Lecture 1

Fast Algorithms for
Elementary Functions,
m, and v*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent. lecO1

Summary

e High-precision arithmetic

e Use of Newton’s method

e Some algorithms for exp and In
e The arithmetic-geometric mean
e Faster algorithms for exp and In
e Gauss-Legendre algorithm for 7
e Some other algorithms for 7

e Other elementary functions

e FEuler’s constant «y

A connection with Ramanujan

1-2

High-precision arithmetic

We are concerned with high-precision
computations on integers or floating-point
approximations to real numbers.
If N is a (large) integer we can represent N
using base (or radix) 3, say
-1
N=1+> dp",
i=0
where the d; are “base § digits”, i.e.
0<d;<p.

The sign can be handled in several ways. We
usually assume N > 0 for simplicity.

On a binary computer with a fixed word length,
say w bits, it is convenient to choose the (3 so
that base-3 digits can be represented exactly in
a single word. Thus, we choose

2<B<2v.

It is often convenient to choose (3 significantly
smaller than 2¥. For example, if w = 32, we
might choose = 23! or 214 or 10%.

13

Addition

The number of operations required to add two
t-digit numbers is O(t). If 3 = 2 this is called
the “bit complexity” to distinguish it from the
“operation complexity” (which is simply 1).

On a machine with fixed wordlength w bits the
“bit complexity” and the “word complexity”
only differ by a constant factor so we ignore the
distinction (though in practice the constant is
important).

Since we are considering a serial computer and

ignoring constant factors, we usually call the bit
complexity “time”.

14

Multiplication

The time required to multiply two ¢-digit
numbers 3 ;6" and 3 b; B39 by the “schoolboy”
method is O(t?). However, this is not optimal.
Most of the computation involves forming
convolutions

Cr = Z aib]-

i+j=k

and we can do this by the Fast Fourier
Transform (FFT) in O(tlogt) operations.

In fact, to ensure that the c; are computed
exactly, these “operations” are more than single
word operations, and we get another logt
factor. A more complicated algorithm, the
Schénhage-Strassen algorithm, reduces this to
loglogt.

Thus, the conclusion is that the time required
to multiply t-digit numbers is

M(t) = O(tlogtloglogt) .

1-5

Optimality

Is the Schénhage-Strassen algorithm optimal ?

The answer depends on the model of
computation. On certain models O(t) is
attainable. However, for realistic models
Schénhage-Strassen is the best known
algorithm.

In case the Schonhage-Strassen algorithm is not
optimal on your model of computation (or you
choose to implement a simpler algorithm), we
express the time bounds in terms of the
function M (t) rather than explicitly using
M(t) = O(tlogtloglogt).

1-6

Assumptions

We need to assume that M (t) satisfies some
reasonable smoothness properties. For example,
assume that 3 «, 8 € (0, 1), for all sufficiently
large t,

M(at) < BM(t) .

This assumption certainly holds if

M(t) ~ ctlogtloglogt .

For convenience, we also assume that M (t) = 0
for ¢t < 1.

Our assumptions ensure that

oo

> M([t/25]) = O(M(t)

k=0

which is useful in analysing the complexity of
Newton’s method.

17

MP Floating Point

We can represent multiple-precision
“floating-point” numbers by pairs (e, N) of
(multiple-precision) integers e (the exponent)
and N (the scaled fraction).

The pair (e, N) is interpreted as BN or
perhaps as 3¢~ ¢N.

Clearly we can perform addition and
multiplication on such floating-point numbers,
obtaining a ¢-digit result, i.e. a result with
relative error O(37%), by performing operations
on the exponents and (shifted) fractions, in
time O(M (t)).

18

Reciprocals by Newton’s method

Newton’s iteration for finding a simple zero of a
function f is

Tipr = @i — f(wi)/ f (i) .
Apply this to the function
f(l‘) =a- 1/37)

where a # 0 is constant. Provided the initial
approximation zg is not too bad, the sequence
converges to the (unique) zero of f, i.e.

xz = 1/a. Also, the iteration simplifies to

Tiv1 = i + 2(1 — ax;) = z;(2 — ax;)

which only involves additions/subtractions and
multiplications.

Convergence is quadratic, as we can easily see
by taking ¢, = 1 — ax; and observing that

€+1=1— (1 - Ei)(]. +6i) = 612 .
Thus, the number of correct digits

approximately doubles at each iteration.

1-9

Complexity of reciprocals

To obtain a t-digit reciprocal, we need to
perform about lg(t) Newton iterations (here, as
usual, lg denotes log,). If these are performed
using t-digit arithmetic then the time required
is Trec(t) = O(M(t) logt).

However, we can improve the bound by
observing that Newton’s algorithm is
self-correcting, so we can start with a small
number of digits and (almost) double it at each
step. It is most efficient to contrive that the last
iteration is performed with (slightly more than)
t digits.

For example, to get a 100-digit reciprocal, we
might use 2,2,3,5,8,14,26,51,101 digits at
successive iterations.

By our smoothness assumptions, the total time
is only Treo(t) = O(M(t)). We have avoided the
factor log(t).

It is also possible to show that
M(t) = O(Trec(t)), so in a sense multiplication
and reciprocation are equivalent.

Division
To perform a t-digit “floating point” division,

we can use

a/b=ax (1/b)

where the reciprocal 1/b is computed by
Newton’s method. Thus, floating-point division
also takes time O (M (t)).

For integer division, it is easy to obtain the
correct quotient and remainder in time

O(M(t)).

If b is small, then the integer division of a by b
takes time O(%).

111

Square roots

Newton’s method can be applied to compute
t-digit square root approximations in time
O(M (t)), using the classical iteration

1 a
Ii+1:§ $i+z—i .

In fact, it is slightly more efficient to
approximate the inverse square root a=1/? by
Newton’s method (avoiding divisions), then use

a1/2:a><a_1/2.

Algorithms for exp(z) and In(z)

exp(z) and In(z) are inverse functions, i.e.
exp(ln(z)) =z,

at least for real positive z. Thus, if we can
compute one then we can compute the other in
the same time (up to a small constant factor)
using Newton’s method.

Whenever I describe an algorithm for exp(z),
one for In(z) is implied, and wvice versa.

To avoid technicalities, we assume that the
argument x is real and in some bounded, closed
interval [a,b]. Also, in the case of In(z), we
assume a > 0.

1-13

exp(z) — Algorithm 1

The most obvious way to approximate exp(z) is
to sum a sufficient number of terms in the
power series

mn

exp(z) = i i
n=0 """

Using Stirling’s approximation to n!, it is not
hard to see that we need O(¢/logt) terms to
obtain t-digit accuracy. Thus, the time required
for exp(x) is

Top(t) = O <M(t)L> .

logt

Using Newton’s method, we deduce that the
time required for In(z) is

Tln(t):O<M(t) t) .

logt

exp(z) — Algorithm 2

The power series

exp(z) = i o

‘nl
= n!

converges faster for smaller |z|. Thus, an
obvious idea is to apply the identity

exp(z) = (exp(z/2))?

k times before summing the power series.

In other words, evaluate exp(z/2¥) using the
power series, then compute

2k
exp(z) = (exp (x/?k))
by squaring the result k times.
To get t-digit accuracy by this method we need
O(t/k) terms in the power series, so the overall

time is

Top(t) = O <M(t) <k + %)) .

115

Optimal choice of &
Choosing k ~ v/t gives

Teap(t) = O(M(t)V?)

which is better by a factor v/#/logt than the
bound obtained from Algorithm 1.

Although there are asymptotically faster
algorithms (as we shall see), Algorithm 2 is the
fastest algorithm in practice for a wide range
of ¢.

Historical notes

Algorithm 2 was proposed and analysed
in my 1976 paper “The complexity of
multiple-precision arithmetic” [7].

For the history of other results, e.g. Trec, see
the bibliographic notes in Aho, Hopcroft and
Ullman [1, Ch. 8].

The AGM

Can we do better than Algorithm 2 ?
Yes, but first we need to describe the
arithmetic-geometric mean (AGM) iteration.

Let ag, b be given initial values. For simplicity
we assume they are positive reals (though an
extension to the complex plane is possible so
long as care is taken with the branch of the
square root below). The iteration is defined by

a; +b;
Aj41 = B

bi+1 = Vaib;

Gauss studied the AGM and showed that a;
and b; converge to a common limit

AGM(aq, bo)

which can be expressed in terms of a complete
elliptic integral.

1-17

Complete elliptic integrals

We define the complete elliptic integral of the
first kind by

K(¢) = /077/2 do

/1 — sin? ¢sin? 0

Similarly, the complete elliptic integral of the
second kind is

E(qﬁ):/OW/Z\/l—sichbsinQGdG.

Gauss showed that
71'
AGM(1,cos¢) = . 1
(1eos0) = 57 1)
For a proof, see Borwein and Borwein, “Pi and
the AGM” [4, §1.2].

Also, if ¢g = sin¢ and ¢;11 = (a; — b;) /2, then

_E(9) _Nrgie12
1 K() ;2 2. 2)

Thus, both K(¢) and E(¢$) can be computed
via the AGM, given cos ¢.

1-18

Remarks

There is no loss of generality in assuming that
ag > by, since

AGM((J,O, bo) = AGM(bo, (10) .

Also, there is no real loss of generality in
assuming that ag = 1, since

A AGM(ao, bo) = AGM()\ao, Abo) .

Thus, we can assume ag = 1 and by = cos ¢, as
above.

Notation

Instead of the argument ¢, the argument
k =sin¢

is often used. k is known as the modulus and
k' =cos¢

is known as the complementary modulus. We

also define ¢/ =7/2 — pso k' =sing'.

119

Quadratic convergence of the AGM

The reason why the AGM is of computational
interest is that it converges quadratically. In
fact, if we define €; by

bifai=1—¢€,
then it is easy to verify that
cit1 =€ /84 0(¢)) .

Also, if b;/a; < 1 then

2\/1)-; a;
bitv1/aiv1 = 2Whijai 2¢/bi/a; ,

1+0bi/a;

so after about lg(ag/bo) iterations we get
a;/b; = O(1). In other words, even if ag /by is
large, it does not take long before quadratic
convergence sets in.

1 20

Extreme cases

If ¢ is small, then

w/
Ko = [R ———)

/1 —sin? ¢sin? 0

Also, less obviously, if k& = sin ¢ is small and

¢ =m/2 — ¢, then
K@) = (1+0())In (%) .

See Borwein and Borwein [4, ex. 1.3.4(b)]

1-21

log(z) — Algorithm 3

The last result implies (by exchanging primed
and unprimed variables) that, if ap = 1 and
bo = cos ¢ = €'/2 is small, then

K(¢) = (1+0(&))In (%) .

However, we can compute K (¢) by the AGM.
In other words, if y = 4/by is large, then

= sy (0 ()

This is fine for computing lny provided
1. y is sufficiently large (y > 5/?).
2. We know 7 to sufficient accuracy.

The first condition is easy to handle. We can
take M =~ B2 and compute

Iny =In(My) — In(M) ,

using an additional O(logt) digits to
compensate for cancellation.

1-22

Approximating 7

Regarding the second condition: if we do not
already know = to sufficient accuracy, we can
compute
In(1+ B7)
m
by the above method, and use

In(1+47") =7 (1+0(6™))

to find a sufficiently accurate approximation to
7. However, we have to work with about 2¢
digits to compensate for cancellation.

This shows that

Ty (t) = O(M(#)logt) .

However, the constant factor implicit in the
“0” is large. A better way of finding 7, with
smaller constant factor, will be discussed soon.

123

Complexity of In

Using the results obtained so far, we have
Tin(t) = O(M(t)logt)

because the AGM converges quadratically and

only O(logt) iterations are required.

Remark

The AGM is not self-correcting. Thus, we can
not get rid of the “logt” factor in these bounds
by starting with low precision as we did for
reciprocals and square roots by Newton’s
method.

Complexity of exp

Using Newton’s method and Algorithm 3 for In,
we obtain

Teap(t) = O(M(t) log) .

124

Historical notes

The O(M (t) logt) algorithms for log and exp
were first published in my 1975 paper
“Multiple-precision zero-finding methods and
the complexity of elementary function
evaluation” [5]. The algorithm for In is implicit
in Beeler, Gosper and Schroeppel’s unpublished
1972 MIT Technical Report “HAKMEM” [2].

Different O(M (t) logt) algorithms for log and
exp were published in my 1976 J. ACM paper
“Fast multiple-precision evaluation of
elementary functions” [6]. These algorithms use
incomplete elliptic integrals and Landen
transformations. The 1976 paper was actually
written before the 1975 paper (J. ACM has a
long publication delay).

1-25

Legendre’s relation

Legendre found a beautiful relation between the
four quantities K(¢), K(¢'), E(¢) and E(¢')
where, as usual, ¢ + ¢ = 7/2:

E(PK(¢) + E(¢)K(9) — K($)K(¢) =

o 3

For a proof, see Borwein and Borwein [4, §1.6].
All we need to obtain a fast algorithm for the
computation of 7 is the special case

¢ = ¢' = /4. Then, abbreviating K (7 /4) by K
and E(w/4) by E, Legendre’s relation reduces to

2EK—K2=g. (3)

1-26

Fast evaluation of m

Suppose we perform the AGM iteration with
initial values ag = 1 and by = cos(7/4) = 1/v/2,
obtaining a good approximation to the limit

a =AGM(1,1/v/2). Then, by Gauss’s result (1)
on the limit of the AGM,

% = = .
‘=K

Also, using the relation (2), we can find E/K
from quantities occurring during the AGM
computation. Hence, dividing each side of (3)
by K2, we obtain a known quantity

2F
|
K

on the left, and the quantity

- ()

27 \ K
on the right, where everything is known except
for the factor ﬁ Hence, we can find 7 !

127

The Gauss-Legendre algorithm for =

Simplifying the above, we obtain a nice
algorithm for the computation of 7. In my
197576 papers [5, 6] I called it the
Gauss-Legendre algorithm because, as we have
seen, it depends on results of Gauss and
Legendre. The algorithm was discovered
independently by Salamin (1976) [12].

A+ 1; B+ 2712
T+ 1/4; X+ 1;
while A — B > 37t do
begin
Y «+ A;
A« (A+B)/2
B« VBXY;
T« T-Xx(A-Y)%
X +2xX;
end;
return A?/T {or, better, (A+ B)?/(4T)}.

The rate of convergence is illustrated in the
following table.

1 28

Convergence of the Gauss-Legendre
Method

Tteration | A?/T — 7 | 7 — (A + B)?/(4T)
0 8.6-1 2.3-1
1 4.6’-2 1.0-3
P 8.8-5 7.4-9
3 3.1-10 1.8™-19
4 3.7-21 5.5’-41
5 5.5’-43 2.4’-84
6 1.2-86 2.3-171
7 5.8’-174 1.1°-345
8 1.37-348 1.1-694
9 6.9’-698 6.1’-1393

From the table we see that
(A+ B)?/(4T) <7 < A%JT

(this can be proved rigorously). Also,
convergence is quadratic, as expected. It takes 9
iterations to get 1000 decimals, 19 iterations to
get 108 decimals, and only 29 iterations to get
109 decimals !.

1-29

Complexity of m evaluation

From the algorithms above,
T:(t) = O(M(t)logt) .

It is an open question whether this bound is the
best possible.

