arXiv:1802.07558v1 [math.NT] 21 Feb 2018

The Borwein brothers, Pi and the AGM

Richard P. Brent

In fond memory of Jonathan M. Borwein 1951-2016

Abstract We consider some of Jonathan and Peter Borweins’ contributions to the
high-precision computation of 7 and the elementary functions, with particular ref-
erence to their book Pi and the AGM (Wiley, 1987). Here “AGM” is the arithmetic-
geometric mean of Gauss and Legendre. Because the AGM converges quadratically,
it can be combined with fast multiplication algorithms to give fast algorithms for
the n-bit computation of 7, and more generally the elementary functions. These
algorithms run in “almost linear” time O(M (n)logn), where M(n) is the time for
n-bit multiplication. We outline some of the results and algorithms given in Pi and
the AGM, and present some related (but new) results. In particular, we improve
the published error bounds for some quadratically and quartically convergent algo-
rithms for 7, such as the Gauss-Legendre algorithm. We show that an iteration of
the Borwein-Borwein quartic algorithm for 7 is equivalent to two iterations of the
Gauss-Legendre quadratic algorithm for 7, in the sense that they produce exactly
the same sequence of approximations to 7 if performed using exact arithmetic.

1 Introduction

Jonathan Borwein was fascinated by the constant 7, and gave many stimulating
talks on this topic. The slides for most of these talks may be found on the memorial
website [[11]]. In my talk [21] at the Jonathan Borwein Commemorative Conference
I discussed the reasons for this fascination. In a nutshell, it is that theorems about
7 are often just the tips of “mathematical icebergs” — much of interest lies hidden
beneath the surface.

This paper considers some of Jonathan and Peter Borweins’ contributions to the
high-precision computation of 7 and the elementary functions log, exp, arctan, sin,
etc. The material is mainly drawn from their fascinating book Pi and the AGM [14].

Richard P. Brent
Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia.
e-mail: JBCC@rpbrent . com February 22, 2018

JBCC@rpbrent.com

2 Richard P. Brent

We make no attempt to review the whole book — a reader interested in the complete
contents should consult one of the reviews [2| [3, |9, 47] or, better, read the book
itself. We do not try to distinguish between the contributions of Jonathan and his
brother Peter — so far as we know, they contributed equally to the book, although no
doubt in different ways.

We take the opportunity to present some new results that are related to the ma-
terial in Pi and the AGM. For example, the error after a finite number of iterations
of some of the quadratically and quartically convergent algorithms for 7 can be ex-
pressed succinctly in terms of theta functions. Inspection of these expressions sug-
gests that some algorithms, previously considered different, are actually equivalent,
in the sense that they give exactly the same sequence of approximations to 7 if per-
formed using exact arithmetic. For example, one of the Borweins’ quadratically con-
vergent algorithms [[14} Iteration 5.2 with r = 4] is equivalent to the Gauss-Legendre
algorithm (17| [19} 41], and it follows that one step of the Borweins’ quartically
convergent algorithm [14} Iteration 5.3] is equivalent to two steps of the Gauss-
Legendre algorithm. These connections between superficially different algorithms
do not seem to have been noticed before.

In §2]we give some necessary definitions, discuss the arithmetic-geometric mean,
and consider its connection with elliptic integrals and Jacobi theta functions. We also
mention the concept of order of convergence of an algorithm.

A brief history of quadratically convergent algorithms for 7 is given in

In §4 we consider some quadratically and quartically convergent algorithms for
7, including the Gauss-Legendre algorithm and several algorithms due to the Bor-
weins. In §5we show that some of the algorithms of §4] although superficially dif-
ferent, are actually equivalent when performed with exact arithmetic.

Chapter 5 of Pi and the AGM considers some striking Ramanujan-Sato formula
for 1/7 that give very fast (though linearly convergent) algorithms for computing 7.
The first such formula were given by Ramanujan [39]]. Later authors include Takeshi
Sato, the Borwein brothers, and the Chudnovsky brothers. See [6} [7, [15] for refer-
ences. In §6]we briefly consider some Ramanujan-Sato formulz and the correspond-
ing algorithms for computing 7.

One of the “icebergs” alluded to above is the fast computation of elementary
functions to arbitrary precision. The constant T = 4arctan(1) is of course just a spe-
cial case (the tip of the iceberg). In §7 we outline how fast algorithms for computing
elementary (and some other) functions can be based on the arithmetic-geometric
mean iteration.

2 Preliminaries: means, elliptic integrals and theta functions

We define the order of convergence of a sequence. It will be sufficient to say that a
sequence (x,),eN converges linearly to L (or with order of convergence 1) if

The Borweins, & and the AGM 3

—-L —-L
0< = liminfM < limsupM
n—oo|x, — L] oo |Xn — L]

= <l

If o = py then py is called the rate of convergence.
We say that a sequence (x,)nen converges to L with order p > 1 if the sequence
converges to L and there exists

log [xu 41 —L|

p = lim > 1.

w5 Toglx, — L]
Quadratic, cubic and quartic convergence are the cases p = 2,3, 4 respectively. For
example, if x, = 2"exp(—3"), then (x,),en converges cubically to zero, because
log |x,+1]/log|x,| = (=31 +0(n))/(=3"+0(n)) — 3 as n — oo.

Roughly speaking, if a sequence converges linearly to L with rate u, then the
number of correct decimal digits in the approximation to L increases by about
log;o(1/u) per term. For example, if

_ Lo (=Y
x,,_zﬁjgbw7 1)

then x,, converges linearly to 7 with about log;,3 ~ 0.4771 decimal digits per termm
If a sequence converges to L with order p > 1, then the number of correct digits is
approximately multiplied by p for each additional term. For example, Newton’s
method for computing square roots’]

1 n S
Xprl == | xp+—
n+1) n X,

converges quadratically to L := /S, provided that xy and S are positive. In fact, it is

easy to show that
1
Xn+1 — L~ i(xn — L)2

We now consider some well-known means. The arithmetic mean of a,b € R is

b
AM(a,b) := (Hz_

)

and the geometric mean is

GM(a,b) := Vab.)

Assuming that a and b are positive, we have the inequality

GM(a,b) < AM(a,D).

! The formula () is listed in Bailey’s compendium [3]], and is attributed to Madhava of Sangama-
gramma (c.1340—c.1425). It follows from the Taylor series for arctan(1/+/3).

2 Attributed to Hero of Alexandria (c.10-70 A.D.), though also called the Babylonian method.

4 Richard P. Brent

Initially we assume that a, b are positive real numbers. In §/| we permit a, b
to be complex. To resolve the ambiguity in the square root in (2) we assume that
R(GM(a,b)) >0, and I(GM(a,b)) > 0 if R(GM (a,b)) = 0.

Given two positive reals ag, by, we can iterate the arithmetic and geometric means
by defining, for n > 0,

an+1 = AM(an»bn)
by = GM(an,bn).

