
The Improved BiCG Method for Large and Sparse Linear Systems on

Parallel Distributed Memory Architectures �

Laurence Tianruo Yangyz, Richard P. Brent z

yDepartment of Computer Science, St. Francis Xavier University

P.O. Box 5000, Antigonish, B2G 2W5, Nova Scotia, Canada

zComputing Laboratory, Oxford University

Wolfson Building, Park Road, Oxford OX1 3QD, UK

Abstract

For the solutions of large and sparse linear systems

of equations with unsymmetric coeÆcient matrices, we

propose an improved version of the BiConjugate Gra-

dient method (IBiCG) method based on [5, 6] by using

the Lanczos process as a major component combining

elements of numerical stability and parallel algorithm

design. For Lanczos process, stability is obtained by

a coupled two-term procedure that generates Lanczos

vectors scaled to unit length. The algorithm is derived

such that all inner products, matrix-vector multiplica-

tions and vector updates of a single iteration step are

independent and communication time required for in-

ner product can be overlapped eÆciently with compu-

tation time of vector updates. Therefore, the cost of

global communication on parallel distributed memory

computers can be signi�cantly reduced. The resulting

IBiCG algorithm maintains the favorable properties of

the Lanczos process while not increasing computational

costs. Data distribution suitable for both irregularly

and regularly structured matrices based on the analysis

of the non-zero matrix elements is presented. Commu-

nication scheme is supported by overlapping execution

of computation and communication to reduce waiting

times. The eÆciency of this method is demonstrated

by numerical experimental results carried out on a mas-

sively parallel distributed memory system.

1 Introduction

Solving linear systems, which arise very frequently in
scienti�c and engineering computing, is one of the fun-
damental task of numerical computing. Examples in-
clude �nite di�erence or �nite element approximations
to partial di�erential equations, as intermediate steps

�The author's email address is lyang@stfx.ca

in computing the solution of nonlinear problems or as
subproblems in linear and nonlinear programming.

If we deal with small size linear systems, the stan-
dard approach is to use direct methods, such as LU
decomposition which obtains the solution through a

factorization of the coeÆcient matrix. In contrast with
direct methods, iterative methods use successive ap-
proximations to obtain more accurate solutions to the
linear systems at subsequent steps. Generally speak-
ing, iterative methods are computationally more at-

tractive than the direct methods particularly for large
and sparse systems [11].

The family of Krylov subspace methods [10, 14] is
a powerful iterative type method involving the coeÆ-
cient matrix only in the form of matrix-by-vector prod-
ucts for the solution of large and sparse linear systems
with unsymmetric positive de�nite coeÆcient matrices.
These methods basically consist of the generation of a
suitable basis of a vector space called Krylov subspace
and the choice of the actual iterate within that space.
In this paper, one of the Krylov subspace methods,
namely, the BiConjugate Gradient algorithm [10, 14],
is considered mainly for large and sparse linear systems
with unsymmetric coeÆcient matrices.

There are three basic time-consuming computa-
tional kernels of Krylov subspace methods, namely: in-
ner products, vector updates, matrix-vector multiplica-
tions on massively parallel computers. For many scien-
ti�c and engineering problems especially when matrix
operations are well-structured, these operations are
suitable to be implemented on vector and shared mem-
ory parallel computers [9]. But for parallel distributed
memory machines, we have to cope with it di�erently
because the matrices and vectors are distributed over
the processors, so that even when the matrix opera-
tions can be implemented eÆciently by parallel opera-
tions, we still can not avoid the global communication,

1

i.e. accumulation of data from all to one processor, re-
quired for inner product computations. Vector updates
are perfectly parallelizable and, for large sparse matri-
ces, matrix-vector multiplications can be implemented
with communication between only nearby processors.
The bottleneck is usually due to inner products enforc-
ing global communication. There are some discussions
and improvements on the communication problem on
distributed memory systems in [7, 8, 16]. These global
communication costs become relatively more and more
important when the number of parallel processors is in-
creased and thus they have the potential to a�ect the
scalability of the algorithm in a negative way [7, 8].

