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Abstract. We present several algorithms for computing M(n), the function

that counts the number of distinct products in an n× n multiplication table.
In particular, we consider their run-times and space bounds for single eval-

uation, tabulation, and Monte-Carlo estimation. We give the result of exact

computations up to n = 230 − 1 and Monte Carlo computations for larger n.

1. Introduction

Even though a multiplication table is something that is understood by a typical
student in elementary school, there remains much that we do not know. In 1955,
Erdős studied the problem of counting the number M(n) of distinct products in an
n × n multiplication table. That is, we define M(n) = |{ij : 1 ≤ i, j ≤ n}|. The
initial work [10] showed M(n) = o(n2). Five years later, Erdős [11] improved this
to

(1) M(n) =
n2

(lnn)c+o(1)
as n→∞,

where (here and below) c = 1− (1 + ln ln 2)/ ln 2 = 0.086071 . . . . Tenenbaum [24]
improved on (1) by clarifying the o(1) term. In 2008, Ford [12, 13] got the correct
order of magnitude as

(2) M(n) � n2/Φ(n),

where

(3) Φ(n) := (lnn)c(ln lnn)3/2

is a slowly-growing function. (Here f � g means f � g and g � f .)
Exact evaluation of M(n) goes back to Brent and Kung [8] in 1981. They consid-

ered how much area and time are needed to perform an n-bit binary multiplication
on a VLSI chip. For this, they needed a lower bound on M(n). They computed1

M(2n − 1) for 1 ≤ n ≤ 17. In 2012, the first two authors revisited the problem,
extending the computation through n = 25, and exploring Monte-Carlo estimates
for larger n. We present two different algorithms for confirmation, extending the
computation to M(230 − 1).

The paper is organized as follows. Section 2 starts with an overview of the sieve
of Eratosthenes as a precursor to the various ways of evaluating M(n) exactly.
We start with the method used in [8], then show how to compute M(n) in time
O(M(n) lnn) using an incremental algorithm. The incremental algorithm may be
modified to compute M(n) in time o(n2). Section 3 explains two Monte-Carlo

1 Brent and Kung actually computed M(2n − 1) + 1 = |{ij : 0 ≤ i, j < 2n}|. For consistency
in the exposition, we translate their results to the definition of M(n) stated above.
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algorithms for estimating M(n). We conclude with numerical results and some
comments on implementations.

2. Exact Evaluation of M(n)

2.1. Sieve of Eratosthenes. The methods of evaluating M(n) bear a striking
resemblance to the sieve of Eratosthenes, the simplest implementation of which
involves for each 1 < k ≤ n1/2, removing the multiples of k from (k, n]. This naive
implementation uses O(n lnn) time and O(n) space and will find all primes up to
n. There is a large body of literature, both practical and theoretical, dealing with
improvements and variations to this sieve. We refer the reader to Helfgott [14] for a
summary of the literature. Here, we highlight the aspects that are relevant for us.
In practice, we are limited by the space constraint; lowering the space constraint
may turn otherwise infeasible computations into feasible ones. Instead of marking
off multiples of k in (k, n] we may segment this interval into subintervals. The
asymptotic run-time remains unchanged so long as the “marking off” process is not
doing empty work. That is, the space bound may be O(n1/2) with straightforward
segmenting of the intervals. As the intervals decrease in size below that bound,
time will increase (associated with the empty work). Helfgott allows the space
bound to drop much lower by using Diophantine approximation to predict which
integers less than n1/2 will divide a given subinterval. This prediction process is
more difficult to implement but allows sieving on intervals of size O(n1/3(lnn)5/3)
(Main Theorem in [14]) at no asymptotic cost in time.

2.2. Computing Directly. In what follows, it is helpful to think of the multipli-
cation table as lying in the first quadrant of the Cartesian plane. We associate a
unit square in the plane to a position in the multiplication table. The run-times of
the algorithms that follow are then proportional to area in the Cartesian plane.

We can explicitly construct each product in a multiplication table and count the
number of distinct products, as in Algorithm 1.