The sequences (ay,) and (b,) converge quadratically to a common limit called
the arithmetic-geometric mean (AGM) of ag and by. We denote it by AGM (ay, bo).
Gauss [26] and Legendre [33] solved the problem of expressing AGM(a, b) in terms
of known functions. The answer may be written as

1 2(/ﬂﬂ do
AGM(a,b) 7mJo \/a2c0s20 + b2sin? 0

3

The right-hand-side of is the product of a constant (whose precise value will
be significant later) and a complete elliptic integral of the first kind. As usual, the
complete elliptic integral of the first kind is defined by

/2 1
K(k) = / do _ / dt 7
0 V1—Ksin?0 Jo /(1—12)(1—Kk*?)
and the complete elliptic integral of the second kind by
w/2 11 —k22
E(k ;:/ \/1—k2sin29d9=/ VIZET 4
%) 0 0 V1-—12
The variable k is called the modulus, and k' := /1 — k? is called the complementary

modulus. Tt is customary to define

K'(k):=K(V1—-k*) =K(K)

nd
) E'(k) = E\/1-R2) = EK),

so in the context of elliptic integrals a prime () does not denote differentiation. On
the occasions when we need a derivative, we use operator notation

DK (k) := dK (k) /dk.

We remark that Pi and the AGM uses the “dot” notation K (k) := dK (k) /dk, but this
is potentially ambiguous and hard to see, so we prefer to avoid it.

The moduli k and X’ can in general be complex, but unless otherwise noted we
assume that they are real and in the interval (0, 1).

In terms of the Gaussian hypergeometric function

The Borweins, & and the AGM 5

a-b ala+1)-b(b+1) ,
et T aeery ST

F(a,b;c;z) =1+
we have
F (%, 51K “4)

and
E(k)=ZF (-4 5 14%).)

From (@) and [} 17.3.21], we also haveﬂ
, 2 4
K'(k) = —log | -) K(k) — f(k), (6)
T k
where f(k) = k* /4 + O(k*) is analytic in the disk |k| < 1.

Substituting (a,b) + (1,k) in (@), and recalling that k> + (k')> = 1, we have

AGM(1,K) = 2K’§k) : @)

Thus, if we start from ag = 1, by = k' € (0,1) and apply the AGM iteration, K (k)

can be computed from
) T
= SR ®)

E (k) can be computed via the AGM at the same time as K (k), using the well-known
result [[14} (b) on pg. 15]

It follows from (@) and (6)) that, for small &,
/ 2 4
K'(k) = (1+ 0(k)) log (k))

This will be relevant in §7} A bound on the O(k?) term is given in [14, Thm. 7.2].
The Gauss-Legendre algorithm depends on Legendre’s relation: for 0 < k < 1,

E(k)K'(k)+E'(k)K (k) — K(k)K' (k) = = -

For a proof, see Pi and the AGM, Sec. 1.6.
A computationally important special case, obtained by taking k = k' = 1//2, is

(26(1/v2) ~K(1/v2)) K(1/v2) = 5 (10)

3 Here and elsewhere, log denotes the natural logarithm.

6 Richard P. Brent

It can be shown [[14, Thm. 1.7] that the two factors in (10} are

and 2E(1/V2)—K(1/V2) =).

/2

2(1
K(1/V2) = ZEE;;)

To estimate the order of convergence and to obtain error bounds, we consider the
parameterisation of the AGM in terms of Jacobi theta functions. We need the basic
theta functions of one variable, defined for |¢| < 1 by

62(q) = Y q" 12, 65(g) = Y. ¢, 0a(q):= Y (~1)"q"".

nez nez nez

The theta functions satisfy many identities [46, §21.3]. In particular, we use the
following addition formule, due to Jacobi [31]]. They are proved in [14} §2.1].

03(q) = 03 (%) + 03 (¢*), (11)
03 (q) = 65(q) + 65 (q). (12)

It is not difficult to show that

2 2
BLIEOD _ g202) ana \ /62003 (0) = 03 (a)

Thus, the AGM variables (a,,b,) can, if scaled suitably, be parameterised by
(02(¢%"),02(¢*")). More precisely, if 1 = ag > by = 87(¢)/6%(q) > 0, where
g € (0, 1), then the variables a,, b, appearing in the AGM iteration satisfy

13)

It is useful to define auxiliary variables ¢y41 := ay — any1 = (an — by) /2. Using the
quotient for a, and the addition formula (TT), we see that

_63(¢")
= —7
0; (9)

holds for n > 1. We could use (T4) to define o, but this will not be necessaryJ]
We can write g (which is called the nome) explicitly, in fact

(14)

q = exp(—7K'(k)/K(k)). (15)

This is due to Gauss/Jacobi; for a proof see [14, Thm. 2.3]. In the special case
k=k =1/v/2, wehave K’ = K and g = e~* = 0.0432139...

4 Salamin [41]] defines ¢, using the relation cﬁ = aﬁ — bﬁ. This has the advantage that ¢ is defined
naturally, and for n > 0 it is equivalent to our definition. However, it is computationally more
expensive to compute (a2 — b2)/2 than a, — a1.

The Borweins, & and the AGM 7

Because the AGM iteration converges quadratically, it offers the prospect of
quadratically convergent algorithms for approximating 7 and, more generally, all
the elementary functions. This is the topic of §4]and §7]below. First we make some
comments on the history of quadratically convergent algorithms for 7.

3 Historical remarks

An algorithm for computing log(4/k), using (7), (9) and the AGM, assuming that
we know 7 to sufficient accuracy, was given by Salamin [8, pg. 71] in 1972. On the
same page Salamin gives an algorithm for computing 7, taking k = 4/¢" in (9). With
his choice 7 = 2n AGM(1, k). However, this assumes that we know e, so it is not a
“standalone” algorithm for 7 via the AGM. Similarly, if we take k = 4/2" in @]) we
obtain an algorithm for computing 7log2 (and hence 7, if we know log?2).

In 1975, Salamin [41] and (independently) the present author [[17,19] discovered
a quadratically convergent algorithm for computing 7 via the AGM without needing
to know e or log?2 to high precision. It is known as the “Gauss-Legendre” algorithm
(after the discoverers of the key identities [[25 [35]]) or the “Brent-Salamin” algo-
rithm (after the 20th century discoverers [20]), and is about twice as fast as the
earlier algorithms which assume a knowledge of ¢ or log2. We abbreviate the name
to Algorithm GL. Bailey and Borwein, in Pi: The Next Generation [0, Synopsis of
paper 1], say “This remarkable co-discovery arguably launched the modern com-
puter era of the computation of ﬂ”E]

In 1984, Jon and Peter Borwein [12]] (see also [14} Alg. 2.1]) discovered another
quadratically convergent algorithm for computing 7, with convergence about as fast
as Algorithm GL. We call this the (first) Borwein-Borwein algorithm, abbreviated
Algorithm BBI. Yet another quadratically convergent algorithm, which we call the
(second) Borwein-Borwein algorithm and abbreviate as Algorithm BB2, dates from
1986 — see [13]] and [14] Iteration 5.1]. Although Algorithm BB2 appears different
from Algorithm GL, we show in §5|that the two algorithms are in fact equivalent, in
the sense of producing the same sequence of approximations to 7. This surprising
fact does not seem to have been noticed before.