A new modi�ed version of the BiConjugate Gradient
(MBiCG) method recently by B�ucker et al. [5, 6]. The
algorithm is derived that both generated sequences of
Lanczos vectors are scalable and is reorganized without
changing the numerical stability so that all inner prod-
ucts and matrix-vector multiplications of a single itera-
tion step are independent. There is only a single global
synchronization point per iteration. Therefore, the cost
of global communication on parallel distributed mem-
ory computers can be reduced. Based on their similar
ideas, we propose a new improved two-term recurrences
Lanczos process without look-ahead as the underlying
process for the new Improved BiConjugate Gradient
(IBiCG) method. The algorithm is reorganized with-
out changing the numerical stability so that all inner
products, matrix-vector multiplications and vector up-
dates of a single iteration step are independent, and
subsequently communication time required for inner
product can be overlapped eÆciently with computa-
tion time of vector updates. Therefore, the cost of
global communication on parallel distributed memory
computers can be signi�cantly reduced. The result-
ing IBiCG algorithm maintains the favorable proper-
ties of the Lanczos process while not increasing com-
putational costs. The eÆcient parallel implementation
details, in particularly, data distribution and commu-
nication scheme, will be addressed as well. The ef-
�ciency of this method is demonstrated by numerical
experimental results carried out on a massively parallel
distributed memory computer, the Parsytec system.

The rest of paper is organized as follows. In section
2, we will describe briey the classical unsymmetric
Lanczos algorithm. A sketch of a new improved vari-
ant, used as the underlying process for the Improved
BiConjugate Gradient (IBiCG) method is described
fully in section 3. In section 4, the parallel implementa-
tion details including data distribution and communi-
cation scheme are presented. Finally numerical experi-
ments carried out on parallel distributed memory com-
puters are reported and some comparisons between the

new Improved BiConjugate Gradient (IBiCG) method
and other approaches are given with regards to numer-
ical accuracy, parallel performance and eÆciency.

2 Lanczos Process Based Coupled

Two-Term Recurrence

Although Lanczos used the similar technique as the
coupled two-term recurrence in the early of 1950's, the
majority of papers are dealing with the three-term re-

currences process, until, recently, Freund et al. [13]
reused this idea to improve numerical stability. They
showed that, the latter variant of the Lanczos process,
are numerically more stable. That is why we pur-
sue further on this unsymmetric Lanczos process with
two-recurrences as the underlying process of the BiCG
method.

Recently, B�ucker et al. [3, 4] propose a new parallel
version of the quasi-minimal residual (QMR) method
based on the coupled two-term recurrences Lanczos
process without look-ahead strategy. The algorithm is
derived that both generated sequences of Lanczos vec-
tors are scaled to unit length and there is only one sin-
gle global synchronization point per iteration. Based
on their similar ideas, we will present a new improved
coupled two-term recurrences Lanczos process without
look-ahead technique.

Here we assume that the tridiagonal matrix T has
an LU decomposition as

T = LU; (1)

where the factors L and U are of lower and upper bidi-
agonal form, respectively. It is the bidiagonal structure
of L and U that results in coupled two-term recur-
rences.

It has been pointed out by several authors [11, 12,
15, 17] that in practice we should scale both sequences
of Lanczos vectors appropriately to unit length in order
to avoid over- and underow. This can only be achieved
by giving up the bidiagonality W TV = I and setting
W TV = D instead, where D is a diagonal matrix with
diagonal entries Æi 6= 0 for i = 1; 2; � � � ; n.

The principal idea of the new approach suggested in
[3, 4] is to start from scaling described above by using
LU decomposition as well as introducing P = V U�1

and ~Q = WD�1UT which leads to

W TV = D; V = PU; (2)

and

~Q = WD�1UT ; AP = V L; ATW = ~QLTD: (3)

Assume that the matrices introduced by the above set-
ting have column vectors according to

P = [p1; p2; � � � ; pn] and ~Q = [~q1; ~q2; � � � ; ~qn]:

2

Then, after some complicated derivations, we can get

pn =
1

n
~vn � �npn�1; ~vn+1 = un �

�n

n
~vn;

un =
1

n
A~vn � �nun�1; ~wn+1 = qn �

�n

�n
~wn;

qn =
1

�n
AT ~wn �

n�n

�n
qn�1:

and the corresponding coeÆcients are given as follows

n+1 = (~vn+1; ~vn+1); �n+1 = (~wn+1; ~wn+1);

�n+1 = (~wn+1; ~vn+1); "n+1 = (AT ~wn+1; ~vn+1);

