
Computing Bernoulli and Tangent Numbers

Richard P. Brent
MSI, ANU

17/18 May 2011

Dedicated to Jon Borwein
on the occasion of his 60th birthday

Copyright c© 2011, R. P. Brent

Richard Brent Computing Bernoulli and Tangent Numbers

Summary
Bernoulli numbers are rational numbers Bn defined by the
generating function∑

n≥0

Bn
zn

n!
=

z
exp(z)− 1

.

They are of interest in number theory and are related to special
values of the Riemann zeta function. They also occur as
coefficients in the Euler-Maclaurin formula.
The closely related Tangent numbers Tn, and Secant numbers
Sn, defined by

∑
n>0

Tn
z2n−1

(2n − 1)!
= tan z,

∑
n≥0

Sn
z2n

(2n)!
= sec z,

are more convenient for computation because they are integers.

Richard Brent Computing Bernoulli and Tangent Numbers

Summary continued

In this talk I will consider some algorithms for computing
Bernoulli, Secant and Tangent numbers.
Recently, David Harvey [Math. Comp. 2010] showed that the
single number Bn can be computed in

O(n2(log n)2+o(1))

bit-operations. In fact, the Bernoulli numbers B0, . . . ,Bn can all
be computed with the same complexity bound (and similarly for
Secant and Tangent numbers).

Richard Brent Computing Bernoulli and Tangent Numbers

Summary continued

I will first give a relatively simple algorithm that achieves the
slightly weaker bound O(n2(log n)3+o(1)). If time permits, I will
sketch the improvement to O(n2(log n)2+o(1)) bit-operations.
I will also give very simple in-place algorithms for computing the
first n Secant or Tangent numbers using O(n2) integer
operations. Although they are not the asymptotically fastest
algorithms, they are extremely simple and convenient for
moderate values of n.

Richard Brent Computing Bernoulli and Tangent Numbers

Advertisement

Much of the material for this talk is drawn from my recent book:

Richard P. Brent and Paul Zimmermann,
Modern Computer Arithmetic,
Cambridge University Press, 2010, 237 pp.
(online version available from my website).

In particular, see §4.7.2 and exercises 4.35–4.41.

Equation numbers such as “(4.58)” are as in the book.

Richard Brent Computing Bernoulli and Tangent Numbers

Bernoulli numbers
From the generating function∑

n≥0

Bn
zn

n!
=

z
exp(z)− 1

it’s easy to see that the Bn are rational numbers,
B2n+1 = 0 if n > 0, and they satisfy the recurrence

B0 = 1,
k∑

j=0

(
k + 1

j

)
Bj = 0 for k > 0. (4.58)

It’s sometimes convenient to consider scaled Bernoulli numbers
Cn = B2n/(2n)!, with generating function∑

n≥0

Cn z2n =
z/2

tanh(z/2)
.

Richard Brent Computing Bernoulli and Tangent Numbers

The Von Staudt – Clausen theorem

Computing a few Bn, we find

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,
B6 = 1/42, B8 = −1/30, B10 = 5/66, B12 = −691/2730,
B14 = 7/6, etc.

What are the denominators? This is answered by the
Von Staudt – Clausen Theorem (1840), which says that

B′2n := B2n +
∑

(p−1)|2n

1
p
∈ Z,

(where the sum is over primes p for which p − 1 divides 2n).

Thus, in a program it might be more convenient to store B′2n
than B2n.

Richard Brent Computing Bernoulli and Tangent Numbers

Connection with the Riemann zeta-function

Euler found that the Riemann zeta-function for even
non-negative integer arguments can be expressed in terms of
Bernoulli numbers – the relation is

(−1)k−1 B2k

(2k)!
=

2ζ(2k)

(2π)2k .

Since ζ(2k) = 1 + O(4−k) as k → +∞, we see that

|B2k | ∼
2 (2k)!

(2π)2k .

From Stirling’s approximation to (2k)! we see that the number
of bits in the integer part of B2k is 2k lg k + O(k).

