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Abstract

Let f0(z) = exp(z/(1 − z)), f1(z) = exp(1/(1 − z))E1(1/(1 − z)),
where E1(x) =

∫∞
x e−tt−1 dt. Let an = [zn]f0(z) and bn = [zn]f1(z) be

the corresponding Maclaurin series coefficients. We show that an and
bn may be expressed in terms of confluent hypergeometric functions.

We consider the asymptotic behaviour of the sequences (an) and
(bn) as n → ∞, showing that they are closely related, and proving a
conjecture of Bruno Salvy regarding (bn).

Let ρn = anbn, so
∑

ρnz
n = (f0 ⊙f1)(z) is a Hadamard product.

We obtain an asymptotic expansion 2n3/2ρn ∼ −
∑

dkn
−k as n → ∞,

where the dk ∈ Q, d0 = 1. We conjecture that 26kdk ∈ Z. This has
been verified for k 6 1000.
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1 Introduction

We consider two analytic functions,

f0(z) := ez/(1−z) = e−1 e1/(1−z)

and

f1(z) := exE1(x), where x := 1/(1− z) and E1(x) := ex
∫ ∞

x

e−t

t
dt.

These functions are regular in the open disk D = {z ∈ C : |z| < 1}. We write
their Maclaurin coefficients as an := [zn]f0(z) and bn = [zn]f1(z). Thus, in
the disk D, f0(z) =

∑
n>0 anz

n and f1(z) =
∑

n>0 bnz
n.

The functions f0(z) and f1(z) satisfy the same third-order linear differen-
tial equation with polynomial coefficients. Thus, the sequences (an) and (bn)
are D-finite and satisfy the same recurrence relation (for sufficiently large n).

There are several entries in the OEIS related to the rational sequence
(an)n>0. The numerators are OEIS A067764, and the denominators are OEIS
A067653. The integers n!an are given by OEIS A000262 and, with alternating
signs, by OEIS A293125. The numbers (bn)n>0 are unlikely to be rational.1

The numbers an and bn may be expressed in terms of confluent hyper-
geometric functions. If M(a, b, z) = 1F1(a; b; z) and U(a, b, z) are standard
solutions of Kummer’s differential equation, then Lemmas 1–2 show that
an = e−1M(n + 1, 2, 1) and bn = −Γ(n)U(n, 0, 1).

We are interested in the asymptotics of an and bn for large n. Perron [11]
showed that

an ∼ e2
√
n

2n3/4
√
πe

.

Salvy2 conjectured that bn is of order e−2
√
nn−3/4. We have verified this

conjecture. In fact,

bn ∼ −
√
πe

n3/4e2
√
n
.

1In particular, b0 = G, where G := eE1(1) ≈ 0.596 is the Euler-Gompertz constant,
whose decimal digits are given by OEIS A073003. We have bn = anG− a′

n
, where a′

n
∈ Q

and a′
n
satisfies essentially the same recurrence as an, but with different initial conditions.

Clearly bn ∈ Q if and only if G ∈ Q. All that is known is that at least one of γ and G is
irrational [1, 12].

2Bruno Salvy, email to A. J. Guttmann et al., May 28, 2018.
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A function of the form f(n) = exp(αnβ+o(1)) for α 6= 0, β ∈ (0, 1), is
called a stretched exponential in the physics/statistics literature (the term
sub-exponential is used in complexity theory). Thus, an and bn are stretched
exponentials, with α = ±2 and β = 1/2. The motivation for this paper was
a query about the existence of simple functions whose Maclaurin coefficients
are stretched exponentials with α < 0 and β ∈ Q. Here we consider the
case β = 1/2; other cases are more complicated and will be considered in a
separate paper.

Theorem 5 gives complete asymptotic expansions of an and bn. These
may be written as

an =
F (n1/2)

2n3/4
√
πe

and bn = −
√
πe

n3/4
F (−n1/2),

where F (x) ∼ e2x
∑

k>0 ckx
−k, for certain constants ck ∈ Q, c0 = 1. The ck

may be computed using Theorem 5 or Lemma 7.
The Hadamard product f0⊙f1 of f0 and f1 is the analytic function defined

for z ∈ D by

(f0⊙f1)(z) =
∑

n>0

anbnz
n.

