
On the Efficiency of Pollard’s Rho Method for Discrete Logarithms

Shi Bai1 Richard P. Brent2 †
1 Department of Computer Science,

Australian National University,
Canberra, ACT 0200

Email: shih.bai@gmail.com
2 Centre for Mathematics and its Applications,

Mathematical Sciences Institute,
Australian National University,

Canberra, ACT 0200
Email: cats@rpbrent.com

Abstract

Pollard’s rho method is a randomized algorithm for
computing discrete logarithms. It works by defining a
pseudo-random sequence and then detecting a match
in the sequence. Many improvements have been pro-
posed, while few evaluation results and efficiency sug-
gestions have been reported. This paper is devoted
to a detailed study of the efficiency issues in Pollard’s
rho method. We describe an empirical performance
analysis of several widely applied algorithms. This
should provide a better combination of algorithms
and a good choice of parameters for Pollard’s rho
method.

Keywords: Pollard’s rho method, discrete logarithm,
elliptic curve discrete logarithm.

1 Introduction

The discrete logarithm is an analogue of the ordinary
logarithm in a finite abelian group. Let H be a fi-
nite abelian group with the group operation ⊗. G is
a cyclic subgroup of H generated by g, denoted as
〈g〉 = G. Then an instance of the discrete logarithm
problem (DLP) is stated as follow.

Definition 1.1 (DLP). Given h, g ∈ G known, DLP
is to find the smallest non-negative integer x such
that,

h = g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
x times

As each element h ∈ G can be expressed in the form
of h = g ⊗ g ⊗ · · · ⊗ g, such x exists and is unique
modulo |G|. By analogy to the ordinary logarithm,
we write x = logg h. We also simplify the equation
h = g ⊗ g ⊗ · · · ⊗ g by writing h = gx.

The discrete logarithm problem is believed to be
hard, without any known efficient algorithm in the
general case. Here an efficient algorithm means an
algorithm with polynomial bit-complexity. The pre-
sumed hardness of DLP is relevant to many cryp-
tosystems and cryptographic protocols such as Diffie-
Hellman key exchange protocol (Diffie & Hellman

† The work of the second author was supported by the
Australian Research Council.

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at Fourteenth Computing: The Australasian
Theory Symposium (CATS2008), Wollongong, Australia.
Conferences in Research and Practice in Information Tech-
nology, Vol. 77. James Harland and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1976), ElGamal encryption (Gamal 1985), Digital
Signature Algorithm (DSA) and Elliptic Curve DSA.
Therefore algorithms for computing discrete loga-
rithms are of great academic and practical impor-
tance.

Not all discrete logarithm problems are difficult.
They may be trivial in some groups. The difficulty of
the discrete logarithm problem depends on the rep-
resentation of the group. Two popular finite groups
used for discrete logarithm problems are the multi-
plicative group (Z/pZ)∗ of integers modulo a prime
p and the group of points on an elliptic curve over
a finite field, denoted by E(Fp). In these groups, no
polynomial time algorithm for the problem has been
reported in the literature.

Pollard’s rho method (Pollard 1978) is a random-
ized algorithm for computing the discrete logarithm.
It generates a pseudo-random sequence by an itera-
tion function Yi+1 = f(Yi) in a finite abelian group.
Because the order of the group is finite, the sequence
will ultimately meet an element that has occurred
before. This is called a collision or a match, which
can be found by Floyd’s collision-detection (cycle-
finding) algorithm. Under the assumption that f :
G → G behaves like a truly random mapping, the
expected number of evaluations before a match ap-
pears is

√
π|G|/2, which is fully exponential in the

problem size. The space requirement is negligible.
In some cases, such as the elliptic curve discrete loga-
rithm problem (ECDLP), Pollard’s rho method is the
fastest algorithm currently available. Although there
exist sub-exponential time algorithms for discrete log-
arithm problems in the group (Z/pZ)∗ such as the in-
dex calculus method (Coppersmith et al. 1986), Pol-
lard’s rho method is still of practical interest because
of its simplicity and effectiveness for smaller groups.
In addition, it does not exploit any special proper-
ties of the groups, making it potentially applicable to
DLPs in other abelian groups.

