-
elling. The algorithm is reorganized without changing
the numerical stability so that there is only two sin-
gle global synchronization points per iteration reduced
from the original three. Motivated by the same ideas,
we would like to propose the new Improved BiCGStab
method. The algorithm is reorganized without chang-
ing the numerical stability so that all inner products
of a single iteration step are independent (only one
single global synchronization point), and subsequently
communication time required for inner product can be
overlapped efficiently with computation time of vec-
tor updates. Therefore, the cost of global communi-
cation on parallel distributed memory computers can
be significantly reduced. The resulting IBiCGStab al-
gorithm maintains the favorable properties while not
increasing computational costs. The efficient parallel
implementation details, in particularly, data distribu-
tion and communication scheme, will be addressed as
well. The efficiency of this method is demonstrated by
numerical experimental results carried out on a mas-
sively parallel distributed memory computer.

The paper is organized as follows. In section 2,
we will describe briefly the original and the new im-
proved variant. The parallel implementation details
including data distribution and communication scheme
are presented in section 3. Finally numerical experi-
ments carried out are reported and some comparisons
are given with regards to numerical accuracy, parallel
performance and efficiency.

2 The BiCGStab and IBiCGStab

Methods

The BiCGStab method [13] for the solution of the
linear equations

Ax = b, where A ∈ <n×n x, b ∈ <n. (1)

is described in the Algorithm 1. Here x0 is any initial
guess for the solution and r0 = b − Ax0 is the initial

residual such that rT
0
r0 6= 0.

Algorithm 1 The Classical BiCGStab Method

1: r0 = b − Ax0;
2: ρ0 = α0 = ω0 = 1;
3: v0 = p0 = 0;
4: for n = 1, 2, 3, . . . do

5: ρn = rT
0
rn−1;

6: β = ρn

ρn−1

αn

ωn−1

;

7: pn = rn−1 + βn(pn−1 − ωn−1vn−1);
8: vn = Apn;
9: αn = ρn

rT

0
vn

;
10: sn = rn−1 − αnvn;
11: tn = Asn;

12: ωn =
tT

n
sn

tT
n

tn

;
13: xn = xn−1 + αnpn + ωnsn;
14: if xn is accurate enough then

15: STOP
16: end if

17: rn = sn − ωntn;
18: end for

Recently Jacques et al. [10] propose a new modi-
fied parallel version of the BiCGStab method (we refer
to the MBiCGStab method). They apply the new de-
veloped solver with preconditioner to linear systems
from electromagnetic scattering modelling. The algo-
rithm is reorganized without changing the numerical
stability so that there is only two single global synchro-
nization points per iteration reduced from the original
three. Motivated by the same ideas, we would like to
propose the new Improved BiCGStab method. The ba-
sic idea in reformulating the BiCGStab algorithm is to
merge the main computational kernels such as vector
updates, matrix-vector multiplications and inner prod-
ucts as much as possible so that they can be executed
in parallel per iteration of the algorithm. More impor-
tantly, there is only one single global synchronization
points per iteration.

Based on the classical BiCGStab method, if we de-
note the vectors qn = Avn, un = Arn and σn =
rT
0
un, πn = rT

0
qn, we can get the following forms for

vectors vn and tn:

vn = Apn = A(rn−1 + βn(pn−1 − ωn−1vn−1))

= un−1 + βnvn−1 − βnωn−1qn−1, (2)

and

tn = Asn = A(rn−1 − αnvn) = un−1 − αnqn. (3)

If we define the following inner products φn = rT
0
sn

and τn = rT
0
vn, then the inner product rT

0
tn can be



expressed as follows:

rT
0
tn = rT

0
(un−1 − αnqn) = σn−1 − αnπn. (4)

If we substitute vn derived in (2), we have

τn = rT
0
vn = rT

0
(un−1 + βnvn−1 − βnωn−1qn−1)

= rT
0
un−1 + βnrT

0
vn−1 − βnωn−1r

T
0
qn−1

= σn−1 + βnτn−1 − βnωn−1πn−1. (5)

Also by combining (4), we can get the formula for com-
puting ρn based on the following relation:

ρn = rT
0
rn−1 = rT

0
(sn−1 − ωn−1tn−1)

= rT
0
sn−1 − ωn−1r

T
0
tn−1

= φn−1 − ωn−1(σn−2 − αn−1πn−1). (6)

Since we need the value of pn, which has been elimi-
nated, to update xn, we have to find a update formula
for αnpn denoted as zn. The expression can be de-
scribed as follows:

zn = αnpn = αnrn−1 + βnαnpn−1 − βnαnωn−1vn−1

= αnrn−1 + βnzn−1 − αnβnωn−1vn−1. (7)

If we define f0 = AT r0, γn = fT
0

sn and ηn = fT
0

tn,
then σn can be expressed as follows:

σn = rT
0
un = rT

0
(Arn) = rT

0
(Asn − ωnAtn)

= rT
0
Asn − ωnrT

0
Atn = sT

n (AT r0) − ωntTn (AT r0)

= γn − ωnηn. (8)

In order to make the expressions as simple as possible,
we use an extra value δi as βiωn−1.