�n+1 =
n�n�n+1

n+1�n�n
; �n+1 =

"n+1

�n+1
� n+1�n+1:

Algorithm 1 Improved Lanczos Process

1: p0 = q0 = u0 = 0; 1 = (~v1; ~v1); �1 = (~w1; ~w1); s1 =
AT ~w1;

2: �1 = (~w1; ~v1); "1 = (s1; ~v1); �1 = 0; �1 =
"1
�1
;

3: for n= 1,2,. . . do
4: qn = 1

�n
sn �

n�n
�n

qn�1;
5: ~wn+1 = qn �

�n
�n

~wn;

6: sn+1 = AT ~wn+1;
7: tn = A~vn;
8: un = 1

n
tn � �nun�1;

9: ~vn+1 = un �
�n
n
~vn;

10: pn = 1
n
~vn � �npn�1;

11: n+1 = (~vn+1; ~vn+1);
12: �n+1 = (~wn+1; ~wn+1);
13: �n+1 = (~wn+1; ~vn+1);
14: "n+1 = (sn+1; ~vn+1);

15: �n+1 =
n�n�n+1
n+1�n�n

;

16: �n+1 =
"n+1
�n+1

� n+1�n+1;

17: end for

Now we are able to (re)schedule the operations of
in the Lanczos process, in such a way that the numeri-
cal stability are maintained and all inner products and
matrix-vector multiplications of a single iteration step
are independent and subsequently communication time
required for inner product can be overlapped eÆciently

with computation time. The framework of this im-
proved Lanczos process based on two-term recurrences
is described above. In the following, we consider the
parallelism of the operations in a single iteration step
implemented as follows:

� The inner products of a single iteration step (11),
(12), (13) and (14) are independent.

� The matrix-vector multiplications of a single iter-
ation step (6) and (7) are independent.

� The communications required for the inner prod-
ucts (11), (12), (13) and (14) can be overlapped
with the update for pn in (10).

Therefore, the cost of communication time on paral-
lel distributed memory computers can be signi�cantly
reduced.

Since the biorthogonality relationship (2) and (3)
are used to derive the algorithm. We can conversely
show that, in exact arithmetic, the vectors ~vi and ~wi

generated by the above algorithm are still biorthogonal.

Theorem 2.1 Assume that no breakdown occurs, the

vectors ~vi and ~wi generated by the Improved Lanczos

Process satisfy

~wT
i ~vj =

�
0 i 6= j,

�i 6= 0 i = j.

3 The Improved BiConjugate Gradient

Method

The following derivation is mainly based on [5, 6].

The improved Lanczos process now is used as a major
component to a Krylov subspace method for solving a
system of linear equations

Ax = b; where A 2 <
n�n x; b 2 <n: (4)

In each step, it produces approximation xn to the exact
solution of the form

xn = x0 +Kn(r0; A); n = 1; 2; ::: (5)

Here x0 is any initial guess for the solution of lin-
ear systems, r0 = b � Ax0 is the initial residual, and
Kn(r0; A) = spanfr0; Ar0; : : : ; A

n�1r0g, is the n-th
Krylov subspace with respect to r0 and A.

Given any initial guess x0, the n-th iterate is of the
form

xn = x0 + Vnzn; (6)

where Vn is generated by the improved unsymmetric
Lanczos process, and zn is determined by the property
described later.

For improved Lanczos process, the n-th iteration
step generates

Vn+1 = [v1; v2; � � � ; vn+1] and Pn = [p1; p2; � � � ; pn];

that are connected by

Pn = VnU
�1
n ; APn = Vn+1Ln; (7)

where Ln and Un are the leading principal (n+1)� n

and n�n submatrices of the bidiagonal matrices L and

3

U generated by the improved Lanczos process. Note
that Ln has full rank since we assume no breakdown
occurs. The setting of yn = Unzn can be used to refor-
mulate the iterate in term of yn instead of zn giving

xn = x0 + Pnyn: (8)

The corresponding residual vector in term of yn is ob-
tained by the above scenario, namely

rn = b�Axn = r0 � Vn+1Lnyn (9)

= Vn+1(1e
(n+1)
1 � Lnyn);

where the improved Lanczos process starts with v1 =
1

kr0k2
r0 and e

(n+1)
1 = (1; 0; : : : ; 0)T . By using the Lanc-

zos process to generate the Krylov subspace and �x-
ing yn, and so implicitly zn by yn = Unzn, we can
easily derive the iterative method. Let byi denote the
ith component of yn, i.e., yn = (by1; by2; : : : ; byn)T . We
can derive rn to the zero vector by

byi =
� 1

�1
if i = 1,

�
i
�i
byi�1 if i = 2; 3; : : : ; n.