4 Some superlinearly convergent algorithms for 7

In this section we describe the Gauss-Legendre algorithm (GL) and two quadrati-
cally convergent algorithms (BB1 and BB2) due to Jon and Peter Borwein. We also
describe a 4-th order algorithm (BB4) due to the Borweins.

5 In [10| §10], Jon Borwein says “It [Algorithm GL] is based on the arithmetic-geometric mean
iteration (AGM) and some other ideas due to Gauss and Legendre around 1800, although neither
Gauss, nor many after him, ever directly saw the connection to effectively computing 7”.

8 Richard P. Brent

Using Legendre’s relation and the formula that we have given for E and K in
terms of the AGM iteration, it is not difficult to derive Algorithm GL. We present it
in pseudo-code using the same style as the algorithms in [22]].

Algorithm GL

Input: The number of iterations 72,

Output: A sequence of n,,,, intervals containing 7.

ap:=1;by:=1/v/2; 50 := %.

for »n from O to n,,,4, — 1 do
apt1 = (an +bn>/2;
Cntl := Ap — dp+1;
OUtPUt (angl /Snv a%/sn)'
if n < nyu — 1 then

buy1 =/ anby;

R n 2
Spr1 =5, —2"Cpy .

Remarks

1. Subscripts on variables such as a,,b, are given for expository purposes. In an
efficient implementation only a constant number of real variables are needed,
because a,1 can overwrite a, (after saving a, in a temporary variable for use in
the computation of b,), and similarly for b, ¢, and s,,.

2. The purpose of the final “if ... then” is simply to avoid unnecessary computa-
tions after the final output. Similar comments apply to the other algorithms given
below.

3. Salamin [41] notes the identity 4a,1cpr1 = cﬁ which can be used to compute
cn+1 without the numerical cancellation that occurs when using the definition
Cn+1 = a, — ap+1. However, this refinement costs time and is unnecessary, be-
cause the terms 2”0,% +1 diminish rapidly and make only a minor contribution to
the overall error caused by using finite-precision real arithmetic. To obtain an
accurate result it is sufficient to use O(logny,,y) guard digits.

Neglecting the effect of rounding errors, Algorithm GL gives a sequence of lower
and upper bounds on 7:

2 2
a a

n+1 <m<

Sn Sn

and both bounds converge quadratically to . The lower bound is more accurate,
so the algorithm is often stated with just the lower bound a,% +1/$n (we call this
variant Algorithm GLI). Table[T|shows the approximations to 7 given by the first few
iterations. Correct digits are shown in bold. The quadratic convergence is evident.
Recall that in Algorithm GL we have ag = 1, by = 1/v/2, 5o = % and, forn > 0,

an+b
apyl = n 2 =, bpy1 = V Apbp, Cpy1l = ay —apy1, Spp1 = Sy 72"C;%+1'

The Borweins, 7 and the AGM 9

n lower bound a2, /s, upper bound a2 /s,

0 2.914213562373095048801689 < 7w < 4.000000000000000000000000
1 3.140579250522168248311331 < 7 < 3.187672642712108627201930
2 3.141592646213542282149344 < 7w < 3.141680293297653293918070
3 3.141592653589793238279513 < m < 3.141592653895446496002915
4 3.141592653589793238462643 < m < 3.141592653589793238466361

Table 1: Convergence of Algorithm GL

Take g = e~ ", and write

o = lim a, = 0;2(q) =2m°? /(1) = 0.8472, (16)
n—oo -

Seo 1= lim 5, = 0;%(q) /7 = 47* /T4 (1) =~ 0.2285. a7
n—yoo

Since ¢, = 07(¢*")/62(q), we have

oo

m+1
55 = 074(g) Y 2"03 (). (18)

m=n
Write a,/de = 1+ 6, and s, /5. = 1 + &,. Then

o, = 932(412”) —1~ 4q2n as n —» oo,

and - ive
g
& =" E 2m Gf(qzm“) ~2" 47tq2n+1.

m=n

Writing
a,%/ai, B a,zl _ (1—&—5,1)27

Sn/Soo _nsn 1+£n

it is straightforward to obtain an upper bound on 7:
0<a/sy,—n<U(n):=8nqg". (19)
Convergence is quadratic: if e, := afl /sn — T, then
r}g&@wl/é = é ’
Replacing a, by a,.1 and &, by 8,1, we obtain a lower bound on 7:

2
0<m— % <L(n):= (2" —sm)g®". (20)
n

10 Richard P. Brent

Pi and the AGM [(2.5.7) on page 48] gives a slightly weaker lower bound which,
via (T6), may be written as

2 n+4 .2 2+l
a 2"

_Intl o 2q) Q1)
Sn az,

Since a2 < 1, the bound (21) is weaker than the bound (20). In @20), the factor
(2"+47% — 81) is the best possible, since an expansion of a2, /s, in powers of ¢

gives T —a2 | /s, = ("% — 877:)qzn+1 - O(Z"qznﬂ), with the minus sign before
the “O” term informally indicating the sign of the remainder.

als,—= ﬂfa,%ﬂ/s,,
U(n) L(n)
8.58e-1 2.27e-1 0.790369040 | 0.916996189
4.61e-2 1.01e-3 0.981804947 | 0.999656206
8.76e-5 7.38e-9 0.999922813 | 0.999999998
3.06e-10 | 1.83e-19 |0.999999999 | 1.000000000
3.72e-21 | 5.47e-41 | 1.000000000 | 1.000000000
5.50e-43 | 2.41e-84 | 1.000000000 | 1.000000000
1.20e-86 | 2.31e-171 | 1.000000000 | 1.000000000
5.76e-174| 1.06e-345 | 1.000000000 | 1.000000000
1.32e-348| 1.11e-694 | 1.000000000 | 1.000000000

a,%/s,,fﬂ: nfagﬁ/s,,

O NN B~ W ~O I

Table 2: Numerical values of upper and lower bounds for Algorithm GL

In Table] U (n) := 8mexp(—2"x) and L(n) := (2"**7% — 87)exp(—2"+') are
the bounds given in (I9)—(20). It can be seen that the bounds are very accurate for
n > 1, as expected from our analysis.

Recall that Algorithm GL gives approximations a2 /s, and a2 | /s, to T = a2 /...
Using the expressions for a,, and s, in terms of theta functions, we see that

a; 65*(q)
= I TR (22)
Sn — 63 (CI) Yon—n2" 02 (q)

[or similarly with the numerator replaced by a,zl 1165 4(612'1+1)1. The expression (22)
for 7 is essentially of the form

n n+1
aG-0(") | Gn=0d)
Sy — O(an2n+l) Sy — O(znq2n+l)

This shows precisely how Algorithm GL approximates & and why it provides upper
[or lower] bounds.

In Pi and the AGM, Jon and Peter Borwein present a quadratically convergent al-
gorithm for 7, based on the AGM, but different from Algorithm GL. It is Algorithm
2.1 in Chapter 2, and was first published in [12]. We call it Algorithm BBI.