Based on the equations (2), (3), (5), (6), (7), (8) and
complicated mathematical derivations, the IBiCGStab
algorithm can be depicted in the Algorithm 2.

Under the assumptions, the Improved BiCGStab
(IBiCGStab) method can be efficiently parallelized as
follows:

• The inner products of a single iteration step (13),
(14), (15), (16), (17) and (18) are independent.

• The vector updates (10) and (11) are independent.

• The vector updates (21) and (22) are independent.

• The communications required for the inner prod-
ucts (13), (14), (15), (16), (17) and (18) can be
overlapped with the update for zn in (12).

Also note that in the algorithm, compared with the
BiCGStab and MBiCGStab methods, we only use sev-
eral more vector updates (but they can be done in
parallel), which do not require any communication at

Algorithm 2 The IBiCGStab Method

1: r0 = b − Ax0, u0 = Ar0, f0 = AT r0, q0 = v0 = z0 = 0;

2: σ−1 = π0 = φ0 = τ0 = 0, σ0 = rT

0 u0, ρ0 = α0 = ω0 = 1;

3: for n = 1, 2, 3, . . . do

4: ρn = φn−1 − ωn−1σn−2 + ωn−1αn−1πn−1;
5: δn = ρn

ρn−1

αn−1, βn = δn

ωn−1

;

6: τn = σn−1 + βnτn−1 − δnπn−1;
7: αn = ρn

τn

;
8: vn = un−1 + βnvn−1 − δnqn−1;
9: qn = Avn;

10: sn = rn−1 − αnvn;
11: tn = un−1 − αnqn;
12: zn = αnrn−1 + βnzn−1 − αnδnvn−1;
13: φn = rT

0
sn;

14: πn = rT
0
qn;

15: γn = fT
0

sn;
16: ηn = fT

0
tn;

17: θn = sT
n tn;

18: κn = tTn tn;
19: ωn = θn

κn

;
20: σn = γn − ωnηn;
21: rn = sn − ωntn;
22: xn = xn−1 + zn + ωnsn;
23: if xn is accurate enough then

24: STOP
25: end if

26: un = Arn;
27: end for

all and are perfectly parallelizable. But the global
synchronization points per iteration has been reduced
from 4 in the classical BiCGStab method and 2 in the
MBiCGStab method to 1 in the proposed IBiCGStab
method. Therefore, the cost of communication time on
parallel distributed memory computers can be signifi-
cantly reduced.

3 Parallel Implementation

For large and sparse matrices, if you are working
on different computer system architectures or dealing
with different algorithms or data, the efficient storage
schemes should be considered differently. In this paper,
we decide to use one of the most common format called
CRS format (compressed row storage). The main rea-
son behind is that this type of storage scheme is very
suitable for both regularly and irregularly structured
large and sparse matrices. The detailed description can
be found in the literature. Briefly speaking, the non-
zeros of large and sparse matrix are stored in row-wise
in three one-dimensional arrays. The values of the non-
zeros are contained in array value. The corresponding
column indices are contained in array col ind. The ele-
ments of row ptr point to the position of the beginning



of each row in value and col ind.
In order to efficiently parallelize the IBiCGStab al-

gorithm, in particularly, on a distributed memory ar-
chitecture, we first need to decide the data distribution
of matrix and vector arrays, hopefully optimally, to
each processor and then determine an efficient commu-
nication scheme by taking into account different spar-
sity patterns, not only for matrix-vector multiplication
but also for inner products, to minimize the overall ex-
ecution time. In this paper, we will mainly follow the
approach has been used in [14, 15] originally proposed
in [1] for data distribution and communication scheme
which do not require any knowledge about the matrix
sparsity pattern. Also the communication scheme are
automatically determined by the analysis of the indices
of the non-zero matrix elements.

4 Numerical Experiments

In this section, the parallel variant of the improved
BiCGStab (IBiCGStab) is compared with the modified
version of BiCGStab (MBiCGStab) proposed by in [10]
and the original BiCGStab on a massively distributed
memory computer.

