
Fast and Reliable Random Number Generators
for Scientific Computing (extended abstract)

Richard P. Brent1

Oxford University Computing Laboratory,
Wolfson Building, Parks Road,

Oxford OX1 3QD, UK

random@rpbrent.co.uk

Abstract. Fast and reliable pseudo-random number generators are re-
quired for simulation and other applications in Scientific Computing. We
outline the requirements for good uniform random number generators,
and describe a class of generators having very fast vector/parallel im-
plementations with excellent statistical properties. We also discuss the
problem of initialising random number generators, and consider how to
combine two or more generators to give a better (though usually slower)
generator.

1 Introduction

Monte Carlo and quasi-Monte Carlo methods are of great importance in simula-
tion [20], computational finance, numerical integration, computational physics [7,
13], etc. Due to Moore’s Law and increases in parallelism, the statistical qual-
ity of random number generators is becoming even more important than in the
past. A program running on a supercomputer might use 109 random numbers
per second over a period of many hours (or even months in some cases), so 1016

or more random numbers might contribute to the result. Small correlations or
other deficiencies in the random number generator could easily lead to spurious
effects and invalidate the results of the computation, see e.g. [7, 19].

Applications require random numbers with various distributions (e.g. normal,
exponential, Poisson, . . .) but the algorithms used to generate these random
numbers almost invariably require a good uniform random number generator.
In this paper we consider only the generation of uniformly distributed numbers.
Usually we are concerned with real numbers un that are intended to be uniformly
distributed on the interval [0, 1). Sometimes it is convenient to consider integers
Un in some range 0 ≤ Un < m. In this case we require un = Un/m to be
(approximately) uniformly distributed.

Pseudo-random numbers generated in a deterministic fashion on a digital
computer can not be truly random. What is required is that finite segments

This work was supported in part by EPSRC grant GR/N35366. rpb217a



2 R. P. Brent

of the sequence (u0, u1, · · ·) behave in a manner indistinguishable from a truly
random sequence. In practice, this means that they pass all statistical tests that
are relevant to the problem at hand. Since the problems to which a library
routine will be applied are not known in advance, random number generators in
subroutine libraries should pass a number of stringent statistical tests (and not
fail any) before being released for general use.

Random numbers generated by physical sources are available [1]. However,
there are problems in generating such numbers sufficiently fast, and experience
with them is insufficient to be confident of their statistical properties. Thus, for
the present, we recommend treating such physical sources of random numbers
with caution. They can be used to initialise (and perhaps periodically reinitialise)
deterministic generators, and can be combined with deterministic generators by
the algorithms considered in §4. For the moment we restrict our attention to
deterministic random number generators.

A sequence (u0, u1, · · ·) depending on a finite state must eventually be pe-
riodic, i.e. there is a positive integer ρ such that un+ρ = un for all sufficiently
large n. The minimal such ρ is called the period.

In §2 we consider desiderata for random number generators. Then, in §3, we
describe one popular class of random number generators. In §4 we discuss how to
combine two or more generators to give a (hopefully) better generator. Finally,
in §5 we briefly mention implementations.

2 Requirements for good random number generators

Requirements for a good pseudo-random number generator have been discussed
in many surveys, e.g. [2, 3, 5, 10, 14]. Here we summarize and comment briefly on
the most important requirements.

2.1 Uniformity

The sequence of random numbers should pass statistical tests for uniformity of
distribution. This is usually easy for deterministic generators implemented in
software. For physical/hardware generators, the well-known technique of Von
Neumann, or similar but more efficient techniques [9], can be used to extract
uniform bits from a sequence of independent but possibly biased bits.

2.2 Independence

Subsequences of the full sequence (u0, u1, · · ·) should be independent. Random
numbers are often used to sample a d-dimensional space, so the sequence of
d-tuples (udn, udn+1, . . . , udn+d−1) should be uniformly distributed in the
d-dimensional cube [0, 1]d for all “small” values of d (certainly for all d ≤ 6).
For random number generators on parallel machines, the sequences generated
on each processor should be independent.