The asymptotic expansions of an and bn imply an asymptotic expansion for
ρn := anbn of the form

ρn ∼ − 1

2n3/2

∑

k>0

dkn
−k,

where dk ∈ Q, d0 = 1 (see Corollary 10).
A dyadic rational is a rational number of the form p/q, where q is a power

of two. Let Q2 := {j/2k : j, k ∈ Z} denote the set of dyadic rationals.
We conjecture, from numerical evidence for k 6 1000, that dk ∈ Q2. More

precisely, defining rk := 26kdk, Conjecture 11 is that rk ∈ Z. Remark 12 gives
numerical evidence for a slightly stronger conjecture. In Theorem 18 we prove
the weaker (but still nontrivial) result that k!rk ∈ Z.

In Remark 14 we mention an analogous (easily proved) result for modi-
fied Bessel functions, where the product Iν(x)Kν(x) for fixed ν ∈ Z has an
asymptotic expansion whose coefficients are in Q2.

Some comments on notation: f(x) ∼
∑

k>0 fkx
−k means that the sum

on the right is an asymptotic series for f(x) in the sense of Poincaré. Thus,
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for any fixed m > 0, f(x) =
∑m−1

k=0 fkx
−k + O(x−m) as x → ∞. The letters

j, k,m, n always denote integers (except for n in Remark 4). The notation
(x)n for n > 0 denotes the ascending factorial or Pochhammer symbol, defined
by (x)n := x(x+ 1) · · · (x+ n− 1).

2 The Maclaurin coefficients an and bn

In this section we obtain recurrence relations and closed-form expressions
for an and bn. The connection with confluent hypergeometric (Kummer)
functions is discussed in §3, and asymptotics are considered in §4.

The function f0(z) is the exponential generating function counting several
combinatorial objects, such as the number of “sets of lists”, i.e., the number
of partitions of {1, 2, . . . , n} into ordered subsets, see Wallner [18, §5.3].

Observe that f0(z) satisfies the differential equation

(1− z)2f ′
0(z)− f0(z) = 0, (1)

and from this it is easy to see that the an satisfy a three-term recurrence

nan − (2n− 1)an−1 + (n− 2)an−2 = 0 for n > 2. (2)

The initial conditions are a0 = a1 = 1. Thus

(an)n>0 = (1, 1, 3/2, 13/6, 73/24, 167/40, . . .).

The recurrence (2) holds for n > 0 provided that we define an = 0 for n < 0.
A closed-form expression, valid for n > 1 (but not for n = 0), is

an =

n∑

k=1

1

k!

(
n− 1

k − 1

)
.

The constants an may be expressed in terms of the generalised Laguerre
polynomials L

(α)
n (x), which have a generating function (see [10, 18.12.13])

∑

n>0

znL(α)
n (x) = (1− z)−(α+1)e−xz/(1−z).

With α = x = −1 we obtain
∑

n>0 z
nL

(−1)
n (−1) = ez/(1−z), so an = L

(−1)
n (−1).
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Using the chain rule and the definition of f1(z) in §1, we see that f1(z)
satisfies the differential equation

(1− z)2f ′
1(z)− f1(z) = z − 1, (3)

which differs from (1) only in the right-hand side z−1. Differentiating twice
more with respect to z, we see that f0(z) and f1(z) both satisfy the same
third-order differential equation

(1− z)2f ′′′ + (4z − 5)f ′′ + 2f ′ = 0.

From (3), the bn satisfy a recurrence

nbn − (2n− 1)bn−1 + (n− 2)bn−2 =

{
1, if n = 2;

0, if n > 3.
(4)

This is essentially (i.e., for n > 3) the same recurrence as (2), but the initial
conditions b0 = G, b1 = G− 1 are different. Here G := eE1(1) ≈ 0.596 is the
Euler-Gompertz constant [9, §2.5].

We remark that computation of the bn using the recurrence (4) in the
forward direction is numerically unstable. A stable method of computation
is to use an adaptation of Miller’s algorithm, originally used to compute
Bessel functions. See Gautschi [7, §3] and Temme [14, §4].

As noted in §1, the bn may be expressed as anG − a′n, where an is as
above, and a′n satisfies essentially the same recurrence with different initial
conditions. In fact,

na′n − (2n− 1)a′n−1 + (n− 2)a′n−2 =

{
−1, if n = 2;

0, if n > 3.

The initial conditions are a′0 = 0, a′1 = 1. Thus

(a′n)n>0 = (0, 1, 1, 4/3, 11/6, 5/2, 121/36, . . .).