(10)

This choice of yn is observed by the special structure
of Ln given in [5] and zeros out the �rst n components

of the vector 1e
(n+1)
1 �Lnyn in (9). The residual vector

is then expressed by

rn = Vn+1

0
BB@

0
...
0

�n+1byn

1
CCA (11)

We can observe that the process of �xing yn is easily
updated in each iteration step because yn�1 coincides
with the �rst n�1 components of yn. The correspond-
ing recursion can be described as follows:

yn =

�
yn�1
0

�
+ �nen ; (12)

where en = (0; : : : ; 0; 1)T 2 <n and

�n = �
n

�n
�n�1 (13)

with �0 = �1. By substitutating (12) into (8), it yields

xn = x0 + Pn�1yn�1 + �npn (14)

= xn�1 + �npn : (15)

Note that krnk is immediately available because, at
every iteration step, the last component of yn is �n by
(12). Hence, from (11) the following relation can be
derived

krnk = kvn+1k � jn+1�nj: (16)

By properly reorganizing (13) and (15) into the im-
proved Lanczos process characterized by equations (6),
we can derive results described in Algorithm 2. Note
that the underlying Lanczos process operates with unit
scaling of both sequences of Lanczos vectors, and is ex-
plicitly presented in [2]. In this case, (16) simpli�es
to

krnk = jn+1�nj: (17)

Correspondingly, we can use it as a simple stopping
criterion.

If looking carefully the the above iterative process
for the solution of linear systems, you can see that Al-
gorithm 2 is just a new variant of the BiConjugate Gra-
dient method (BiCG) [10, 14]. The detailed description
and corresponding discussion can be found in [5, 6].

Algorithm 2 Improved Biconjugate Gradient Method

1: p0 = q0 = 0 ; ev1 = ew1 = b�Ax0
2: 0 = �0 = 0 ; �0 = �0 6= 0 ; �0 = �1
3: a0 = AT q0; b0 = Ap0; s0 = AT ew1

4: 1 = kev1k; �1 = k ew1k ; %1 = ewT
1 v1 ; "1 = sT1 ev1

5: for n = 1, 2, 3, . . . do
6: �n =

n�1�n�1%n
n�n�1%n�1

7: �n = "n
%n
� n�n

8: �n = �
n
�n
�n�1

9: pn = 1
n
evn � �npn�1

10: qn = 1
�n
sn �

n�n
�n

qn�1

11: an = AT qn
12: bn = Apn
13: sn+1 = an �

�n
�n
sn

14: evn+1 = bn �
�n
n
evn

15: ewn+1 = qn �
�n
�n
ewn

16: n+1 = evTn+1evn+1
17: �n+1 = ewT

n+1 ewn+1

18: %n+1 = ewT
n+1evn+1

19: "n+1 = sTnevn+1
20: xn = xn�1 + �npn
21: if (jn+1�nj < tol) then
22: STOP
23: end if

24: end for

Under the assumptions, the Improved BiConjugate
gradient (IBiCG) method using improved Lanczos pro-
cess as underlying process can be eÆciently parallelized
as follows:

� The inner products of a single iteration step (16),
(17), (18), and (19) are independent.

� The matrix-vector multiplications of a single iter-
ation step (11) and (12) are independent.

4

� The vector updates (13), (14) and (15) are inde-
pendent.

� The vector updates (9) and (10) are independent.

� The communications required for the inner prod-
ucts (16), (17), (18) and (19) can be overlapped
with the update for pn in (20).

Therefore, the cost of communication time on paral-
lel distributed memory computers can be signi�cantly
reduced.

4 Parallel Implementation

4.1 Data distribution

The eÆcient storage schemes should be considered
di�erently if we are working on di�erent computer sys-
tem architectures or dealing with di�erent algorithms
or data when the coeÆcient matrices of the linear sys-
tems are large and sparse. One of the most common
format called CRS format (compressed row storage) is
used in the paper because this type of storage scheme
is very suitable for both regularly and irregularly struc-
tured large and sparse matrices. There are many avail-
able description in the literature. In several words, the
non-zeros of large and sparse matrix are stored in row-
wise in three one-dimensional arrays. The values of
the non-zeros are contained in array value. The corre-
sponding column indices are contained in array col ind.
The elements of row ptr point to the position of the be-
ginning of each row in value and col ind.