Algorithm 1: Computing M(n) directly

Input : An integer n.
Output: M(n)

1 Initialize a bit vector A of length n2 to 0.

2 for 1 ≤ i ≤ n do
3 for i ≤ j ≤ n do
4 Set A[ij] = 1

5 return Hamming weight of A

Theorem 2.1. Algorithm 1 correctly computes M(n) in time O(n2) and space
O(n2).

Proof. Obvious. We note that the area of the table is n2. �

This algorithm functions in a similar way to the sieve of Eratosthenes and many
of the tricks one uses to speed up that sieving problem may be used here. The
key difference is the stopping point for marking off multiples of i; Algorithm 1
only marks off through the nth multiple of i. Because of this early stopping point,
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Algorithm 1 does not have the corresponding lnn term seen in the run-time of the
sieve of Eratosthenes. The space bound is stated in its naive form. As discussed
above, standard segmenting allows subintervals of size O((n2)1/2) = O(n), or by
using Diophantine approximation to predict which integers divide a subinterval the
space bound could be reduced to O(n2/3(lnn)5/3).

Storing all n2 bits is often impractical. We note two theoretical consequences
that are relevant. If the entire bit vector A may be stored then computing M(n)
given the computation of M(n− 1) may be done in O(n) time. Simply count how
many bits are unset in S = [A[n], A[2n], . . . , A[n2]] and increment M(n−1) by that
amount. Let the number of set bits in S be denoted by δ(n) and the number of
unset bits by D(n). We can compute δ(n) or D(n) in O(n) time and O(n2) space.
Thus, we may compute M(n) using

M(n) = M(n− 1) + (n− δ(n)) =

n∑
k=1

(
k − δ(k)

)
=
n2 + n

2
−

n∑
k=1

δ(k).

The next section shows how to compute δ(n) almost as quickly but requiring only
O(n) space. Second, tabulation and evaluation are the same problem if the bits of
A are always accessible. If we use a segmenting strategy to minimize memory, tab-
ulation has to be accomplished by evaluating M(k) for all k ≤ n. Since individual
evaluation is O(k2), tabulation is O(n3).

2.3. Computing via Differences. We compute M(n) by computing its change.
In particular, we compute δ(k) for all k ≤ n where δ(n) counts the elements in
{n, 2n, 3n, . . . , n2} = {mn : 1 ≤ m ≤ n} that appear in the (n − 1) × (n − 1)
multiplication table. If mn appears in the smaller multiplication table then it may
be factored so that each factor is strictly less than n. Letting ij = m and gh = n, we
require ih < n and jg < n. This gives i < g and j < h for any factorization gh = n.
This corresponds to counting distinct products in the (g− 1)× (h− 1) rectangle in
the multiplication table. By counting the distinct products in the shape formed by
all rectangles whose boundaries are set by the divisors of n, we may compute δ(n).

Algorithm 2: Computing δ(n)

Input : D = [[d0 = 1, n], . . . , [d`−1, n/d`−1]], containing the ordered divisors
of n where d`−1 is the largest divisor in [1,

√
n].

Output: δ(n)

1 Initialize counters i = 1 and k = 0

2 Initialize a bit vector A of length n to 0.

3 for i < D[`− 1][0] do
4 if i == D[k][0] then
5 Increment k

6 for i ≤ j < D[k][1] do
7 Set A[ij] = 1

8 return Hamming weight of A

Remark. The algorithm, as stated, exploits the symmetry of the multiplication
table to minimize the computation time. In line 6 the restriction i ≤ j may be
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1 ≤ j. The restriction that D[` − 1][0] ≤
√
n may be removed but the divisors

must still be ordered. Removing these restrictions does not change the asymptotic
running time; after all, together both represent a constant factor of two in time.

Remark. If the input to Algorithm 2 is missing some divisor pair, then the Ham-
ming weight of A is a lower bound on δ(n).

Example 2.2. In Figure 1, we can see the three rectangles corresponding to the
divisor pairs 2 · 21, 3 · 14, and 6 · 7. The grey area corresponds to the products
Algorithm 2 constructs.