Since bn → 0 as n → ∞ (see (15) below), the sequence (a′n/an)n>1 is
a convergent sequence of rational approximations to G. The sequence of
approximants is (1, 2/3, 8/13, 44/73, 100/167, . . .).

Bala [2] gives the continued fraction

1−G = 1/(3− 2/(5− 6/(7− · · · − n(n + 1)/(2n+ 3)− · · · ))),
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with convergents 1/3, 5/13, 28/73, 201/501, . . .. The corresponding conver-
gents to G are 2/3, 8/13, 45/73, 100/167, . . .. We see that the n-th convergent
is just a′n+1/an+1. This explains the formula

n!a′n = A000262(n)− |A201203(n− 2)| for n > 2.

Also, Theorem 5 implies that G− a′n/an = bn/an ∼ −2πe1−4
√
n as n → ∞.

3 Connection with hypergeometric functions

The numbers an and bn may be expressed in terms of confluent hypergeo-
metric functions (Kummer functions), for which we refer to [10, §13.2]. If
M(a, b, z) and U(a, b, z) are standard solutions w(a, b, z) of Kummer’s differ-
ential equation zw′′ + (b − z)w′ − aw = 0, then Lemmas 1–2 below express
an and bn in terms of M(n + 1, 2, 1) and U(n, 0, 1).

Kummer [8] considered

M(a, b, z) = 1F1(a; b; z) =
∑

k>0

(a)k z
k

(b)k k!
, (5)

which is undefined if b is zero or a negative integer. In the case a 6= b = 0,
we can use the solution

zM(a + 1, 2, z) = lim
b→0

b

a
M(a, b, z).

Tricomi [16] introduced the function U(a, b, z) as a second (minimal) solution
of Kummer’s differential equation. For our purposes it is convenient to use
the integral representation [10, (13.4.4)] (valid for ℜ(a) > 0, ℜ(z) > 0)

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−zt ta−1 (1 + t)b−a−1 dt. (6)

We remark that the functions M and U satisfy recurrence relations,
known as “connection formulas”. For example, we mention [10, (13.3.1) and
(13.3.7)], both (essentially) due to Gauss (see Erdélyi [4, §6.4 and §6.6]):

(b− a)M(a− 1, b, z) + (2a− b+ z)M(a, b, z) − aM(a+ 1, b, z) = 0, (7)

U(a− 1, b, z) + (b− 2a− z)U(a, b, z) + a(a− b+ 1)U(a+ 1, b, z) = 0. (8)
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Lemma 1. If n ∈ Z, n > 1, and an is as above, then

an = e−1M(n + 1, 2, 1). (9)

Proof. If we put a = n + 1, b = 2, and z = 1 in the connection formula (7),
we see that ãn := e−1M(n + 1, 2, 1) satisfies the same recurrence (2) as an.
Thus, to show that an = ãn for all n > 1, it is sufficient to show that an = ãn
for n ∈ {1, 2}. Now

ã1 = e−1M(2, 2, 1) = e−1
∑

k>0

(2)k
(2)k k!

= 1 = a1,

and, similarly,

ã2 = e−1M(3, 2, 1) = e−1
∑

k>0

(3)k
(2)k k!

= e−1
∑

k>0

k + 2

2 k!
= 3/2 = a2,

so the result follows.

Lemma 2. If n ∈ Z, n > 1, and bn is as above, then

bn = −Γ(n)U(n, 0, 1). (10)

Proof. We start with [10, (6.7.1)]:

I(a, b) :=

∫ ∞

0

e−at

t + b
dt = eabE1(ab), a, b > 0.

Note that, by definition, bn = [zn]I(1, 1/(1−z)). Setting a = 1, b = 1/(1−z),
the term 1/(t+ b) inside the integral can be rearranged as follows:

(
t+

1

1− z

)−1

=
1− z

1 + t− tz
=

1

1 + t
− 1

t(1 + t)

(
1

1− zt/(1 + t)
− 1

)
,

and making the substitution s = t/(1 + t) gives

I(1, 1/(1− z)) =

∫ ∞

0

e−t

1 + t
dt−

∫ 1

0

e−s/(1−s)

(
z

1− zs

)
ds =

∑

n>0

bn z
n.