Comparison with other algorithms

Archimedes suggested bounding 7 by the areas
of regular n-gons inside/outside the unit circle
(or half their lengths). For example, starting
with regular hexagons, we can obtain a
recurrence for doubling n which gives bounds
for n = 12,24, 48,96, . .. (see Borwein &
Borwein [4, Ch. 11]).

Each iteration involves a square root and a few
multiplications/additions, so is comparable to
an AGM iteration. However, convergence is
only linear, not quadratic. To obtain 106 digits
of m by such a method would take more than
108 iterations (compare 19 for the
Gauss-Legendre method).

1-30

Improvements on Archimedes

Other methods involve the arctan formula
arctan = 0 — 03/3 +65/5 — ...
combined with Machin’s formula

s 1 1

— =4 arctan — — arctan —

4 5 239
or similar formulae. They are good for moderate
precision but give only linear convergence, so
Gauss-Legendre must win eventually.

There are many other methods, but they nearly
all have linear (or worse) convergence. The only
known methods competitive (for high precision
computations) with the Gauss-Legendre method
are similar methods based on the AGM — see
Borwein and Borwein [4].

131

Other elementary functions

By considering the AGM for complex
arguments, or by using incomplete elliptic
integrals and Landen transformations, we can
compute any elementary function sin, cos, tan,
sinh etc or its inverse arctan etc, in a compact
interval not containing any singularities of the
function, in time

O(M(t)logt) .

It is not known whether this result is best
possible.

1 32

FEuler’s constant

Euler’s constant y = —IV(1) is usually
defined by

v = lim (H, - In(n)) ,

n—o0

where

wl»—‘

It is not known whether v is rational or
irrational. Hence, there is some interest in
computing v and its regular continued fraction
(perhaps more interest than in computing ,
since 7 is known to be transcendental).

The defining limit converges much too slowly to
be useful, but it can be accelerated by
approximating the truncation error by an
Euler-Maclaurin expansion. The difficulty here
is how to quickly generate the Bernoulli
numbers required for the Euler-Maclaurin
expansion.

1-33

Use of Bessel functions

The fastest known method for computing v, due
to Brent and McMillan [9], was derived using
results on Bessel functions, but it can be
regarded as a “smoothing” of the defining limit.
Specifically, let

k=0
where
0 [k 2
k=0 '
Then U(n)
vin) —4n
0< V(n) v < me ,

so computation of U(n)/V (n) gives v to of
order n digits. This can be done in time O(n?),
or even faster if we use rational arithmetic and
a binary tree for summation. Thus

T, (t) = O(M(t)(log)?) .

For details see [9].

1-34

Recent computations

~ has recently been computed to 108 decimals
by Thomas Papanikolaou. By computing
470,006 partial quotients of its continued
fraction, Papanikolaou has shown that if v is
rational, say v = p/q, then

q> 10242080 .

By computing more partial quotients, it should
be possible to improve this to

q> 10499900 .

Papanikolaou’s computation improved the 1980
result of Brent and McMillan, who computed ~
to 30,100 decimals and showed that ¢ > 1015000,
using 29,200 partial quotients.

1 35

A connection with Ramanujan

Ramanujan published several series for 7, e.g.
generalisations of Glaisher’s

= C(2k+1)
7_1_2(k+1)2k + 1)

but these are not suitable for computation of .

In his first notebook [3, I,p.98] Ramanujan
states that (in modern notation)

% (_1yk=1 [Lk\"
Z%(m) =lnz+y+o(l) (4

k=1
as £ — +oo. Here n is a fixed positive integer.

The case n =1 is correct, in fact the error term
is just an exponential integral

/mffdu_o(e‘)
x T

(this result is due to Euler, and has been used
by Sweeney and others to compute 7).

Unfortunately, (4) is false if n > 2.

1 36

What might have been

The case n =1 (with improved error term) is

o0 _1 k—1,.k -
E:L—%—ﬁ-:mx+v+o<5—>,
= k'k x

and the sum on the left side can be written as
0 k
_ T
[® Z Hky .
k=0
This is easy to prove, and was known by

Ramanujan (see Berndt [3, I, pp. 46-47]). Thus,
Ramanujan knew that

oo k (o] k —T
ZHk%/Z%zlnz+’y+O(%> .
k=0 k=0

He could have generalised and made the
“better” conjecture

) zk n X [k n
ZH’C<E /Z W =lnz+7+o0(1)
k=0 k=0
(5
instead of his incorrect claim (4).

1-37

Comments on the better conjecture

The case n = 2 of (5) is what was used (with a
sharper error bound) by Brent and McMillan.
The function (2*/k!)" acts as a smoothing

kernel with a peak at k =~ = — %

In fact, (5) is correct and the error term o(1)
can be improved to

O (exp(—cux))

where

e ifn=1,
en = 2nsin?(n/n) if n > 2.

The case n = 3 is interesting because

max ¢, =c3=4.5,
n=1,2,...

but no one seems to have used n > 2 in a
serious computation of .

1-38

Historical notes

Early computations of , up to Knuth (1962),
used the Euler-Maclaurin formula.

Sweeney (1963) used essentially the (correct)
case n = 1 of Ramanujan’s (4), with the error
term replaced by an asymptotic expansion.

T used Sweeney’s method and continued
fractions in 1977 to show that g > 1010000,

In 1980, Brent and McMillan! used the case
n = 2 of the “better” conjecture (proved using
results on the asymptotic behaviour of the
modified Bessel functions Ip(z) and Ko(z)).

In a 1994 paper [10] I noted the connection with
Ramanujan?.

'"Edwin McMillan (1907-1991), a physicist, is better
known for his invention of the synchrotron (independently
of Veksler) and for the discovery of neptunium and pluto-
nium (1941). He shared the 1951 Nobel prize in chemistry
with Seaborg. See Nature 353 (1991), 602.

2Ramanujan’s story is too well known to need a
footnote.

139

References

[1] Alfred V. Aho, John E. Hopcroft and
Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] M. Beeler, R. W. Gosper, and
R. Schroeppel, HAKMEM, MIT AI Lab,
1972.

[3] B. C. Berndt, Ramanugan’s Notebooks,
Parts I-I11, Springer-Verlag, New York,
1985-1991.

[4] Jonathan M. and Peter B. Borwein, Pi and
the AGM, Wiley-Interscience, John Wiley
and Sons, New York, 1987.

[5] R. P. Brent, Multiple-precision zero-finding
methods and the complexity of elementary
function evaluation, in Analytic
Computational Complezity (edited by
J. F. Traub), Academic Press, New York,
1975, 151-176.

1 40

[6]

[7]

[8]

[9]

R. P. Brent, Fast multiple-precision
evaluation of elementary functions,
J. ACM 23 (1976), 242-251.

R. P. Brent, The complexity of
multiple-precision arithmetic, in The
Complezity of Computational Problem
Solving, University of Queensland Press,
Brisbane, 1976, 126-165.

R. P. Brent, Computation of the regular
continued fraction for Euler’s constant,
Mathematics of Computation 31 (1977),
771777,

R. P. Brent and E. M. McMillan, Some new
algorithms for high-precision computation
of Euler’s constant, Mathematics of
Computation 34 (1980), 305-312.

R. P. Brent, Ramanujan and Euler’s
constant, in Proceedings of Symposia in
Applied Mathematics, Vol. 48 (edited by
W. Gautschi), American Mathematical
Society, Providence, Rhode Island, 1994,
541 545.

1-41

[11] Donald E. Knuth, The Art of Computer
Programming Volume 2: Seminumerical
Algorithms (third edition, 1997),
Addison-Wesley, 1997.

[12] E. Salamin, Computation of 7 using

arithmetic-geometric mean, Mathematics of

Computation 30 (1976), 565-570.

1-42

Lecture 2

Communication and
computation in some
parallel algorithms*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent. lec02

Summary

e The importance of communication in
hardware

— Area-time bounds for VLSI chips
e Linear algebra

— Matrix multiplication
— Solution of linear systems

— The SVD and eigenvalue problems
e Non-numerical problems

— Merging
— Sorting

2-2

Area-time bounds for VLSI

It is interesting to consider algorithms
implemented in hardware before we consider
those implemented in software.

Specifically, consider the model of VLSI circuits
described in Ullman’s book Computational
Aspects of VLSI [13]. Variations on this model
were used by Thompson [9], Brent and Kung [5],
Brent and Goldschlager [4], etc to obtain lower
bounds on the area and time required for some
fundamental computations, e.g. binary
multiplication, sorting, the FFT, evaluation of
propositional calculus formulae, set equality,
context-free language recognition, etc.

23

Sketch of the model

e A computation is performed in a planar,
convex region R of area A.

o Wires of finite width A are used for
communication within R.

e 1/0 ports of finite size on the boundary of
R are used for input and output
(communication with the outside world).

e Wires are allowed to overlap, but the
degree of overlap is bounded by v,
e.g. v = 2 is sufficient.

e Each input is read only once.

e Storage of one bit of information takes a
fixed area.

e The circuit is synchronous with a fixed
cycle time 7.

o Wires can transmit one bit in time 7.
For details, see Ullman [13] or the original

papers.

2 4

Bisection

D Diameter

Figure 1: A VLSI chip

The ellipse is the boundary of a VLSI chip.

D is the diameter and X is a chord of length L
perpendicular to the diameter.

Given a nonempty set V of processing elements
(ports and/or gates), X is chosen so that some
of the elements of V' lie on each side of it. This
is called a bisection of V.

2-5

Information transfer

The (maximal) information transfer across X
during a computation of time T is

I=WT/r,

where W is the number of wires which
intersect X.

Theorem. If there is a bisection of V' with
information transfer I then

AT? = Q(I?) .
Idea of proof: A= Q(L?) and L > \W/v, so
AT? = Q(W?T?) = Q(I?) .

This theorem is from Brent and
Goldschlager [4]. There are similar results
(with slightly different definitions) in
Brent and Kung [5] and Thompson [9].

2-6

Applications

To apply the theorem, we use a “crossing
sequence” argument to give a lower bound on I,
the information which has to cross X. Typically
we obtain

I=9(n),

where n is a measure of the size of the problem.
Thus, we can conclude that

AT? = Q(n?) .

For example, this bound applies to n-bit binary
multiplication, evaluation of a propositional
calculus formula (optionally in disjunctive
normal form), and for testing set equality.

27

AT bounds

Often we can obtain an independent lower
bound on the area, typically

A=Q(n).

Then, multiplying the two bounds and taking a
square root, we have

AT = Q(n®/?) .

A lower bound on AT seems to be more natural
than a bound on ATZ.

For example, the AT = Q(n*/?) bound applies
to binary multiplication, and shows that in a
sense

multiplication is harder than addition

because we can perform binary addition in the
same model with

AT =O(n) .

28

Parallel machines Machine-independent models

There are many examples of parallel computer It is because of these differences that
architectures (a few alive and well, many machine-independent models such as BSP have
extinct). They all involve multiple processors been introduced. However, no standard has
but differ in other important respects emerged yet, and programmers still resort to

e Memory may be local or shared low-level features of machines in order to get
(or actually local but apparently shared, higher efficiency (typically for benchmarks such
or some combination, . . .) as the Linpack benchmark, because they help to

)

sell machines).
e The processors (real or virtual) may have

independent irllstructi(.)n streams (MIMD) Data distribution

or a common instruction stream (SIMD).

If MIMD, we can program them using a Given a parallel machine with p processors and
common program (SPMD) or different a problem with input data D, we have to
programs in each processor. distribute D over the processors in some

manner. (Of course, with a smart enough
compiler, the data distribution might be
invisible to the programmer.) The result may
end up distributed over the processors and we

have to specify how this is to occur?.

e The processors and memories may be
connected in various different ways, which
may or may not be visible to the
programmer. For example, rings, tori,
hypercubes, cliques (crossbars), trees, ...

e There may be a small number of powerful
processors (perhaps vector processors) or
a larger number of feeble processors.

!Otherwise problems such as sorting are

trivial !

2-9 2-10
Linear algebra on parallel machines Data distribution
Linear algebra problems with dense matrices We could distribute A over the processors by
provide nice, regular examples and are rows, columns, or blocks, and similarly for B
(relatively) easy to solve with high efficiency on and C. Whichever way we partition A, B and
parallel machines. If only all problems were so C, some communication between processors is
well-defined and regular ! necessary (unless everything is done on one

processor and the others remain idle).

Matrix multiplication We assume that the classical, O(n3) matrix
multiplication algorithm is used, and that the
time for one multiply and add on a single
processor (with data in cache etc) is 7. Thus, it
would take time T} & n®7 to solve the problem
on a single processor. We hope to solve the
problem p times faster on p processors, i.e. we
hope that the speedup

Consider, for example, the problem of forming
the product C of two n X n matrices A and B.
(The rectangular case is interesting and
important, but we consider the square case for
simplicity.)

Th
°=7,

is close to p, or that the efficiency
S T

p Pl

is close to 1. Here T}, is the time required to
solve the problem on p processors.

2 11 2 12

Communication versus computation

With current technology, communication
between processors is typically much slower
than communication/computation within a
processor. To communicate a message of w
words might take time

(Gw+ H)r,

where G and H are constants, typically much
greater than 1.

We can interpret

e 1/(G7) as the processor to processor
communication bandwidth, and

e Hrt as the startup cost of a
communication.

In practice such a simple linear model is
inaccurate, but we use it for lack of anything
better.

2-13

Block distribution

In order to minimise communication costs, the
best way to distribute A and B is by blocks.
Suppose that p = s is a perfect square and sln,
for the sake of simplicity?.

We partition A, B and C into s x s block
matrices, where each block is of size n/s x n/s.

For example, if s =2, p = 4, we partition A as
Agp | Aoa
A=)) ,
[A1p | A1p

where each A; ; is a matrix of size n/2 x n/2.
(Here and below indices run from zero.)

2Such assumptions are usually made by lecturers; only
programmers have to consider the difficult cases.

2-14

Estimate of efficiency

The processor assigned the block with indices
(%, k) has to accumulate the sum

Cirk=)_ Ai;Bjk,
j

so it needs data from the “block row” 7 of A
and the “block column” k of B.

For each n/s x n/s matrix product, taking time
(n/s)3T, the processor needs 2(n/s)? words of
data, which can to be transferred in time
2G(n/s)? + 2H. If we neglect H and low order
terms, we see that

E=1/(14+Gs/n).

Hence, F is close to 1 only if

n>Gs.

215

Interpretation

Since G is typically in the range 100 to 1000,
the inequality
n> Gs

means that n has to be large relative to s = /p.

Thus, we can not make efficient use of a large
number of processors unless n is huge.

Gaussian elimination

In practice, it is more likely that we want to
solve a linear system

Az =1b

than multiply two matrices. Consider the
method of Gaussian elimination (without
pivoting, for the time being). If we partition A
into p = s2 blocks as before, a problem of load
balance rears its head.

As the elimination proceeds, all the “action”
moves to the bottom right corner, and more and
more processors have nothing to do. This is
because A is gradually transformed into the
upper triangular matrix U in the matrix
factorisation A = LU. After the j-th iteration
the first j columns are zero below the diagonal
(or traditionally are used to store columns of L).

2-17

Gaussian elimination

rows of U

active
region

Figure 2: Decomposition A — LU

Solution - scattered decomposition

A solution to the load balance problem is to use
a scattered or cyclic distribution of the data A.
Here matrix element a; ; is stored in processor

(i mod s,j mod s)

instead of in processor

(Lis/n], Lis/n]) -

For such mappings it is convenient to take
indices running from 0, as in C, rather than
from 1, because the range of the “mod s”
function is {0,1,...,s — 1}.