Figure 1. The shape for computing δ(42)

Algorithm 2 runs in time proportional to the area under consideration. One
upper bound is O(n lnn), obtained by realizing that no product in a rectangle is
ever larger than n. We may count all products less than n, which lie under a
hyperbola and this gives the claim. Another upper bound is O(nτ(n)), where τ(n)
counts the divisors of n. This comes from the fact that for each divisor of n, we
construct a rectangle of area less than n. Both of these functions over-count. The
former over-counts when n is not smooth and the latter over-counts when n is
smooth. Either of these bounds may be used to show that M(n) may be tabulated
in time O(n2 lnn); together they show that M(n) is tabulated in time o(n2 lnn).

Let τ(n; y, z) be the number of divisors d of n which satisfy y < d ≤ z and
τ+(n) = |{k ∈ Z : τ(n, 2k, 2k+1) ≥ 1}|.

Theorem 2.3. Algorithm 2 correctly computes δ(n) in space O(n) and in time
O(nτ+(n)).

Proof. Claim: Algorithm 2 is correct. By the above discussion, the algorithm is
correct. As i increases, the counter k keeps track of which rectangle boundary to
use. The counter j is then bounded above by the appropriate divisor of n.

Claim: Algorithm 2 uses O(nτ+(n)) time. Recall that the run-time is propor-
tiaonal to the area. Let the area be A. For each k, consider all the divisors of
n in the interval (2k, 2k+1]. They all have the same bottom left corner, namely,
the origin, and shapes range from 2k × n/2k to 2k+1 × n/2k+1. Hence they are all
enclosed by a rectangle of shape 2k+1 × n/2k which has area 2n. Thus we get an
upper bound A ≤ 2nτ+(n).

Claim: Algorithm 2 uses O(n) space. The vector A uses n bits. �

Theorem 2.4. Algorithm 2 may used to tabulate M(n) in time

O

(
n2 lnn

Φ(n)

)
.
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Proof. We compute M(n) by evaluating δ(k) for 1 ≤ k ≤ n. The total run-time is

O

∑
k≤n

kτ+(k)

 = O

n2
 1

n

∑
k≤n

τ+(k)

 = O

(
n2(lnn)1−c

(ln lnn)3/2

)
.

The last equality is Corollary 5 of [12] for the average value of τ+(n). The result
follows from the definition (3) of Φ(n). �

The space bound in Theorem 2.3 is stated for a naive implementation. It is
not difficult to see that the storage can drop to O(n1/2) with straightforward seg-
menting, or even to O(n1/3(lnn)5/3) with Diophantine approximation as in [14].
Algorithm 2 represents an improvement by a factor of n in the naive storage cost
and a significant improvement in run-time if the problem is tabulation. For single
evaluation, this algorithm is arguably worse. In practice, it seems to be competitive
and may be made even more competitive (see comments below). A contribution
comes from a much smaller implied constant which big-O notation suppresses. An-
other contribution comes from the straightforward algorithm having larger memory
requirements which can cause deviation from the expected quadratic run time.

2.4. Working modulo w. We may generate products in a multiplication table in
specific residue classes; this is akin to sieving with a wheel. This has two advantages.
First, if w is the modulus, then the vector used in Algorithm 2 may be declared
to be of size bn/wc and unique products may be counted by residue class. Second,
the zero index of the array may be declared to be the least integer in that residue
class larger than the last consecutive element. The consecutive elements that are
i (mod w) may be found in a row that is a divisor of gcd(i, w). By not explicitly
constructing small consecutive products and simply counting them, we get a faster
algorithm.

2.4.1. Working modulo 1. If n is not prime, then the first row of the table contains
the consecutive integers less than the largest nontrivial divisor of n. Store the
number of consecutive integers and initialize the bit vector A so that the zero
index is associated with the largest divisor of n. Iterate through each row of the
multiplication table starting at the first entry greater than or equal largest divisor.
Figure 2 shows the area that is considered in computing δ(42). The first row has
20 distinct products and we add to that the number of distinct products in the
shaded area to get δ(42) = 25. This improvement reduces both the time and space
requirements by a factor of (1− 1/p), where p is the smallest prime factor of n. As
a consequence, it is trivial to see that δ(2p) = p− 1