Thus, b0 = eE1(1) and, for n > 0,

bn = −
∫ 1

0

e−s/(1−s) sn−1 ds. (11)
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Writing e−s/(1−s) = e1−1/(1−s) gives, for n > 0,

bn = −e

∫ 1

0

e−1/(1−s) sn−1 ds. (12)

Substitute t = s/(1− s) in (6), giving

Γ(a)U(a, b, z) = ez
∫ 1

0

e−z/(1−s) sa−1 (1− s)−b ds. (13)

Comparison of (12) and (13) now gives bn = −Γ(n)U(n, 0, 1).

Remark 3. We could prove Lemma 2 in the same manner as Lemma 1, using
the connection formula (8) instead of (7), and the recurrence (4) instead
of (2), but in order to verify the initial conditions we would have to resort
to some explicit representation for U , such as the integral representation (6),
so the proof would be no simpler.

Remark 4. We can generalise our definitions of an and bn to permit n ∈ C,
using Lemmas 1–2. Such generalizations do not seem particularly useful, so
in what follows we continue to assume that n ∈ Z.

4 Asymptotic expansions of an and bn

Theorem 5 gives the complete asymptotic expansions of an and bn in as-
cending powers of n−1/2. Wright [19] proved the existence of an asymptotic
expansion of the form (14) for an, but did not state an explicit formula or
algorithm for computing the constants cm occurring in the expansion.

Theorem 5. For positive integer n, if an and bn are as above, then

an ∼ e2
√
n

2n3/4
√
πe

∑

m>0

cmn
−m/2 (14)

and

bn ∼ −
√
πe

n3/4e2
√
n

∑

m>0

(−1)mcmn
−m/2, (15)

where

cm = (−1)m
m∑

j=0

[hm−j ] exp(µ(h))
(m− 2j + 3/2)2j

4jj!
(16)

8



and
µ(h) = h−1 − (eh − 1)−1 − 1

2
. (17)

Remark 6. The function µ(h) defined by (17) could also be defined using
Bernoulli numbers, since

µ(h) = −
∞∑

k=1

B2k

(2k)!
h2k−1 = − h

12
+

h3

720
− · · · , (18)

The function exp(µ(h)) occurring in (16) has the Maclaurin expansion

exp(µ(h)) = 1− h

12
+

h2

288
+

67h3

51840
+ · · · . (19)

The numerators and denominators of the coefficients [hn] exp(µ(h)) do not
appear to be in the OEIS.

Proof of Thm. 5. We first prove (15). From Lemma 2, bn = −Γ(n)U(n, 0, 1).
Temme [15, Sec. 3] gives a general asymptotic result for U(a, b, z2) as a → ∞.
We state Temme’s result for the case (a, b, z) = (n, 0, 1), which is what we
need. Let c′k := [hk] exp(µ(h)). (Temme uses ck, but this conflicts with our
notation.) From Temme [15, (3.8)–(3.10)], we have

U(n, 0, 1) ∼
√
e

Γ(n)

∑

k>0

c′kΦk(n), (20)

where
Φk(n) = 2n−(k+1)/2Kk+1(2n

1/2),

and Kν denotes the usual modified Bessel function.
From [10, (10.40.2)], Kν(z) has an asymptotic expansion

Kν(z) ∼ e−z

√
π

2z

∑

j>0

(ν − j + 1/2)2j
j! (2z)j

. (21)

Setting ν = k and z = 2n1/2 in (21), we obtain

Φk−1(n) = 2n−k/2Kk(2n
1/2) ∼

√
πe−2

√
n

n1/4

∑

j>0

(k − j + 1/2)2j
j! 4j n(j+k)/2

.
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Substituting this expression into (20), and grouping like powers of n, we
obtain

bn = −Γ(n)U(n, 0, 1) ∼ −
√
πe

n3/4e2
√
n

∑

m>0

m∑

j=0

c′m−j (m− 2j + 3/2)2j

j! 4j nm/2
.

Now, comparison with (15) shows that

(−1)mcm =

m∑

j=0

c′m−j (m− 2j + 3/2)2j

j! 4j
,

which completes the proof of (15).
The proof of (14) is similar. We use Lemma 1 instead of Lemma 2, and

Temme’s asymptotic result [15, (3.29)] for M(a, b, z2) as a → ∞ instead
of (20); the modified Bessel function Iν replaces Kν . From [10, (10.40.1)],
Iν(z) has an asymptotic expansion

Iν(z) ∼
ez√
2πz

∑

j>0

(−1)j
(ν − j + 1/2)2j

j! (2z)j
, (22)

which replaces (21).