In order to eÆciently parallelize the IBiCG algo-
rithm, in particularly, on a distributed memory archi-
tecture, we �rst need to decide the data distribution
of matrix and vector arrays, hopefully optimally, to
each processor and then determine an eÆcient commu-
nication scheme by taking into account di�erent spar-
sity patterns, not only for matrix-vector multiplication
but also for inner products, to minimize the overall
execution time. In this paper, we will mainly follow
the approach has been used in [1] for data distribution
and communication scheme which do not require any
knowledge about the matrix sparsity pattern. Also the
communication scheme are automatically determined
by the analysis of the indices of the non-zero matrix
elements.

The same notations introduced in [1] are used for
illustrations in the rest of section. Let nk and ek de-
note the number of rows and no-zeros of processor k,
where k = 0; : : : ; p � 1, respectively. e and n are the
total number of corresponding numbers. gk is the in-
dex of the �rst row of processor k, and zi is the number
of non-zeros of row i. Easily we can get the following
relations from [1]: n =

Pp�1

k=0 nk; e =
Pp�1

k=0 ek; gk =

1 +
Pk�1

i=0 ni; ek(gk; nk) =
Pgk+nk�1

i=gk zi Based on the
analysis, the total costs of each iteration can be de-
scribed as c1 s e + c2 n + c3 where the �rst term
corresponds to the number of operations for s matrix-
vector multiplications, the second term corresponds to
the number of vector updates. Since we are mainly
dealing with large and sparse matrices, the constants
can be neglected. Now we can estimate the contribu-
tion of the operations executed on processor k to the
total number of operations by

� �
c1 s ek + c2 nk

c1 s e+ c2 n
=

s ek + � nk

s e+ �n
;

where � = c2=c1 depends on both the iterative methods
and also the processor architecture. Ideally, the com-
putational load balance should be distributed in such
a way that each processor only gets p-th fraction for
the total number of operations. Based on this, we can
use the following strategy to distribute the rows of the
matrix and the vector components [1]:

nk =

8>><
>>:

min
1�t�n�g

k
+1
ftj

s ek(t) + � t

s e+ � n
�

1

p
g k = 0; 1; : : : ; q

n�
Pq

i=0 ni k = q + 1

0 k = q + 2; : : : ; p� 1

Since our main target is large and sparse matrices and
we assume p� n, the relation q = p�1 or q+1 = p�1
always hold. It can be shown that for � = c2=c1 ! 0,
each processor will get nearly the same number of non-
zeros which means that the execution time of the vec-
tor updates in negligible with the execution of matrix-
vector multiplications. It also can be shown that for
� = c2=c1 !1 each processor will get nearly the same
number of rows which means that the execution time
of the matrix-vector multiplications only contribute to
a very small part of the total execution time.

4.2 Communication schemes

After discussing the �rst phase, data distribution,
we also need to investigate a suitable communication
scheme by preprocessing the distributed column index
arrays for eÆcient matrix-vector multiplications since
on a distributed memory systems, its computation re-
quires communication due to the partial vector on each
processor. Similarly we will use the approach proposed
in [1] for our communication schemes.

If we decide to implement the matrix vector mul-
tiplication row-wisely, components of the vector x of
y = Ax are communicated. We �rstly analyze the ar-
rays col ind on each processor to determine which el-
ements result in access to non-local data. Then, the
processors exchange information to decide which local
data must be sent to which processors. Based on the
above analysis, we will reorder these two arrays col ind
and value in such a way that the data that results in

5

access to processor l is collected in block l, called lo-

cal block. The motivation behind this reordering is to
perform computation and communication overlapped.
The elements of block l succeed one another row-wise
with increasing column index per row. The detailed
description can be found in [1].

For the parallel implementation of this operation,
each processor executes asynchronous receive-routines
to receive necessary non-local data. Then all compo-
nents of the vector x that are needed on other proces-
sors are sent asynchronously. After the required data
are available, each processor will perform operations
with it local block. After that, as soon as non-local
data arrive, processor continue the matrix vector op-
eration by accessing the elements of the corresponding
blocks. It will be repeated until the whole operation
is completed. According to the communication scheme
described above, the communication and computation
are performed overlapped so that waiting time can be
reduced.