Figure 2. The shape for computing δ(42) working modulo 1.
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2.4.2. Working modulo 2. If n is composite and not of the form 2p for p a prime,
then its shape will have nontrivial entries in the first two rows. Create a bit vector
associated with odd numbers. The first row contains consecutive odd numbers up
to some bound. Either the first row or the second row will contain the bound for
the consecutive even numbers that are stored. For rows associated with an odd
multiplier, start with the lower bound associated with the odd vector and iterate
through the table creating only the odd entries. For the even vector, consider even
rows and the even numbers in the odd rows. This reduces the time by reducing area
although the overhead in setting up the loops to iterate through the table in the
specified manner is higher. More importantly, it reduces the memory. By splitting
the products into residue classes modulo 2, we require half the storage. The above
discussion also makes it easy to see that δ(3p) = p− 1 + b(p− 1)/2c.

Figure 3 shows the area that is considered in computing δ(75). The bit vector
storing even numbers starts at 50, records 52, 56, and knows there are 24 + 2 = 26
unique even products. The bit vector storing odd numbers starts at 25, stores
27, 33, 39, and knows there are 12 + 3 = 15 unique odd products. So, δ(75) =
26 + 15 = 41.

Figure 3. The shape for computing δ(75) working modulo 2.

2.4.3. Working modulo 6. A naive invocation of Algorithm 2 to compute δ(377)
requires the construction of 270 products. By constructing products in residue
classes modulo 6 only 120 products need to be constructed. In Figure 4, we see
that the sixth row tells us there are 28 consecutive multiples of 6. Therefore, we
only need to construct products 0 (mod 6) that are greater than 168. Similarly, the
third row tells us that there are 14 consecutive numbers 3 (mod 6). Therefore, we
only construct products 3 (mod 6) that are greater than 84. The second row tells
us that we only need to construct products greater than 56 when we deal with 2, 4
(mod 6) cases. Finally, the first row tells us that we need to construct products
greater than 28 for the 1, 5 (mod 6) cases.

It is possible to create rules of the form δ(mp) via counting arguments. The ar-
gument is accomplished by counting consecutive products in residue classes modulo
w = lcm(1, 2, 3, . . . ,m−1). The third author created a website that may be used to
count the products constructed and display the shape associated with a δ(n) com-
putation when using Algorithm 2 naively or with a modulus of w = 1, 2, 6, 12, 60,
or 120 [22].

2.5. Towards Subquadratic Tabulation. Recall that if all n2 bits of A can be
held at once in Algorithm 1, then tabulation and evaluation are the same problem.
We apply this idea to computing δ(n). Consider the use of Algorithm 2 in computing
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Figure 4. The shape for computing δ(377) working modulo 6.

δ(6 · 7), δ(6 · 9), δ(6 · 11), and δ(6 · 13). The divisor list for each of these is of the
form [1, 6 · k], [2, 3 · k], [3, 2 · k], and [6, k] for k = 7, 9, 11, 13. One shape is always a
subset of the next shape and so the set of distinct products in each shape is a subset
of the next one. Rather than think of four independent computations, we consider
the one computation of δ(6 ·13). Unlike in Algorithm 2 where the bit vector storing
distinct products is populated by a row of the multiplication table, we will populate
the bit vector by incrementally shifting the end-points of the rectangles over. While
computing δ(6 ·13) we will learn δ(6 ·7), δ(6 ·9), and δ(6 ·11) along the way. Rather
than computing δ(6 · 9) from the beginning, we use the computation of δ(6 · 7) and
only account for the new products that may arise in the new area.

In general, this requires that we tabulate δ(n), for those n that have similar
shapes. For a fixed m, the divisor list of mp and mq are very similar. In particular,
if both primes are larger than m the first entries in the divisor lists correspond only
to the divisors of m. We may re-use the bit vector in computing δ(mp) to compute
δ(mq). All we need to account for are the (relatively few) new products that appear
as the corresponding rectangles shift.

Remark 2.5. The restriction that p > m may be lifted but doing so requires a more
careful accounting of the divisor lists for these cases. The thing of key importance
is that the first entries in both lists are only the divisors of m. So long as we have
the first entries in the divisor lists be the divisors of m then we may also lift the
restriction that p and q are prime. In which case the output will be a lower bound
on δ(mq) and will be equality if q is prime.