Theorem 5 gives an expression for cm which (indirectly) involves Bernoulli
numbers, in view of (18). Lemma 7 gives a different expression for cm that
is recursive, as the expression for cm depends on the values of ck for k < m,
but has the advantage of avoiding reference to Bernoulli numbers. The idea
of the proof is similar to that used in the “method of Frobenius” [6].

Lemma 7. We have c0 = 1 and, for all m > 1,

mcm = [hm+3]
m−1∑

j=0

cjh
j
∑

s∈{±1}
(1 + sh2)

1−2j

4 exp

(
2

h

(
(1 + sh2)

1

2 − 1
))

. (23)

Proof. We substitute the expression (14) for an into the recurrence (2), and
show that this determines the constants cm uniquely (subject to c0 = 1). It
is convenient to define h := n−1/2. Thus h → 0 as n → ∞. Write (2) in the
symmetric form

(n+ 1)an+1 + (n− 1)an−1 = (2n+ 1)an for n > 1. (24)
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Now substitute the expression (14) into (24), divide both sides by n1/4e2
√
n,

and replace
√
n by h−1. As we consider formal Laurent series in h, questions

of convergence are irrelevant. We find that

(1 + h2)1/4 exp(2h−1((1 + h2)1/2 − 1))×
(1 + c1h(1 + h2)−1/2 + c2h

2(1 + h2)−2/2 + · · · )
+ (1− h2)1/4 exp(2h−1((1− h2)1/2 − 1))×

(1 + c1h(1− h2)−1/2 + c2h
2(1− h2)−2/2 + · · · )

= (2 + h2)(1 + c1h+ c2h
2 + · · · ), (25)

where each side of (25) is to be regarded as a formal Laurent series in h. In
fact, since 2h−1((1± h2)1/2 − 1) = ±h+O(h3), there are no negative powers
of h, and both sides of (25) are formal power series in h.

A slight reorganisation of (25) gives

exp(2h−1((1 + h2)1/2 − 1))×
((1 + h2)1/4 + c1h(1 + h2)−1/4 + c2h

2(1 + h2)−3/4 + · · · )
+ exp(2h−1((1− h2)1/2 − 1))×

((1− h2)1/4 + c1h(1− h2)−1/4 + c2h
2(1− h2)−3/4 + · · · )

− (2 + h2)(1 + c1h + c2h
2 + · · · ) = 0. (26)

In (26), the terms on the left-hand-side not involving cm for m > 1 are
−5h4/48 + O(h5), as the lower-order terms cancel. The terms involving c1
are −c1h

4 + O(h5), and the terms involving cm for m > 2 are O(h5). Thus,
to ensure that the left side of (26) is O(h5), it is necessary and sufficient that
c1 = −5/48.

Continuing in this way, suppose that, for somem > 1, we have determined
c1, . . . , cm−1 such that the left side of (26) is O(hm+3). A small computation
shows that the terms involving cm are −mcmh

m+3+O(hm+4), and the terms
involving cm+1, cm+2, . . . are O(hm+4). Thus, for a proof by induction on m,
it is sufficient to choose cm such that

mcm = [hm+3]A(c1, . . . , cm−1, 0, 0, . . .),

where A(c1, c2, . . .) is the left side of (26), regarded as a function of the
parameters c1, c2, etc.

Finally, we note that the expression (2 + h2)(1 + c1h + . . . + cm−1h
m−1)

that occurs in (26) is a polynomial in h of degree (at most) m + 1, so may
be omitted without changing [hm+3]A.
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Remark 8. With small modifications, we could use (15) instead of (14) in
the proof of Lemma 7. This would provide an independent proof that the
constants cm occurring in the asymptotic expansions of an and bn are the
same, apart from changes of sign.

Remark 9. Computation using (16) and, as a check, (23), gives

(ck)k>0 =

(
1,− 5

48
,− 479

4608
,− 15313

3317760
,

710401

127401984
,− 3532731539

214035333120
, . . .

)
.

The numerators and denominators do not appear to be in the OEIS. With
the exception of c0 and c4, the ck all appear to be negative. This has been
verified numerically for k 6 1000.

5 The Hadamard product of f0 and f1

Define ρn := anbn. Thus
∑∞

n=0 ρnz
n is the Hadamard product (f0⊙f1)(z).

From Lemmas 1–2,we have

ρn = −e−1Γ(n)M(n + 1, 2, 1)U(n, 0, 1).

