Computing Bernoulli and Tangent Numbers

Richard P. Brent MSI, ANU

17/18 May 2011

Dedicated to Jon Borwein on the occasion of his 60th birthday

Copyright © 2011, R. P. Brent

A B F A B F

Summary

Bernoulli numbers are rational numbers B_n defined by the generating function

$$\sum_{n\geq 0} B_n \frac{z^n}{n!} = \frac{z}{\exp(z)-1}.$$

They are of interest in number theory and are related to special values of the Riemann zeta function. They also occur as coefficients in the Euler-Maclaurin formula.

The closely related *Tangent numbers* T_n , and *Secant numbers* S_n , defined by

$$\sum_{n>0} T_n \frac{z^{2n-1}}{(2n-1)!} = \tan z, \quad \sum_{n\geq 0} S_n \frac{z^{2n}}{(2n)!} = \sec z,$$

are more convenient for computation because they are integers.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Summary continued

In this talk I will consider some algorithms for computing Bernoulli, Secant and Tangent numbers.

Recently, David Harvey [*Math. Comp.* 2010] showed that the *single* number B_n can be computed in

 $O(n^2(\log n)^{2+o(1)})$

bit-operations. In fact, the Bernoulli numbers B_0, \ldots, B_n can all be computed with the same complexity bound (and similarly for Secant and Tangent numbers).

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

I will first give a relatively simple algorithm that achieves the slightly weaker bound $O(n^2(\log n)^{3+o(1)})$. If time permits, I will sketch the improvement to $O(n^2(\log n)^{2+o(1)})$ bit-operations. I will also give very simple in-place algorithms for computing the first *n* Secant or Tangent numbers using $O(n^2)$ integer operations. Although they are not the asymptotically fastest algorithms, they are extremely simple and convenient for moderate values of *n*.

□ ▶ ★ □ ▶ ★ □ ▶ □ □

Advertisement

Much of the material for this talk is drawn from my recent book:

Richard P. Brent and Paul Zimmermann, *Modern Computer Arithmetic*, Cambridge University Press, 2010, 237 pp. (online version available from my website).

In particular, see §4.7.2 and exercises 4.35–4.41.

Equation numbers such as "(4.58)" are as in the book.

글 제 제 글 제

Bernoulli numbers

From the generating function

$$\sum_{n\geq 0} B_n \frac{z^n}{n!} = \frac{z}{\exp(z) - 1}$$

it's easy to see that the B_n are rational numbers, $B_{2n+1} = 0$ if n > 0, and they satisfy the recurrence

$$B_0 = 1, \quad \sum_{j=0}^k \binom{k+1}{j} B_j = 0 \text{ for } k > 0.$$
 (4.58)

It's sometimes convenient to consider *scaled* Bernoulli numbers $C_n = B_{2n}/(2n)!$, with generating function

$$\sum_{n\geq 0} C_n z^{2n} = \frac{z/2}{\tanh(z/2)}.$$

The Von Staudt – Clausen theorem

Computing a few B_n , we find

What are the denominators? This is answered by the *Von Staudt – Clausen Theorem* (1840), which says that

$$B_{2n}':=B_{2n}+\sum_{(p-1)|2n}\frac{1}{p}\in\mathbb{Z},$$

(where the sum is over primes *p* for which p - 1 divides 2n).

Thus, in a program it might be more convenient to store B'_{2n} than B_{2n} .

伺下 イヨト イヨト

Connection with the Riemann zeta-function

Euler found that the Riemann zeta-function for even non-negative integer arguments can be expressed in terms of Bernoulli numbers – the relation is

$$(-1)^{k-1} \frac{B_{2k}}{(2k)!} = \frac{2\zeta(2k)}{(2\pi)^{2k}}.$$

Since $\zeta(2k) = 1 + O(4^{-k})$ as $k \to +\infty$, we see that

$$|B_{2k}| \sim \frac{2(2k)!}{(2\pi)^{2k}}.$$

From Stirling's approximation to (2k)! we see that the number of bits in the integer part of B_{2k} is $2k \lg k + O(k)$.