Theorem 2.6. Algorithm 3 computes δ(nq) in time O(nd(q) lnn) where d(q) is
q − p.

Proof. The run-time is, like Algorithm 2, proportional to the area. The difference
between consecutive primes is d(q). Also, there are O(n lnn) individual products
to check per unit shift. �

Algorithm 2 would compute δ(nq) in time O(nq lnnq) which is significantly more
costly than O(nd(q) lnn). The real benefit is while computing δ(mq), we learn
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Algorithm 3: Computing δ(mq) given δ(mp) for q > p > m.

Input : A bit vector A of length mq with weight w containing the products
from computing δ(mp). The divisor lists for mp and mq:
Dp = [[d0 = 1,mp], [d1,mp/d1], . . .] and
Dq = [[d0 = 1,mq], [d1,mq/d1], . . .] both of length `.

Output: δ(mq)

1 Initialize counters i = 1 and k = 0

2 for i < Dp[`− 1][0] do
3 if i == Dp[k][0] then
4 Increment k

5 for Dp[k][1] ≤ j < Dq[k][1] do
6 if A[ij] == 0 then
7 Set A[ij] = 1

8 Increment w

9 return w

δ(mp) for all p < q. In computing M(n), we may compute δ(mq) at a cost of
O(n lnn) but in the process we will learn δ(mq) for all p < q for no additional cost.

Theorem 2.7. Algorithms 2 and 3 may be used in conjunction to compute M(n)

in time O(n2/L
√
2/2+o(1)), where L = L(n) := exp (

√
lnn ln lnn).

Proof. We consider all k < n in two classes. The first is when k is smooth. Let
P (k) < Lγ and there are about n/L1/2γ+o(1) such numbers. These have δ(k) com-
puted using Algorithm 2. Those k < n may be computed in time O(n2/L1/2γ+o(1)).
The second is when k is not smooth; let k = mq, where q = P (k) > Lγ . Now we
consider the numbers m that can arise, they are all smaller than n/Lγ . For each
m, take the largest prime q such that mq < n and compute δ(mq) using Algorithm
3 and learn δ(mp) for all primes p < q. The run-time for this is O(n2/Lγ+o(1)).

These two computations are balanced when γ =
√

2/2. �

Since Algorithm 3 computes a lower bound δ(mk) when k is composite, it is
possible to write a correction algorithm. It takes the lower bound, the incomplete
divisor list, the complete divisor list and counts the new distinct products from the
part of the shape that Algorithm 3 missed. Care must be taken that the missing
products are not recorded in the bit vector used by Algorithm 3. The third and
fourth authors implemented this correction algorithm and used a set data structure
to store the new products.

3. Monte-Carlo Estimations

If n is too large for the exact computation of M(n) to be feasible, we can resort
to Monte Carlo estimation of M(n). In the following we describe two different
Monte Carlo methods, which we call the Bernoulli and product methods. In the
descriptions of these two methods, we assume that n is fixed.

3.1. The Bernoulli Method. We perform a sequence of T ≥ 2 trials, where each
trial involves choosing a pseudo-random integer z ∈ [1, n2]. The integers z are
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assumed to be independent and uniformly distributed. For each z, we count a
success if z appears in the n × n multiplication table, i.e. if z can be written as
z = xy, where 1 ≤ x ≤ y ≤ n. Let S be the number of successes after T trials.
Since we are performing a sequence of T Bernoulli trials with probability of success
p = M(n)/n2, the expected number of successes is E(S) = pT , and the variance is
V(S) = E((S−pT )2) = p(1−p)T , see for example [20]. Thus, an unbiased estimate
of M(n)/n2 is given by p̂ = S/T , and the variance of this estimate is p(1−p)/T . For
large T the error M(n)/n2 − S/T is asymptotically normally distributed. By the
“law of the iterated logarithm” [16], this error is almost surely O((T−1 log log T )1/2)
as T →∞.

In a practical computation, p is unknown, but an unbiased estimate of the vari-
ance of the error is p̂(1− p̂)/(T − 1), where the denominator T − 1 takes into
account the loss of one degree of freedom in using the sample mean p̂ instead of the
population mean p (this is known as Bessel’s correction).