Fast and Reliable Random Number Generators 3

2.3 Long period

As mentioned above, a simulation might use 1016 random numbers. In such
a case the period ρ must exceed 1016. For many generators there are strong
correlations between u0, u1, · · · and um, um+1, · · ·, where m = ρ/2 (and similarly
for other simple fractions of the period). Thus, in practice the period should be
much larger than the number of random numbers that will ever be used. A good
rule of thumb is to use at most

√
ρ numbers.

2.4 Ability to skip ahead

If a simulation is to be run on a machine with several processors, or if a large
simulation is to be performed on several independent machines, it is essential
to ensure that the sequences of random numbers used by each processor are
disjoint. Two methods of subdivision are commonly used. Suppose, for example,
that we require 4 disjoint subsequences for a machine with 4 processors. One
processor could use the subsequence (u0, u4, u8, · · ·), another the subsequence
(u1, u5, u9, · · ·), etc. For efficiency each processor should be able to “skip over”
the terms that it does not require.

Alternatively, processor j could use the subsequence (umj , umj+1, · · ·), where
the indices m0,m1, m2, m3 are sufficiently widely separated that the (finite) sub-
sequences do not overlap, but this requires some efficient method of generating
um for large m without generating all the intermediate values u1, . . . , um−1.

2.5 Proper initialization

The initialization of random number generators, especially those with a large
amount of state information, is an important and often neglected topic. In some
applications only a short sequence of random numbers is used after each initial-
ization of the generator, so it is important that short sequences produced with
different seeds are uncorrelated.

For example, suppose that a random number generator with seed s produces
a sequence (u(s)

1 , u
(s)
2 , u

(s)
3 , . . .). If we use m different seeds s1, s2, . . . , sm and

generate n numbers from each seed, we get an m × n array U with elements
Ui,j = u

(si)
j . We do not insist that the seeds are random – they could for example

be consecutive integers.
Testing packages such as Marsaglia’s Diehard [15] typically test a 1-D array

of random numbers. We can generate a 1-D array by concatenating the rows (or
columns) of U. Irrespective of how this is done, we would hope that the ran-
dom numbers would pass the standard statistical tests. However, many current
generators fail because they were intended for the case m = 1 (or small) and n

large [8, 11]. The other extreme is m large and n = 1. In this case we expect u
(s)
1

to behave like a pseudo-random function of s.



4 R. P. Brent

2.6 Unpredictability

In cryptographic applications, it is not sufficient for the sequence to pass stan-
dard statistical tests for randomness; it also needs to be unpredictable in the sense
that there is no efficient deterministic algorithm for predicting un (with proba-
bility of success significantly greater than 0.5) from (u0, u1, . . . , un−1), unless n
is so large that the prediction is infeasible.

At first sight it appears that unpredictability is not required in scientific
applications. However, if a random number generator is predictable then we can
always devise a statistical test (albeit an artificial one) that the generator will
fail. Thus, it seems a wise precaution to use an unpredictable generator if the
cost of doing so is not too high. We discuss techniques for this in §4.

Strictly speaking, unpredictability implies uniformity, independence, and a
(very) long period. However, it seems worthwhile to state these simpler require-
ments separately.

2.7 Efficiency

It should be possible to implement the method efficiently so that only a few
arithmetic operations are required to generate each random number, all vec-
tor/parallel capabilities of the machine are used, and overheads such as those
for subroutine calls are minimal. Of course, efficiency tends to conflict with other
requirements such as unpredictability, so a tradeoff is often involved.

2.8 Repeatability

For testing and development it is useful to be able to repeat a run with exactly
the same sequence of random numbers as was used in an earlier run. This is
usually easy if the sequence is restarted from the beginning (u0). It may not
be so easy if the sequence is to be restarted from some other value, say um for
a large integer m, because this requires saving the state information associated
with the random number generator.

2.9 Portability

Again, for testing and development purposes, it is useful to be able to generate
exactly the same sequence of random numbers on two different machines, possibly
with different wordlengths.

3 Generalized Fibonacci generators

Given a circular buffer of length r words (or bits), we can generate pseudo-
random numbers from a linear or nonlinear recurrence

un = f(un−1, un−2, . . . , un−r) .



Fast and Reliable Random Number Generators 5

For speed it is desirable that f(un−1, un−2, . . . , un−r) depends explicitly on only
a small number of its r arguments. An important case is the class of “generalized
Fibonacci” or “lagged Fibonacci” random number generators [10].