Thus, it takes $\Omega(n^2 \log n)$ space to store B_1, \ldots, B_n .

< 同 > < 回 > < 回 > <

Another connection with the zeta-function

From the functional equation for the Riemann zeta-function, we also have

$$\zeta(-n)=-\left(\frac{B_{n+1}}{n+1}\right)$$

for $n \in \mathbb{Z}$, $n \ge 1$.

A B > A B >

크

Computing Bernoulli numbers

From the generating function $z/(\exp(z) - 1)$ we obtain the recurrence

$$B_0 = 1, \quad \sum_{j=0}^k \binom{k+1}{j} B_j = 0 \text{ for } k > 0.$$
 (4.58)

This recurrence has traditionally been used to compute B_0, \ldots, B_{2k} with $O(k^2)$ arithmetic operations.

This is unsatisfactory if floating-point numbers are used, because the recurrence is *numerically unstable*: the relative error in the computed B_{2k} is of order $4^k 2^{-n}$ if the floating-point arithmetic has a precision of *n* bits.

A Numerically Stable Recurrence

As before, let $C_k = B_{2k}/(2k)!$. Then

$$\frac{\sinh(z/2)}{z/2}\sum_{k\geq 0}C_kz^{2k}=\cosh(z/2),$$

and equating coefficients gives the recurrence

$$\sum_{j=0}^{k} \frac{C_j}{(2k+1-2j)! \, 4^{k-j}} = \frac{1}{(2k)! \, 4^k} \,. \tag{4.60}$$

Using this recurrence to evaluate C_0, C_1, \ldots, C_k , the relative error in the computed C_k is only $O(k^2 2^{-n})$, which is satisfactory from a numerical point of view.

Harvey (2010) showed how B_n could be computed exactly, using a modular algorithm and the Chinese remainder theorem, in $O(n^2(\log n)^{2+\varepsilon})$ bit-operations. (We write ε for terms that are o(1) as $n \to \infty$.)

We'll show how to compute all of B_0, \ldots, B_n with almost the same complexity bound (only larger by a factor $O(\log n)$).

Digression – Reciprocals of Power Series

Let $A(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ be a power series with coefficients in some field F (e.g. $F = \mathbb{Q}$ or \mathbb{R}), with $a_0 \neq 0$. Let $B(z) = b_0 + b_1 z + \cdots$ be the *reciprocal* power series, so A(z)B(z) = 1.

Suppose we can multiply polynomials of degree n - 1 in F[z] using $M(n) = O(n(\log n)^{1+\varepsilon})$ field operations. Then, using Newton's method [Kung and Sieveking], we can compute b_0, \ldots, b_{n-1} with the *same* complexity $O(n(\log n)^{1+\varepsilon})$, up to a constant factor.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

Application – an Asymptotically Fast Algorithm

Taking

$$A(z) = (\exp(z) - 1)/z$$

and working with $(n \lg(n) + O(n))$ -bit floating-point numbers, we get B_0, \ldots, B_n to sufficient accuracy to deduce the exact (rational) result using $O(n(\log n)^{1+\varepsilon})$ floating-point operations, each of which can be done with

$$O(n(\log n)^2 \log \log n)$$

bit-operations by Schönhage–Strassen. Thus, overall we get B_0, \ldots, B_n with

$$O(n^2(\log n)^{3+\varepsilon})$$

bit-operations. Similarly for Secant and Tangent numbers.

• Image: A image A image: A

Tangent and Secant numbers

The Tangent numbers T_n (n > 0) (also called Zag numbers) are defined by

$$\sum_{n>0} T_n \frac{z^{2n-1}}{(2n-1)!} = \tan z = \frac{\sin z}{\cos z}.$$

Similarly, the Secant numbers S_n $(n \ge 0)$ (also called *Euler* or *Zig* numbers) are defined by

$$\sum_{n\geq 0} S_n \frac{z^{2n}}{(2n)!} = \sec z = \frac{1}{\cos z}$$

Unlike the Bernoulli numbers, the Tangent and Secant numbers are positive integers.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Asymptotics

Because tan *z* and sec *z* have poles at $z = \pi/2$, we expect T_n to grow roughly like $(2n-1)!(2/\pi)^n$ and S_n like $(2n)!(2/\pi)^n$.