The Borweins, & and the AGM 11

Instead of using Legendre’s relation, Algorithm BB1 uses the identity

K0 DK,y = T
where Dy denotes differentiation with respect to k.
Using the connection between K (k') and the AGM, the Borweins [14] (2.4.7)]
prove that
_ s (AGMOLK)? |
Dy AGM(1,k) k=1/v2

An algorithm for approximating the derivative in this formula can be obtained by
differentiating the AGM iteration symbolically. Details are given in [[14].

We now present Algorithm BB1. Note that the algorithm given in [14] defines
the upper bound 7, := T,_1(x, + 1)/(y, + 1) and omits the lower bound x,, but
T, can be obtained from [14, ex. 2.5.11]. We present a version that computes upper
(7,) and lower (x,,) bounds for comparison with Algorithm GL.

Algorithm BB1
Input: The number of iterations 72,
Output: A sequence of n,,,, intervals containing 7.

X0 = V2;
output (7, := xo, ﬁg =x0+2).
y=x0"% x = b g)

for n from 1 to n,,4, — 1 do

T ._Zﬁnfl.ﬁ — x”+1 .
7n'_yn+19 n-—2%2n 2 1)

output (7, 7,);

if n < ny4 — 1 then
s

. 1/2 1/2y. ._
Xn+1 : (+Xn 7)s Yng1 Yot 1

It may be shown that 7, decreases monotonically to the limit 7, and &, increases
monotonically to 7. Moreover, T, — 7, decreases quadratically to zero. This is il-
lustrated in Table

It is not immediately obvious that Algorithm BB1 depends on the AGM. How-
ever, the AGM is present in Legendre form: if ag := 1, by := k' = 1 / V2, and we
perform n steps of the AGM iteration to define ay,,b,, then x, = a,/b, and, for
n= L Yn = Dkbn/Dkan-

Comparing Tables[T|and[3] we see that Algorithm BB1 gives better upper bounds,
but worse lower bounds, than Algorithm GL, for the same value of n (i.e. same
number of square roots).

As for Algorithm GL, we can express the error after n iterations of Algorithm
BBI1 using theta functions, and deduce the asymptotic behaviour of the error.

Consider the AGM iteration with ag = 1,bg = k' = (1 — kz)l/ 2 Then a, and b,
are functions of k. In Pi and the AGM it is shown that, forn > 1,

12 Richard P. Brent

n T, Ttn
0 1.414213562373095048801689 < m < 3.414213562373095048801689
1 3.119132528827772757303373 < 7 < 3.142606753941622600790720
2 3.141548837729436193482357 < & < 3.141592660966044230497752
3 3.141592653436966609787790 < & < 3.141592653589793238645774

4 3.141592653589793238460785 < m < 3.141592653589793238462643

Table 3: Convergence of Algorithm BB1

T | = (23/2b5a” /Dkan) ke /vz- 23)

Now a, and b, are given by (13 with ¢ = e~ . We differentiate a, with respect to ,
where k = (1—53)'/2 = 63(¢)/63(q). This gives

[63 63 (q)
D ‘Dq< 2@ >/ Dq(é(q)) | | 9

g=e"

We remark that (24) gives Dyag = 0, as expected since ag is independent of k.
Thanks to the analyticity of the theta functions in |g| < 1, there is no difficulty in
showing thalﬁ
lim Dya, = Dy lim a,, .
n—soo n—soo
We denote the common value by Dya... Taking the limit in (23)), we obtain (as also
follows from [[14, (2.4.7)]):

23/243
Didoo = === = 0.547486... (25)

Now a, — e = Z cm, and differentiating both sides with respect to k gives
m=n-+1

o= £ o(YE)(E)] - e
g=e "

m=n-+1

We remark that (26) is analogous to (I8)), which we used in the analysis of Algo-
rithm GL. Using (23)) - (26), we obtain an upper bound on 7 (forn > 1, g = ¢~ ™)

0<Tp—m< 242 @7

A slightly weaker bound than (27) is proved in [T4] §2.5].

6 Similarly, where we exchange the order of taking derivatives and limits elsewhere in this section,
it is easy to justify.

The Borweins, & and the AGM 13
Similarly, we can obtain a lower bound on 7:
0<m—x;, <4ng . (28)

We omit detailed proofs of (27) and (Z8); they involve straightforward but tedious
expansions of power series in g. Experimental evidence is provided in Table [}

_ Ty —T7 -7,
Tn—T W T-x, ang”
T.01e3 |0.9806487063| 2.25¢2 |0.9570949132
7.38¢-9 |0.9948470082| 4.38¢-5 [0.9998316841
1.83e-19]0.9974691480|| 1.53e-10 |0.9999999988
5.47e-41 [0.9987456847|| 1.86e-21 |1.0000000000
2.41e-84 [0.9993755837| 2.75e-43 |1.0000000000
2.31e-171 [0.9996884727| 6.01e-87 |1.0000000000
1.06e-345 [0.9998444059|(2.88e-174 |1.0000000000
1.11e-694 (0.9999222453(6.59¢-349 |1.0000000000

=

S e Y N O R N

Table 4: Numerical values of upper and lower bounds for Algorithm BB1

Table |7_1| gives numerical values of the approximation errors T, — 7 and = — 7,
and the ratio of these values to the bounds (27) and (Z8) respectively. It can be seen
that the bounds are very accurate (as expected from the expressions for the errors
in terms of theta functions and the rapid convergence of the series for the theta
functions). The upper bound overestimates the error by a factor of 1+ 0(27"). A
computation shows that we can not replace the bound by the function L(n) defined
in (20), although a similar bound appears to be valid if the constant 87 in (20) is
replaced by a slightly smaller constant, e.g. 77.

The bounds (27)—(28) can be compared with the lower bound (2472 — 87)g>"""
and upper bound 87¢%" for Algorithm GL. The upper bound is better for Algorithm
BB, but the lower bound is better for Algorithm GL. This confirms the observation
above regarding the comparison of Tables[T]and 3]

Since it will be needed in §5 we state another quadratic algorithm, Algorithm
BB2, different from Algorithm BB1 but also due to Jon and Peter Borwein (iteration
5.2 on page 170 of [14] with the parameter r = 4).

14 Richard P. Brent

Algorithm BB2
Input: The number of iterations 72,,y.
Output: A sequence of n,,,, approximations to 7.
o :=6—4v2; ko:=3-2vV2;
for n from O to 7,4, — 1 do
output 7, := 1/0t,;
if n < ;4 — 1 then

1-K
K= /1—k2; kypy = ﬁ;
Ot = (14 k1) 0 — 2" 2k -

In Algorithm BB2, we have 7, — 7 quadratically [14] pg. 170]. We remark that it
would be clearer to increase (by one) the subscripts on the variables in Algorithm
BB2, so as to correspond to the usage in Algorithm GL, which implicitly has kj, =
bo/ap=1/v2and ky = (1 —k})/(1+kj) =3 —21/2, but we have kept the notation
used in [14]].