Thus, it takes Ω(n2 log n) space to store B1, . . . ,Bn.

Richard Brent Computing Bernoulli and Tangent Numbers

Another connection with the zeta-function

From the functional equation for the Riemann zeta-function, we
also have

ζ(−n) = −
(

Bn+1

n + 1

)
for n ∈ Z, n ≥ 1.

Richard Brent Computing Bernoulli and Tangent Numbers

Computing Bernoulli numbers

From the generating function z/(exp(z)− 1) we obtain the
recurrence

B0 = 1,
k∑

j=0

(
k + 1

j

)
Bj = 0 for k > 0. (4.58)

This recurrence has traditionally been used to compute
B0, . . . ,B2k with O(k2) arithmetic operations.
This is unsatisfactory if floating-point numbers are used,
because the recurrence is numerically unstable: the relative
error in the computed B2k is of order 4k2−n if the floating-point
arithmetic has a precision of n bits.

Richard Brent Computing Bernoulli and Tangent Numbers

A Numerically Stable Recurrence

As before, let Ck = B2k/(2k)!. Then

sinh(z/2)

z/2

∑
k≥0

Ckz2k = cosh(z/2),

and equating coefficients gives the recurrence

k∑
j=0

Cj

(2k + 1− 2j)! 4k−j =
1

(2k)! 4k . (4.60)

Using this recurrence to evaluate C0,C1, . . . ,Ck , the relative
error in the computed Ck is only O(k22−n), which is satisfactory
from a numerical point of view.

Richard Brent Computing Bernoulli and Tangent Numbers

An Asymptotically Fast Algorithm

Harvey (2010) showed how Bn could be computed exactly,
using a modular algorithm and the Chinese remainder theorem,
in O(n2(log n)2+ε) bit-operations. (We write ε for terms that are
o(1) as n→∞.)
We’ll show how to compute all of B0, . . . ,Bn with almost the
same complexity bound (only larger by a factor O(log n)).

Richard Brent Computing Bernoulli and Tangent Numbers

Digression – Reciprocals of Power Series

Let A(z) = a0 + a1z + a2z2 + · · · be a power series with
coefficients in some field F (e.g. F = Q or R), with a0 6= 0.
Let B(z) = b0 + b1z + · · · be the reciprocal power series, so
A(z)B(z) = 1.
Suppose we can multiply polynomials of degree n − 1 in F [z]
using M(n) = O(n(log n)1+ε) field operations. Then, using
Newton’s method [Kung and Sieveking], we can compute
b0, . . . ,bn−1 with the same complexity O(n(log n)1+ε), up to a
constant factor.

Richard Brent Computing Bernoulli and Tangent Numbers

Application – an Asymptotically Fast Algorithm

Taking
A(z) = (exp(z)− 1)/z

and working with (n lg(n) + O(n))-bit floating-point numbers, we
get B0, . . . ,Bn to sufficient accuracy to deduce the exact
(rational) result using O(n(log n)1+ε) floating-point operations,
each of which can be done with

O(n(log n)2 log log n)

bit-operations by Schönhage–Strassen. Thus, overall we get
B0, . . . ,Bn with

O(n2(log n)3+ε)

bit-operations. Similarly for Secant and Tangent numbers.

Richard Brent Computing Bernoulli and Tangent Numbers

Tangent and Secant numbers

The Tangent numbers Tn (n > 0) (also called Zag numbers)
are defined by

∑
n>0

Tn
z2n−1

(2n − 1)!
= tan z =

sin z
cos z

.

Similarly, the Secant numbers Sn (n ≥ 0) (also called Euler or
Zig numbers) are defined by

∑
n≥0

Sn
z2n

(2n)!
= sec z =

1
cos z

.

Unlike the Bernoulli numbers, the Tangent and Secant numbers
are positive integers.