The rest of the paper is organized as follows. Sec-
tion 2 presents a comprehensive analysis of Pollard’s
rho method and its variants in two aspects: iteration
functions and collision-detection algorithms. We also
compare the performance of different iteration func-
tions and collision-detection algorithms. In Section 3,
we fill some gaps in the previous literature, suggest
a good choice of parameters and give an empirical
analysis of the performance.

2 Background

In this section we introduce Pollard’s rho method
and discuss the current status of research on itera-
tion functions and cycle-finding algorithms.

2.1 Pollard’s Rho Method

Pollard proposed an elegant algorithm (Pollard 1978)
for the discrete logarithm problem based on a Monte
Carlo idea and called it the rho method. The rho
method works by first defining a sequence of elements
that will be periodically recurrent, then looking for a
match in the sequence. The match will lead to a so-
lution of the discrete logarithm problem with high
probability. The two key ideas involved are the it-
eration function for generating the sequence and the
cycle-finding algorithm for detecting a match.

2.1.1 Pollard’s Iteration Function

We first introduce the definition of the iteration func-
tion applied in the rho method.

Definition 2.1 (Iteration Function). An iteration
function on a set X is a mapping f : X → X.

In Pollard’s paper, DLPs in (Z/pZ)∗ are consid-
ered where p is a prime. Let g be a generator of the
cyclic group G = (Z/pZ)∗. Another element h ∈ G
is given. The discrete logarithm problem is to com-
pute x satisfying gx ≡ h (mod p). Pollard’s iteration
function fP : G → G is defined as follows,

fP (Y) ≡
{

g · Y (mod p) Y ∈ G1

Y 2 (mod p) Y ∈ G2

h · Y (mod p) Y ∈ G3

(2.1)

In each iteration of Yi+1 = fP (Yi), the function
uses one of three rules depending on the value of Yi.
The group G is partitioned into three sets G1, G2, G3
with similar sizes, not necessarily subgroups. Each
Yi has the form gaihbi . If it happens that Yk ≡ Yj

(mod p), then gakhbk ≡ gaj hbj (mod p). We can of-
ten solve the DLP if ak, aj , bk, bj are known. The
sequence (ai) (and similarly for (bi)) can be computed
using1,

ai+1 ≡
{

ai + 1 (mod |G|) Yi ∈ G1

2ai (mod |G|) Yi ∈ G2

ai (mod |G|) Yi ∈ G3

(2.2)

Since G is finite, the sequence (Yi) produced by the
iteration function is periodic. Therefore there exist
two smallest integers µ and λ (µ ≥ 0, λ ≥ 1) such
that Yk = Yk+λ for every k > µ. To analyze the
performance of the rho method, we use the following
theorem,

Theorem 2.2 (Harris (1960)). Under the assump-
tion that an iteration function f : G → G behaves like
a truly random mapping, the expected values for µ and
λ are

√
π|G|/8 ≈ 0.63

√
|G|. The expected number

of evaluations before a match appears is E(µ + λ) =√
π|G|/2 ≈ 1.25

√
|G|, provided that all elements are

saved, which requires
√

π|G|/2 space.

2.1.2 Reported Performance

Theorem 2.2 makes the assumption of true random-
ness. However, it has been shown empirically that
this assumption does not hold exactly for Pollard’s
iteration function (Teske 1998). The actual perfor-
mance is worse than the expected value given in The-
orem 2.2. As it is impractical to find the exact value

1Initially Y0 = 1, a0 = 0, b0 = 0.

of µ + λ for Pollard’s iteration function, a collision-
detection algorithm is often applied in practice, need-
ing I iterations. To analyze the performance of the
iteration function, we adopt the idea of delay fac-
tor δ = I/E(µ + λ) used in (Teske 1998). The val-
ues of δ and I for Pollard’s iteration function have
been reported and we divide I by δ to get E(µ + λ).
The performance is summarized as follows. In groups
(Z/pZ)∗, Pollard’s iteration function has an average
value of E(µ+λ) ≈ 1.37

√
|G|. The reported E(µ+λ)

for prime order subgroups of (Z/pZ)∗ is 1.55
√
|G| and

1.60
√
|G| for prime order subgroups of of E(Fp).