The Borwein brothers did not stop at quadratic (second-order) algorithms for 7.
In Chapter 5 of Pi and the AGM they gave algorithms of orders 3, 4, 5 and 7. Of
course, these algorithms are not necessarily faster than the quadratic algorithms,
because we must take into account the amount of work per iteration. For a fair com-
parison, we can use Ostrowski’s efficiency index [38, §3.11], defined as log(p)/W,
where p > 1 is the order of convergence and W is the work per iteration. A justifi-
cation of this measure of efficiency is given in [16]. Consider a simple example —
if we combine three iterations of Algorithm BB2 into one iteration of a new algo-
rithm, then we obtain an algorithm of order 8, but with three times as much work
per iteration. The efficiency index is the same in both cases, as it should be.

We refer to [14), Chapter 5] for the Borweins’ cubic, quintic and higher-order al-
gorithms, and consider only their quartic algorithm, which we call Algorithm BB4.
It is a specialisation to the case r = 4 of the slightly more general algorithm given
in [14} iteration 5.3, pg. 170]. The same special case is given in [[15, Algorithm 1]
and has been used in extensive calculations of 7, see for example [4} 32]. We have
changed notation slightly (a, — z,) to avoid conflict with the notation used in Al-
gorithm GL.

The Borweins, & and the AGM 15

Algorithm BB4
Input: The number of iterations 71,y
Output: A sequence of n,,,, approximations to 7.
Yoi= V215 20:=2y5;
for n from O to 1,4, — 1 do

output 7, :=1/z,;

if n < nyee — 1 then
(-
(AT
)4 _2n+3

Yn+1:

Znt1 i=Zn(1 +Ynp1 Yn+l(1+)’n+1+yﬁ+1)-

In Algorithm BB4, 7, converges quartically to 7. A sharp error bound is
0<m—m, < m>4"2exp(—2m4"). (29)

This improves by a factor of two on the error bound given in [14, top of pg. 171].
We defer the proof until

Table[5|shows the error 7w — m, after n iterations of the Borwein quartic algorithm,
and the ratio of the error 7 — 7, to the upper bound (29).

-,
T bound
2.273790912e-1 0.7710517124
7.376250956e-9 0.9602112619
5.472109145e-41 0.9900528160

2.308580715e-171 0.9975132040
1.110954934e-694 0.9993783010
9.244416653e-2790 | 0.9998445753
6.913088685e-11172 | 0.9999611438
3.376546688e-44702 | 0.9999902860
3.002256862¢e-178825| 0.9999975715

0NN W= O S

Table 5: Approximation error in Algorithm BB4

At this point the reader may well ask “which of Algorithms GL, BB1, BB2
and BB4 is the fastest?”. The answer seems to depend on implementation details.
All four algorithms involve the same number of square roots to obtain compara-
ble accuracy (counting a fourth root in Algorithm BB4 as equivalent to two square
roots, which is not necessarily correcﬂ). Algorithm GL has the advantage that high-
precision divisions are only required when generating the output (so the early divi-
sions can be skipped if intermediate output is not required). The other three algo-

~1/2

7 For example, one might compute x'/4 using two inverse square roots, i.e. (xfl/ 2) , which is

possibly faster than two square roots, i.e. (x'/2)1/2, see [22] §4.2.3].

16 Richard P. Brent

rithms require at least one division per iteration. Borwein, Borwein and Bailey [15]
pg. 202] say “[Algorithm BB4] is arguably the most efficient algorithm currently
known for the extended precision calculation of 77, and the times given in Bai-
ley’s paper [4, pg. 289] confirm this (28 hours for Algorithm BB4 versus 40 hours
for Algorithm BB1). However, Kanada [32], who extended Bailey’s computation,
reached the opposite conclusion. His computation took 5 hours 57 minutes with
Algorithm GL, and 7 hours 30 minutes with Algorithm BB4 (which was used for
verification).

S Equivalence of some algorithms for 7

In the following, doubling an algorithm A means to construct an algorithm A? that
outputs (xp,x2,X4,...) if algorithm A outputs (xg,x1,x2,...). Replacing n by 2n
in (20) and retaining only the most significant term, we see that an error bound
for Algorithm GL1 doubled is

0 < T—ad,. /s < 4" exp(—2m4").

It is suggestive that the right-hand side is the same as in the error bound (29) for the
Borwein quartic algorithm after » iterations.

On closer inspection we find that the two algorithms (GL1 doubled and BB4) are
equivalent, in the sense that they give exactly the same sequence of approximations
to 7. Symbolically,

o0 = a3yi1 /520y (30)

where a,,, s, are as in Algorithm GL, and 7, is as in Algorithm BB4. This observa-
tion appears to be new — it is not stated explicitly in Pi and the AGM or elsewhere,
so far as we know[]

Before proving the result, we give some empirical evidence for it, since that is
how the result was discovered — in the spirit of “Experimental Mathematics”, as
beloved by Jon Borwein. In Table [n+ 1 is the number of square roots, and the
second column is the error in the approximation given by Algorithm GL1 after n
iterations, or by the Algorithm BB4 after n/2 iterations (n even). The error is the
same for both algorithms (verified to 1000 decimal digits, not all shown).

Using the definitions of the two algorithms, equality for the first line of the table
(n = 0) follows from

at/so=m=3+vV2=m1-0.227...

For the second line (n = 2) we have, with 7 := 2~1/4,
(242t 4+ 14223 4+ 21) 813 — 41> +-8t -5
a3 = and)= ———

8 16

8 For example, the equivalence is not mentioned in [4], [15], [28]], [29] or [32].

The Borweins, & and the AGM 17

T— a%n 11 /s2, (for Algorithm GL1) or m — m, (for Algorithm BB4)

2.2737909121669818966095465906980480562749752399816¢-1
7.3762509563132989512968071098827321760295030264154e-9
5.4721091456899418327485331789641785565936917028248e-41
2.3085807149343902668213207343869568303303472423996e-171
1.1109549335576998257002904117322306941479378545140e-694

XN B NDO S

Table 6: Approximation error for Algorithms GL1 doubled and BB4

50 a3 (P 4204+142v2053 +2) 31
so 483 — 4248t —5)
Also, from the definition of Algorithm BB4 we find, with
1 (12v2-16)'4
T (12v2—16)1/4
that 1
T = (32)

(6—4v2)(1+y1)* — 8y — 8y2 — 8y;

It is not obvious that the algebraic numbers given by and are identical, but
it can be verified that they both have minimal polynomial

P(x) :=1 — 1635840576x — 343853312x 4 60576043008x>
+ 1865242664960x* — 16779556159488x° + 37529045696512x°
—29726424956928x" + 6181548457984x.

Using Sturm sequences [44], it may be shown that P(x) has two real roots, one
in the interval [0, 1], and the other in [3,4]. A numerical computation shows that
|a3 /s> —m| < 1, but both a3 /s, and 7 are real roots of P(x), so they must be equal.

Clearly this “brute force” approach does not generalise. To prove the equivalence
of Algorithms BB4 and GL1, we first consider the equivalence of Algorithms BB2
and GL1.

Theorem 1. Algorithm BB2 is equivalent to Algorithm GLI, in the sense that
T = ai+1/ Sns
where T, = 1 /@, is as in Algorithm BB2, and an+1,s, are as in Algorithm GL.