Using Theorem 5, we can obtain a complete asymptotic expansion for ρn in
decreasing powers of n. This is given in Corollary 10.

Corollary 10. We have

ρn ∼ − 1

2n3/2

∑

k>0

dkn
−k,

where

dk =
2k∑

j=0

(−1)jcjc2k−j ,

and c0, . . . , c2k are as in Lemma 7.

A computation shows that

(dk)k>0 = (1,−7/32, 43/2048,−915/65536, . . .).

We observe that the dk appear to be dyadic rationals More precisely, it
appears that 26kdk ∈ Z. Define a scaled sequence (rk)k>0 by rk := 26kdk.
Computation gives

(rk)k>0 = (1,−14, 86,−3660,−1042202,−247948260,−108448540420, . . .).

This leads naturally to the following conjecture.
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Conjecture 11. For all k > 0, rk ∈ Z.

Remark 12. Conjecture 11 has been verified for all k 6 1000. We also
showed numerically, for 3 6 k 6 1000, that rk < 0 and rk ≡

(
2k
k

)
(mod 32).

Remark 13. A problem that is superficially similar to our conjecture was
solved by Tulyakov [17]. However, we do not see how to adapt his method
to prove our conjecture.

Remark 14. Corollary 10 is reminiscent of the result

I0(x)K0(x) ∼
1

2x

∑

k>0

ek,0 x
−2k

in the theory of Bessel functions [3, (1.2)]. The coefficients ek,0 are given by

ek,0 =
(2k)!3

26kk!4
,

so 24kek,0 ∈ Z. The modified Bessel functions I0(x) andK0(x) are solutions of
the same ordinary differential equation xy′′+y′−xy = 0, but I0(x) increases
with x while K0(x) decreases. This is analogous to the behaviour of an, which
increases as n → ∞, and |bn|, which decreases as n → ∞.

More generally, from [10, 10.40.6], we have

Iν(x)Kν(x) ∼
1

2x

∑

k>0

ek,νx
−2k,

where

ek,ν = (−1)k2−2k(ν − k + 1/2)2k

(
2k

k

)
,

and 24kek,ν ∈ Z for ν ∈ Z.

6 Other expressions for dn

Since (an) and (bn) are D-finite, it follows that (ρn) is D-finite.3 In fact, ρn
satisfies the 4-term recurrence

n2(n− 1)(2n− 3)ρn = (n− 1)(2n− 1)(3n2 − 5n+ 1)ρn−1

− (n− 2)(2n− 3)(3n2 − 5n+ 1)ρn−2

+ (n− 2)(n− 3)2(2n− 1)ρn−3 (27)

3 See Flajolet and Sedgewick [5, Appendix B.4], and Stanley [13, Theorem 2.10], for
relevant background on D-finite sequences.

13



for n > 3, with initial conditions ρ0 = G, ρ1 = G− 1, ρ2 = (9G− 6)/4.
The recurrence (27) can be simplified by defining σn := nρn. Then σn

satisfies the recurrence

n(n− 1)(2n− 3)σn = (2n− 1)(3n2 − 5n + 1)σn−1

− (2n− 3)(3n2 − 5n+ 1)σn−2 + (n− 2)(n− 3)(2n− 1)σn−3 (28)

for n > 3, with initial conditions σ0 = 0, σ1 = G− 1, σ2 = 9G/2 − 3. Also,
Corollary 10 gives an asymptotic series for σn:

σn ∼ − 1

2n1/2

∑

k>0

dkn
−k. (29)

Using (28), we can give a recursive algorithm for computing the sequence
(dn) (and hence (rn)) directly, without computing the sequence (cn).

Lemma 15. We have d0 = 1 and, for all k > 1,

8kdk = − [hk+2]

(
k−1∑

j=0

djh
j

(
B(h)(1− h)−(j+1/2)

+ C(h)(1− 2h)−(j+1/2) +D(h)(1− 3h)−(j+1/2)

))
, (30)

where

B(h) = −6 + 13h− 7h2 + h3 = −(2− h)(3− 5h+ h2),

C(h) = +6− 19h+ 17h2 − 3h3 = (2− 3h)(3− 5h+ h2), and

D(h) = −2 + 11h− 17h2 + 6h3 = −(1− 2h)(1− 3h)(2− h).