Assume a cyclic data distribution. As the
computation proceeds, each processor has a
matrix of roughly the same “shape” (tending
towards upper triangular), and we gain a factor
of almost three in efficiency over that obtained
using the block decomposition.

219

Scattered versus block decomposition

We have seen that the scattered decomposition
gives better load balance than the block
decomposition, at least for Gaussian
elimination. (A little thought shows that they
are equivalent for matrix multiplication.)

Another advantage of the scattered
decomposition is that the location of element
a; j of the matrix A depends only on (,5) and
is independent of the dimensions of A. This is a
great advantage if we are writing software to
operate on matrices of arbitrary shape (not
necessarily known at compile time).

2 20

Partial pivoting

Except for special classes of matrices, Gaussian
elimination is unstable unless we perform
pivoting to constrain the size of the multipliers
(elements of L).

For example, the use of partial pivoting
corresponds the a matrix factorisation

PA=1LU,

where P is a permutation matrix, chosen so
that the elements m; ; of L are at most 1 in
absolute value.

2-21

Communication overhead of pivoting

On a parallel machine, pivoting introduces
additional communication overheads. At the
k-th step we need to find the best pivot element
in the k-th column, and this requires
communication between the processors which
have access to elements of the column. The
volume of communication is small, but the
startup costs are significant. To find the
maximum of a vector stored in s = |/p
processors, using a binary tree, and to
broadcast the result to the processors, costs us
about H7lg(p) just in startup costs, so a term

Hrnlg(p)

will occur in the estimate of Tj,.

H may be about 100 (if special communication
hardware is provided) or 108 or more (if
communication is done entirely in software
using interrupts), so the startup cost may well
dominate for small and moderate n.

2-22

Distribution by columns

Instead of distributing both rows and columns
in a scattered (cyclic) manner, it is tempting to
distribute just the columns of A in this way.
More precisely, element a; ; could be stored in
processor

jmodp,

where the processors are numbered
0,1,...,p—1.

The advantage of this “cyclic by column”
distribution is that a single processor has access
to a whole column, so no communication is
required to find the pivot element in that
column. Information about the pivot element
and its location still has to be broadcast to the
other processors.

2 23

Disadvantages of distribution by
columns

The distribution by columns has significant
disadvantages.

o Communication in the horizontal direction
has bandwidth reduced by a factor
s = /p, from s/(GT) to 1/(GT).

e For matrix multiplication C' + AB, do we
distribute B by columns (for consistency)
or by rows (for compatibility with the
definition of matrix multiplication) ?

Generally, it seems preferable to use a
distribution where rows and columns are
treated in the same way.

2 24

Memory references per flop

On many machines it is impossible to achieve
close to peak performance if Gaussian
elimination is performed in the obvious way (via
saxpys or rank-1 updates). This is because
performance is limited by memory accesses
rather than by floating-point arithmetic.

Saxyps and rank-1 updates have a high ratio of
memory references to floating point operations.

Close to peak performance can be obtained for
matrix-vector or (better) matrix-matrix
multiplication which (if implemented properly)
have a lower ratio of memory references to
floating-point operations.

2-25

Blocking

It is possible to reformulate Gaussian
elimination so that most of the floating-point
arithmetic is performed in matrix-matrix
multiplications (level 3 BLAS). The idea is to
introduce a “blocksize” or “bandwidth”
parameter w. Gaussian elimination is performed
via saxpys or rank-1 updates in vertical strips of
width w. Once w pivots have been chosen, a
horizontal strip of height w can be updated. At
this point, a matrix-matrix multiplication can
be used to update the lower right corner of A.
The optimal choice of w is usually about /7.

It is important to note that the introduction of
the parameter w is independent of the data
distribution on a parallel machine. There is
certainly no need to distribute A in w X w
blocks. For more on this and related topics, see
my paper “The Linpack benchmark on the
AP1000” [3].

2-26

Illustration

rows of U

1 w rows

level 3
region

Figure 3: Blocked LU decomposition

2 27

The SVD

Suppose m > n. A singular value decomposition
(SVD) of a real m x n matrix A is its
factorisation into the product of three matrices

A=UxvT,

where U is m x n with orthonormal columns,
Y is an m X n non-negative diagonal matrix, and
V is an n X n orthogonal matrix.

The diagonal elements o; of X are the singular

values of A. The SVD has many applications
(see Golub and Van Loan [T7]).

2 28

Computing the SVD in parallel

The SVD is usually computed by a two-sided
orthogonalisation process, e.g. by two-sided
reduction to bidiagonal form followed by the
QR algorithm. It is difficult to implement this
Golub-Kahan-Reinsch algorithm efficiently on a
parallel machine. It is much simpler to use a
one-sided orthogonalisation method due to
Hestenes.

The idea of Hestenes is to generate an
orthogonal matrix V such that AV has
orthogonal columns. Normalising the Euclidean
length of each non-null column to unity, we get

AV =UX

As a null column of U is always associated with
a zero diagonal element of X, this gives the
SVD of A.

2-29

Parallel implementation of the
Hestenes method

Let A1 = A and V; = I. The Hestenes method
uses a sequence of plane rotations @ chosen to
orthogonalise two columns in

App1 = ApQr .

If the matrix V is required, the plane rotations
are accumulated using V11 = ViQ. Under
suitable conditions lim Q = I, lim V;, =V and
lim Ay, = AV. The matrix A4 differs from Ay
only in two columns, say columns ¢ and 7, and
the new columns are obtained from the old
columns by a plane rotation through a certain
angle 6, where |0] < 7/4.

It is desirable for a “sweep” of n(n —1)/2
rotations to include all pairs (7, 7) with ¢ < j.

2-30

The chess tournament analogy

On a parallel machine we would like to
orthogonalise several pairs of columns
simultaneously. This should be possible so long
as no column occurs in more than one pair. The
problem is similar to that of organising a
round-robin tournament between n players.

A game between players 7 and j corresponds to
orthogonalising columns 4 and j, a round of
several games played at the same time
corresponds to orthogonalising several pairs of
(disjoint) columns, and a tournament where
each player plays each other player once
corresponds to a sweep in which each pair of
columns is orthogonalised. Thus, schemes which
are well-known to chess players can be used to
give orderings amenable to parallel
computation.

It is desirable to minimise the number of

parallel steps in a sweep, which corresponds to
the number of rounds in the tournament.

2 31

Lazy players

On a parallel machine with restricted
communication paths there are constraints on
the orderings which we can implement
efficiently. A useful analogy is a tournament of
lazy chess players. After each round the players
want to walk only a short distance to the board
where they are to play the next round.

Using this analogy, suppose that each chess
board corresponds to a processor and each
player corresponds to a column of the matrix.

A game between two players corresponds to
orthogonalisation of the corresponding columns.
If the chess boards (processors) are arranged in
a linear array with nearest-neighbour
communication paths, then the players should
have to walk (at most) to an adjacent board
between the end of one round and the beginning
of the next round, i.e. columns of the matrix
should have to be exchanged only between
adjacent processors. Several orderings satisfying
these conditions are known.

2 32

The number of steps in one sweep

Since A has n columns and at most |n/2] pairs
can be orthogonalised in parallel, a sweep
requires as least n — 1 parallel steps (n even) or
n parallel steps (n odd). The ordering of Brent
and Luk [6] attains this minimum, and
convergence can be guaranteed.

2-33

Data distribution

As described, each processor deals with two
columns, so the column-wrapped representation
is convenient. However, the block or scattered
representations can also be used. The block
representation involves less communication
between processors than does the scattered
representation if the standard orderings are
used. However, the two representations are
equivalent if different orderings are used.

The scattered representation does not have a

load-balancing advantage here, since the matrix
does not change shape.

2-34

The symmetric eigenvalue problem

There is a close connection between the
Hestenes method for finding the SVD of a
matrix A and the Jacobi method for finding the
eigenvalues of the symmetric matrix B = AT A.

Important differences are that the formulas
defining the rotation angle ¢ involve elements
b;; of B rather than inner products of columns
of A, and transformations must be performed
on the left and right instead of just on the right
(since (AV)T(AV) =VTBV).

Instead of permuting columns of A, we have to
apply the same permutation to both rows and
columns of B.

An implementation on a square systolic array of
n/2 by n/2 processors is possible, and can be
adapted to other parallel architectures. Again,
a blocked data representation is desirable to
minimise communication costs.

235

Parallel merging and sorting

To conclude, we consider a “non-numerical”
problem — sorting data into order. It is assumed
that each item of data has a key and the keys
are totally ordered (an example is lexicographic
ordering).

First, consider a simpler problem: merging data

held on two processors (the solution of this
problem will be useful for sorting).

2 36

The merge-exchange problem

Suppose processors P and Q) each have n items
of data and the data on each processor is
already sorted. For example, if n = 4, processor
P might have (A, B, F, Z) and processor @
might have (C, D, E, Q).

The problem is to merge the 2n items of data
(we assume they are all distinct) into one sorted
list, and end with the first half of the list on
processor P and the last half on processor @. In
our example, P should end up with (A, B,C, D)
and Q with (E, F,G, Z).

We could transfer @’s data to P, merge it with
P’s data, then send the last half of the merged
list back to Q). However, this is inefficient
because P does all the work (Q is idle while P
is merging), and some data may be transferred
unnecessarily. Also, P needs more memory than
is required just to store 2n items.

2-37

A solution — first find the median

Suppose the final sorted list is (A1, Ag, ..., A2p.
Thus, P ends up with (4;,...,Ay) and Q ends
up with (Ap+1,. .., A2,). If the processors can
determine, by a small amount of communication
and local computation, the value of the median
element A, then a more efficient solution is
possible —

P sends to @ all of its elements which are
greater than A,,, and @ sends to P all of its
elements which are less than or equal to A,.
Then, all each processor has to do is a local
merge.

Finding the median can be done by binary
search. At each stage, if the candidate median
is M say, each processor counts how many of its
elements exceed M, and sends the count to the
other processor. Each processor now can
determine how many elements in the final
sorted list will exceed M. If this number is
greater than n then M is increased, if less than
n then M is decreased, ...

2-38

The communication tradeoff

Overall, there are about 1g(n) communication
steps to find the median. Thus on average, we
trade the time required to communicate O(n)
elements for O(lgn) communication startup
times. This is worthwhile if n is sufficiently
large.

2 39

Sorting networks

A sorting network is a sorting circuit built from
comparators, which are circuit elements which
can sort two inputs (for the definition, see
Knuth, Vol. 3). For example:

1 2 3 4 5

The network shown will sort 6 items in 5 steps
using 12 comparators.

2 40

A generalisation of sorting networks

In a sorting network, we can replace each
comparator by a “generalised comparator”
which takes two sorted lists, merges them, and
outputs the lower and upper halves of the result
(as in the merge-exchange problem considered
previously).

It can be shown that, provided the input and
output lists of the generalised comparators are
all of the same size k, and the initial inputs are
sorted lists of size k, then the generalised
network will sort correctly.

The restriction on input sizes is necessary, as
examples show, but can be circumvented by the
use of “virtual” elements, so is not a problem in
practice (see Tridgell and Brent [10]).

2-41

Generic parallel sorting algorithm

We can take any serial algorithm which can be
implemented as a sorting network

(e.g. Batcher’s merge-exchange algorithm, see
Knuth [8, Algorithm M]), and convert it into a
parallel algorithm which uses the
merge-exchange operation.

Practical parallel sorting

Simply extending Batcher’s algorithm is
inefficient. A practical algorithm could add the
steps of pre-balancing, fast internal sorting, and
perhaps “almost sorting”. For details see
Tridgell and Brent [10].

2-42

Other parallel sorting algorithms

There are many serial sorting algorithms, and
even more parallel algorithms. The main
competitors appear to be

e Algorithms based on merge-exchange, as
above.

e Algorithms based on sample-sort.
e Algorithms based on radix sort.

A disadvantage of the parallel algorithms based
on sample-sort and radix-sort is that they
require all to all communication, whereas
algorithms based on merge-exchange require
only processor to processor communication.

Another disadvantage of algorithms based on
radix sort is that the keys must have fixed
length and the ordering of keys can not be
defined by the user.

For more on parallel sorting, see Andrew
Tridgell’s thesis [12].

2 43

References

[1] R. P. Brent, Parallel algorithms for digital
signal processing, in Numerical Linear
Algebra, Digital Signal Processing and
Parallel Algorithms Springer-Verlag, 1991,
93 110.

[2] R. P. Brent, Parallel algorithms in linear
algebra, Algorithms and Architectures:
Proc. Second NEC' Research Symposium
SIAM, Philadelphia, 1993, 54-72.

[3] R. P. Brent, The LINPACK benchmark on
the AP 1000, Proceedings of Frontiers '92
(McLean, Virginia, October 1992), IEEE
Press, 1992, 128-135.

[4] R. P. Brent and L. M. Goldschlager, Some
area-time tradeoffs for VLSI, SIAM J.
Computing 11 (1982), 737-747.

[5] R. P. Brent and H. T. Kung, The area-time
complexity of binary multiplication,
J. ACM 28 (1981), 521-534.

2 44

[6]

[7]

[8]

[9]

[10]

R. P. Brent and F. T. Luk, The solution of
singular-value and symmetric eigenvalue
problems on multiprocessor arrays, SISSC
6 (1985), 69-84.

G. H. Golub and C. Van Loan, Matriz
Computations, second edition, Johns
Hopkins Press, Baltimore Maryland, 1989.

D. E. Knuth, The Art of Computer
Programming, Volume 3: Sorting and
Searching, Addison-Wesley, Menlo Park,
1981.

C. D. Thompson, Area-time complexity for
VLSI, Proc. 11th ACM Symp. on Theory of
Computing, 1979, 81-88.

A. Tridgell and R. P. Brent,

A general-purpose parallel sorting
algorithm, International J. of High Speed
Computing 7 (1995), 285-301.

A. Tridgell, R. P. Brent and B. D. McKay,
Parallel Integer Sorting, Tech. Report
TR-CS-97-10, CSL, ANU, May 1997,

32 pp.

2-45

[12]

A. Tridgell, Efficient Algorithms for
Sorting and Synchronization, Ph. D. thesis,
Australian National University, 1999.

J. D. Ullman, Computational Aspects of
VLSI, Computer Science Press, Maryland,
1984.

B. B. Zhou, R. P. Brent and A. Tridgell,
Efficient implementation of sorting
algorithms on asynchronous
distributed-memory machines, Proc.
ICPDS’94, IEEE CS Press, Los Alamitos,
California, 1994, 102-106.

2-46

Lecture 3

Fast and Numerically Stable
Algorithms for Structured
Matrices™

*Six lectures on Algorithms, Trinity term 1999.

Copyright ©1999, R. P. Brent. lec03

Abstract

We consider the numerical stability/instability
of fast algorithms for solving systems of linear
equations or linear least squares problems with
a low displacement-rank structure. For
example, the matrices involved may be
Toeplitz or Hankel.

In particular, we consider algorithms which
incorporate pivoting without destroying the
structure, such as the GKO algorithm, and
describe some recent results by Sweet and
Brent, Ming Gu, Michael Stewart and others on
the stability of these algorithms.

It is interesting to compare these results with
the corresponding stability results for
algorithms based on the seminormal equations
and for the well known algorithms of
Schur/Bareiss and Levinson.

