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Abstract
Cramér’s probabilistic model (1936) gives a useful way of
predicting the distribution of primes. However, the model is not
perfect, as shown by Cramér himself (1920), Maier (1985), and
Pintz (2007).
With appropriate modifications (Hardy and Littlewood),
Cramér’s model can also be used for twin primes. In fact,
computational evidence suggests that the model is better for
twin primes than for primes. In this sense, twin primes appear
to behave more randomly than primes. This can be explained
by the connection between the Riemann zeta function and the
primes - the zeros of the zeta function constrain the behaviour
of the primes, but there does not appear to be any analogous
constraint on the behaviour of twin primes.
In the talk I will outline some of the results mentioned above,
and present some numerical evidence for the claim that twin
primes are more random than primes.
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Cramér’s model

“As a boy I considered the problem of how many primes
there are up to a given point. From my computations,
I determined that the density of primes around x, is
about 1/ log x.”

Letter from Gauss to Encke, 1849

In the 1930s, Harald Cramér introduced the following “model” of
the primes (as paraphrased by Soundararajan):

CM: The primes behave like independent random vari-
ables X (n) (n ≥ 3) with X (n) = 1 (the number n is
“prime”) with probability 1/ log n, and X (n) = 0 (the
number n is “composite”) with probability 1− 1/ log n.

Cramér (1936)/Soundararajan (2006)

Notation: in this talk, log x = ln x , and log2 x = ln ln x ,
log3 x = ln ln ln x , etc.
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Local limitations of Cramér’s model
Of course, Cramér did not intend his model to be taken literally.
“Locally”, the primes do not behave like independent random
variables. For example,

X (n) = 1 =⇒ X (n + 1) = 0 for n ≥ 3.

The frequencies of k -tuples of primes ≤ N are expected to be
∼ CN/(log N)k , where C is a constant that can be computed
from the given k -tuple [Hardy and Littlewood, 1923]. For
example, the frequency of twin primes (primes p such that
p + 2 is also prime) is expected to be

π2(N) ∼ 2c2N
(log N)2

,

where 2c2 > 1 (the constant 1 is implied by Cramér’s model).
More precisely,

2c2 = 2
∏

p≥3 prime

(
1− 1

(p − 1)2

)
≈ 1.3203236.
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Semi-local behaviour of π(x)
Let π(x) be the prime-counting function. For which functions
Ψ(x)� x is it true that

π(x + Ψ(x))− π(x) ∼ Ψ(x)

log x
as x →∞ ? (1)

To paraphrase, how large does an interval need to be before
the primes can be guaranteed to have their “expected”
distribution asymptotically?
Huxley (1972) and Heath-Brown (1980) showed that one can
take Ψ(x) = x7/12. The Riemann Hypothesis (RH) implies that
one can Ψ(x) = x1/2+ε.
Huxley (1972) showed that (1) is true for almost all x if
Ψ(x) = x1/6+ε. Selberg (1943), assuming RH, showed this for
Ψ(x)/(log x)2 →∞. The same result follows from Cramer’s
model CM with probability 1.
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Semi-local behaviour – Rankin’s theorem
In the other direction, Rankin (1938) showed that (1) is false if

Ψ(x) = c(log x)(log2 x)(log4 x)(log3 x)−2,

for a sufficiently small c > 0. This improved on a sequence of
earlier results by Erdős and others.
Maynard (2014) and Ford, Green, Konyagin and Tao (2014)
recently improved on Rankin just so slightly. They showed that

lim sup
n→∞

pn+1 − pn

(log pn)(log2 pn)(log4 pn)(log3 pn)−2 =∞.

There is a big gap between the upper and lower bounds on
Ψ(x), even assuming RH. Ignoring epsilons and log log factors,
the upper bounds are close to x1/2, while the lower bounds are
close to log x .
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Maier’s theorem

It was a great surprise1 when Maier (1985) showed that (1) is
false for Ψ(x) = (log x)λ and any λ > 1. In particular,

lim sup
x→∞

π(x + Ψ(x))− π(x)

Ψ(x)/ log x
> 1

and
lim inf
x→∞

π(x + Ψ(x))− π(x)

Ψ(x)/ log x
< 1.

Maier’s theorem contradicts CM if λ > 2.
It does not contradict Selberg’s result, since the exceptional
values of x are rare.