2.1.3 Floyd’s Cycle-finding Algorithm

In order to minimise the storage requirement, a
collision-detection algorithm can be applied with a
small penalty in the running time. Collision-detection
algorithms do not exploit the group structure and are
generic. In Pollard’s paper, Floyd’s algorithm is ap-
plied. It compares each pair of Yi and Y2i for i > 1.
Floyd’s algorithm is based on the following fact.

Theorem 2.3 (Knuth (1997)). For a periodic se-
quence Y0, Y1, Y2 · · ·, there exists an i > 0 such that
Yi = Y2i and the smallest such i lies in the range
µ 6 i 6 µ + λ.

Floyd’s algorithm uses only a small constant
amount of storage. The best running-time requires µ
iterations and the worst takes µ+λ iterations. Under
the assumption that f : G → G behaves like a truly
random mapping, the expected number of iterations
before reaching a match is

√
π5|G|/288 ≈ 1.03

√
|G|.

In Floyd’s algorithm, there are three evaluations and
one comparison in each iteration. Hence on average
there are 1.03

√
|G| comparisons and 3.09

√
|G| eval-

uations.

2.2 Advances in Iteration Functions

In this subsection, we consider some recent advances
and developments in iteration functions.

2.2.1 Pollard’s Generalized Function

We slightly change the rules defining the function.
Let M = gm and N = hn where m, n are two random
elements chosen from [1, |G|], denoted as m, n ∈R
[1, |G|]. We partition G into 3 sets G1, G2, G3 with
similar sizes. Let fPG : G → G be a mapping,

fPG(Y) ≡
{

M · Y (mod p) Y ∈ G1

Y 2 (mod p) Y ∈ G2

N · Y (mod p) Y ∈ G3

(2.3)

Teske (1998) found that the variance of the per-
formance in Pollard’s generalized walk (or iteration
function) is smaller than that for Pollard’s original
function. Therefore this function can be regarded as
a controlled version of Pollard’s original walk (Teske
1998). The reported E(µ + λ) is 1.62

√
|G| for sub-

groups of E(Fp). We cannot find reported results for
groups (Z/pZ)∗ and hence we will fill this gap in Sec-
tion 3.

2.2.2 Teske’s Adding-walk

Teske (1998) proposed a better iteration function by
applying more arbitrary multipliers. Assume that we
are using r partitions (multipliers). We generate 2r
random numbers,

mi, ni ∈R {1, 2, · · · |G|}, for i = 1, 2, · · · , r (2.4)

Then we precompute r multipliers M1,M2, · · ·Mr
where,

Mi = gmi · hni , for i = 1, 2, · · · , r (2.5)

Define a hash function,

v : G → {1, 2, · · · r} (2.6)

This completes the precompute stage. Then the iter-
ation function fTA : G → G is,

fTA(Y) = Y ·Mv(Y), where v(Y) ∈ {1, 2, · · · r}
(2.7)

The indices are updated by,

ai+1 = ai + mv(Yi)

bi+1 = bi + nv(Yi)
(2.8)

Based on the work of Hildebrand (1994), Horwitz
& Venkatesan (2002), we have the following theorem
to show that the performance of adding-walk is prov-
ably good.

Theorem 2.4 (Teske (2001)). Let G be a finite
abelian group of prime order. Assume that we work
with an r adding-walk together with an independent
hash function where r ≥ 16. Then the average num-
ber of iterations before a collision occurs, divided by√
|G|, is approximately independent of |G|. In addi-

tion, if r > 16 then the average number of iterations
is bounded by 1.45

√
|G| when using Teske’s modified

cycle-finding algorithm.

The reported E(µ + λ) is 1.29
√
|G| for subgroups

of E(Fp), which is close to the theoretically optimal
bound 1.25

√
|G| in Theorem 2.2.