3-2

Outline
e Structured matrices

— Displacement structure

Cauchy-like matrices

Toeplitz-like matrices

Toeplitz +» Cauchy
e Partial pivoting algorithms

— Possible growth of generators

— Improvements of Gu and Stewart
e Positive definite structured matrices

— Schur/Bareiss algorithms
— Comparison with Levinson

— Generalised Schur algorithm
e Orthogonal factorisation

— Weak stability
— The problem of computing @

Because of shortage of time, I will not consider
look-ahead algorithms or iterative algorithms.

33

Acronyms

BBH = Bojanczyk, Brent & de Hoog.
BBHS BBH & Sweet.
GKO = Gohberg, Kailath & Olshevsky.

Notation

R is a structured matrix,

T is a Toeplitz or Toeplitz-type matrix,
P is a permutation matrix,

L is lower triangular,

U is upper triangular,

Q is orthogonal.

Error Bounds

In error bounds O, (g) means O(ef(n)), where
f(n) is a polynomial in n.

34

Stability

Consider algorithms for solving a nonsingular,
n X n linear system Az = b.

There are many definitions of numerical
stability in the literature. Our definitions follow
those of Bunch [11]. Definition 1 says that the
computed solution has to be the ezact solution
of a problem which is close to the original
problem. This is the classical backward stability
of Wilkinson.

Definition 1 An algorithm for solving linear
equations is stable for a class of matrices A if
for each A in A and for each b the computed
solution T to Az = b satisfies Az = 5, where A
is close to A and b is close to b.

Note that the matrix A does not have to be in
the class A. For example, A might be the class
of nonsingular Toeplitz matrices, but A need
not be a Toeplitz matrix. (If we do require

A € A we get what Bunch calls strong stability.)

3-5

Closeness

In Definition 1, “close” means close in a relative
sense, using some norm, i.e.

1A= AJl/|IA| = OCe), Ilb = bll/||bll = O(e).

Recall our convention that polynomials in n
may be omitted from O(e) terms.
We are ruling out faster than polynomial growth

logn
in n, such as O(2"¢) or O(n i). Perhaps this
too strict (consider Gaussian elimination).

The Residual

The condition of Definition 1 is equivalent to
saying that the scaled residual
[AZ = b[l/(I1All - 12]]) is small.

How Good is the Solution ?

Provided ke is sufficiently small, stability
implies that

12 = z[|/l|z]| = O(re).

36

Weak Stability

Definition 2 An algorithm for solving linear
equations is weakly stable for a class of
matrices A if for each well-conditioned A in A
and for each b the computed solution & to

Az = b is such that ||Z — z||/||z| is small.

In Definition 2, “small” means O(e), and
“well-conditioned” means that x(A) is bounded
by a polynomial in n. It is easy to see that
stability implies weak stability.

Define the residual

r= A% —b.

It is well-known that

Ll _la-sl _ Irl
sl = =l T el

Thus, for well-conditioned A,

& — «||/ll<]l is small if and only if ||r||/[|b]] is
small. (This gives an equivalent definition of
weak stability.)

37

Displacement Structure

Structured matrices R satisfy a Sylvester
equation which has the form

v{Af,Ab}(R) = AfR - RAb = oU 5

where Ay and Ay have some simple structure
(usually banded, with 3 or fewer full diagonals),
® and ¥ are n X a and a X n respectively, and
a is some (small) integer.

The pair of matrices (@,) is called the
{A¢, Ap}-generator of R.

«a is called the {Ay, Ay}-displacement rank of R.
We are interested in cases where « is small (say
at most 4).

38

Example — Cauchy

Particular choices of Ay and Ay lead to
definitions of basic classes of matrices. Thus, for
a Cauchy matrix

1
C(t,S)Z |:t'—8':|)
i 3145

we have
Af=D; = diag(t1,te,...,tn) ,

Ap = Ds = diag(s1, 82, .-, 5n)

and
T =w=1,1,...,1].

More general matrices, where ® and ¥ are any
rank-a matrices, are called Cauchy-type.

3-9

Example — Toeplitz

For a Toeplitz matrix T = [t;;] = [a;—;]
o 0 --- 01
1 0 0

Ap=Zy=|0 1 .

0 0 0 -1
1 0 0
Ab:Z_1: 0 1)
0 0 1 0
T
5 1 0 0
a0 aintar 0 acitan—
and
| @p—=1—C-1 -+ QA1 —A1-n QO
\I’_[0 0 1 } ’

We can generalize to Toeplitz-type matrices in
the obvious way.

GE and Schur Complements
Let the input matrix, R;, have the partitioning
Ry = { diwi } .
y1 R
The first step of normal Gaussian elimination is
1 o’
to premultiply R; b, , which
p ply 111 by |: —Y1/d1 T :|

T
dl Wi

0 Ry }, where

reduces it to |:

R2 = R~1 - ylw?/dl

is the Schur complement of di in R;.

At this stage, R; has the factorisation

1 OT d1 W,{
R = .
yi/di T 0 Ry
One can proceed recursively with the Schur

complement Ro, eventually obtaining a
factorisation Ry = LU.

311

Structured Gaussian Elimination —
The Idea

The key to structured Gaussian elimination is
that the displacement structure is preserved
under Schur complementation, and that the
generators of the Schur complement Rj; can
be computed from the generators of Ry in O(n)
operations.

More precisely, we have the following theorem

from GKO [21].

T
Theorem 1 Let a matriz Ry = [d W }

Y1 Rl
satisfy the Sylvester equation

V{Af,hAb,l}(Rl) =Af1R1 — R1Ap) = M)y) ,

where (1) = [V VT VT,
B0 gl .) 0 e gixe

and 1/)1(1) € C™® (i =1,2,...,n). Then Ry, the
Schur complement of di in R1, satisfies the
Sylvester equation

V{Af,z,Ab,z}(RQ) = Af72R2 — RQAbg = oy® ,

where Ago and Ay are respectively Ag i and
Ay with their first rows and first columns
deleted, and where

(I>(2) = [07 ng)Tv (ng)Tv 7<p512)T]T and
T2 = [0, 1/)52), §2), ,1/}22)] are given by
o5 =5~y /di (1)
08, =0, — Wl jdi 2)
3-13

Structured Gaussian elimination

Algorithm 1 (Structured Gaussian
elimination)

1. Recover from the generator <I>(1), (1) the
first row and column of

Ry = [d1 “ilT])
yi R
2.1 yT/di)T and [di wT] are respectively

the first column and row of L1 and U; in
the LU factorisation of R;.

3. Compute by equations (1) and (2), the
generator (®2), W) for the Schur
complement of di in R;.

4. Proceed recursively with 32 gnd v@
Each major step yields [1 yT /di]T and
[dr WT], which are respectively the first
column and row of Ly and Uy in the LU
factorisation of Ry. Column k of L and
row k of U are respectively
[0 1 yi/di]" and [0f_; di wi].

Partial Pivoting

Row and/or column interchanges destroy the

structure of matrices such as Toeplitz matrices.
However, if Ay is diagonal (which is the case for
Cauchy and Vandermonde type matrices), then

the structure is preserved under row
permutations.

This observation leads to the GKO-Cauchy
algorithm for fast factorisation of Cauchy-type
matrices with partial pivoting, and many recent
variations on the theme by Boros, Gohberg,
Ming Gu, Heinig, Kailath, Olshevsky,

M. Stewart, et al.

315

Toeplitz to Cauchy

Heinig (1994) showed that, if T' is a
Toeplitz-type matrix, then

R=FTD'F*
is a Cauchy-type matrix, where

P — L e2mitk=1)G-1)/m

Jn

is the Discrete Fourier Transform matrix,

1<k,j<n

D= diag(l, em‘/ny o 7eﬂ'i(nfl)/n)7

and the generators of 7' and R are related by
unitary transformations (see [38, Thm. 2.2] for
the details).

The transformation T <+ R is perfectly stable
because F' and D are unitary.

Note that F' and R are (in general) complex
even if T is real.

GKO-Toeplitz

As pointed out by Heinig (1994) and exploited
by GKO (1995), it is possible to convert the
generators of T to the generators of R in
O(nlogn) operations via FFTs. R can then be
factorised as R = PTLU using GKO-Cauchy.
Thus, from the factorisation

T =FPTLUFD,
a linear system involving T' can be solved in
O(n?) (complex) operations.

Other structured matrices, such as
Toeplitz-plus-Hankel, Vandermonde,
Chebyshev-Vandermonde, etc, can be converted
to Cauchy-type matrices in a similar way.

3-17

Error Analysis

Because GKO-Cauchy (and GKO-Toeplitz)
involve partial pivoting, we might guess that
their stability would be similar to that of
Gaussian elimination with partial pivoting.

The Catch

Unfortunately, there is a flaw in the above
reasoning. During GKO-Cauchy the generators
have to be transformed, and the partial pivoting
does not ensure that the transformed generators
are small.

Sweet & Brent (1995) show that significant
generator growth can occur if all the elements of
@V are small compared to those of |®||¥|. This
can not happen for ordinary Cauchy matrices
because ®*) and ¥*) have only one column
and one row respectively. However, it can
happen for higher displacement-rank
Cauchy-type matrices, even if the original
matrix is well-conditioned.

The Toeplitz Case

In the Toeplitz case there is an extra constraint
on the selection of ® and ¥, but it is still
possible to give examples where the normalised
solution error grows like 2 and the normalised
residual grows like x, where « is the condition
number of the Toeplitz matrix. Thus, the
GKO-Toeplitz algorithm is (at best) weakly
stable.

It is easy to think of modified algorithms which
avoid the examples given by Sweet & Brent, but
it is difficult to prove that they are stable in all
cases. Stability depends on the worst case,
which may be rare and hard to find by random
sampling.

319

Gu and Stewart’s Improvements

The problem with the original GKO algorithm
is growth in the generators. Ming Gu suggested
exploiting the fact that the generators are not
unique.

Recall the Sylvester equation
V{Af’Ab}(R) =AfR— RAy =97,

where the generators ® and ¥ are n x o and

a X n respectively. Clearly we can replace @ by
®M and ¥ by MU, where M is any
invertible o X a matrix, because this does not
change the product ®¥. Similarly at later
stages of the GKO algorithm.

Ming Gu (1995) proposes taking M to
orthogonalize the columns of ® (that is, at each
stage we do an orthogonal factorisation of the
generators). Michael Stewart (1997) proposes a
(cheaper) LU factorisation of the generators. In
both cases, clever pivoting schemes give error
bounds analogous to those for Gaussian
elimination with partial pivoting.

320

Gu and Stewart’s Error Bounds

The error bounds obtained by Ming Gu and
Michael Stewart involve an exponentially
growing factor K™ where K depends on the
ratio of the largest to smallest modulus
elements in the Cauchy matrix

1
t; — 8; ij.

Although this is unsatisfactory, it is similar to
the factor 277! in the error bound for Gaussian
elimination with partial pivoting,.

Michael Stewart (1997) gives some interesting
numerical results which indicate that his scheme
works well, but more numerical experience is
necessary before a definite conclusion can be
reached.

In practice, we can use an O(n?) algorithm such
as Michael Stewart’s, check the residual, and
resort to iterative refinement or a stable O(n?3)
algorithm in the (rare) cases that it is necessary.

3-21

Positive Definite Structured Matrices

An important class of algorithms, typified by
the algorithm of Bareiss (1969), find an LU
factorisation of a Toeplitz matrix 7', and (in the
symmetric case) are related to the classical
algorithm of Schur for the continued fraction
representation of a holomorphic function in the
unit disk.

It is interesting to consider the numerical
properties of these algorithms and compare
with the numerical properties of the Levinson
algorithm (which essentially finds an LU
factorisation of T—1).

1

'Discovered independently by Kolmogorov and Wiener
in 1941.

3-22

Bareiss — Positive Definite Case

BBHS (1995) have shown that the numerical
properties of the Bareiss algorithm are similar
to those of Gaussian elimination (without
pivoting). Thus, the algorithm is stable for
positive definite symmetric 7T'.

The Levinson algorithm can be shown to be
weakly stable for bounded n, and numerical
results by Varah, BBHS and others suggest that
this is all that we can expect. Thus, the Bareiss
algorithm is (generally) better numerically than
the Levinson algorithm.

Cybenko showed that if certain quantities called
“reflection coefficients” are positive then the
Levinson-Durbin algorithm for solving the
Yule-Walker equations (a positive-definite
system with special right-hand side) is stable.
However, “random” positive-definite Toeplitz
matrices do not usually satisfy Cybenko’s
condition.

3 23

The Generalised Schur Algorithm

The Schur algorithm can be generalised to
factor a large variety of structured matrices —
see Kailath and Chun (1994) or Kailath and
Sayed (1995). For example, the generalised
Schur algorithm applies to block Toeplitz
matrices, Toeplitz block matrices, and to
matrices of the form TTT where T is
rectangular Toeplitz.

It is natural to ask if the stability results of
BBHS (which are for the classical Schur/Bareiss
algorithm) extend to the generalised Schur
algorithm. This was considered by M. Stewart
and Van Dooren (1997), and also (in more
generality) by Chandrasekharan and Sayed
(1998).

The conclusion is that the generalised Schur
algorithm is stable for positive definite matrices,
provided that the hyperbolic transformations in
the algorithm are implemented correctly. In
contrast, BBHS showed that stability of the
classical Schur/Bareiss algorithm is not so
dependent on details of the implementation.

324

Fast Orthogonal Factorisation

In an attempt to achieve stability without
pivoting, and to solve m x m least squares
problems, it is natural to consider algorithms
for computing an orthogonal factorisation

T=QU

of T. The first such O(n?) algorithm? was
introduced by Sweet (1982-84). Unfortunately,
Sweet’s algorithm is unstable.

Other O(n?) algorithms for computing the
matrices Q and U or U™! were given by

BBH (1986), Chun et al (1987),

Cybenko (1987), and Qiao (1988), but none of
them has been shown to be stable, and in
several cases examples show that they are
unstable.

2For simplicity the time bounds assume m = O(n).

3-25

The Problem — @)

Unlike the classical O(n3) Givens or
Householder algorithms, the O(n?) algorithms
do not form @ in a numerically stable manner
as a product of matrices which are (close to)
orthogonal.

For example, the algorithms of Bojanczyk,
Brent and de Hoog (1986) and Chun

et al (1987) depend on Cholesky downdating,
and numerical experiments show that they do
not give a @ which is close to orthogonal.

The generalised Schur algorithm, applied to
TTT, computes the upper triangular matrix U
but not the orthogonal matrix Q.

3-26

The Saving Grace — U and
Semi-Normal Equations

It can be shown (BBH, 1995) that, provided the
Cholesky downdates are implemented in a
certain way (analogous to the condition for the
stability of the generalised Schur algorithm) the
BBH algorithm computes U in a weakly stable
manner. In fact, the computed upper triangular
matrix U is about as good as can be obtained by
performing a Cholesky factorisation of 77T, so

IT*T = TTU|/ITTT|| = Ome) -
Thus, by solving
U0z =T"b
(the so-called semi-normal equations) we have a
weakly stable algorithm for the solution of
general Toeplitz systems Tz = b in O(n?)

operations. The solution can be improved by
iterative refinement if desired.

Note that the computation of @) is avoided.