Richard Brent Computing Bernoulli and Tangent Numbers

Asymptotics

Because tan z and sec z have poles at z = π/2, we expect
Tn to grow roughly like (2n − 1)!(2/π)n and Sn like (2n)!(2/π)n.

More precisely, let

ζ0(s) = (1− 2−s)ζ(s) = 1 + 3−s + 5−s + · · ·

be the odd zeta-function.Then

Tk

(2k − 1)!
=

22k+1ζ0(2k)

π2k ∼ 22k+1

π2k .

We also have
Sk

(2k)!
∼ 22k+2

π2k+1 .

Richard Brent Computing Bernoulli and Tangent Numbers

Bernoulli numbers via Tangent numbers

From the formulas for Tk and B2k in terms of ζ(2k), we see that

Tk = (−1)k−122k (22k − 1)
B2k

2k

(this can be proved directly, without involving the zeta-function).

Since Tk ∈ Z, the odd primes in the denominator of B2k must
divide 22k − 1. This is compatible with the Von Staudt–Clausen
theorem, since (p − 1)|2k =⇒ p|(22k − 1) by Fermat’s little
theorem.
Tk has about 4k more bits than dB2ke, but both have
2k lg k + O(k) bits, so asymptotically not much difference.
Thus, to compute B2k we don’t lose much by first computing Tk ,
and this may be more convenient since Tk ∈ Z, B2k ∈ Q.

Richard Brent Computing Bernoulli and Tangent Numbers

Getting Rid of a “log” Factor in the Time Bound

To improve the algorithm for Bernoulli numbers, we use the
Kronecker–Schönhage trick. Here is an outline.
Fix n > 1, choose p = dn lg(n)e, N = 2np, z = 2−p.
Write down N-bit approximations to (2n)! sin(z) and
(2n)! cos(z) from the truncated Taylor series.
Perform an N-bit division (using Newton’s method) to get an
N-bit approximation to tan(z) in time O(N log(N) log log(N)).
Multiply by (2n − 1)! and read off the integers
T ′k = Tk (2n − 1)!/(2k − 1)! from the binary representation.
Now deduce the Tk and B2k , k ≤ n. The overhead involving
factorials can be handled within the overall time bound, which is

O(N log(N) log log(N)) = O(n2(log n)2 log log n).

Richard Brent Computing Bernoulli and Tangent Numbers

Algorithms based on 3-term Recurrences

Akiyama and Tanigawa gave an algorithm for computing
Bernoulli numbers based on a 3-term recurrence. However, it is
only useful for exact computations, since it is numerically
unstable if applied using floating-point arithmetic.
We’ll give a stable 3-term recurrence and corresponding
in-place algorithm for computing Tangent numbers. It is
perfectly stable since all operations are on positive integers and
there is no cancellation. Also, it involves less arithmetic than
the Akiyama-Tanigawa algorithm.
The three-term recurrence was given by Buckholtz and Knuth
(1967), but they did not give the in-place algorithm explicitly.
There is a similar 3-term recurrence and stable in-place
algorithm for computing Secant numbers.

Richard Brent Computing Bernoulli and Tangent Numbers

A 3-term Recurrence for Computing Tangent Numbers

Write t = tan x , D = d/dx , so Dt = 1 + t2 and
D(tn) = ntn−1(1 + t2) for n ≥ 1.
It is clear that Dnt is a polynomial in t , say Pn(t).
Write Pn(t) =

∑
j≥0 pn,j t j . Then deg(Pn) = n + 1 and,

from the formula for D(tn),

pn,j = (j − 1)pn−1,j−1 + (j + 1)pn−1,j+1. (4.63)

We are interested in Tk = p2k−1,0, which can be computed from
the 3-term recurrence in O(k2) operations using the obvious
boundary conditions.
We can save work by noticing that pn,j = 0 if n + j is even.