5 Numerical Experiments

The parallel variant of the improved BiCG (IBiCG)
using the improved Lanczos process as the underlying
Lanczos process is compared with the modi�ed version
of BiCG (MBiCG) proposed by B�ucker et al. [5, 6]
and the original BiCG based on coupled two-term re-
currences on a massively distributed memory Patsytec
computer in this section.

Similarly the partial di�erential equation is tested
which taken from [3, 5, 6]

Lu = f; on
 = (0; 1)� (0; 1);

with Dirichlet boundary condition u = 0 where

Lu = ��u� 20(x
@u

@x
+ y

@u

@y
);

and the right-hand side f is chosen so that the solution
is

u(x; y) =
1

2
sin(4�x) sin(6�y):

First of all, we discretize the above di�erential
equation using second order centered di�erences on a
400� 400 with mesh size 1=441, leading to a system of
193600 linear equations with a unsymmetric coeÆcient
matrix of 966240 nonzero entries. Diagonal precondi-
tioning is used to speed up the convergence. x0 = 0 as
initial guess and tol = 10�5 as stopping parameter are
chosen for the numerical tests.

As we have already discussed that the vectors are
distributed over the processor grid, the inner products
usually are computed in two steps. All processors start

Figure 1. Experimental results of speed-up

to compute in parallel the local inner products. Af-
ter that, the local inner products are accumulated on
one central processor and broadcasted. The commu-
nication time of an accumulation or a broadcast in-
creases proportionally with the diameter of the pro-
cessor grid. That means if the number of processors
increases then the communication time for the inner
products increases as well, and hence this is a poten-
tial threat to the scalability of the algorithm.

With regards to the convergence, the proposed im-
proved BiCG (IBiCG) is almost the same as the modi-
�ed BiCG (MBiCG) suggested by B�ucker et al. [5] and
original BiCG version based on two-term recurrences
where krnk2 is computed recursively. A similar numer-
ical behavior to these variants is observed. There is
hardly any di�erence with respect to the true residual
norm kb�Axnk2 in those versions. The parallel perfor-
mance are given in Fig. 1 where linear is the theoretical
linear speedup, IBiCG is the speedup of the improved
BiCG method, MBiCG is the speedup of the modi-
�ed BiCG method suggested by B�ucker et al. [5, 6]
and BiCG is the speedup of the original BiCG method
with two-term recurrences. These results are based on
timing measurements of a �xed number of iterations.
Since we do not know exactly the implemention details
of the modi�ed BiCG method [5, 6], we only take their
published data as the experimental data for compari-
son. The speedup is computed as the ratio of the par-
allel execution time and the execution time using one
processor. From the results, we can see clearly that
the modi�ed BiCG (MBiCG) suggested by B�ucker et
al. [5, 6] is faster than the original one. Meanwhile the
new approach can achieve much better parallel perfor-
mance with a higher scalability than the modi�ed one.
In comparison to the two other approaches, the reduc-
tion in execution time by the IBiCG increases with the
number of processors. More precisely, the quantity is
1� TA(p)=TB(p), where TA(p) and TB(p) are the exe-
cution times on p processors of approach A and B re-
spectively. In Fig. 2, �rst curve shows the percentage

6

Figure 2. Execution time reduction

of reduction in execution time by our improved BiCG
(IBiCG) approach compared to the original one. An-
other curve shows the percentage of reduction of time
for the modi�ed BiCG (MBiCG) proposed by B�ucker
et al. [5, 6] compared to the original BiCG method.

6 Conclusions

An improved version of the BiConjugate Gradient
method (IBiCG) method is proposed by using the
Lanczos process as a major component combining el-
ements of numerical stability and parallel algorithm
design for the solution of large and sparse linear sys-
tems of equations with unsymmetric coeÆcient matri-
ces. The algorithm is derived in such a way that all
inner products, matrix-vector multiplications and vec-
tor updates of a single iteration step are independent
and subsequently communication time required for in-
ner product can be overlapped eÆciently with compu-
tation time of vector updates. Therefore, the cost of
global communication on parallel distributed memory
computers can be signi�cantly reduced. The resulting
IBiCG algorithm maintains the favorable properties of

the Lanczos process while not increasing computational
costs. Data distribution suitable for both irregularly
and regularly structured matrices based on the analy-
sis of the non-zero matrix elements has been presented.