3.2. The Product Method. In this method, each trial takes z = xy, where x
and y are independently and uniformly distributed integers in [1, n]. Thus, z is
guaranteed to appear in the n × n multiplication table. Let ν = ν(z) ≥ 1 denote
the number of times that z appears in the table. The probability that a trial
samples z is ν(z)/n2. Thus, E(1/ν) = M(n)/n2 = p (where p is as in the Bernoulli
method). Consider a sequence of T independent trials, giving values ν = ν1, . . . , νT .
An unbiased estimate of M(n)/n2 is given by E := T−1

∑
1≤j≤T 1/νj , and the

variance of this estimate is V := T−1E((ν−1 − p)2). Lemma 3.1 shows that, for
the same values of T and n, the variance in the estimate of M(n)/n2 given by the
product method is no larger than that given by the Bernoulli method.

Lemma 3.1. If V is the variance of the estimate E after T trials of the product
method, then V ≤ p(1− p)/T .

Proof. Using p = E(ν−1), we have

V = T−1E((ν−1 − p)2) = T−1(E(ν−2)− p2).

Since ν is a positive integer, ν−2 ≤ ν−1, and E(ν−2) ≤ E(ν−1) = p. It follows that
V ≤ T−1(p− p2), as desired. �

Remark 3.2. It is easy to see that equality holds in Lemma 3.1 only in the trivial
case n = 1. From Ford’s result (2), we have TV = O(1/Φ(n)) as n→∞.

An unbiased estimate of the variance of the error for the product method in
terms of computed quantities is

∑
1≤j≤T (ν−1j − E)2/(T (T − 1)) (see the comment

above on Bessel’s correction).

3.3. Avoiding Factorization via Bach/Kalai. For the Bernoulli method, we
have to determine if an integer z ∈ [1, n2] occurs in the n× n multiplication table.
Equivalently, we have to check if z has a divisor d satisfying z/n ≤ d ≤ n. A
straightforward algorithm for this would first find the prime power factorization
of z, then attempt to construct a divisor d in the interval [z/n, n], using products
of the prime factors of z.

Similarly, for the product method, we have to count the number of divisors d of
xy in the interval [xy/n, n]. A straightforward algorithm for this would first find
the prime power factorizations of x and y.
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To avoid having to factor the random integers z (or x and y) occurring in the
Bernoulli (or product) methods, we can generate random integers along with their
prime power factorizations, using the algorithms of Bach [2] or Kalai [15]. This
is much more efficient, on average, than generating random integers and then at-
tempting to factor them, since the integer factorization problem is not known to
be solvable in polynomial time.

The algorithm described by Bach, specifically his “Process R”, returns an integer
x uniformly distributed in the interval (N/2, N ], together with the prime power
factorization of x. Using Bach’s algorithm, which we call “procedure R”, it is
easy to give a recursive procedure B which returns x uniformly distributed in the
interval [1, N ], together with the prime power factorization of x. For details see
Algorithm 4. The following comments on the complexity of Bach’s algorithm also
apply to procedure B.

Algorithm 4: Modification of Bach’s algorithm

1 procedure R(N)

Input : A positive integer N
Output: A random integer x ∈ (N/2, N ] and its prime power factorization

2 Details omitted: see Bach [2, “Process R”, pg. 184]

3 end procedure R

4 procedure B(N)

Input : A positive integer N
Output: A random integer x ∈ [1, N ] and its prime power factorization

5 if N == 1 then
6 return 1

7 generate random real u uniformly distributed in [0, 1)

8 if u < bN/2c/N then
9 return B(bN/2c)

10 else
11 return R(N)

12 end procedure B

The expected running time of Bach’s algorithm is dominated by the time for
primality tests.2 Bach’s algorithm requires, on average, O(logN) primality tests.
The AKS deterministic primality test [1] requires (logN)O(1) bit-operations, so
overall Bach’s algorithm has average-time complexity (logN)O(1). In our imple-
mentation, we replaced the AKS primality test by the Miller-Rabin Monte Carlo
test [9, 17, 18, 23], which is much faster, at the cost of a small probability of error.3