1According to Carl Pomerance (2009), “both Erdős and Selberg were
astonished”.
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Observations on primes
In 1975 I computed the error in various approximations to the
counts of primes and of twin primes ≤ x .
For the primes I considered Riemann’s approximation

R(x) =
∞∑

k=1

µ(k)

k
Li(x1/k ) = 1 +

∞∑
k=1

(log x)k

k !kζ(k + 1)
.
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The same for twin primes
Here is the corresponding graph for an approximation

L2(x) = 2c2

∫ x

2

dt
log2 t

to the twin-prime counting function π2(x).
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Primes vs twin primes

You will notice that the two graphs look quite different.
For primes the error oscillates very fast and there are many
zero-crossings (in the graph I only plotted the upper and lower
envelopes). It does not look like a Bernoulli random walk.
For twin primes there is a slow oscillation that looks much more
like what one expects for a Bernoulli random walk.
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A global limitation of CM
To put our observations about primes on a sound theoretical
footing, we could consider the mean square errors

1
X

∫ X

3
(π(x)− R(x))2 dx or

1
X

∫ X

3
(π(x)− Li(x))2 dx (2)

and compare these with the predictions from CM.
It is simpler to consider CM’s prediction for

1
X

∫ X

3
∆(x)2 dx , (3)

where
∆(x) = ψ(x)− x =

∑
n≤x

Λ(n)− x .

Here Λ(n) is von Mangoldt’s function, defined by
Λ(n) = log p if n = pk , and Λ(n) = 0 otherwise.
Results for (2) can be deduced from (3) by partial summation.
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The predicted mean square error (assuming RH)
We can assume RH, since otherwise Cramér’s model CM is
false. CM predicts that

1
X

∫ X

3
∆(x)2 dx ∼ X log X . (4)

On the other hand, Riemann’s “explicit formula”

∆(x) = lim
T→∞

∑
|ρ|≤T

xρ

ρ
+ O(log x),

where ρ runs over the nontrivial zeros of ζ(s), implies

1
X

∫ X

3
∆(x)2 dx = O(X ). (5)

This contradicts (4)!
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Sketch of proof
Use a truncated version of the explicit formula

∆(x) =
∑
|ρ|≤T

xρ

ρ
+ O(log x) for T ≥ x log x .

Multiply out ∆(x)∆(x) and integrate over [3,X ]. This gives a
sum of terms

X ρ+ρ′+1

ρρ′(ρ+ ρ′ + 1)
,

plus some lower-order terms which can be ignored. Here
ρ = 1

2 + iγ and ρ′ = 1
2 + iγ′ are nontrivial zeros of ζ(s).

Split the sum into two, say S1 over (ρ, ρ′) such that

|=(ρ+ ρ′)| ≤ 1, (6)

and S2 over the remaining pairs (ρ, ρ′). Using the fact that, for
each zero ρ, there are O(log |=(ρ)|) zeros ρ′ such that (6) holds,
we can prove that each sum is O(X 2).
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The key idea

Considering just the nontrivial zeros ρn in the upper half-plane,
we have ρn = 1/2 + iγn, where γn ∼ 2πn/log n; more precisely

n =
γn

2π

(
log
( γn

2π

)
− 1
)

+ O(log γn).

Thus,

|S1|
X 2 �

O(T )∑
n=1

(log n)3

n2
,

and

|S2|
X 2 �

O(T )∑
n=1

log n
n

n∑
n′=1

log n′

n′(n − n′ + 1)
�

O(T )∑
n=1

(log n)3

n(n + 1)
.

However, both these series are absolutely convergent.
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Some constants
Assuming RH, we obtain

0 < c0 ≤ lim sup
X→∞

1
X 2

∫ X

3
∆(x)2 dx ≤ c1,

where c0 and c1 are constants. See Montgomery and Vaughan,
Theorem 13.5, for a related upper bound argument. There are
finite oscillations in the mean value and a limit does not exist.
If, however, we use a logarithmically weighted mean, as in
exercise 13.1.1.3 of Montgomery and Vaughan, then there is a
limiting value of (assuming all zeros are simple)

L = 8
∞∑

n=1

1
1 + 4γ2

n
= 2− Γ′(1)− ln(4π) ≈ 0.046,

which comes from the “diagonal” terms with ρ′ = ρ.
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Generalisation

Using the same ideas, we can prove

1
X

∫ X

3
|∆(x)|α dx = Oα(Xα/2) (7)

for all positive integers α.
However, max3≤x≤X |∆(x)| 6= O(X 1/2).
Littlewood (1914) proved the lower bound

∆(X ) = Ω±(X 1/2 log3 X ).