More precisely, let

$$\zeta_0(s) = (1 - 2^{-s})\zeta(s) = 1 + 3^{-s} + 5^{-s} + \cdots$$

be the odd zeta-function. Then

$$\frac{T_k}{(2k-1)!} = \frac{2^{2k+1}\zeta_0(2k)}{\pi^{2k}} \sim \frac{2^{2k+1}}{\pi^{2k}}.$$

We also have

$$rac{S_k}{(2k)!} \sim rac{2^{2k+2}}{\pi^{2k+1}}.$$

< 3 >

Bernoulli numbers via Tangent numbers

From the formulas for T_k and B_{2k} in terms of $\zeta(2k)$, we see that

$$T_k = (-1)^{k-1} 2^{2k} (2^{2k} - 1) \frac{B_{2k}}{2k}$$

(this can be proved directly, without involving the zeta-function).

Since $T_k \in \mathbb{Z}$, the odd primes in the denominator of B_{2k} must divide $2^{2k} - 1$. This is compatible with the Von Staudt–Clausen theorem, since $(p-1)|2k \implies p|(2^{2k}-1)$ by Fermat's little theorem.

 T_k has about 4k more bits than $[B_{2k}]$, but both have $2k \lg k + O(k)$ bits, so asymptotically not much difference.

Thus, to compute B_{2k} we don't lose much by first computing T_k , and this may be more convenient since $T_k \in \mathbb{Z}$, $B_{2k} \in \mathbb{Q}$.

(ロ) (同) (E) (E) (E) (O) (O)

Getting Rid of a "log" Factor in the Time Bound

To improve the algorithm for Bernoulli numbers, we use the Kronecker–Schönhage trick. Here is an outline.

Fix n > 1, choose $p = \lceil n \lg(n) \rceil$, N = 2np, $z = 2^{-p}$.

Write down *N*-bit approximations to $(2n)! \sin(z)$ and $(2n)! \cos(z)$ from the truncated Taylor series.

Perform an *N*-bit division (using Newton's method) to get an *N*-bit approximation to tan(z) in time $O(N \log(N) \log \log(N))$.

Multiply by (2n - 1)! and read off the integers $T'_k = T_k(2n - 1)!/(2k - 1)!$ from the binary representation. Now deduce the T_k and B_{2k} , $k \le n$. The overhead involving factorials can be handled within the overall time bound, which is

 $O(N\log(N)\log\log(N)) = O(n^2(\log n)^2\log\log n).$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

Algorithms based on 3-term Recurrences

Akiyama and Tanigawa gave an algorithm for computing Bernoulli numbers based on a 3-term recurrence. However, it is only useful for exact computations, since it is numerically unstable if applied using floating-point arithmetic.

We'll give a stable 3-term recurrence and corresponding in-place algorithm for computing Tangent numbers. It is perfectly stable since all operations are on positive integers and there is no cancellation. Also, it involves less arithmetic than the Akiyama-Tanigawa algorithm.

The three-term recurrence was given by Buckholtz and Knuth (1967), but they did not give the in-place algorithm explicitly.

There is a similar 3-term recurrence and stable in-place algorithm for computing Secant numbers.

< 同 > < 回 > < 回 > <

A 3-term Recurrence for Computing Tangent Numbers

Write
$$t = \tan x$$
, $D = d/dx$, so $Dt = 1 + t^2$ and $D(t^n) = nt^{n-1}(1 + t^2)$ for $n \ge 1$.