2More precisely, Bach’s algorithm requires prime power tests, but it is relatively easy to check
if an integer is a perfect power (see Bernstein [4]), so primality tests and prime power tests have

(on average) almost the same complexity. Also, it is possible to modify Bach’s algorithm so that
only primality (not prime power) tests are required. Thus, we ignore the distinction between

primality tests and prime power tests.
3The probability of error can be reduced to ≤ 4−k by repeating the test k times with indepen-

dent random inputs, see [23].
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A small probability of an error (falsely claiming that a composite integer is prime)
is acceptable when the overall computation is a Monte Carlo estimation. One such
error will have a negligible effect on the final result, assuming that the number of
trials is large.

Kalai [15] gave an algorithm with the same inputs and outputs as our modifica-
tion (procedure B) of Bach’s algorithm, but much simpler and easier to implement.
The only disadvantage of Kalai’s algorithm is that it is asymptotically slower than
Bach’s, by a factor of order logN . More precisely, Kalai’s algorithm requires, on
average, of order (logN)2 primality tests, whereas procedure B requires of order
logN prime power tests. We implemented both algorithms using Magma [5], and
found that, as expected, Kalai’s algorithm was slower than procedure B for N suf-
ficiently large. With our implementations4, the crossover point was N ≈ 245. For
N = 2100, procedure B was faster by a factor of about 2.2. This is in agreement
with the theoretical prediction that Kalai’s algorithm should be slower by a factor
of order logN .

4. Implementations and Results

There were several independent implementations of Algorithm 1, and three inde-
pendent implementations of Algorithm 2 in three different languages: C, C++, and
Sage 5. The last published exact computations from [8] were of the form M(2n−1)
for 1 ≤ n ≤ 17. In Table 1, we include the next 18 ≤ n ≤ 30. The entries in
Table 1 were computed independently using both Algorithm 1 and Algorithm 2.
No discrepancies were found.6 Timing comparisons are difficult because different
(time-shared) computer systems were used, but we estimate that Algorithm 2 was
about three times faster than Algorithm 1 for n = 30.

k M(2k − 1) k M(2k − 1)
18 14081089287 25 209962593513291
19 55439171530 26 830751566970326
20 218457593222 27 3288580294256952
21 861617935050 28 13023772682665848
22 3400917861267 29 51598848881797343
23 13433148229638 30 204505763483830092
24 53092686926154

Table 1. Extension of the Brent-Kung computation

A table of M(k · 210) for 1 ≤ k ≤ 220 was computed by the third and fourth
authors [21]. This implementation used a wheel modulus approach as described in
Subsection 2.4 with w = 60. The computation took about 7 weeks on Butler Univer-
sity’s BigDawg cluster which has 32 Intel Xeon E5-2630 (192 total cores) processors.
Table 2 shows the time (in seconds) to compute δ(n) for all n ∈ (108, 108 + 103] on
an Intel i7-4700 with 16GB RAM.

4Further details concerning our implementations, and approximations/optimizations valid for
very large N , may be found in [6, 7].

5We thank Paul Zimmerman for verifying some of these calculations in his implementation in

Sage.
6The entries given in OEIS A027417 differ by one because they include the zero product.
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Algorithm time (s)
Algorithm 2 909

(mod 1) 302
(mod 2) 184
(mod 6) 106
(mod 12) 85
(mod 60) 59

Table 2. Runtime comparison

Algorithm 1, implemented in C, ran mainly on the ARCS computer system at
the University of Newcastle, Australia. The computer nodes used were a mixture
of 2.2 GHz Intel Xeon 3 and 2.6GHz Intel Xeon 4.

The third and fourth authors implemented Algorithm 3 and the correction algo-
rithm but were unable to make it computationally competitive.