Proof. In the proof we take n > 0, ¢ = ¢~ ", and assume that a,,b,,c,+1,s, are

defined as in Algorithm GL, and k,,, o, 7T, are as in Algorithm BB2.
Algorithm GL implements the recurrence

Snal :san"cﬁJr], (33)

whereas Algorithm BB2 implements the recurrence

18 Richard P. Brent
Ot = (14 kng1)? 0 — 2"k (34)

We show that the recurrences (33)—(34) are related. Noting the remark on subscripts
following the statement of Algorithm BB2, we see that k, = ¢,+1/dn+1, since both

sides equal 67 (qzn+l)/ 63 (qzn+1). Thus

1 +kny1 = anti /an+2~ (35)

Define 3, := aﬁ 410y and ¥, = aﬁ +oknt1. Substituting into and clearing
the fractions gives
But1=Bu—2"" (36)

Now
2n+2

4y = 4aﬁ+2kn+1 =4a,2Ch412 = 95‘(‘1)/9§(51) = Cﬁ+1a

$0 is equivalent to
Bt =B —2"chy. (37)

This is essentially the same recurrence as (33). Also, so = 1/4 and ffy = a%oao =1/4,
s0 50 = Po. It follows that s, = f8, for all n > 0. Thus 5, = a2, | &, and

T=1/0 =a’, /sn,

which completes the proof. ad

Corollary 1. Algorithm BB4 is equivalent to Algorithm GLI doubled, in the sense
that

2
T = @211 /52m,

where T, is as in Algorithm BB4, and a,,,s, are as in Algorithm GL.

Proof. The Borwein brothers noted [14} pg. 171] that Algorithm BB4 is equivalent
to Algorithm BB2 doubledﬂi.e. T, = T, Thus, the result follows from Theorem
O

Corollary 2. For Algorithm BB4, the error bound holds.

Proof. In view of Corollary|T] the error bound follows from (30} and the error
bound (20) for Algorithm GL. O
6 Some fast (but linear) algorithms for 7

Let (x), :=x(x+1)--- (x+n— 1) denote the ascending factorial. In Chapter 5 of Pi
and the AGM, Jon and Peter Borwein discuss Ramanujan-Sato series such as

9 In fact, this is how Algorithm BB4 was discovered, by doubling Algorithm BB2 and then making
some straightforward program optimisations.

The Borweins, 7 and the AGM 19

&

1_p i (2)n(3)n(3)n (1103 +26390n)
P = (n!)>3 994n+2
This is linearly convergent, with rate 1/99*, so adds nearly eight decimal digits per
term, since 99% ~ 108,
A more extreme example is the Chudnovsky series [23]]

1 i (6n)! (13591409 + 545140134n)
—=12Y) (-1 >
n = (3n)! (n!)3 6403203+3/

) (38)

which adds about 14 decimal digits per term.

Although such series converge only linearly, their convergence is so fast that they
are competitive with higher-order algorithms such as Algorithm GL for computing
highly accurate approximations to 7. Which algorithm is the fastest in practice de-
pends details of the implementation and on technological factors such as memory
sizes and access times.

7 Fast algorithms for the elementary functions

In this section, we consider the bit-complexity of algorithms. The bit-complexity of
an algorithm is the (worst case) number of single-bit operations required to complete
the algorithm. For a fuller discussion, see Chapter 6 of Pi and the AGM. We are
interested in asymptotic results, so are usually willing to ignore constant factors.

If all operations are performed to (approximately) the same precision, then it
makes sense to count operations such as multiplications, divisions and square roots.
Algorithms based on the AGM fall into this category.

If the precision of the operations varies widely, then bit-complexity is a more
sensible measure of complexity. An example is Newton’s method, which is self-
correcting, so can be started with low precision. Another example is summing a
series with rational terms, such as e = Y° 1/k!.

The bit-complexity of multiplying two n-bit numbers to obtain a 2n-bit product
is denoted by M(n). The classical algorithm shows that M (n) = O(n?), but various
asymptotically faster algorithms exist. The best result so far, due to Harvey, van der
Hoeven and Lecerf [30], is

M(n)=0 (nlognK]"g*")

with K = 8. Here the iferated logarithm function log*n is defined by
x ifn<1;

log*n := .

1 +log*(logn) ifn>1.

It is unbounded but grows extremely slowly as n — oo, e.g. slower than

20 Richard P. Brent
loglog- - -logn [for any fixed number of logs].

Indeed, if the multiplication algorithm is implemented on a computer that fits in the
observable universe and has components no smaller than atomic nuclei, then we can
safely assume that log*n is bounded by a moderate constant, and that multiplication
has bit-complexity O(nlogn).

We follow Pi and the AGM and assume that M (n) is nondecreasing and satisfies
the weak regularity condition

2M(n) < M(2n) <4M(n).

Newton’s method can be used to compute reciprocals and square roots with bit-
complexity

O (M(n)+M([n/2])+M ([n/2%]) +--- +M(1)) = O(M(n)).

It can be shown that the bit-complexities of squaring, multiplication, reciprocation,
division, and root extraction are asymptotically the same, up to small constant fac-
tors [18]]. All these operations have bit-complexity of order M(n).

To compute 7 to n digits (binary or decimal) by the arctan formula (TJ), or to
compute 1/7 by the Chudnovsky series (38), we have to sum of order n terms.
Using divide and conquer, also called binary splitting [18 27]@ this can be done
with bit-complexity

O(M(n)log®n).

Suppose we compute 7 to n-digit accuracy using one of the quadratically con-
vergent AGM algorithms. This requires O(logn) iterations, each of which has bit-
complexity O(M(n)). Thus, the overall bit-complexity is

O(M(n)logn).

This is (theoretically) better than series summation methods, the best of which have
bit-complexity of order M(n)log?n.

In practice, a method with bit-complexity of order M(n) log?n may be faster
than a method with bit-complexity of order M(n)logn unless n is sufficiently large.
This is one reason for the recent popularity of the Chudnovsky series (38) for high-
precision computation of 7, even though the AGM-based methods are theoretically
(i.e. asymptotically) more efficient.

In we mentioned Salamin’s algorithm for computing logx for sufficiently
large x = 4/k, i.e. sufficiently small k, using (@). We can evaluate K'(k)/7 using
the AGM with (ag,bo) = (1,k), and hence approximate log(4/k), assuming that 7
is precomputed. To compute logx to n-bit accuracy requires about 2log,(n) AGM
iterations, or 3log,(n) iterations if we count the computation of 7.

If x is not sufficiently large, we can use the identity log(x) = log(2Px) — plog2,
where p is a sufficiently large integer (but not too large or excessive cancellation will

10 Somewhat more general, but based on the same idea, is E. Karatsuba’s FEE method [33]).

The Borweins, & and the AGM 21

occur). This assumes that log?2 is precomputed, and that the precision is increased
to compensate for cancellation.