Proof. Define h := n−1, so h → 0 as n → ∞. From Corollary 10, there exists
an asymptotic series of the form

−2σn ∼
∑

j>0

djn
−j−1/2

as n → ∞. Moreover, d0 = 1. Define A(h) := (1− h)(2− 3h) in addition to
B(h), C(h) and D(h). Using the recurrence (28) and the elementary identity

14



1/(n−m) = h/(1−mh) for m ∈ {0, 1, 2, 3}, we have

∑

j>0

dj

(
A(h)hj+1/2 +B(h)

(
h

1− h

)j+1/2

+ C(h)

(
h

1− 2h

)j+1/2

+ D(h)

(
h

1− 3h

)j+1/2
)

∼ 0.

Now, dividing both sides by h1/2, we obtain

∑

j>0

djh
j

(
A(h) +B(h)(1− h)−(j+1/2)

+ C(h)(1− 2h)−(j+1/2) +D(h)(1− 3h)−(j+1/2)

)
∼ 0. (31)

An easy computation shows that

A(h) +B(h) + C(h) +D(h) = −4h2 +O(h3),

B(h) + 2C(h) + 3D(h) = 8h+O(h2), and

B(h) + 22C(h) + 32D(h) = O(h).

Thus, for all j > 1, the terms involving dj in (31) are 8jhj+2 + O(hj+3).
(The “8j” arises from −4 + 8(j + 1/2) = 8j.) This shows that the choice
of dk in (30) is necessary and sufficient to give an asymptotic series of the
required form. Finally, we note that [hk+2−j]A(h) = 0, since j 6 k − 1 and
deg(A(h)) = 2. Thus, a term involving A(h) has been omitted from (30).

Using Lemma 15, we computed the sequences (dn) and (rn) for n 6 1000,
and verified the values previously computed (more slowly) via Corollary 10.

Since the power series occurring in (30) have a simple form, we can extract
the coefficients of the required powers of h to obtain a recurrence for the dk,
as in Corollary 16. This gives a third way to compute the sequence (dn).

Corollary 16. We have d0 = 1 and, for all k > 1,

8k dk =

k−1∑

j=0

αj,k dj.
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Here the αj,k are defined by

αj,k = (−1 + 3 · 2m−1 − 2 · 3m)(τ)m−1/(m− 1)!

+ (7− 17 · 2m + 17 · 3m)(τ)m/m!

+ (−13 + 38 · 2m − 33 · 3m)(τ)m+1/(m+ 1)!

+ 6(1− 4 · 2m + 3 · 3m)(τ)m+2/(m+ 2)!, (32)

where m := k − j and τ := j + 1/2.

Proof (sketch). To prove Corollary 16, we apply the binomial theorem to the
power series in (30), multiply by the polynomials B(h), C(h), and D(h), and
extract the coefficient of hk+2−j .

The following corollary is an easy deduction from Corollary 16, and gives
an explicit recurrence for rk = 26kdk.

Corollary 17. We have r0 = 1 and, for all k > 1,

k rk =

k−1∑

j=0

βj,k rj, where βj,k = 82k−2j−1 αj,k .

Although we have not proved Conjecture 11, the following result goes
part of the way.

Theorem 18. For all k > 0, we have k! rk ∈ Z.

Proof. Let Rk := k!rk. We show that Rk ∈ Z. From Corollary 17, R0 = 1
and, for k > 1, Rk satisfies the recurrence

Rk =

k−1∑

j=0

βj,k Rj
(k − 1)!

j!
. (33)

The ratio of factorials in (33) is an integer, since j 6 k−1. Thus, in order to
prove the result by induction on k, it is sufficient to show that βj,k ∈ Z. Now,
elementary number theory shows that 4ℓ(j + 1/2)ℓ/ℓ! ∈ Z for all j, ℓ > 0.
Thus, the expressions of the form (τ)m+δ/(m+ δ)! in (32) are in Z provided
that m + δ > 0. This is true as m > k − j > 1 and δ > −1. To show that
βj,k ∈ Z, it is sufficient to have 82m−1 > 4m+2, which holds for all m > 2.
In the case m = 1, it is easy to see that all the terms in (32) are in Z/4, so
βm−1,k = 8αm−1,k ∈ Z. Thus, βj,k ∈ Z for 0 6 j < k, and the result follows
by induction on k.

Remark 19. The proof actually shows that βj,k ∈ 2Z, which implies that
Rk ∈ 2Z for all k > 0.
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