3 27

Computing () Stably

It is difficult to give a satisfactory O(n?)
algorithm for the computation of @ in the
factorisation

T=QU

Chandrasekharan and Sayed get close — they
give a stable algorithm to compute the
factorisation

T =LQU

where L is lower triangular, provided that T is
square. Their algorithm can be used to solve
linear equations but not for the least squares
problem. Also, because their algorithm involves
embedding the n X n matrix T in a 2n X 2n

[TTT TT]

matrix

T 0

the constant factors in the operation count are
large: 59n? + O(nlogn), compared to

8n? + O(nlogn) for BBH and seminormal
equations.

3 28

Some Open Questions

e How do the GKO and similar algorithms
using partial pivoting compare with the
“lookahead” algorithms of Chan and
Hansen [13], Freund and Zha [19],
Gutknecht [25], and others ?

o Is there a stable (not just weakly stable)
fast algorithm for the (rectangular)
structured least squares problem ?

e What can be said about the stability (or
instability) of the “superfast” algorithms
whose running time is

) (n(log n)2) ?

For these algorithms see Ammar and
Gragg [1], Brent, Gustavson and Yun [9].

e What are the best generalisations to
block-structured problems, e.g. block
Toeplitz with y/n x y/n blocks ?

3-29

References

[1]

(4]

(6]

G. S. Ammar and W. B. Gragg, Superfast
solution of real positive definite Toeplitz
systems, STAM J. Matriz Anal. Appl. 9 (1988),
61-76.

E. H. Bareiss, Numerical solution of linear
equations with Toeplitz and vector Toeplitz
matrices, Numer. Math. 13 (1969), 404-424.

A. W. Bojanczyk, R. P. Brent, P. Van Dooren
and F. R. de Hoog, A note on downdating the
Cholesky factorization, SISSC 8 (1987),
210-220.

A. W. Bojanczyk, R. P. Brent and
F. R. de Hoog, QR factorization of Toeplitz
matrices, Numer. Math. 49 (1986), 81-94.

A. W. Bojanczyk, R. P. Brent and F. R. de
Hoog, Stability analysis of a general Toeplitz
systems solver, Numerical Algorithms 10
(1995), 225 244.

A. W. Bojanczyk, R. P. Brent, F. R. de Hoog
and D. R. Sweet, On the stability of the Bareiss
and related Toeplitz factorization algorithms,
SIAM J. Matriz Anal. Appl. 16 (1995), 40 57.

3-30

[7]

[10]

[11]

[12]

T. Boros, T. Kailath and V. Olshevsky, Fast
algorithms for solving Cauchy linear systems,
preprint, 1995.

R. P. Brent, Stability of fast algorithms for
structured linear systems, in Fast Reliable
Algorithms for Matrices with Structure (A. H.
Sayed and T. Kailath, eds.), STAM,
Philadelphia, 1999, to appear.

R. P. Brent, F. G. Gustavson and

D. Y. Y. Yun, Fast solution of Toeplitz systems
of equations and computation of Padé
approximants, J. Algorithms 1 (1980), 259-295.

J. R. Bunch, Stability of methods for solving
Toeplitz systems of equations, SISSC 6 (1985),
349-364.

J. R. Bunch, The weak and strong stability of
algorithms in numerical linear algebra, Linear
Alg. Appl. 88/89 (1987), 49-66.

J. R. Bunch, Matrix properties of the Levinson
and Schur algorithms, J. Numerical Linear
Algebra with Applications 1 (1992), 183-198.

3 31

[13]

[14]

[15]

[16]

(17]

[18]

T. F. Chan and P. C. Hansen, A look-ahead
Levinson algorithm for general Toeplitz
systems, IEEE Trans. Signal Process. 40
(1992), 1079-1090.

S. Chandrasekaran and A. H. Sayed, Stabilizing
the generalized Schur algorithm, SIAM J.
Matriz Anal. Appl. 17 (1996), 950-983.

S. Chandrasekaran and A. H. Sayed, A fast
stable solver for nonsymmetric Toeplitz and
quasi-Toeplitz systems of linear equations,
SIAM J. Matriz Anal. Appl. 19 (1998),
107-139.

J. Chun, T. Kailath and H. Lev-Ari, Fast
parallel algorithms for QR and triangular
factorization, SISSC 8 (1987), 899-913.

G. Cybenko, The numerical stability of the
Levinson-Durbin algorithm for Toeplitz
systems of equations, SISSC 1 (1980), 303-319.

J. Durbin, The fitting of time-series models,
Rev. Int. Stat. Inst. 28 (1959), 229-249.

3 32

[19] R. W. Freund and H. Zha, Formally [25] M. H. Gutknecht, Stable row recurrences for
biorthogonal polynomials and a look-ahead the Padé table and generically superfast
Levinson algorithm for general Toeplitz lookahead solvers for non-Hermitian Toeplitz
systems, Linear Algebra Appl. 188/189 (1993), systems, Linear Algebra Appl. 188/189 (1993),
255-303. 351-422.

[20] I. Gohberg (editor), I. Schur Methods in [26] P. C. Hansen and H. Gesmar, Fast orthogonal
Operator Theory and Signal Processing decomposition of rank deficient Toeplitz
(Operator Theory: Advances and Applications, matrices, Numerical Algorithms 4 (1993),
Volume 18), Birkh&user Verlag, Basel, 1986. 151 166.

[21] 1. Gohberg, T. Kailath and V. Olshevsky, [27] G. Heinig, Inversion of generalized Cauchy
Gaussian elimination with partial pivoting for matrices and other classes of structured
matrices with displacement structure, Math. matrices, Linear Algebra for Signal Processing,
Comp. 64 (1995), 1557 1576. IMA Volumes in Mathematics and its

Applications, Vol. 69, Springer, 1994, 95-114.

[22] G. H. Golub and C. Van Loan, Matriz
Computations, second edition, Johns Hopkins [28] T. Kailath and J. Chun, Generalized
Press, Baltimore, Maryland, 1989. displacement structure for block-Toeplitz,

Toeplitz-block, and Toeplitz-derived matrices,

(23] Ming Gu, Stable and efficient algorithms for SIAM J. Matriz Anal. Appl. 15 (1994),

structured systems of linear equations, SIMAX 114-198.
19 (1998), 279-306.
[29] T. Kailath and A. H. Sayed, Displacement

[24] Ming Gu, New fast algorithms for structured structure: theory and applications, SIAM
least squares problems, Tech. Report Review 37 (1995), 297-386.

LBL-37878, Lawrence Berkeley Laboratory,
Nov. 1995.
3-33 3-34

[30] A. N. Kolmogorov, Interpolation and [36] M. Stewart and P. Van Dooren, Stability issues
extrapolation of stationary random sequences, in the factorization of structured matrices,
Izvestia Akad. Nauk SSSR 5 (1941), 3-11 (in SIAM J. Matriz Anal. Appl. 18 (1997),
Russian). German summary, bid 11-14. 104-118.

[31] N. Levinson, The Wiener RMS [37] D. R. Sweet, Fast Toeplitz orthogonalization,
(Root-Mean-Square) error criterion in filter Numer. Math. 43 (1984), 1-21.
design and prediction, J. Math. Phys. 25
(1947), 261-278. [38] D. R. Sweet and R. P. Brent, Error analysis of

a fast partial pivoting method for structured

[32] F. T. Luk and S. Qiao, A fast but unstable matrices, Proceedings SPIE, Volume 2563,
orthogonal triangularization technique for Advanced Signal Processing Algorithms SPIE,
Toeplitz matrices, Linear Algebra Appl. 88/89 Bellingham, Washington, 1995, 266-280.
(1987), 495-506.

[39] G. Szegd, Orthogonal Polynomials, AMS

[33] S. Qiao, Hybrid algorithm for fast Toeplitz Colloquium publ. XXIII, AMS, Providence,

orthogonalization, Numer. Math. 53 (1988), Rhode Island, 1939.
351-366.
[40] N. Wiener, Extrapolation, Interpolation and

[34] I. Schur, Uber Potenzreihen, die im Innern des Smoothing of Stationary Time Series, with
Einheitskreises beschrankt sind, J. fur die Engineering Applications, Technology Press
Reine und Angewandte Mathematik 147 (1917), and Wiley, New York, 1949 (originally
205-232. English translation in [20], 31-59. published in 1941 as a Technical Report).

[35] M. Stewart, Stable pivoting for the fast

factorization of Cauchy-like matrices, preprint,
Jan. 13, 1997.

3 35

3 36

Lecture J

Uses of Randomness in
Computation*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent. lec04

Summary

Random number generators are widely used in
practical algorithms. Examples include
simulation, number theory (primality testing
and integer factorization), fault tolerance,
routing, cryptography, optimization by
simulated annealing, and perfect hashing.
Complexity theory usually considers the
worst-case behaviour of deterministic
algorithms, but it can also consider average-case
behaviour if it is assumed that the input data is
drawn randomly from a given distribution.
Rabin popularised the idea of “probabilistic”
algorithms, where randomness is incorporated
into the algorithm instead of being assumed in
the input data. Yao showed that there is a close
connection between the complexity of
probabilistic algorithms and the average-case
complexity of deterministic algorithms.

In this lecture I give examples of the uses of
randomness in computation, discuss the
contributions of Rabin, Yao and others, and
mention some open questions.

4-2

Checking out Charon

Charon, a future spacecraft, is somewhere near
Pluto, but because of its distance and
low-power transmitter, communication with it
is very slow. We want to check that a critical
program in the Charon’s memory is correct, and
has not been corrupted by a passing cosmic ray.
How can we do this without transmitting the
whole program to or from Charon ?

Here is one way!. The program we want to
check (say N1) and the correct program on
Earth (say N2) can be regarded as multiple-
precision integers. Choose a random odd
number p in the interval (10%,2 x 107).
Transmit p to Charon and ask it to compute

r1 < N1 mod p

and send it back to Earth. Only a few bits (no

more than 64 for p and r1) need be transmitted
between Earth and Charon, so we can afford to
use good error correction/detection.

'Rabin’s “Library of Congress on Mars” problem.

43

On Earth - --

On Earth we compute 79 < N mod p, and
check if 71 = r9. There are two possibilities:

e r1 # ro. We conclude that N; # No.
Charon’s program has been corrupted ! If
there are only a small number of errors,
they can be localised by binary search
using O(loglog N;7) small messages.

e r; = r5. We conclude that Charon’s
program is probably correct. More
precisely, if Charon’s program is not
correct there is only a probability of less
than 1079 that r = rg, i.e. that we have a
“false positive”. If this probability is too
large for the quality-assurance team to
accept, just repeat the process (say) ten
times with different random odd numbers
(preferably prime) p1,pa,...,p10- If
N1 # No, there is a probability of less
than

1090

that we get 1 = ro ten times in a row.
This should be good enough.

4 4

The Structure

Our procedure has the following form. We ask a
question with a yes/no answer. The precise
question depends on a random number. If the
answer is “no”, we can assume that it is correct.
If the answer is “yes”, there is a small
probability of error, but we can reduce this
probability to a negligible level by repeating the
procedure a few times with independent random
numbers.

We call such a procedure a probabilistic

algorithm; other common names are randomised
algorithm and Monte Carlo algorithm.

Disclaimer
It would be much better to build error

correcting hardware into Charon, and not
depend on checking from Earth.

4-5

Testing Primality

Here is another example? with the same
structure. We want an algorithm to determine
if a given odd positive integer n is prime. Write
n as 28¢ + 1, where ¢ is odd and & > 0.

Algorithm P

1. Choose a random integer z in (1,n).

2. Compute y = % mod n. This can be done
with O(log q) operations mod n, using the
binary representation of q.

3. If y =1 then return “yes”.
4. For j=1,2,...,k do

if y=mn — 1 then return “yes”
else if y = 1 then return “no”

else y « 4% mod n.

5. Return “no”.

2Due to M. O. Rabin, with improvements by
G. L. Miller. See Knuth, Vol. 2, §4.5.4.

4-6

Fermat’s Little Theorem

To understand the mathematical basis for
Algorithm P, recall Fermat’s little Theorem:
if » is prime and 0 < z < n, then

"1 =1 mod n.
Thus, if 2"~ # 1 mod n, we can definitely say
that n is composite.

Unfortunately, the converse of Fermat’s little
theorem is false: if "' = 1 mod n we can not
be sure that n is prime. There are examples
(called Carmichael numbers) of composite n for
which 2" ! is always 1 mod n when

GCD(z,n) = 1. The smallest example is

561 =3-11-17
Another example is3

n=1729="7-13-19

3Hardy’s taxi number, 1729 = 123 + 13 = 103 + 93.

47

An Ezxtension

A slight extension of Fermat’s little Theorem is
useful, because its converse is usually true.

If n = 2%¢ + 1 is an odd prime, then either
29 = 1 mod n, or the sequence

(ijq mod n)

j=0,1,....k

ends with 1, and the value just preceding the
first appearance of 1 must be n — 1.

Proof: If 42 = 1 mod n then n|(y — 1)(y + 1).
Since n is prime, n|(y — 1) or n|(y + 1).
Thus y = £1 mod n. a

The extension gives a necessary (but not
sufficient) condition for primality of n.
Algorithm P just checks if this condition is
satisfied for a random choice of z, and returns
“yes” if it is.

48

Reliability of Algorithm P

Algorithm P can not give false negatives (unless
we make an arithmetic mistake), but it can give
false positives (i.e. “yes” when n is composite).
However, the probability of a false positive is
less than 1/4. (Usually much less — see Knuth,
ex. 4.5.4.22.) Thus, if we repeat the algorithm
10 times there is less than 1 in 10% chance of a
false positive, and if we repeat 100 times the
results should satisfy anyone but a member of
the PRG.

Algorithm P works even if the input is a
Carmichael number.

Use of Randomness

In both our examples randomness was
introduced into the algorithm.

We did not make any
assumption about the
distribution of inputs.

4-9

Summary of Algorithm P

Given any € > 0, we can check primality of a
number n in

O((logn)’ log(1/¢))

bit-operations*, provided we are willing to
accept a probability of error of at most e.

By way of comparison, the best known
deterministic algorithm takes

O((log n)clogloglogn)

bit-operations, and is much more complicated.
If we assume the Generalised Riemann
Hypothesis, the exponent can be reduced to 5.
(But who believes in GRH with as much
certainty as Algorithm P gives us ?)

“We can factor n deterministically in O(logn)
arithmetic operations, but this result is useless because
the operations are on numbers as large as 2. Thus, it is
more realistic to consider bit-operations.

4-10

Error-Free Algorithms

The probabilistic algorithms considered so far
(Monte Carlo algorithms) can give the wrong
answer with a small probability. There is
another class of probabilistic algorithms

(Las Vegas algorithms) for which the answer is
always correct; only the runtime is random?®.
An interesting example is H. W. Lenstra’s
elliptic curve method (ECM) for integer
factorisation. To avoid trivial cases, suppose we
want to find a prime factor p > 3 of an odd
composite integer N.

To motivate ECM, consider an earlier
algorithm, Pollard’s “p — 1”7 method. This
works if p — 1 is “smooth”, i.e. has only small
prime factors. p — 1 is important because it is
the order of the multiplicative group G of the
field Fp,. The problem is that G is fixed.

5In practical cases the expected runtime is finite. It is
possible that the algorithm does not terminate, but with
probability zero.

4 11

Lenstra’s Idea

Lenstra had the idea of using a group G(a, b)
which depends on parameters (a,b). By
randomly selecting a and b, we get a large set of
different groups, and some of these should have
smooth order.