Here we mainly consider the partial differential
equation taken from [2, 3, 4]

Lu = f, on Ω = (0, 1) × (0, 1),

with Dirichlet boundary condition u = 0 where

Lu = −∆u − 20(x
∂u

∂x
+ y

∂u

∂y
),

and the right-hand side f is chosen so that the solution
is

u(x, y) =
1

2
sin(4πx) sin(6πy).

Basically, we discretize the above differential equa-
tion using second order centered differences on a 400×
400 with mesh size 1/441, leading to a system of 193600
linear equations with a unsymmetric coefficient matrix
of 966240 nonzero entries. Diagonal preconditioning is
used. For our numerical tests, we choose x0 = 0 as
initial guess and tol = 10−5 as stopping parameter.

Since the vectors are distributed over the processor
grid, the inner products usually are computed in two
steps. All processors start to compute in parallel the lo-
cal inner products. After that, the local inner products
are accumulated on one central processor and broad-
casted. The communication time of an accumulation
or a broadcast increases proportionally with the diam-
eter of the processor grid. That means if the number of
processors increases then the communication time for
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Figure 1. Experimental results of speed-up

the inner products increases as well, and hence this is
a potential threat to the scalability of the algorithm.

The convergence of the proposed improved
BiCGStab (IBiCGStab) is almost the same as the
modified BiCGStab (MBiCGStab) suggested and
original BiCGStab version where ‖rn‖2 is computed
recursively. A similar numerical behavior to these
variants is observed. There is hardly any difference
with respect to the true residual norm ‖b − Axn‖2 in
those versions. The parallel performance are given in
Figure 1 where linear is the theoretical linear speedup,
IBiCGStab is the speedup of the improved BiCGStab
method, MBiCGStab is the speedup of the modified
BiCGStab method suggested in [10] and BiCGStab is
the speedup of the original BiCGStab method. These
results are based on timing measurements of a fixed
number of iterations. Since we do not know exactly
the implementation details of the modified BiCGStab
method [10], we simply use the same implementation
techniques as ours for the IBiCGStab method. We also
make the preconditioner described in their approach as
the identity matrix because we only want to compare
the performance without any preconditioning tech-
nique acceleration. The speedup is computed as the
ratio of the parallel execution time and the execution
time using one processor. From the results, we can
see clearly that the modified BiCGStab (MBiCGStab)
suggested in [10] is faster than the original one.
Meanwhile the new approach can achieve much better
parallel performance with a higher scalability than
the modified one. In comparison to the two other
approaches, the reduction in execution time by the
IBiCGStab increases with the number of processors.
More precisely, the quantity is 1 − TA(p)/TB(p),
where TA(p) and TB(p) are the execution times on p
processors of approach A and B respectively. In Figure
2, first curve shows the percentage of reduction in ex-
ecution time by our improved BiCGStab (IBiCGStab)



0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 16 32 64 128

Processors

S
a

v
in

g
s

 o
f 

T
im

e
s

 i
n

 %

MBiCGStab vs BiCGStab

IBiCGStab vs BiCGStab

Figure 2. Execution time reduction

approach compared to the original one. Another curve
shows the percentage of reduction of time for the
modified BiCGStab (MBiCGStab) proposed in [10]
compared to the original BiCGStab method.

5 Conclusions

In this paper, an improved version of the BiCGStab
(IBiCGStab) method for the solutions of large and
sparse linear systems of equations with unsymmetric
coefficient matrices is proposed. The method com-
bines elements of numerical stability and parallel al-
gorithm design without increasing the computational
costs. The algorithm is derived such that all inner
products of a single iteration step are independent and
communication time required for inner product can be
overlapped efficiently with computation time of vector
updates. Therefore, the cost of global communication
which represents the bottleneck of the parallel per-
formance can be significantly reduced. The resulting
IBiCGStab algorithm maintains the favorable proper-
ties of the original method while not increasing com-
putational costs. Data distribution suitable for both
irregularly and regularly structured matrices based on
the analysis of the non-zero matrix elements is pre-
sented. Communication scheme is supported by over-
lapping execution of computation and communication
to reduce waiting times. The efficiency of this method
is demonstrated by numerical experimental results car-
ried out on a massively parallel distributed memory
system.
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recurrences. In J. Waśniewski, J. Dongarra, K. Madsen,
and D. Olesen, editors, Proceedings of Workshop on Ap-
plied Parallel Computing in Industrial Problems and Opti-
mization (Para96), LNCS184, Lecture Notes in Computer

Science, pages 157–165. Technical University of Denmark,
Lyngby, Denmark, Springer-Verlag, August 1996.
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