This does not contradict (7), because the worst case occurs
only rarely.
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A related problem

Soundararajan, in his lecture notes for a 2006 Summer School,
discusses a closely related problem. Assuming RH, he outlines
a proof that, when h/X is small,

1
X

∫ 2X

X
(ψ(x + h)− ψ(x)− h)2 dx � h(1 + (log X )/h)2. (8)

A similar result was proved by Selberg (1943).
Assume that h/ log X is large, but h/X is small. CM predicts
that ψ(X + h)− ψ(X ) is approximately normal with mean ∼ h
and variance ∼ h log X . The CM prediction for the variance
disagrees with (8) by a factor of order log X .
Putting h = X formally gives our result (although
Soundararajan’s proof may not apply as h/X is not small).
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Numerical results (A)
To confirm the theory for primes, and to see what happens for
twin primes (where we do not have any theoretical results), we
performed some statistical tests.
Define Chebyshev’s function

θ1(x) :=
∑

primes p≤x

log p

and analogously

θ2(x) :=
∑

twins (p,p+2), p≤x

log(p) log(p + 2).

On Cramér’s model we would expect (θ1(x)− x)2 to be of order
x log x , more precisely to have mean

V1(x) = (x + 1/2)(log x − 2) + O(1);

and (θ2(x)− 2c2x)2 to be of order x log2 x , more precisely

V2(x) = 2c2(x + 3/2)(log x − 1)2 + O(log x).
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x (ψ(x)−x)2

x
(θ1(x)−x)2

x
(θ1(x)−x)2

V1(x)
(θ2(x)−x)2

V2(x)

102 0.355 2.65 0.203 1.56
103 0.011 1.91 0.055 1.85
104 0.018 1.08 0.016 0.07
105 0.027 0.99 0.009 0.22
106 0.171 2.30 0.014 0.57
107 0.213 2.32 0.010 1.08
108 0.031 1.50 0.005 0.02

Table: Test of Cramér’s model for primes and twin primes

The numerical results confirm that both ψ(x)− x and θ1(x)− x
have mean square values of order x , although |ψ(x)− x | is
usually2 smaller than |θ1(x)− x |.
As expected, CM makes incorrect predictions for primes, but
the numerical evidence for twins is inconclusive.

2Not always smaller, by the result of Littlewood (1914).
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Numerical results (B)

Consider the interval I = [n0,n0 + n). We split I into ν bins,
each of size n/ν. For each bin Bk , we count the number of
primes Ok in the bin. We compute the expected number of
primes Ek using

Ek =
∑

2≤m∈Bk

1
log m

.

Similarly for twin-prime pairs (m,m + 2), except that now

Ek =
∑

3≤m∈Bk

2c2

log(m) log(m + 2)
.
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Numerical results

In each case we compute the “chi-squared” statistic

χ2
ν :=

ν∑
k=1

(Ok − Ek )2

Ek
.

On the null hypothesis (which corresponds to Cramér’s model
being true), we expect χ2

ν to have a chi-squared distribution
with ν degrees of freedom (provided that the bins are
sufficiently large so Ek is not too small).
We can compute the p-value (the probability that an observed
χ2
ν would be exceeded), and a q-value (q = 1− p).

If p is small, e.g. p < 0.01, then the prediction is poor and the
null hypothesis can be rejected.
On the other hand, if q is small, then the prediction is too good!
In both cases the null hypothesis should be rejected.
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Numerical results

n0 n ν q (primes) q (twins)

0 106 100 2.1× 10−16 3.3× 10−4

0 107 1000 2.4× 10−96 4.5× 10−18

107 107 1000 1.2× 10−76 5.3× 10−11

108 107 1000 1.5× 10−58 5.3× 10−8

109 107 1000 2.4× 10−35 3.7× 10−2

1010 107 1000 8.7× 10−31 1.3× 10−4

Table: Test of Cramér’s model for primes and twin primes

We see that neither the primes nor the twin primes satisfy the
null hypothesis; the prediction is too good.
The q-values for twins are larger than the corresponding
q-values for primes; in this sense the twins are “more random”
than the primes.
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Some history

Pintz (2007) states the results (4)–(5) and mentions that he
found them “a few years after Maier’s (1985) discovery” but did
not publish them at the time.
Pintz mentions that a result equivalent to (5) was proved
by Cramér in 1920, about 15 years before the publication of
Cramér’s model.
Thus, we see the reason for the title of Pintz’s paper:

“Cramér vs Cramér”.

It is not clear whether Cramér was aware of the contradiction
between his model and his earlier result.
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