2.2.3 Teske’s Mixed-walk

Teske proposed another method named mixed-
walk (Teske 1998) which has a similar performance
to the adding-walk. It uses a mixture of the adding-
walk and some squaring steps, similar to Pollard’s
iteration function. Assume that we are using r mul-
tipliers in the adding-walk and q squaring steps. The
pseudo-random function fTM : G → G is defined as
follows,

fTM (Y) =
{

Y ·Mv(Y) v(Y) ∈ {1, 2, · · · r}
Y 2 Otherwise

(2.9)
Experimental results show that r ≥ 16 plus q/r ≈

0.25 yields a performance comparable to that of a
truly random walk. A mixed-walk of 16 multipliers
and 4 squaring steps is reported to have an expected
length of E(µ + λ) ≈ 1.3

√
|G|.

2.3 Advances in Collision-detection Algo-
rithms

In Floyd’s algorithm, some Yi will be evaluated twice,
which is time-consuming. There are faster algo-
rithms. We discuss two of Brent’s algorithms (Brent
1980) and a variant (Teske 1998).

2.3.1 Brent’s Algorithms

Brent proposed two algorithms (Brent 1980) which
are generally 25% faster than Floyd’s method. A
modified version of them was used in factoring the
eighth Fermat number by Brent & Pollard (1981).

Brent’s first algorithm (Brent 1980) uses a variable
z to keep the values of Yl(i)−1 where l(i) = 2blog ic. z
is compared with Yi for each iteration and is updated
by z = Yi when i = 2x − 1 for x = 1, 2, · · · (i is the
index of iteration and the base 2 is chosen for ease of
implementation). Only one sequence Yi needs to be
computed and the value of z is easily updated. The
correctness of this algorithm depends on the following
idea.
Theorem 2.5. For a periodic sequence Y0, Y1, Y2 · · ·,
there exists an i > 0 such that Yi = Yl(i)−1 and l(i) ≤
i < 2l(i). The smallest such i is 2dlg max(µ+1,λ)e+λ−
1.

Under the assumption that the iteration function
is truly random, an expected number of 1.98

√
|G| it-

erations for E(µ + λ) is reported (Brent 1980). The
number of evaluations is equal to the number of com-
parisons, and hence the total number of operations
is bounded by 3.96

√
|G|. If cost of comparisons is

insignificant, the algorithm is 30% faster in average
than Floyd’s algorithm. On the other hand, if com-
parisons are expensive, the speedup may be compro-
mised.

A second algorithm is given in the same pa-
per (Brent 1980). This algorithm avoids unnecessary
comparisons as it is sufficient to compare only when
3
2 l(i) ≤ i < 2l(i). Under the assumption that the iter-
ation function is truly random, the expected number
of evaluations is 2.24

√
|G| with an expected number

of comparison as 0.88
√
|G|. The total number of op-

erations is 3.12
√
|G|.

A variation of Brent’s algorithms is discussed
by Teske (1998). It reduces the number of iterations
by using more storage and comparisons. A chain of 8
cells is applied and each cell keeps a triplet (Yi, ai, bi).
Initially all the values in cells are Y0 and is updated
according to the following rules. At the i-th iteration,
we compare the current value Yi with previous values
in the cells. If they are not equal, we check whether
i is greater than 3 times the index of the element in
the first cell. If this is true, we put current Yi into
the last cell, remove the element in first cell and then
shift the other cells to the previous cell. Under the
assumption that the function is truly random, the ex-
pected number of iterations is about 1.42

√
|G|. For

each iteration, there is one evaluation and eight com-
parisons.

2.4 Summary

We summarize the performance of collision-detection
algorithms, making the assumption that the iteration
function is truly random. We also compile a table in-
cluding the performance of iteration functions, which
is based on the reported experimental results. In the
first table, the columns represent algorithms, number
of expected iterations, evaluations and comparisons.
In the second table, the columns denote iteration
functions, multiplicative groups (Z/pZ)∗, prime or-
der subgroups of (Z/pZ)∗ and prime order subgroups
of E(Fp). fTA[20] denotes Teske’s adding-walk with
20 multipliers and fTM [16:4] denotes Teske’s mixed-
walk with 16 multipliers plus 4 squaring steps. All
the data in the table is normalised: E(µ + λ) is di-
vided by

√
|G|.

Remark 2.6. In case where two different experimental
results are reported by Teske (1998, 2001), we use first
one.