To obtain a small relative error when x is close to 1, say |x — 1] < 2-n/ logn ¢
is better to use the Taylor series for log(1+z), with z = x — 1. The Taylor series
computation can be accelerated by “splitting”, see [22, §4.4.3] and [43]],

The O(k?) error term in the expression (9) can be written explicitly using hyper-
geometric series, see [14} (1.3.10)]. This gives one way of improving the accuracy
of the approximation K’ (k) to log(4/k). We give an alternative using theta functions,
for which the series converge faster than the hypergeometric series (which converge
only linearly). The result (39) follows from several identities given in §2] We collect
them here for convenience:

log(1/q) = nK' (k) /K (k),
k=63(q)/63(q),

K(k) = (7/2)63(q),
K'(k) = (m/2)/AGM(1,k).

Putting these pieces together gives the elegant result of Sasaki and Kanada [42]

T

os(1/9) = S GM(82(g). 62(0)) (39

In (39) we can replace ¢ by ¢* to avoid fractional powers of ¢ in the expansion of
0(g), obtaining an exact formula for all ¢ € (0, 1):

B /4
e A3, 2 “o

As in Salamin’s algorithm, we have to ensure that x := 1/¢ is sufficiently large,
but now there is a trade-off between increasing x or taking more terms in the series
defining the theta functions. For example, to attain n-bit accuracy, if x > 2n/ 36 we
can use 6»(g*) = 2(q+¢° +¢% +0(¢*)) and 65(¢*) = 1 +2(¢* +4'° + 0(£*?)).
This saves about four AGM iterations, compared to Salamin’s algorithm. We remark
that a result similar to (39) and @0) is given in (7.2.5) of Pi and the AGM, but with
an unfortunate typo (a reciprocal is missing).

So far we have assumed that the initial values ag,bg in the AGM iteration are
real and positive. There is no difficulty in extending the results that we have used
to complex ag, by, provided that they are nonzero and ag/bg is not both real and
negative. For simplicity, we assume that ag, by € 7 = {z|R(z) > 0}.

In the AGM iteration (and in the definition of the geometric mean) there is an
ambiguity of sign. We always choose the square root with positive real part. Thus
the iterates a,, b, are uniquely defined and remain in the right half-plane 7.

22 Richard P. Brent

When using (@0), we may need to apply a rotation to g, say by a multiple of /3,
in order to ensure that the starting values (03 (g*), 03 (g*)) for the AGM lie in.7#’

For z € C\{0}, log(z) = log(|z|) + iarg(z), provided we use the principal values
of the logarithms. Thus, if x € R, we can use the complex AGM to compute

arctan(x) = 3 (log(1 +ix)).

arcsin(x),arccos(x) etc can be computed via arctan using elementary trigonometric
identities such as arccos(x) = arctan(v/1 —x%/x).

Since we can compute log, arctan, arccos, arcsin, we can compute exp, tan, cos, sin
(in suitably restricted domains) using Newton’s method. The trigonometric func-
tions can also be computed via the complex exponential. Similarly for the hyper-
bolic functions cosh, sinh, tanh and their inverse functions.

Although computing the elementary functions via the complex AGM is concep-
tually straightforward, it introduces the overhead of complex arithmetic. It is possi-
ble to avoid complex arithmetic by the use of Landen transformations (which trans-
form incomplete elliptic integrals). See exercise 7.3.2 of Pi and the AGM for an
outline of this approach, and [[19] for more details.

Whichever approach is used, the bit-complexity of computing n-bit approxi-
mations to any of the elementary functions (log,exp,arctan,sin,cos,tan, etc) in
a given compact set A C C that excludes singularities of the relevant function
is O(M(n)logn). Here “n-bit approximation” means with absolute error bounded
by 27". We could require relative error bounded by 27", but the proof would de-
pend on a Diophantine approximation result such as Mahler’s well-known result on
approximation of 7 by rationals [37], because of the difficulty of guaranteeing a
small relative error in the neighbourhood of a zero of the function

Certain non-elementary functions can be computed with bit-complexity
O(M(n)logn) via the AGM. For example, we mention complete and incomplete el-
liptic integrals, elliptic functions, and the Jacobi theta functions 6(q), 63(q), 64(q).
Functions that appear not to be in this class of “easily computable” functions include
the Gamma function I'(z) and the Riemann zeta function {(s).

Algebraic functions can be computed with bit-complexity O(M(n)), see [14]
Thm. 6.4]. It is plausible to conjecture that no elementary transcendental functions
can be computed with bit-complexity O(M(n)). However, as usual in complexity
theory, nontrivial lower bounds are difficult to prove.

11" Alternatively, we could drop the simplifying assumption that ag,by € 2 and use the “right
choice” of Cox [24} pg. 284] to implement the AGM correctly.

12 Mahler’s result is sufficient for the usual elementary functions, whose zeros are rational multi-
ples of 7, but it is not applicable to the problem of computing combinations of these functions, e.g.
exp(sinx) + cos(logx), with small relative accuracy. In general, we do not know enough about the
rational approximation of the zeros of such functions to guarantee a small relative error. However,
the result that we stated for computing elementary functions with a small absolute error extends
to finite combinations of elementary functions under the operations of addition, multiplication,
composition, etc. Indeed, the set of elementary functions is usually considered to include such fi-
nite combinations, although precise definitions vary. See, for example, §7.3 of Pi and the AGM,
Knopp [34} pp. 96-98], Liouville [36], Ritt [40], and Watson [45] pg. 111].

The Borweins, & and the AGM 23

Acknowledgements I am grateful to Jon and Peter Borwein for becoming sufficiently interested
in this subject to write their book Pi and the AGM only a few years after the publication of [[17, 18
191 141]]. Reading a copy of Pi and the AGM was my first introduction to the Borwein brothers, and
was the start of my realisation that we shared many common interests, despite living in different
hemispheres. Much later, after Jon moved to Newcastle, I followed him, bringing our common
interests closer together, and benefitting from frequent interaction with him.

The author was supported in part by Australian Research Council grant DP140101417 (Jon
Borwein was the Principal Investigator on this grant, up to the time of his death).

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1965. Online version at http://people.math.sfu.ca/~cbm/aands/, accessed 19
February, 2018.

2. G. E. Andrews, Book review: Pi and the AGM ..., Bulletin (NS) AMS 22 (1990), 198-201.

. R. Askey, Book review: Pi and the AGM, Amer. Math. Monthly 95 (1988), 895-897.

4. D. H. Bailey, The computation of 7 to 29,360,000 decimal digits using Borweins’ quartically

convergent algorithm, Math. Comp. 50 (1988), 283-296.

5. D. H. Bailey, A collection of mathematical formulas involving 7, Feb. 6, 2018, http://
www.davidhbailey.com/dhbpapers/pi-formulas.pdf, accessed 19 February,
2018.

6. D. H. Bailey and J. M. Borwein, Pi: The Next Generation, Springer, 2016.

7. N. D. Baruah, B. C. Berndt and H. H. Chan, Ramanujan’s series for 1/7: a survey, Amer.
Math. Monthly 116 (2009), 567-587.

8. M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM, Al Memo 239, MIT Al Lab,
Feb. 1972. (Item 143 by E. Salamin.)