Marsaglia [14] considers generators F (r, s, θ) that satisfy

Un = Un−r θ Un−s mod m

for fixed “lags” r and s (r > s > 0) and n ≥ r. Here m is a modulus (typically
2w if w is the wordlength in bits), and θ is some binary operator, e.g. addition,
subtraction, multiplication or “exclusive or”. We abbreviate these operators by
+,−, ∗ and ⊕ respectively. Generators using ⊕ are also called “linear feedback
shift register” (LFSR) generators or “Tausworthe” generators. Usually Un is
normalised to give a floating-point number un = Un/m ∈ [0, 1).

It is possible to choose lags r, s so that the period ρ of the generalized
Fibonacci generators F (r, s,+) is a large prime p or a small multiple of such
a prime. Typically, the period of the least-significant bit is p; because carries
propagate from the least-significant bit into higher-order bits, the overall period
is usually 2w−1ρ for wordlength w. For example, [3, Table 1] gives several pairs
(r, s) with r > 106. (The notation in [3] is different: r + δ corresponds to our r.)

There are several ways to improve the performance of generalized Fibonacci
generators on statistical tests such as the Birthday Spacings and Generalized
Triple tests [14]. The simplest is to include small odd integer multipliers α and
β in the generalized Fibonacci recurrence, e.g.

Un = αUn−r + βUn−s mod m .

Other ways to improve statistical properties (at the expense of speed) are to
include more terms in the linear recurrence [12], to discard some members of the
sequence [13], or to combine two or three generators in various ways (see §4).

With suitable choice of lags (r, s), the generalised Fibonacci generators satisfy
the requirements of uniformity, independence, long period, efficiency, and ability
to skip ahead. They do not satisfy the requirement for unpredictability. In the
following section we show how to overcome this difficulty.

4 Improving generators

In this section we consider how generators that suffer some defects can be im-
proved.

4.1 Improving a generator by “decimation”

If (x0, x1, . . .) is generated by a 3-term recurrence, we can obtain a (hopefully
better) sequence (y0, y1, . . .) by defining yj = xjp, where p > 1 is a suitable
constant. In other words, use every p-th number and discard the others.

Consider the case F (r, s,⊕) with w = 1 (LFSR) and p = 3. (If p = 2, the yj

satisfy the same 3-term recurrence as the xj .)



6 R. P. Brent

Using generating functions, it is easy to show that the yj satisfy a 5-term
recurrence. For example, if xn = xn−1 ⊕ xn−127, then yn = yn−1 ⊕ yn−43 ⊕
yn−85 ⊕ yn−127. A more elementary approach is given in [21].

A possible improvement over simple decimation is decimation by blocks [13].
Better than regular decimation is “irregular decimation” (§4.4).

4.2 Combining generators by addition

We can combine some number K of generalized Fibonacci generators by addi-
tion (mod 2w). If each component generator is defined by a primitive trinomial
Tk(x) = xrk + xsk + 1, with distinct prime degrees rk, then the combined gen-
erator has period at least 2w−1

∏K
k=1(2

rk − 1) and satisfies a 3K-term linear
recurrence.

Because the speed of the combined generator decreases like 1/K, we would
probably take K ≤ 3 in practice. The case K = 2 seems to be better (and more
efficient) than “decimation” with p = 3.

4.3 Combining by shuffling

Suppose we have two pseudo-random sequences X = (x0, x1, . . .) and Y =
(y0, y1, . . .). We can use a buffer V of size B say, fill the buffer using the se-
quence X, then use the sequence Y to generate indices into the buffer. If the
index is j then the random number generator returns V [j] and replaces V [j] by
the next number in the X sequence [10, Algorithm M].

In other words, we use one generator to shuffle the output of another gener-
ator. This seems to be as good (and about as fast) as combining two generators
by addition. B should not be too small.

4.4 Combining by shrinking

Coppersmith et al [6] suggested using one sequence to “shrink” another sequence.
Suppose we have two pseudo-random sequences (x0, x1, . . .) and (y0, y1, . . .),

where yi ∈ GF(2). Suppose yi = 1 for i = i0, i1, . . . Define a sequence (z0, z1, . . .)
to be the subsequence (xi0 , xi1 , . . .) of (x0, x1, . . .). In other words, one sequence
of bits (yi) is used to decide whether to “accept” or “reject” elements of another
sequence (xi). This is sometimes called “irregular decimation” (compare §4.1).