Table 1: Performance of Cycle-finding Algorithms

ALGs ITERs EVALs CMPs

Floyd’s 1.03 3.09 1.03
Brent’s 1st Alg 1.98 1.98 1.98
Brent’s 2nd Alg 2.24 2.24 0.88
Teske’s Modified 1.42 1.42 8 ∗ 1.42

Table 2: Performance of Iteration Functions

FUNCs (Z/pZ)∗ S ≤ (Z/pZ)∗ S ≤ E(Fp)
fP 1.37 1.55 1.60
fPG - - 1.62
fTA[20] - - 1.29
fTM [16:4] - - 1.30

3 Experimental Investigation

We can find few comparable results for Pollard’s
rho method and its variants, except those reported
by Teske (1998, 2001). There are some gaps in Table
2. In this section, we fill the gaps in Table 2 by an
empirical investigation and give some suggestions on
better parameters such as starting values and parti-
tioning methods. In addition, we test Teske’s itera-
tion function with a comprehensive set of data and
verify Teske’s results.

3.1 Description of Experiments

To prepare for the experiments, random prime num-
bers from 3 digits to 15 digits were chosen to give fi-
nite fields Fp. We then considered the groups (Z/pZ)∗
and subgroups of (Z/pZ)∗ with orders from 3 to 13
digits. We also discuss elliptic curve discrete loga-
rithms. Let E(Fp) be a finite abelian group formed
by the points on an elliptic curve. G is a prime order
subgroup of E(Fp) generated by a point P . Then an
instance of the elliptic curve discrete logarithm prob-
lem (ECDLP) is stated as follows. Here we write the
group operation as ⊕.

Definition 3.1 (ECDLP). Given P , Q ∈ G known,
ECDLP is to find the smallest non-negative integer x
such that,

Q = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
x times

To generate subgroups of E(Fp), we produce ran-
dom elliptic curves over Fp and then compute the
order for each group. Due to the Pohlig-Hellman al-
gorithm (Pohlig & Hellman 1978), we concentrate on
the subgroups with largest prime orders. A generator
for each subgroup is computed. The number of in-
stances of DLPs or ECDLPs computed is given in Ta-
ble 3. The first column gives the (sub)groups by the
number of decimal digits in their order. The second
column is the number of DLPs or ECDLPs computed
for each row. The third column gives the number of
different starting values Y0 for each instance of DLP
or ECDLP.

Our implementaion is based on C++ using the
GNU Multiple Precision Arithmetic Library (GMP).
We ran the algorithms over Gentoo Linux on a Pen-
tium 2.4GHz platform. The whole computation took
more than a month.

Table 3: Instances of DLPs or ECDLPs

DIGITs #DLPs (ECDLPs) STs

3 to 8 200 100
9 100 50
10 50 20
11 50 10
12 50 5
13 50 1

3.2 Iteration Functions

We first discuss the performance of different iteration
functions without collision-detection algorithms. The
whole sequences generated by the iteration functions
were stored. Therefore the groups were restricted to
be small. 2500 discrete logarithms over groups of 6-7
digits were computed. All the data in Table 4 denotes
the values of E(µ + λ) divided by

√
|G|. The results

fill the gaps in Table 2.

Table 4: Performance of Iteration Functions

FUNCs (Z/pZ)∗ S ≤ (Z/pZ)∗ S ≤ E(Fp)
fP 1.37 1.55 1.60
fPG 1.41 1.55 1.62
fTA[20] 1.28 1.27 1.29
fTM [16:4] 1.30 1.30 1.30

We found that Pollard’s original iteration function
performed worse than the truly random case (Theo-
rem 2.2). In addition, Pollard’s generalized iteration
funtion is slightly worse than the original function
on average. On the other hand, Teske’s adding-walk
and mixed-walk iteration functions behave better and
mimic random walks. We discuss the choice of param-
eters in the rho method below.