Richard Brent Computing Bernoulli and Tangent Numbers

Algorithm TangentNumbers

Input: positive integer n
Output: Tangent numbers T1, . . . ,Tn

T1 ← 1
for k from 2 to n

Tk ← (k − 1)Tk−1
for k from 2 to n

for j from k to n
Tj ← (j − k)Tj−1 + (j − k + 2)Tj

return T1,T2, . . . ,Tn.

The first for loop initializes Tk = pk−1,k = (k − 1)!. The variable
Tk is then used to store pk ,k−1, pk+1,k−2, . . ., p2k−2,1, p2k−1,0 at
successive iterations of the second for loop. Thus, when the
algorithm terminates, Tk = p2k−1,0 (correct).

Richard Brent Computing Bernoulli and Tangent Numbers

Illustration
The process in the case n = 3 is illustrated in the following
diagram, where T (m)

k denotes the value of the variable Tk at
successive iterations m = 1,2, . . . ,n:

T (1)
1 = p0,1

↙ ↘
T (1)

1 = p1,0 T (1)
2 = p1,2

↘ ↙ ↘
T (2)

2 = p2,1 T (1)
3 = p2,3

↙ ↘ ↙
T (2)

2 = p3,0 T (2)
3 = p3,2

↘ ↙
T (3)

3 = p4,1
↙

T (3)
3 = p5,0

Richard Brent Computing Bernoulli and Tangent Numbers

Complexity of Algorithm TangentNumbers

Algorithm TangentNumbers takes Θ(n2) operations on positive
integers. The integers Tn have O(n log n) bits, other integers
have O(log n) bits.
Thus the overall complexity is O(n3(log n)1+ε) bit-operations,
or O(n3 log n) word-operations if n fits in a single word.
The algorithm is not optimal, but it is good in practice for
moderate values of n, and much simpler than asymptotically
faster algorithms.

Richard Brent Computing Bernoulli and Tangent Numbers

Acknowledgements

I Jon Borwein, Kurt Mahler and George Szekeres for
encouraging my belief that high-precision computations
are useful in “experimental” mathematics.

I David Harvey for discussions on the complexity of
algorithms for computing Bernoulli numbers.

I Donald Knuth and Thomas Buckholtz for giving the
three-term recurrence (4.63) for Tangent numbers.

I Ben F. “Tex” Logan, Jr., for suggesting the use of Tangent
numbers to compute Bernoulli numbers.

I Christian Reinsch for pointing out the numerical instability
of the recurrence (4.58) and suggesting the use of the
numerically stable recurrence (4.60).

I Paul Zimmermann for coauthoring our book Modern
Computer Arithmetic.

Richard Brent Computing Bernoulli and Tangent Numbers

References

1. Jonathan M. Borwein and David H. Bailey, Mathematics by
Experiment: Plausible Reasoning in the 21st Century, second
edition, A. K. Peters, 2008.
2. Richard P. Brent, Unrestricted algorithms for elementary and
special functions, in Information Processing 80, North-Holland,
Amsterdam, 1980, 613–619. arXiv:1004.3621v1
3. Richard P. Brent and Paul Zimmermann, Modern Computer
Arithmetic, Cambridge University Press, 2010, 237 pp.
4. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,
Concrete Mathematics, third edition, Addison-Wesley, 1994.
5. David Harvey, A multimodular algorithm for computing
Bernoulli numbers, Mathematics of Computation 79 (2010),
2361–2370.

Richard Brent Computing Bernoulli and Tangent Numbers

References continued

6. Masanobu Kaneko, The Akiyama-Tanigawa algorithm for
Bernoulli numbers, Journal of Integer Sequences 3 (2000).
Article 00.2.9, 6 pages.
7. Donald E. Knuth, Euler’s constant to 1271 places,
Mathematics of Computation, 16 (1962), 275–281.
8. Donald E. Knuth and Thomas J. Buckholtz, Computation of
Tangent, Euler, and Bernoulli numbers, Mathematics of
Computation 21 (1967), 663–688.
9. Christian Reinsch, personal communication, about 1979.

Richard Brent Computing Bernoulli and Tangent Numbers