Communication scheme can be supported by overlap-
ping execution of computation and communication to
reduce waiting times. High scalability of the approach
has been demonstrated as well.

References

1. A. Basermann, B. Reichel, and C. Scheltho�. Precondi-

tioned CG methods for sparse matrices on massively parallel

machines. Parallel Computing, (23):381{398, 1997.

2. H. M. B�ucker and M. Sauren. A Parallel Version of the

Unsymmetric Lanczos Algorithm and its Application to

QMR. Internal Report KFA{ZAM{IB{9605, Research Cen-

tre J�ulich, J�ulich, Germany, March 1996.

3. H. M. B�ucker and M. Sauren. A parallel version of the

quasi-minimal residual method based on coupled two-term

recurrences. In Proceedings of Workshop on Applied Par-

allel Computing in Industrial Problems and Optimization

(Para96), LNCS184. Technical University of Denmark, Lyn-

gby, Denmark, Springer-Verlag, August 1996.

4. H. M. B�ucker and M. Sauren. A parallel version of the un-

symmetric Lanczos algorithm and its application to QMR.

Technical Report KFA-ZAM-IB-9605, Central Institute for

Applied Mathematics, Research Centre Julich, Germany,

March 1996.

5. H. M. B�ucker and M. Sauren. A Variant of the Biconjugate

Gradient Method Suitable for Massively Parallel Comput-

ing. In G. Bilardi, A. Ferreira, R. L�uling, and J. Rolim,

editors, Solving Irregularly Structured Problems in Paral-

lel, Proceedings of the Fourth International Symposium, IR-

REGULAR'97, Paderborn, Germany, June 12{13, 1997,

volume 1253 of Lecture Notes in Computer Science, pages

72{79, Berlin, 1997. Springer.

6. H. M. B�ucker and M. Sauren. Parallel biconjugate gradient

methods for linear systems. In L. T. Yang, editor, Parallel

Numerical Computations with Applications, number 51-70.

Kluwer Academic Publishers, 1999.

7. E. de Sturler. A parallel variant of the GMRES(m). In Pro-

ceedings of the 13th IMACS World Congress on Computa-

tional and Applied Mathematics. IMACS, Criterion Press,

1991.

8. E. de Sturler and H. A. van der Vorst. Reducing the e�ect

of the global communication in GMRES(m) and CG on par-

allel distributed memory computers. Technical Report 832,

Mathematical Institute, University of Utrecht, Utrecht, The

Netherland, 1994.

9. J. J. Dongarra, I. S. Du�, D. C. Sorensen, and H. A. van der

Vorst. Solving Linear Systems on Vector and Shared Mem-

ory Computers. SIAM, Philadelphia, PA, 1991.

10. R. Fletcher. Conjugate Gradient Methods for Inde�nite Sys-

tems. In G. A. Watson, editor, Numerical Analysis Dundee

1975, volume 506 of Lecture Notes in Mathematics, pages

73{89, Berlin, 1976. Springer.

11. R. W. Freund, G. H. Golub, and N. Nachtigal. Iterative

solution of linear systems. Acta Numerica, pages 57{100,

1991.

12. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal

residual method for non-Hermitian linear systems. Nu-

merische Mathematik, 60:315{339, 1991.

13. R. W. Freund and N. M. Nachtigal. An implementation

of the QMR method based on coupled two-term recur-

rences. SIAM Journal on Scienti�c and Statistical Com-

puting, 15(2):313{337, 1994.

14. C. Lanczos. Solutions of Systems of Linear Equations by

Minimized Iterations. Journal of Research of the National

Bureau of Standards, 49(1):33{53, 1952.

15. B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead

Lanczos algorithm for unsymmetric matrices. Mathematics

of Computation, 44:105{124, 1985.

16. C. Pommerell. Solution of large unsymmetric systems of

linear equations. PhD thesis, ETH, 1992.

17. D. R. Taylor. Analysis of the look ahead Lanczos algo-

rithm for unsymmetric matrices. PhD thesis, Department of

Mathematics, University of California at Berkeley, Novem-

ber 1982.

7