The group G(a,b) is the group of points on the
elliptic curve

y2:m3—|—az+bmodp,

and by a famous theorem® the order of G(a,b)
is an integer in the interval

(p—1-2y/p, p—1+2y/p)

The distribution in this interval is not uniform,
but it is “close enough” to uniform for our
purposes.

6The “Riemann hypothesis for finite fields”. G(a,b)
is known as the “Mordell-Weil” group. The result on its
order follows from a theorem of Hasse (1934), later gen-
eralised by A. Weil and Deligne.

4 12

Runtime of ECM

Under plausible assumptions ECM has expected
run time

T=0 (exp(\/clnplnlnp)(lnN)Q) ,
where ¢ ~ 2.

Note that T' depends mainly on the size of p,
the factor found, and not very strongly on N.
In practice the run time is close to an
exponentially distributed random variable with
mean and variance about T'.

Examples of the use of ECM to factor large
numbers will be given in Lecture 6.

4-13

Diffie-Hellman key exchange

Suppose Bob and Alice want to send messages
to each other using ordinary (not public-key)
cryptography. They need to agree on a key K
to use for encrypting/decrypting their messages.
This may be difficult if they are communicating
by phone or email and someone (Eve) is
eavesdropping. Diffie and Hellman suggested a
nice solution.

First, Bob and Alice agree on a large prime p
and an element g which is a primitive root
mod p. Preferably ¢ = (p — 1)/2 should be
prime.

Bob/Alice can find suitable p and ¢ using
Algorithm P, and then find g by a randomized
algorithm. Testing that g is a primitive root is
made easy because the factorisation of p — 1 is
known.

Bob and Alice can make p and g public.
It does not matter if Eve knows them.

Diffie-Hellman continued

The Diffie-Hellman algorithm for generating a
key K known to Bob and Alice, but not to Eve,
is as follows.

1. Alice chooses a random z € {2,...,p — 2},
computes X = ¢g® mod p, and sends X to
Bob.

2. Bob chooses a random y € {2,...,p — 2},
computes Y = g¥ mod p, and sends Y to
Alice.

3. Alice computes K = Y?® mod p.

4. Bob computes K = X¥ mod p.

Now both Alice and Bob know K = ¢*¥ mod p,
so it can be used as a key or transformed into a
key in some agreed manner.

Eve may know p, g, X and Y. However, she
does not know x or y. Although it has not been
proved, it seems that she can not compute

K = XY mod p = Y”* mod p without effectively
finding z or y, and this requires solving a
discrete logarithm problem (hard ?).

4 15

Minimal Perfect Hashing

Hashing is a common technique used to map
words into a small set of integers (which may
then be used as indices to address a table).
Thus, the computation 71 + N1 mod p used in
our “Charon” example can be considered as a
hash function.

Formally, consider a set
W = {wg,wl, e ,wm_l}

of m words wj, each of which is a finite string of
symbols over a finite alphabet X. A hash
function is a function

h:W—1,

where I = {0,1,...,k — 1} and k is a fixed
integer (the table size).

Collisions

A collision occurs if two words wi and wo map
to the same address, i.e. if h(w1) = h(ws).
There are various techniques for handling
collisions. However, these complicate the
algorithms and introduce inefficiencies. In
applications where W is fixed (e.g. the reserved
words in a compiler), it is worth trying to avoid
collisions.

Perfection

If there are no collisions, the hash function is
called perfect.

Minimal Perfection

For a perfect hash function, we must have
k > m. If kK = m the hash function is minimal.

Problem

Given a set W, how can we compute a minimal
perfect hash function ?

4-17

A Slow Algorithm

We could try “random” hash functions h.
However, there are m™ possible functions and
only m! are perfect. Thus, the probability of h
begin perfect is

m! V2mm

mm em

and it will take us on average the reciprocal of
this, i.e.

em

V2mm

trials to find a perfect hash function. This is
too slow unless m is very small.

The CHM Algorithm

Czech, Havas and Majewski (CHM) give a
probabilistic algorithm which runs in expected
time O(m) (ignoring the effect of finite
word-length). Their algorithm uses some
properties of random graphs.

Take n = 3m, and let
V={1,2,...,n}.

CHM take two independent pseudo-random
functions

hi W=V, hg: W =V,
and let
E ={(h(w), ho(w)) | w € W}.

We can think of G = (V, E) as a random graph
with n vertices V and (at most) m edges F.

419

Acyclicity

If G has less than m edges or G has cycles,
CHM reject the choice of hi, hy and try again.
Eventually they get a graph G with m edges
and no cycles.

Because n = 3m, the expected number of trials
is a constant about /3, or more generally

n
Vn—2m"’

for large m and n > 2m.

4 20

The Perfect Hash Function

Once an acceptable G has been found, it is easy
to compute (and store in a table) a function

g:V—=01,....,m-1
such that
h(w) = g(h1(w)) + g(h2(w)) mod m

is the desired minimal perfect hash function.
We can even get

h(w;) = j

for 5 =0,1,...,m — 1. All this requires is a
depth-first search of G.

Implementation

CHM report that on a Sun SPARCstation 2
they can generate a minimal perfect hash
function for a set of m = 2! words in 33
seconds. Earlier algorithms required time which
(at least in the worst case) was an exponentially
increasing function of m, so could only handle
very small m.

4-21

A small example

Suppose we want to construct a perfect hash
function for the days of the week (Sunday,
Monday, ..., Saturday). Since the days are
uniquely identified by their first two characters,
we can combine these to form an integer

(e.g. K =26c1 +c2). Wehave k=m =17,

n = 3m = 21. The random functions h; might
be of the form

hi(K) = ((a;K mod p;) + b;) mod n

where the constants a;, b; are chosen at
random. The constants p; are introduced so
hi(K1) # hi(K2) is possible even if

K71 = K5 mod n.

Another way, which replaces arithmetic by table
lookups, is to take

hi(cica-++) =Tii(e1) + Tip(c2) + -+ modn,

where the T; ; are randomly generated tables
indexed by characters.

4-22

Definition of h; by tables

Suppose we randomly construct the following
tables (entries omitted are “don’t cares”).

c Ty Top|c Tip Theo
F 4 3 a 19 0
M 5 3 e 1 1
S 0 18 | h 1 7
T 1 0 o 5 4
%% 3 1 r 5 4
u 17 0

Then the h; are given in columns 2-3 of the
following table.

w hi | he | g(h1) + g(he) = h
Sunday 17 | 18 —-242=0
Monday 10 7 -3+4=1
Tuesday 18] 0 2+0=2
Wednesday | 4 | 2 3+0=3
Thursday 2|7 0+4=14
Friday 9 |7 1+4=5
Saturday 19 | 18 4+2=6

4 23

Determining G

G has two nontrivial connected components,
containing vertices {2,4,7,9,10} and
{0,17,18,19}. In each component we can assign
one g(w) value arbitrarily (say 0), then the
other values are determined.

For example, we might assign g(0) = g(2) = 0.
The constraint g(2) 4+ ¢(7) = 4 implies g(7) = 4,
then ¢(9) + g(7) = 5 implies g(9) = 1,

similarly g(10) = —3, g(4) = 3, etc. Thus g can
be defined by the table, where “?” means
“don’t care”:

v gw) | v g) | v g(v)
0 o0 [1 7 [2 0
3 7 |4 3 |5 2
6 7 |7 4 |8 2
9 1 |10 3 |1 ?
12 7 |13 7 |14 7
15 7 (16 7 [17 -2
18 2 |19 4 |20 7
4 24

The Graph G

19
J Sa,
Su Tu
17 —_— 18 — 0
9
J B
We Th
4 —_— 2 —_— 7
[Mo
10
4-25

Permutation Routing

A network G is a connected, undirected graph
with N vertices 0,1,...,N — 1.

The permutation routing problem on G is:
given a permutation 7 of the vertices, and a
message (called a packet) on each vertex, route
packet j from vertex j to vertex w(j). It is
assumed that at most one packet can traverse
each edge in unit time, and that we want to
minimise the time for the routing.

In practice we only want to consider oblivious
algorithms, where the route taken by packet j
depends only on (7, 7(j)).

For simplicity, assume that the G is a

d-dimensional hypercube, so N = 2¢.
Similar results apply to other networks.

4-26

Example: Leading Bit Routing

A simple algorithm for routing packets on a
hypercube chooses which edge to send a packet
along by comparing the current address and the
destination address and finding the highest
order bit position in which these addresses
differ.

For example, consider the bit-reversal
permutation 01001001 — 10010010. Each “}”
corresponds to traversal of an edge in the
hypercube.

01 0010 0 1

1

1 100 1 00 1

1
1 000 1 00 1
!
1 00110 0 1
Il
1 001000 1
1

1 00100 1 1
!

1 00100 1 0

4 27

Borodin and Hopcroft’s bound

The following result says that there are no
“uniformly good” deterministic algorithms for
oblivious permutation routing:

Theorem: For any deterministic, oblivious
permutation routing algorithm, there is a
permutation 7 for which the routing takes

Q(y/N/d3) steps.

Ezample: For the leading-bit routing algorithm,
take 7 to be the bit-reversal permutation, i.e.

7(boby - . -bg_1) = bg_1 .. .bib .

Suppose d is even. Then at least 2%/2 packets
are routed through vertex 0. To prove this,
consider the routing of

zx...2xx00...00,

where there are at least d/2 trailing zeros.

4 28

Valiant and Brebner’s algorithm

We can do much better with a probabilistic
algorithm. Valiant suggested:

1. Choose a random mapping o (not
necessarily a permutation).

2. Route message j from vertex j to vertex
o(j) using the leading bit algorithm (for
0<j<N).

3. Route message j from vertex o(j) to
vertex m(j).

This seems crazy’, but it works ! Valiant and
Brebner prove:

Theorem: With probability greater than
1 —1/N, every packet reaches its destination in
at most 14d steps.

Corollary: The expected number of steps to
route all packets is less than 15d.

I don’t know of any manufacturer who has been per-
suaded to implement it. Probably it would be hard to
sell.

4-29

Pseudo-deterministic Algorithms

Some probabilistic algorithms use many
independent random numbers, and because of
the “law of large numbers” their performance is
very predictable. One example is the
multiple-polynomial quadratic sieve (MPQS)
algorithm for integer factorisation.

Suppose we want to factor a large composite
number N (not a perfect power). The key idea
of MPQS is to generate a sufficiently large
number of congruences of the form

y? = p§' - pi* mod N,

where p1,...,pr are small primes in a
precomputed “factor base”, and y is close to
V/N. Many y are tried, and the “successful”
ones are found efficiently by a sieving process.

Making some plausible assumptions, the
expected run time of MPQS is

T = O(exp(VInNInln N)) .

4-30

MPQS Ezample

MPQS is currently the best general-purpose
algorithm for factoring moderately large
numbers N whose factors are in the range N1/3
to N2, For example, A. K. Lenstra and

M. S. Manasse found

332911 = 22.547-16921 - 256057 -
36913801 - 177140839 -
1534179947851 - pso - pe7 »

where the penultimate factor psg is a 50-digit
primc 24677078822840014266652779036768062918372697435241,

and the largest factor pg7 is a 67-digit prime.

The computation used a network of
workstations for “sieving”, then a super-
computer for the solution of a very large sparse
linear system.

A “random” 129-digit number (RSA129) was
factored in a similar way in 1994 to win a $100
prize offered by Rivest, Shamir and Adleman in
1977. The current record is RSA140, found by a
different method (Lecture 6).

4 31

Complexity Theory of Probabilistic
Algorithms

Do probabilistic algorithms have an advantage
over deterministic algorithms ? If we allow a
small probability of error, the answer is yes, as
we saw for the Charon example. If no error is
allowed, the answer is (probably) no.

A. C. Yao considered probabilistic algorithms
(modelled as decision trees) for testing
properties P of undirected graphs (given by
their adjacency matrices) on n vertices. He also
considered deterministic algorithms which
assume a given distribution of inputs (i.e. a
distribution over the set of graphs with n
vertices).

4 32

Definitions
Yao defines

randomized complezxity Fr(P) as an

infimum (over all possible algorithms) of a
maximum (over all graphs
with n vertices) of the
expected runtime.

and
distributional complezity Fp(P) as a

supremum (over input distributions) of a
minimum (over all possible
deterministic algorithms) of the
average runtime.

Informally, Fr(P) is how long the best
probabilistic algorithm takes for testing P; and
Fp(P) is the average runtime we can always
guarantee with a good deterministic algorithm,
provided the distribution of inputs is known.

4-33

Yao’s Result

Yao (1977) claims that Fp(P) = Fg(P) follows
from the minimax theorem of John von
Neumann (1928). The minimax theorem is
familiar from the theory of two-person zero-sum
games.

Conclusion

Yao's result should not discourage the use of
probabilistic algorithms — we have already given
several examples where they out-perform known
deterministic algorithms, and there are many
similar examples.

Yao’s computational model is very restrictive.
Because n is fixed, table lookup is permitted,
and the maximum complexity of any problem is

O(n?).

4-34

Adleman and Gill’s result

Less restrictive models have been considered by
Adleman and Gill. Without going into details of
the definitions, they prove:

Theorem: If a Boolean function has a
randomised, polynomial-sized circuit family,
then it has a deterministic, polynomial-sized
circuit family.

There are two problems with this result:

e The deterministic circuit may be larger
(by a factor of about n, the number of
variables) than the original circuit.

e The transformation is not “uniform” — it
can not be computed in polynomial time
by a Turing machine. The proof of the
theorem is by a counting argument
applied to a matrix with 2" rows, so it is
not constructive in a practical sense.

4 35

The Class RP

We can formalise the notion of a probabilistic
algorithm and define a class RP of languages L
such that = € L is accepted by a probabilistic
algorithm in polynomial time with probability
p > 1/2 say®, but = ¢ L is never accepted.
Clearly

PCRPCNP,

where P and NP are the well-known classes of
problems which are accepted in polynomial time
by deterministic and nondeterministic
(respectively) algorithms.

It is plausible that
PCRPCNP,

but this would imply that P # NP, so it is a
difficult question.

8 Any fixed value in (0, 1) can be used in the definition.

4 36

Perfect Parties

- or, the answer is 42, what is the question ?

Because people at parties tend to cluster in
groups of five, we consider a party to be
imperfect if there are five people who are mutual
acquaintances, or five who are mutual strangers.
A perfect party is one which is not imperfect.

Clearly, many people are interested in the size
of the largest perfect party.

B. McKay (ANU) and S. Radziszowski
(Rochester) have performed a probabilistic
computation which shows that, with high
probability, the largest perfect party has 42
people.

4-37

Generalisation — Ramsey Numbers

R(s,t) is the smallest n such that each graph on
n or more vertices has a clique of size s or an
independent set of size t.

Examples: R(3,3) =6, R(4,4) = 18,
R(4,5) = 25, and 43 < R(5,5) < 49.

Perfect party organisers would like
to know R(5,5) — 1 (=42 7)

4-38

The Computation

A (5,5,n)-graph is a graph with n vertices, no
clique of size 5, and no independent set of

size 5. There are 328 known (5,5, 42)-graphs,
not counting complements as different. McKay
et al generated 5812 (5,5, 42)-graphs using
simulated annealing, starting at random graphs.
All 5812 turned out to be known.