It is clear that $D^n t$ is a polynomial in t, say $P_n(t)$. Write $P_n(t) = \sum_{j \ge 0} p_{n,j} t^j$. Then $\deg(P_n) = n + 1$ and, from the formula for $D(t^n)$.

from the formula for $D(t^n)$,

$$p_{n,j} = (j-1)p_{n-1,j-1} + (j+1)p_{n-1,j+1}.$$
 (4.63)

We are interested in $T_k = p_{2k-1,0}$, which can be computed from the 3-term recurrence in $O(k^2)$ operations using the obvious boundary conditions.

We can save work by noticing that $p_{n,j} = 0$ if n + j is even.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Algorithm TangentNumbers

Input: positive integer *n* Output: Tangent numbers T_1, \ldots, T_n $T_1 \leftarrow 1$ for *k* from 2 to *n* $T_k \leftarrow (k-1)T_{k-1}$ for *k* from 2 to *n* for *j* from *k* to *n* $T_j \leftarrow (j-k)T_{j-1} + (j-k+2)T_j$ return T_1, T_2, \ldots, T_n .

The first **for** loop initializes $T_k = p_{k-1,k} = (k-1)!$. The variable T_k is then used to store $p_{k,k-1}$, $p_{k+1,k-2}$, ..., $p_{2k-2,1}$, $p_{2k-1,0}$ at successive iterations of the second **for** loop. Thus, when the algorithm terminates, $T_k = p_{2k-1,0}$ (correct).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Illustration

The process in the case n = 3 is illustrated in the following diagram, where $T_k^{(m)}$ denotes the value of the variable T_k at successive iterations m = 1, 2, ..., n:

Complexity of Algorithm TangentNumbers

- Algorithm TangentNumbers takes $\Theta(n^2)$ operations on positive integers. The integers T_n have $O(n \log n)$ bits, other integers have $O(\log n)$ bits.
- Thus the overall complexity is $O(n^3(\log n)^{1+\varepsilon})$ bit-operations, or $O(n^3 \log n)$ word-operations if *n* fits in a single word.
- The algorithm is not optimal, but it is good in practice for moderate values of n, and much simpler than asymptotically faster algorithms.

▲□→ ▲ □→ ▲ □→ □ □

Acknowledgements

- Jon Borwein, Kurt Mahler and George Szekeres for encouraging my belief that high-precision computations are useful in "experimental" mathematics.
- David Harvey for discussions on the complexity of algorithms for computing Bernoulli numbers.
- Donald Knuth and Thomas Buckholtz for giving the three-term recurrence (4.63) for Tangent numbers.
- Ben F. "Tex" Logan, Jr., for suggesting the use of Tangent numbers to compute Bernoulli numbers.
- Christian Reinsch for pointing out the numerical instability of the recurrence (4.58) and suggesting the use of the numerically stable recurrence (4.60).
- Paul Zimmermann for coauthoring our book Modern Computer Arithmetic.

3

References

1. Jonathan M. Borwein and David H. Bailey, *Mathematics by Experiment: Plausible Reasoning in the 21st Century*, second edition, A. K. Peters, 2008.

2. Richard P. Brent, Unrestricted algorithms for elementary and special functions, in *Information Processing 80*, North-Holland, Amsterdam, 1980, 613–619. arXiv:1004.3621v1

3. Richard P. Brent and Paul Zimmermann, *Modern Computer Arithmetic*, Cambridge University Press, 2010, 237 pp.

4. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, *Concrete Mathematics*, third edition, Addison-Wesley, 1994.

5. David Harvey, A multimodular algorithm for computing Bernoulli numbers, *Mathematics of Computation* **79** (2010), 2361–2370.

-

References continued

6. Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, *Journal of Integer Sequences* **3** (2000). Article 00.2.9, 6 pages.

7. Donald E. Knuth, Euler's constant to 1271 places, *Mathematics of Computation*, 16 (1962), 275–281.

8. Donald E. Knuth and Thomas J. Buckholtz, Computation of Tangent, Euler, and Bernoulli numbers, *Mathematics of Computation* **21** (1967), 663–688.

9. Christian Reinsch, personal communication, about 1979.