3.3 Starting Values

The value assigned to Y0 for the iteration function
Yi+1 = f(Yi) is called the starting value of the se-
quence. We can use a fixed value for all DLPs (such
as Y0 = 1) or generate a random starting values us-
ing powers of g and h. We investigate the potential
impacts of different types of starting values, which
does not seem to have been done before. The pseudo-
random functions are either Pollard’s original func-
tion or Teske’s adding-walk using 20 multipliers. The
collision-detection algorithm is Brent’s second algo-
rithm. In addition, we adopt the partitioning method
used in Pollard’s original function2. For fixed start-
ing values, we compute 4500 instances for DLPs and
ECDLPs. The mean values of results are normalized
by

√
|G| in Table 5.

Table 5: Impact of Initial Values

Groups Functions Fixed Random

(Z/pZ)∗ fP 2.55 2.50
fTA[20] 2.28 2.28

(Z/pZ)∗ subgroups fP 2.95 2.84
fTA[20] 2.27 2.26

E(Fp) subgroups fP 2.88 2.92
fTA[20] 2.28 2.25

Although it seems to lose the advantage of ran-
domness, choosing Y0 = 1 is not significantly worse

2Partitioning methods will be discussed in the next part.

than choosing Y0 at random. However, the variance
is smaller in the latter case.

It seems there is no direct way to apply random
initial values with Pollard’s iteration function (or sim-
ilarly in Teske’s mixed-walk). We may need to store
some auxiliary variables and update them. For ex-
ample in (Z/pZ)∗, we have a collision if gihjY x

0 ≡
gi‘hj‘Y y

0 (mod p). If Y0 is not 1, we have to update
the powers of Y0 during the procedure. A random ini-
tial value is applicable for Teske’s adding-walk func-
tion. We assume random starting values in the fol-
lowing sections.

3.4 Partitioning Methods

An important assumption in Theorem 2.4 is that the
partitioning method is independent. Here the in-
dependence means the performance of the iteration
function is not affected by the the properties of the
partitioning method. We will consider the potential
impact of partitioning methods in this part. As we
will see later, the choice may have a strong influence
on the performance.

A partitioning method maps values of Yi into dif-
ferent rules in the iteration function, which behaves
like a hash function. In Pollard’s iteration function, a
partition of size three is used. This is extended to N
partitions in Teske’s functions. Pollard’s partitioning
rule is R = dN × Yi/|G|e where R is the index of the
rule chosen and |G| is the order of the group. This
method depends mainly on the high-order bits of Yi.
An alternative, the division method, uses the lower-
order bits of Yi, that is R = (Yi mod N)+1. Another
more complicated method suggested by Teske (2001)
is Knuth’s multiplicative hash function (Knuth 1981).
The principle is as follows. Assume that the partition
we want to produce is v : G → {1, · · · , N} where N
denotes the number of partitions. Let A be a ratio-
nal approximation of the golden ratio

√
5−1
2 . Define

u(g) = A · g − bA · gc where g denotes an element in
the group. Then the partitioning method is defined
by v(g) = du(g) ·Ne.

We empirically investigated the impacts of
different partitioning algorithms. The pseudo-
random functions were either Pollard’s original func-
tion or Teske’s adding-walk with 20 multipliers.
The collision-detection algorithms involved include
Floyd’s algorithm, Brent’s algorithms and Teske’s al-
gorithm. As there are two iteration functions and
four cycle-finding algorithms, we discuss eight com-
binations of them. For each combination, we index
Pollard’s partitioning method, the division method
and Knuth’s method as methods 1, 2, 3 respectively.
The Y -axis denotes the number of iterations divided
by

√
|G|. The results in groups (Z/pZ)∗ and elliptic

curve subgroups are shown in Figure 1 and Figure 2.
Note that the different cycle-finding algorithms have
different costs per iteration (see Section 2).

For Pollard’s iteration functions in groups
(Z/pZ)∗, it is much better to apply the original parti-
tioning proposed by Pollard (1978), which uses high-
order bits. The other two methods perform worse in
this case. In other cases, such as Pollard’s iteration
functions in subgroups of E(Fp), it is slightly better
to use the division method.