To illustrate Monte Carlo, consider the case N = 230 − 1, for which we know
the exact value M(N) = 204505763483830092 from our deterministic computa-
tions. Taking T = 106 trials of the “product” Monte Carlo method, we estimate
M(N)/N2 = 0.17750, whereas the correct value (to 5D) is M(N)/N2 = 0.17738.
The variance estimate here is V = 2.873×10−8, so σ := V 1/2 ≈ 0.00017. Thus, the
Monte Carlo estimate is as accurate as predicted from the standard deviation σ.
The same number of trials with the Bernoulli method gives variance 1.459× 10−7,
larger by a factor of about five. Thus, the product method is more efficient, (other
things being equal), as predicted by Lemma 3.1. In practice the comparison is not
so straightforward, because the product method requires checking more divisors
(on average) than the Bernoulli method, and hence has a larger space requirement.

The results of some Monte Carlo computations are given to 4D in Table 3. We
used the product method (mainly for n < 106) and the Bernoulli method (mainly
for n ≥ 106), combined with Bach’s algorithm (described in Section 3). Kalai’s
algorithm was used for confirmation (mainly for n ≤ 100). The second column
gives an estimate of M(N)/N2, and the last column gives the normalized value
(N2/M(N))/Φ(N). By Ford’s result (2), this should be � 1. The third column
gives 104σ, where σ2 is an estimate of the variance of the corresponding entry in the
second column. Because of the factor 104, this corresponds to units in the last place
(ulps) for the second column. Since the entries in the third column are bounded by
0.12, the entries in the second column are unlikely to be in error by more than 0.7
ulp. Similarly, the entries in the last column of the table are unlikely to be in error
by more than 1 ulp. The entries for n ≤ 30 may be verified (up to the predicted
accuracy) using the exact results of Table 1.

As described in [6, 7], we can extrapolate the last column of Table 3 and conjec-
ture that

(4) lim
N→∞

N2/M(N)

Φ(N)
≈ 0.12 .

It has not been proved that the limit in (4) exists; Ford’s result (2) only shows
that the lim sup and lim inf are finite and positive. In some similar problems
the corresponding limit does not exist. For example, let S(x) be the number of
n ≤ x with τ(n) ≥ lnx. Norton showed [19] there are positive constants c1, c2 with
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n M(N)/N2 104σ trials N2/M(N)
(N = 2n − 1) 108 Φ(N)

20 0.1987 0.12 2 0.9414
30 0.1774 0.02 100 0.8213
40 0.1644 0.02 100 0.7549
50 0.1552 0.02 100 0.7112
102 0.1311 0.02 100 0.6068
103 0.0798 0.02 100 0.4264
104 0.0517 0.01 100 0.3435
105 0.0348 0.06 2 0.2958
106 0.0240 0.05 10 0.2652
107 0.0170 0.05 6.7 0.2432
108 0.0121 0.10 1.32 0.227

Table 3. Monte Carlo computations

c1 < R(x) < c2 for x sufficiently large, where R(x) = S(x)x−1(lnx)c(ln lnx)1/2.
Later, Balazard, et al. [3] showed that limx→∞R(x) does not exist.
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[16] Aleksandr Y. Khinchin, Über einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta

Mathematicae 6 (1924), 9–20.
[17] Jared D. Lichtman and C. Pomerance, Improved error bounds for the Fermat primality test on

random inputs, Math. Comp. 87 (2018), 2871–2890. https://doi.org/10.1090/mcom/3314.

https://maths-people.anu.edu.au/~brent/pd/multiplication-HK.pdf
https://maths-people.anu.edu.au/~brent/pd/multiplication-HK.pdf
https://maths-people.anu.edu.au/~brent/pd/multiplication-CARMA.pdf
https://maths-people.anu.edu.au/~brent/pd/multiplication-CARMA.pdf
https://doi.org/10.1090/mcom/3314


14 BRENT, POMERANCE, PURDUM, WEBSTER

[18] Gary L. Miller, Riemann’s hypothesis and tests for primality, J. Comp. System Sci. 13 (1976),

300–317.

[19] K. K. Norton On the number of restricted prime factors of an integer, I, Illinois J. Math. 20
(1976), 681–705.

[20] Athanasios Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

New York, USA, first edition, 1965.
[21] David Purdum and Jonathan Webster, http://blue.butler.edu/~jewebste/Mn2pow30.txt

[22] David Purdum, https://rutrum.github.io/multiplication-table/

[23] Michael O. Rabin, Probabilistic algorithm for testing primality, J. of Number Theory 12
(1980), 128–138.
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