If there were any more (5,5,42)-graphs, and if
the simulated annealing process is about equally
likely to find any (5, 5,42)-graph?, then another
such graph would have been found with
probability greater than

0.99999998

Thus, there is convincing evidence that all
(5,5,42)-graphs are known. None of these
graphs can be extended to (5,5,43)-graphs.
Thus, it is very unlikely that such a graph
exists, and it is very likely that

R(5,5) — 1 =42

9There is no obvious way to prove this.

4 39

A Rigorous Proof ?

A rigorous proof that R(5,5) — 1 = 42 would
take thousands of years of computer time!?,

so the probabilistic argument is the best that is
feasible at present, unless we can get time on

Deep Thought.

10Based on the fact that it took seven years of Sparc-
station time to show that R(4,5) = 25.

4 40

Omissions

We did not have time to mention applications of
randomness to algorithms for:

e sorting and selection,

e computer security,

e public-key cryptography,
e computational geometry,
e load-balancing,

e collision avoidance,

e online algorithms,

e optimisation,

e numerical integration,

e graphics and virtual reality,
e quantum computing

e avoiding degeneracy, and many other
problems.

4-41

Another Omission

We did not discuss algorithms for
generating pseudo-random numbers —
that would require another talk.

Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

John von Neumann, 1951

4-42

Conclusion

e Probabilistic algorithms are useful.

e They are often simpler and use less space
than deterministic algorithms.

e They can also be faster, if we are willing
to live with a minute probability of error.

4 43

Some Open Problems

e Give good lower bounds for the
complexity of probabilistic algorithms
(with and without error) for interesting
problems.

e Show how to generate independent
random samples from interesting
structures (e.g. finite groups defined by
relations, various classes of graphs, ...) to
provide a foundation for probabilistic
algorithms on these structures.

e Consider the effect of using
pseudo-random numbers instead of
genuinely random numbers.

e Extend Yao’s results to a more realistic
model of computation.

e Give a uniform variant of the
Adleman-Gill theorem.

e Show that P # RP (hard).

4 44

References

[7]

R. P. Brent, Parallel algorithms for integer
factorisation, in Number Theory and

[1] L. M. Adleman, On distinguishing prime Cryptography (edited by J. H. Loxton),
numbers from composite numbers (extended Cambridge University Press, 1990.
abstract), Proc. IEEE Symp. Found. Comp.

Sci. 21 (1980), 387-406. [8] R. P. Brent, Vector and parallel algorithms for
integer factorisation, Proc. Third Australian

[2] L. M. Adleman and M. A. Huang, Recognizing Supercomputer Conference, Melbourne, 1990.
primes in random polynomial time, Proc. o
Nineteenth Annual ACM Symposium on the [9] R. P. Brent, Factorization of the tenth Fermat
Theory of Computing, ACM, New York, 1987, number, Math. Comp. 68 (1999), 429-451.

462 469. [10] G. Buffon, Essai d’arithmétique morale,

[3] S. L. Anderson, Random number generators on Supplément a UHistoire Naturelle 4, 1777.
vector supercomputers and other advanced [11] T. R. Caron and R. D. Silverman, Parallel
architectures, SIAM Review 32 (1990), 221-251. implementation of the quadratic sieve, J.

[4] P. van Emde Boas, Machine models, Supercomputing 1 (1988), 273-290.
computational complexity and number theory, [12] Z. J. Czech, G. Havas and B. S. Majewski, An
in [33], 7-42. optimal algorithm for generating minimal

[5] B. Bollobds, Random Graphs, Academic Press, Il)/egect 2125(1113191121;: t1;);17sl2fézicormatzon Processing
New York, 1985. erers ’ '

13] P. Erdo . The P jlisti
[6] A. Borodin and J. E. Hopcroft, Routing, [13] rdosl and J S'pence'r , The robfzbzlzstzc
. . Method in Combinatorics, Academic Press,
merging, and sorting on parallel models of New York. 1974
computation, J. Computer and System Sciences ! '
30 (1985), 130-145. [14] P. Erdos and A. Renyi, On random graphs, I,
Publicationes Mathematicae 6 (1959), 290 297.
4-45 4-46
[15] R. W. Floyd and R. L. Rivest, Expected time [22] R. M. Karp and M. O. Rabin, Efficient
bounds for selection, Comm. ACM 18 (1975), randomized pattern-matching algorithms, IBM
165-172. J. Research and Development 31 (1987),
249-260.
[16] R. Freivalds, Fast probabilistic algorithms, in
Mathematical Foundations of Compute'r [23] R. M. Karp and V. Ramachandran, Parallel
Science (Lecture Notes in Computer Science, algorithms for shared memory machines,
74), Springer-Verlag, Berlin, 1979. in [27], 869-941.
[17] J. Gill, Computational complexity of [24] D. E. Knuth, The Art of COW?UtGT
probabilistic Turing machines, SIAM J. Programming, Vol. 2, 2nd edition,
Computing 6 (1977), 675-695. Addison-Wesley, Menlo Park, 1981, §4.5.4.
[18] S. Goldwasser and J. Kilian, Almost all primes [25] D. E. Knut'h, The Art of Qomp uter
can be quickly certified, Proc. 18th Annual Programming, Vol. 3, Addison-Wesley, Menlo
ACM Symposium on Theory of Computing, Park, 1973.
1986, 316-329. [26] K. de Leeuw, E. F. Moore, C. E. Shannon and
19] R. L. Graham, B. L. Rothschild and N. Shapiro, Computability by probabilistic
- machines, in Automata Studies (C. E. Shannon
J. H. Spencer, Ramsey Theory, John Wiley, . .
New York. 1980 and J. McCarthy, eds.), Princeton Univ. Press,
’ ’ Princeton, NJ, 1955, 183 212.
[20] R. M'_ Karp., lThe pI]';)bTbili.StﬁC an?,lysis of some [27] J. van Leeuwen, editor, Handbook of Theoretical
combinatorial search algorithms, in [54], 1-19. Computer Science, Elsevier, Amsterdam, 1990.
[21] R. M. Karp, An introduction to randomized [28] A. K. Lenstra and H. W. Lenstra (editors), The

algorithms, Discrete Applied Mathematics 34
(1991), 165 201.

447

Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554,
Springer-Verlag, Berlin, 1993.

4 48

[29]

(30]

31]

[32]

[33]

[34]

[35]

A. K. Lenstra, H. W. Lenstra, Jr., M. S.
Manasse and J. M. Pollard The factorization of
the ninth Fermat number, Mathematics of
Computation 61 (1993), 319 349.

A. K. Lenstra and H. W. Lenstra, Jr.,
Algorithms in number theory, in [27], 675-715.

H. W. Lenstra, Jr., Primality testing, in [33],
55-T77.

H. W. Lenstra, Jr., Factoring integers with
elliptic curves, Annals of Math. (2) 126 (1987),
649-673.

H. W. Lenstra, Jr. and R. Tijdeman (editors),
Computational Methods in Number Theory, 1
Math. Centre Tracts 154, Amsterdam, 1982.

B. D. McKay and S. P. Radziszowski, A new
upper bound for the Ramsey number R(5,5),
Australasian J. Combinatorics 5 (1991), 13-20.

B. D. McKay and S. P. Radziszowski, Linear
programming in some Ramsey problems, J.
Combinatorial Theory, Ser. B 61 (1994),
125-132.

4-49

[36]

37]

(38]

39]

(40]

[41]

[42]

G. L. Miller, Riemann’s hypothesis and tests
for primality, J. Comp. System Sci. 13 (1976),
300-317.

L. Monier, Evaluation and comparison of two
efficient probabilistic primality testing
algorithms, Theoret. Comput. Sci. 12 (1980),
97-108.

R. Motwani and P. Raghavan, Randomized
Algorithms, Cambridge University Press, 1995.

K. Mulmuley, Computational Geometry: An
Introduction Through Randomized Algorithms,
Prentice-Hall, New York, 1993.

J. von Neumann, Zur Theorie der
Gesellschaftsspiele, Math. Annalen 100 (1928),
295-320. Reprinted in John von Neumann
Collected Works (A. H. Taub, editor),
Pergamon Press, New York, 1963, Vol. 6, 1-26.

J. von Neumann and O. Morgenstern, Theory
of Games and Economic Behavior, Princeton
Univ. Press, Princeton, NJ, 1953.

C. Pomerance, J. W. Smith and R. Tuler, A
pipeline architecture for factoring large integers
with the quadratic sieve algorithm, SIAM J. on
Computing 17 (1988), 387 403.

4-50

(43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

V. Pratt, Every prime has a succinct certificate,
SIAM J. Computing 4 (1975), 214-220.

M. O. Rabin, Probabilistic automata,
Information and Control 6 (1963), 230-245.

M. O. Rabin, Probabilistic algorithms, in [54],
21 39.

M. O. Rabin, Complexity of computations
(1976 Turing Award Lecture), Comm. ACM 20
(1977), 625-633. Corrigendum ibid 21 (1978),
231.

M. O. Rabin, Probabilistic algorithms for
testing primality, J. Number Theory 12 (1980),
128-138.

M. O. Rabin and Shallit, Randomized
algorithms in number theory, Comm. Pure
Appl. Math. 39 (1986).

R. L. Rivest, A. Shamir and L. Adleman, A
method for obtaining digital dignatures and
public-key cryptosystems, Comm. ACM 21

(1978), 120-126.

A. Shamir, Factoring numbers in O(logn)
arithmetic steps, Information Processing
Letters 8 (1979), 28-31.

4 51

[51]

[52]

[53]

[54]

[55]

[56]

Peter W. Shor, Polynomial time algorithms for
factorization and discrete logarithms on a
quantum computer, SIAM J. Computing 26, 5
(Oct 1997).

R. D. Silverman, The multiple polynomial
quadratic sieve, Mathematics of Computation
48 (1987), 329-339.

R. Solovay and V. Strassen, Fast Monte Carlo
test for primality, SIAM J. on Computing 6
(1977), 84-85; erratum 7 (1978), 118.

J. F. Traub (editor), Algorithms and
Complexity, Academic Press, New York, 1976.

L. G. Valiant and G. J. Brebner, Universal
schemes for parallel communication, Proc. 13th
Annual ACM Symposium on the Theory of
Computing, ACM, New York, 1981, 263-277.

A. C. Yao, Probabilistic computations: towards
a unified measure of complexity, Proc. 18th
Annual Symposion on Foundations of
Computer Science, IEEE, New York, 1977,
222-227.

4 52

Lecture 5

Revisiting the Binary Euclidean

Algorithm*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent.

lec05

Summary

The binary Euclidean algorithm is a variant of
the classical Euclidean algorithm. It avoids
divisions and multiplications, except by powers
of two, so is potentially faster than the classical
algorithm on a binary machine. In this lecture I
describe the classical and binary algorithms,
and compare their worst case and average case
behaviour. In particular, I correct some small
but significant errors in the literature, discuss
some recent results of Brigitte Vallée, and
describe a numerical computation which verifies
Vallée’s conjecture to 44 decimal places.

5-2

Outline

e The classical Euclidean algorithm

— The algorithm

Worst case

Continued fractions

Continuous model of Gauss

Results of Kuz'min, Lévy, et al

e The binary Euclidean algorithm

The algorithm
— Worst case

Continuous model

— Conjectured/empirical results
— An error in the literature

— Useful operators

— Recent results of Vallée

— Confirmation of a conjecture

Open problems

53

Notation
lg(z) denotes logy(z).
Valy(u) denotes the dyadic valuation of the

positive integer u, i.e. the greatest integer j
such that 27 | u.

54

The Classical Euclidean Algorithm

The Euclidean algorithm finds the greatest
common divisor (GCD) of two positive integers
m and n. It is one of the best known of all
algorithms. Knuth (§1.1) gives the algorithm as:

Algorithm E
El. r <~ mmodn
E2. If r = 0 terminate with n as the result.

E3. Set m < n, n < r, and go to E1

Of course, Euclid did not describe the algorithm
in this way. In fact, it is not quite clear what
Euclid intended at step E1. For a translation of
Euclid’s description, see Knuth, §4.5.2.

The algorithm was probably known about 200
years before Euclid. Nevertheless, we shall call
Algorithm E the “classical Euclidean
algorithm” or just the “classical algorithm”.

5-5

One-line Version

while n.# 0 do (1) < (,,, 4 ,,); Teturn m.

56

Relation to Continued Fractions

Assume m > n. The first execution of step E1
gives

m=qXn-+r

where ¢ is the quotient and r is the remainder
on division of m by n. By definition,

0<r<n.
Define ng = m, n1 = n, no = r = m mod n.
Suppose step E3 is executed k times. Then
nj = qj X Mjy1+ Njto

holds for 5 =0,1,...,k and ngs = 0.
We can write this as

n; Nniy
j :q].+1/i
Nj+1 Nj+2

S0, in the usual notation for continued fractions,
m
—=q@+1/a+1/gp+ - +1/q.

n

57

The Worst Case

We have seen that there is an intimate
connection between the classical Euclidean
algorithm for computing GCD(m,n) and the
continued fraction expansion of the rational
number m/n.

The worst case for the classical algorithm
occurs when all the quotients g; are 1. This
happens when the inputs are consecutive
Fibonacci numbers. (These are defined by
Fy=0, F, =1, Fj+2 = Fj+1 +FJ for j > 0)

For example,
(m,n) = (Fs, Fs) = (8,5) = (5,3) = (3,2) — (2,1).
Since Fy, ~ p*/\/5, where p = @ ~ 1.618,

the worst case number of iterations of the
classical algorithm is

log, N + O(1),

where N = max(m,n).

58

The Continuous Model of Gauss

To investigate the average behaviour of the
classical algorithm, we can restrict attention to
the case 0 < m < n (so go = 0). We assume
that n = N is large and that m is equally likely
to take the values {1,2,..., N — 1}. Thus, m/n
will be approximately uniformly distributed in
(0,1), and the sequence of quotients ¢1, g2, . . .
will “look like” the quotients in the continued
fraction expansion of a uniformly distributed
random number.

59

Gauss’s Recurrence

Suppose zg € (0,1), and zo has a continued
fraction expansion

zo=1/q1+1/g2+ ... +1/(qx + z41),

where qi, ..., qr are positive integers and
zr41 € (0,1).

We can express the probability distribution
function Fy41(z) of zx+1 in terms of the
distribution function Fy(z) of z. Using the fact
that 1/z = qx + T11, we see that

Fk+1(£17) = PI‘(O S Tr+1 S LL‘)

= Y Pr(¢<1/zp<q+z)

g>1
1 1
= ZPT<—§$I¢§—>
qu q+$ q
1 1
- 2 (;)-m(52)
et q q+z
5-10

The Limiting Distribution

To investigate average case behaviour in the
continuous model, we assume Fy(x) = z for
z € (0,1) (the uniform distribution of m/n),
and consider Fy(z) as k — oo.

If we assume that a limit distribution

F(z) = limg_ oo Fi(x) exists, then F(x) satisfies
the functional equation

-5 (r(2) -+ (122))

Gauss noticed the simple solution

F(z) =1g(1 + z).

However, Gauss was not able to prove
convergence. It was eventually proved by
Kuz’min (1928). Sharper results were
proved by Lévy (1929), Wirsing (1974),
and Babenko (1978).

5 11

Babenko’s Theorem
The definitive result, due to Babenko (1978), is
Fi(z) =1g(1+2) + > A\;(2),
j>2
where [Aa| > [Ag] > |Ag] > -+,

—X2 = A = 0.3036630028 - - -

is called Wirsing’s constant, and the ¥;(z) are
certain analytic functions (see Knuth, §4.5.3 for
more details).