3.5 Choice of Parameters in Teske’s Func-
tions

We have discussed impacts of initial values and per-
formance of different partitioning methods. In this
part, we consider how the performance is affected by
the parameters in Teske’s adding-walk and mixed-
walk functions. DLPs in prime order subgroups of

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

FUNCs:
ALGs:

1

2
3

Pollard
Floyd

Pollard
Brent 1

Pollard
Brent 2

Pollard
Teske M

Teske
Floyd

Teske
Brent 1

Teske
Brent 2

Teske
Teske M

Method 1
Method 2
Method 3

Figure 1: Partitioning Methods in Groups (Z/pZ)∗

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

FUNCs:
ALGs:

Pollard
Floyd

Pollard
Brent 1

Pollard
Brent 2

Pollard
Teske M

Teske
Floyd

Teske
Brent 1

Teske
Brent 2

Teske
Teske M

Method 1
Method 2
Method 3

Figure 2: Partitioning Methods in Subgroups of
E(Fp)

(Z/pZ)∗ can be considered as analogues of ECDLPs
in prime order subgroups of E(Fp). The discrete
logarithm problems considered are defined in groups
(Z/pZ)∗ and the largest prime order subgroups of
E(Fp).

3.5.1 Groups (Z/pZ)∗

We discuss the choice of parameters in Teske’s
function in the groups (Z/pZ)∗. Teske’s modified
collision-detection algorithm is applied. Theorem 2.4
claims that the number of iterations is bounded by
1.45

√
|G| for Teske’s adding-walk with r ≥ 16 mul-

tipliers. The performance of different values of r is
plotted in Figure 3. The X-axis denotes the num-
ber of multipliers used in adding-walk and the Y-axis
denotes the number of iterations divided by

√
|G|.

The empirical results verify Theorem 2.4. We were
also able to verify that the performance is generally
better using a larger number of partitions. Consider-
ing the initialization cost as well, a partition number
of 20-60 is a reasonable value. In addition, it has
been suggested that mixed-walk with ratios q/r be-
tween 1/4 and 1/2 with r ≥ 16 may yield a good
performance (Teske 1998). Our experimental results
do not support this suggestion. We found that mixed-

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100 120 140

Adding-walk in (Z/Zp)*

Figure 3: Performance of Adding-walk in Groups
(Z/pZ)∗

walks with ratios smaller than or equal to 1/4 behave
slightly better than those with ratios between 1/4 and
1/2. To illustrate this, the performance for various al-
gorithms is tabulated in Table 6. The columns give
the ratios applied, number of multipliers, squaring
steps and iterations. As usual, the data in last col-
umn is normalized by

√
|G|.

Table 6: Performance of Mixed-walk in Groups
(Z/pZ)∗

RATIOs MULTs SQRs ITERs

0.25 16 4 1.46
0.25 20 5 1.45
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.47
0.40 20 8 1.50
0.50 20 10 1.51
0.60 20 12 1.53
0.80 20 16 1.57

3.5.2 Prime Order Subgroups of E(Fp)

We discuss the choice of parameters in Teske’s func-
tion in the subgroups of E(Fp). Teske’s modified
collision-detection algorithm is applied. The number
of iterations in Figure 4 are bounded by 1.45

√
|G| for

Teske’s adding-walk function with r ≥ 16 multipli-
ers. This verifies the effectiveness of Teske’s function
in the ECDLP case. Similarly a partition number of
20-60 is preferred. The performance of mixed-walk
is obtained in the Table 7. For mixed-walk in sub-
groups of E(Fp), we arrive a similar result as before.
Mixed-walks with ratios q/r smaller or equal to 1/4
with more than 16 multipliers are preferable.

4 Conclusion and Future Work

We discussed efficiency issues regarding Pollard’s rho
method and its variants for discrete logarithm prob-
lems and elliptic curve discrete logarithm problems.
We have performed an empirical investigation to fill
the current gaps in the literature, suggested better pa-
rameters for iteration functions and revisited Teske’s
adding-walk and mixed-walk functions.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100 120 140

Adding-walk in elliptic curve subgroups

Figure 4: Performance of Adding-walk in Subgroups
of E(Fp)

Table 7: Performance of Mixed-walk in Subgroups of
E(Fp)

RATIOs MULTs SQRs ITERs

0.25 16 4 1.48
0.25 20 5 1.47
0.25 40 10 1.44
0.25 60 15 1.44
0.10 20 2 1.45
0.20 20 4 1.46
0.40 20 8 1.49
0.50 20 10 1.52
0.60 20 12 1.54
0.80 20 16 1.58

In the previous sections, we have used the assump-
tion that the partitioning method is independent of
the iteration function. Finding a way to prove this
would be an advance. In addition, the experimen-
tal results suggest that Teske’s mixed-walk behaves
as well as the adding-walk. While the performance
of the adding-walk is supported by some theoretical
results, we find no easy way to analyze the behav-
ior of the mixed-walk. A potential way to achieve
this might be based on the recent work of Miller &
Venkatesan (2006) and Kim et al. (2007).