Combining two sequences by shrinking is slower than combining the se-
quences by ⊕, but is less amenable to analysis based on linear algebra or gen-
erating functions, so is preferable in applications where the sequence needs to
be unpredictable. In the final version of the paper we shall consider whether xi

should be a single bit (as originally proposed) or whether it is safe to take xi as
a byte or word (faster but with a possible loss of unpredictability).

5 Implementations

In the final version of the paper we shall comment on some implementations of
random number generators.



Fast and Reliable Random Number Generators 7

References

1. Anonymous, Random number generation and testing, NIST, December 2000.
http://csrc.nist.gov/rng/ .

2. R. P. Brent, Random number generation and simulation on vector and parallel
computers, LNCS 1470, Springer-Verlag, Berlin, 1998, 1–20.

3. R. P. Brent and P. Zimmermann, Random number generators with period di-
visible by a Mersenne prime, LNCS 2667, Springer-Verlag, Berlin, 2003, 1–10.
Preprint available at http://www.comlab.ox.ac.uk/oucl/work/richard.brent/

pub/pub211.html .
4. R. P. Brent and P. Zimmermann, Algorithms for finding almost irreducible and

almost primitive trinomials, in Primes and Misdemeanours: Lectures in Honour of
the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute, Toronto, to appear.
Preprint available at · · ·/pub212.html .

5. P. D. Coddington, Random number generators for parallel computers, The NHSE
Review 2 (1996). http://nhse.cs.rice.edu/NHSEreview/RNG/PRNGreview.ps .

6. D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, Advances
in Crpyptology – CRYPTO’93, LNCS 773, Springer-Verlag, Berlin, 1994, 22–39.

7. A. M. Ferrenberg, D. P. Landau and Y. J. Wong, Monte Carlo simulations: hidden
errors from “good” random number generators, Phys. Review Letters 69 (1992),
3382–3384.

8. P. Gimeno, Problem with ran array, personal communication, 10 Sept. 2001.
9. A. Juels, M. Jakobsson, E. Shriver and B. K. Hillyer, How to turn loaded dice into

fair coins, IEEE Trans. on Information Theory 46, 2000, 911–921.
10. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms (third edition), Addison-Wesley, Menlo Park, CA, 1998.
11. D. E. Knuth, A better random number generator, January 2002, http://www-cs-

faculty.stanford.edu/~knuth/news02.html .
12. T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials

(t = 3, 5) over GF(2) whose degree is a Mersenne exponent, Math. Comp. 69
(2000), 811–814. Corrigenda: ibid 71 (2002), 1337–1338.

13. M. Lüscher, A portable high-quality random number generator for lattice field
theory simulations, Computer Physics Communications 79 (1994), 100–110.

14. G. Marsaglia, A current view of random number generators, in Computer Science
and Statistics: The Interface, Elsevier Science Publishers B. V.,1985, 3–10.

15. G. Marsaglia, Diehard, 1995. Available from http://stat.fsu.edu/~geo/ .
16. M. Mascagni, M. L. Robinson, D. V. Pryor and S. A. Cuccaro, Parallel pseudoran-

dom number generation using additive lagged-Fibonacci recursions, Lecture Notes
in Statistics 106, Springer-Verlag, Berlin, 1995, 263–277.

17. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, New York, 1997. http://cacr.math.uwaterloo.ca/hac/ .

18. W. P. Petersen, Lagged Fibonacci series random number generators for the NEC
SX-3, Internat. J. High Speed Computing 6 (1994), 387–398.

19. L. N. Shchur, J. R. Heringa and H. W. J. Blöte, Simulation of a directed random-
walk model: the effect of pseudo-random-number correlations, Physica A 241
(1997), 579.

20. I. Vattulainen, T. Ala-Nissila and K. Kankaala, Physical tests for random numbers
in simulations, Phys. Review Letters 73 (1994), 2513–2516.

21. R. M. Ziff, Four-tap shift-register-sequence random-number generators, Computers
in Physics 12 (1998), 385–392.