9. B. C. Berndt, Book review: Pi and the AGM ..., Math. Comput. 50 (1988), 352-354.

10. J. M. Borwein, The life of pi: from Archimedes to Eniac and beyond, prepared for
Berggren Festschrift, 19 June 2012, https://www.carma.newcastle.edu.au/
jon/pi-2012.pdf, accessed 19 February, 2018.

11. J. M. Borwein, Lectures and Presentations, https://www.carma.newcastle.edu.
au/jon/index-talks.shtml, accessed 19 February, 2018.

12. J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of
elementary functions, SIAM Review 26 (1984), 351-365.

13. J. M Borwein and P. B. Borwein, More quadratically convergent algorithms for &, Math.
Comput. 46 (1986), 247-253.

14. J. M. Borwein and P. B. Borwein, Pi and the AGM, Monographies et Etudes de la Société
Mathématique du Canada, John Wiley & Sons, Toronto, 1987.

15. J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan, modular equations, and approx-
imations to pi or how to compute one billion digits of pi, Amer. Math. Monthly 96 (1989),
201-219.

16. R. P. Brent, Some efficient algorithms for solving systems of nonlinear equations, SIAM J.
Numer. Anal. 10 (1973), 327-344.

17. R. P. Brent, Multiple-precision zero-finding methods and the complexity of elementary func-
tion evaluation, in Analytic Computational Complexity (edited by J. F. Traub), Academic
Press, New York, 1975, 151-176.

18. R.P. Brent, The complexity of multiple-precision arithmetic, in The Complexity of Computa-
tional Problem Solving (R. S. Anderssen and R. P. Brent, eds.), Univ. of QId. Press, Brisbane,
1976, 126-165.

19. R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23 (1976),
242-251.

W

http://people.math.sfu.ca/~cbm/aands/
http://www.davidhbailey.com/dhbpapers/pi-formulas.pdf
http://www.davidhbailey.com/dhbpapers/pi-formulas.pdf
https://www.carma.newcastle.edu.au/jon/pi-2012.pdf
https://www.carma.newcastle.edu.au/jon/pi-2012.pdf
https://www.carma.newcastle.edu.au/jon/index-talks.shtml
https://www.carma.newcastle.edu.au/jon/index-talks.shtml

24

20.
21.
22.
23.
24.
25.
26.
. X. Gourdon and P. Sebah, Binary splitting method, 2001, http://numbers.
28.
29.
30.
31.
32.

33.

34.
35.
36.

37.

38.
39.

40.
. E. Salamin, Computation of 7 using arithmetic-geometric mean, Math. Comp. 30 (1976),

42.
43.
44.
45.
. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, third edition, Cambridge,

47.

Richard P. Brent

R. P. Brent, Old and new algorithms for 7, Notices of the AMS 60 (Jan. 2013), 7.

R. P. Brent, Jonathan Borwein, Pi and the AGM, keynote talk at the Jonathan Borwein
Commemorative Conference, Newcastle, NSW, 26 Sept. 2017, http://maths—-people.
anu.edu.au/~brent/talks.html)} accessed 19 February, 2018.

R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University Press,
2010.

D. V. Chudnovsky and G. V. Chudnovsky, The computation of classical constants, Proc. Nat.
Acad. Sci. USA 88(21), 8178-8182.

D. A. Cox, The arithmetic-geometric mean of Gauss, L’Enseignement Mathématique 30
(1984), 275-330.

C. F. Gauss, unpublished notebook entry of May 1809, reproduced in J. Arndt and C. Haenel,
Pi: Algorithmen, Computer, Arithmetik, Springer, Berlin, 1998, Ch. 7, pg. 99.

C. F. Gauss, Carl Friedrich Gauss Werke, Bd. 3, Gottingen, 1876, 362—-403.

computation.free.fr/Constants/Algorithms/splitting.html} accessed
19 February, 2018.

J. Guillera, Easy proofs of some Borwein algorithms for 7, Amer. Math. Monthly 115 (2008),
850-854.

J. Guillera, New proofs of Borwein-type algorithms for Pi, Integral Transforms and Special
Functions 27 (2016), 775-782.

D. Harvey, J. van der Hoeven and G. Lecerf, Even faster integer multiplication, J. Complexity
36 (2016), 1-30.

C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Konigsberg, 1829.
Reprinted in Gesammelte Mathematische Werke, Bd. 1, 255-263.

Y. Kanada, Vectorization of multiple-precision arithmetic program and 201,326,000 decimal
digits of pi calculation, Supercomputing 88, IEEE, 1988, 117-128.

E. A. Karatsuba, Fast evaluations of transcendental functions, Probl. Peredachi Informat.
27,4 (1991). Also https://en.wikipedia.org/wiki/FEE_method, accessed 19
February, 2018.

K. Knopp, The Elementary Functions, §23 in Theory of Functions Parts I and II, Dover, New
York, 1996, 96-98.

A. M. Legendre, Exercices de Calcul Integral, Vol. 1, Paris, 1811, pg. 61.

J. Liouville, Sur la classification des Transcendantes et sur I’impossibilité d’exprimer les
racines des certaines équations en fonction finie explicite des coefficients. Part 1, J. Math.
Pure Appl. 2 (1837), 56-105. Also Part 2, ibid 3 (1838), 523-547.

K. Mahler, On the approximation of 7, Proc. Kon. Nederlandsche Akad. v. Wetenschap-
pen Ser. A 56 (1953), 3042 = Indag. Math. 15 (1953), 3042. Also https://carma.
newcastle.edu.au/mahler/docs/119.pdf, accessed 19 February, 2018.

A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New
York, 1960.

S. Ramanujan, Modular equations and approximations to pi, Quart. J. Math. (Oxford) 45
(1914), 350-372.

J. F. Ritt, Integration in Finite Terms, Columbia Univ. Press, New York, 1948.

565-570.

T. Sasaki and Y. Kanada, Practically fast multiple-precision evaluation of log(x), J. Inf. Pro-
cess. 5(1982), 247-250.

D. M. Smith, Efficient multiple-precision evaluation of elementary functions, Math. Comp.
52 (1989), 131-134.

J. C. E. Sturm, Mémoire sur la résolution des équations numériques, Bulletin des Sciences de
Férussac 11 (1829), 419-425.

G. N. Watson, A Treatise on the Theory of Bessel Functions, second edn., Cambridge, 1966.

1920. Also http://archive.org/details/cu31924001549660, Accessed 19
February, 2018.
J. Wimp, Pi and the AGM ..., review in SIAM Review 30 (1988), 530-533.

http://maths-people.anu.edu.au/~brent/talks.html
http://maths-people.anu.edu.au/~brent/talks.html
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
https://en.wikipedia.org/wiki/FEE_method
https://carma.newcastle.edu.au/mahler/docs/119.pdf
https://carma.newcastle.edu.au/mahler/docs/119.pdf
http://archive.org/details/cu31924001549660

	The Borwein brothers, Pi and the AGM
	Richard P. Brent
	1 Introduction
	2 Preliminaries: means, elliptic integrals and theta functions
	3 Historical remarks
	4 Some superlinearly convergent algorithms for pi
	5 Equivalence of some algorithms for pi
	6 Some fast (but linear) algorithms for pi
	7 Fast algorithms for the elementary functions
	References