Acknowledgements

We would like to thank the anonymous referees for
their helpful comments.

References

Brent, R. P. (1980), ‘An improved Monte Carlo fac-
torization algorithm’, BIT 20(2), 176–184.

Brent, R. P. & Pollard, J. M. (1981), ‘Factorization of
the eighth Fermat number’, Mathematics of Com-
putation 36, 627–630.

Coppersmith, D., Odlyzko, A. M. & Schroeppel, R.
(1986), ‘Discrete logarithms in GF (p)’, Algorith-
mica 1(1), 1–16.

Diffie, W. & Hellman, M. E. (1976), ‘New directions
in cryptography’, IEEE Trans. Inform. Theory IT-
22, 644–654.

Gamal, T. E. (1985), ‘A public key cryptosystem and
a signature scheme based on discrete logarithms’,
IEEE Trans. Inform. Theory 31, 469–472.

Harris, B. (1960), ‘Probability Distribution Re-
lated to Random Mappings’, Ann. Math. Statist.
31, 1045–1062.

Hildebrand, M. (1994), ‘Random walks supported on
random points of Z/nZ’, Probability Theory and
Related Fields 100(2), 191–203.

Horwitz, J. & Venkatesan, R. (2002), Random Cay-
ley digraphs and the discrete logarithm, in ‘Algo-
rithmic Number Theory Symposium V, ANTS-V
(LNCS 2369)’, pp. 100–114.

Kim, J. H., Montenegro, R. & Tetali, P. (2007), ‘A
near optimal bound for Pollard’s rho to solve dis-
crete log’, IEEE Proc. of the Foundations of Com-
puter Science (FOCS), 2007, Providence, RI, to ap-
pear.

Knuth, D. E. (1981), The Art of Computer Program-
ming, Vol. 3, 2nd edn, Addison-Wesley, Reading,
Mass.

Knuth, D. E. (1997), The Art of Computer Program-
ming, Vol. 2, 3nd edn, Addison-Wesley, Reading,
Mass.

Miller, S. D. & Venkatesan, R. (2006), Spectral anal-
ysis of Pollard rho collisions, in ‘Algorithmic Num-
ber Theory Symposium (ANTS VII), LNCS 4076,
Springer-Verlag, 573-581’.

Pohlig, S. C. & Hellman, M. E. (1978), ‘An improved
algorithm for computing logarithms over GF (p)
and its cryptographic significance’, IEEE Trans.
Inform. Theory IT-24(1), 106–110.

Pollard, J. M. (1978), ‘Monte Carlo methods for index
computation mod p’, Mathematics of Computation
32, 918–924.

Teske (1998), Speeding up Pollard’s rho method
for computing discrete logarithms, in ‘Algorithmic
Number Theory Symposium (ANTS IV), LNCS
1423, Springer-Verlag, 541-553’.

Teske, E. (2001), ‘On random walks for Pol-
lard’s rho method’, Mathematics of Computation
70(234), 809–825.

	Introduction
	Background
	Pollard's Rho Method
	Pollard's Iteration Function
	Reported Performance
	Floyd's Cycle-finding Algorithm

	Advances in Iteration Functions
	Pollard's Generalized Function
	Teske's Adding-walk
	Teske's Mixed-walk

	Advances in Collision-detection Algorithms
	Brent's Algorithms

	Summary

	Experimental Investigation
	Description of Experiments
	Iteration Functions
	Starting Values
	Partitioning Methods
	Choice of Parameters in Teske's Functions
	Groups (Z/pZ)*
	Prime Order Subgroups of E(Fp)

	Conclusion and Future Work