The expected number of iterations is

12In 2
2

~

InN ~ 0.8428In N ~ 0.58421g N
which can be compared with

~log, N ~2.0781In N ~ 1.44041g N

for the worst case.

Remainder of the Lecture

In the time remaining, I will describe what
progress has been made towards a similar
analysis of the binary Euclidean algorithm.

5-13

The Binary Euclidean Algorithm

The idea of the binary Euclidean algorithm is to
avoid the “division” operation r < m mod n of
the classical algorithm, but retain O(log N)
worst (and average) case.

We assume that the algorithm is implemented
on a binary computer so division by a power of
two is easy. In particular, we assume that the
“shift right until odd” operation

u — u/2Vak ()

or equivalently
while even(u) do u + u/2

can be performed in constant time (although
time O(Valy(u)) would be sufficient).

Definition of the Binary Algorithm

There are several almost equivalent ways to
define the algorithm. For simplicity, let us

assume that v and v are odd positive integers.

Following is a simplified version of the
algorithm given in Knuth, §4.5.2.

Algorithm B

B1. ¢« |u—vf;
if ¢ = 0 terminate with result u

B2. t « t/2Val(®)

B3. if u > v then u « ¢ else v « t;
go to B1.

5 15

History

The binary Euclidean algorithm is attributed to
Silver and Terzian (unpublished, 1962) and
Stein (1967). However, it seems to go back
almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation
of a first-century AD Chinese text Chiu Chang
Suan Shu on how to reduce a fraction to lowest
terms:

If halving is possible, take half.

Otherwise write down the
denominator and the numerator,
and subtract the smaller from the
greater.

Repeat until both numbers are
equal.

Simplify with this common value.

This looks very much like Algorithm B!

Another Formulation

It will be useful to rewrite Algorithm B in the

following equivalent form (using pseudo-Pascal):

Algorithm V { Assume u < v }

while u # v do
begin
while u < v do
begin
J + Valg(v — u);
v (v—u)/2;

Continued Fractions

Vallée [15] shows a connection between
Algorithm V and continued fractions of a
certain form:

u

—=1/a1 + 2" Jay + 22/ ... Ja, + 2%
v

where a; is odd, k; > 0, and 0 < a; < 2k; |

end;
U > U;
end;
return u.
5-17 5-18
Example Vallée’s Results — More Details

Consider u = 9, v = 55. The inner loop of
Algorithm V finds

55 = 9+2x23
= 9+2x(9+2x7)
= 3x944x7

and on the next iteration
9 = 7T+2x1

SO

55 7
oY 4 x ~
9 3+4x 9"
9 2
142
7 +7’
and finally
9 1
55 34 —2
I+

which we write as

%:1/3+4/1+2/3+4.

5 19

Algorithm V has two nested loops. The outer
loop exchanges v and v. Between two
exchanges, the inner loop performs a sequence of
subtractions and shifts which can be written as

v u—|-2b11)1;
V1 u+25202;

Un—1 < U+ 2b’"um
with v, < u.
If xo = u/v at the beginning of an inner loop,

the effect of the inner loop followed by an
exchange is the rational 21 = v, /u defined by

1

ryg = —13—
a+ 2%z,

where a is an odd integer given by
a=1+ 251 + 2b1+52 I 2b1+"'bm—l ,
and the exponent k is given by

E=b+- by .

5 20

Thus, the rational u/v, for 1 < u < v, has a
unique binary continued fraction expansion of
the form

1

2k
2k

<

a1+

az + s

+7
ar+2kT

Vallée studies three parameters related to this
continued fraction

1. The height or the depth (i.e. the number
of exchanges) r.

2. The total number of operations necessary
to obtain the expansion; if p(a) denotes
the number of “1”s in the binary
expansion of the integer a, it is equal to
p(a1) +p(az) + - - + p(ar).

3. The sum of exponents of 2 in the
numerators of the binary continued
fraction, k1 + - - - + k.

521

Vallée’s Theorems

Vallée’s main results give the average values of
the three parameters above: the average values
are asymptotically A;log N for certain constants
Aq, Ag, As related to the spectral properties of
an operator Vg (to be defined later).

5-22

The Worst Case

At step B1, u and v are odd, so t is even. Thus,
step B2 always reduces t by at least a factor of
two. Using this fact, it is easy to show that step
B3 is executed at most

llg(u +v)]

times (Knuth, exercise 4.5.2.37). Thus, if
N = max(u,v), step B3 is executed at most

lg(N)+ 0(1)

times.

Remark

Even if step B2 is replaced by single-bit shifts

while even(t) do t + t/2

the overall worst case is still O(log N).

5 23

Extended Binary Algorithm

It is possible to give an extended binary GCD
algorithm which computes multipliers o and 3
such that

au + v = GCD(u,v)

(Bojanczyk and Brent [2], 1987).

Systolic Binary Algorithm

For hardware implementation, there is a systolic
array variant of the binary GCD algorithm
(Brent and Kung [5], 1985). This takes time
O(log N) using O(log N') 1-bit processors and
nearest-neighbour communication. The overall
bit-complexity is O(log N)?.

5 24

A Heuristic Continuous Model

To analyse the expected behaviour of
Algorithm B, we can follow what Gauss did for
the classical algorithm. This was first attempted
in my 1976 paper [3] and there is a summary in
Knuth (Vol. 2, third edition, §4.5.2).

Assume that the initial inputs ug, vg to
Algorithm B are uniformly and independently
distributed in (0, N), apart from the restriction
that they are odd. Let (uy,v,) be the value of
(u,v) after n iterations of step B3.

Let
_ min(uy, vy)
max(Un, Un)
and let F,(z) be the probability distribution
function of z, (in the limit as N — c0). Thus

Fy(z) =z for z € [0,1].

We assume that Valy(t) takes the value k with
probability 27 at step B2. (Vallée does not
make this assumption — we will discuss her
rigorous analysis later.)

525

The Recurrence for F),

Consider the effect of steps B2 and B3. We can
assume that u > v sot =u—wv. If Valp(t) = k
then X = v/u is transformed to

. u—v 2ky
min ,———
2ky Tu—v
_(1-X 2FX
min| —— ,——] .
2kX '1-X

It follows that X' < z iff

XI

1 1
X< or X>—— .
STyt T Tk

Thus, the recurrence for G, (z) =1 — F,(z) is

_ 1 1
G"“(””):Zz i (G" (1+2’=/z) ~Cn (1+2k1)) ’

k>1

and Go(z) =1 — z for z € [0,1].

5-26

The Recurrence for f,

Differentiating the recurrence for G, we obtain
(formally) a recurrence for the probability
density fn(z) = F.(z) = -G (z):

fanr(z) =) <zi2k)2f" <zf2’°)

k>1

+ () ()

k>1

Operator Notation

The recurrence for f,, may be written as

f’n+1 = Ban;

where the operator By is the case s = 2 of a
more general operator Bs which will be defined
later.

5 27

Conjectured and Empirical Results

In my 1976 paper [3] I gave numerical and
analytic evidence that F,,(x) converges to a
limiting distribution F(z) as n — oo, and that
fn(z) converges to the corresponding
probability density f(z) = F'(z) (note that
f=DBsf so fis a “fixed point” of the operator
Bj). Assuming the existence of F, it is shown
in [3] that the expected number of iterations of
Algorithm B is ~ K1g N as N — oo, where

K =0.705... is a constant defined by

K=mn2/Fy,
and
B = In24
[(S -mis) o
o 1+ (2F = 1)z 2(1+ x)
k=2
5 28

A Simplification

We can simplify the expression for K to obtain
K=2/b,
where
1
b:2—/ le(1 - z) f(z) de
0

Using integration by parts we obtain an
equivalent expression

11_
1n2/ 1—x

For the proofs, see Knuth, third edition, §4.5.2.

529

An Error in the Literature

In (Brent, 1976) I claimed that, for all n > 0
and z € (0,1],

Fn(z) = an(z)1g(z) + Bn(z) ,

where o, (z) and f,(z) are analytic and regular
in the disk |z| < 1. However, this is incorrect,
even in the case n = 1.

The error appeared to go unnoticed until 1997,
when Don Knuth was revising Volume 2 in
preparation for publication of the third edition.
Knuth computed the constant K using
recurrences for the analytic functions o, (z) and
fn(z), and I computed K directly using the
defining integral and recurrences for F,(z). Our
computations disagreed in the 14th decimal
place ! Knuth found

K = 0.70597 12461 01945 99986 - - -
but I found
K = 0.70597 12461 01916 39152 - - -

5-30

Some Detective Work

After a flurry of emails we tracked down the

error. It was found independently, and at the
same time (within 24 hours), by Flajolet and
Vallée.

The source of the error is illustrated by
Lemma 3.1 of my 1976 paper [3], which is
wrong (and corrected in the solution to

ex. 4.5.2.29 of Knuth, third edition).

The Mellin transform of a function g(z) is

defined by
:/ g(z)z*ldz .
0

If f(x) = Y j>127%g(2%z) then the Mellin
transform of f is

Z 9— s+1 g (s)

s+1 __
k>1 2 1

Under suitable conditions we can apply the
Mellin inversion formula to obtain

5 31

c+100
1@ =5 [F(s)avds.

271 — 100

Applying these results to g(z) = 1/(1 +),
whose Mellin transform is g*(s) = 7/ sinns
when 0 < Rs < 1, we find
27}6
@) =2 1o,

k>1

as a sum of residues of

<) :
Sin TS 2 1 1
fOI' RS < 0 This giVeS

2 4
fz)= 1+a:1gz+g+a:P(lga:)—Ig;2+§x3_. .

where

2m & sin 2nrt

PO =103 2 sinh(ene?/n2)

5 32

The “Wobbles” Caused by P(t)

P(t) is a very small periodic function:
|P(t)| < 7.8 x 10712

for real ¢t. In [3, Lemma 3.1], the term zP(lgz)
is omitted.

Essentially, we only considered poles on the real
axis and ignored those at s = —1 & 2win/In2,
n=12,...

Because the residues at these poles are tiny
(thanks to the sinh term in the denominator)
numerical computations performed using
single-precision floating-point arithmetic did not
reveal the error.

533

An Analogy

Ramanujan made a similar error when he gave
a formula for 7(z) (the number of primes <)
which essentially ignored the residues of
x5¢'(s)/¢(s) arising from zeros of ((s) off the

real axis.

It is easier to work with

NgE

f#) =Y (et

Il
-

n

than with 7(z). From f(z) we can find 7(z) by
MGébius inversion:

oon n
0=y M.

n=1

Riemann’s formula

Riemann’s explicit formula® for f(z) is

x)—llx—th”-l-/ —1tlnt —1n2.

The sum is over all the complex zeros p of the
Riemann zeta function (summed in order of
increasing |p|), and liz is the logarithmic
integral.

Ramanujan’s error was essentially to ignore the
sum over p.

!Stated by Riemann in 1859, and proved by Von Man-
goldt in 1885.

5 35

Some Useful Operators

Operators Bs, Us, Us, Vs, useful in the analysis
of the binary Euclidean algorithm, are defined
on suitable function spaces by

Uslfllx) = <1 +12kx)s f (1 +12kz> ’

E>1
i@ = (1) uin (3),
Bs = U, +Us,
9= % (ows) armm)

In these definitions s is a complex variable, and
the operators are called Ruelle operators [12].
They are linear operators acting on certain
function spaces.

The case s = 2 is of particular interest. Bo
encodes the effect of one iteration of the inner
“while” loop of Algorithm V, and V5 encodes
the effect of one iteration of the outer “while”
loop.

5 36

Relations between Operators

By (denoted T') was introduced in my 1976
paper [3], and generalised to B, by Vallée. V
was introduced by Vallée. We shall call By the
binary Fuclidean operator and V, Vallée’s
operator. Not surprisingly, the operators are
related, as the following Lemma and Theorem
show.

Lemma 1

The following Theorem (which follows from the
Lemma) gives a simple relationship between B,
Vs and Us.

Theorem 1

(Vs —TWUs =Vs(Bs — I).

5-37

Algorithmic interpretation

Algorithm V gives an interpretation of

Lemma 1 in the case s = 2. If the input density
of z =u/v is f(z) then execution of the inner
“while” loop followed by the exchange of v and
v transforms this density to Vo[f](z). However,
by considering the first iteration of this loop
(followed by the exchange if the loop
terminates) we see that the transformed density
is given by

Valls[£)(z) + Us[f](2),

where the first term arises if u < v without an
exchange, and the second arises if an exchange
occurs.

5-38

A Conjecture of Vallée

Let A = f(1), where f is the limiting probability
density (conjectured to exist) as above. Vallée
(see Knuth, third edition, §4.5.2(61))
conjectured that

A 2In2

b w2

or equivalently that

_ 4In2

o
Vallée proved the conjecture under the
assumption that the operator B, satisfies a

certain spectral condition. We have verified the
conjectures numerically to 44 decimal places.

5 39

Recent Results of Vallée

Using her operator Vg, Vallée recently proved
that

21n2

_W29(1 Z 92— ngan<)

a odd,

a>0
where g is a nonzero fixed point of Vs (i.e.
g="V29 #0) and G(z) = [g(t) dt . This is yet
another expression for K (the only one which
has been proved).

Warning: G here is not the same as
G(z) =1— F(z) ! Unfortunately Knuth and
Vallée use incompatible notation.

Because Vg can be proved to have nice spectral
properties, the existence and uniqueness (up to
scaling) of g can be proved rigorously.

Fixed Points of some Operators

It follows immediately from Theorem 1 that, if

g=Usf,

then
(Vo —T)g=Va(B2 —I)f.

Thus, if f is a fixed point of the operator B,
then g is a fixed point of the operator Vs. From
the recent result of Vallée [15, Prop. 4] we know
that Va, acting on a certain Hardy space
H2(D), has a unique positive dominant simple
eigenvalue 1, so g must be (a constant multiple
of) the corresponding eigenfunction (provided

g € H*(D)). Also, from the definitions of By
and Vs, we have

A=f(1)=29(1):22<1+12k)2f(1432’“)’

E>1

which is useful for proving the consistency of
two of the expressions for K given above.

541

Numerical Results

Using an improvement of the “discretization
method” of [3], and the MP package with the
equivalent of more than 50 decimal places (50D)
working precision, we computed the limiting
probability density f, then K, A = f(1), and
K. The results were

K
A
KX

0.7059712461 0191639152 9314135852 8817666677
0.3979226811 8831664407 6707161142 6549823098
0.2809219710 9073150563 5754397987 9880385315

These are believed to be correctly rounded
values.

One of Vallée’s conjectures is that
KA=4mn2/7?.

The computed value of K\ agrees with 4 In 2/7?
to 40 decimals (in fact to 44 decimals).

5-42

Conclusion and Open Problems

Since Vallée’s recent work [14, 15], analysis of
the average behaviour of the binary Euclidean
algorithm has a rigorous foundation. However,
some interesting open questions remain.

For example, does the binary Euclidean
operator By have a unique positive dominant
simple eigenvalue 17 Vallée [15, Prop. 4] has
proved the corresponding result for her
operator Vs.

In order to estimate the speed of convergence of
fn to f (assuming f exists), we need more
information on the spectrum of Bs. What can
be proved ? Preliminary numerical results
indicate that the sub-dominant eigenvalue(s)
are a complex conjugate pair:

A2 = A3 =0.1735 £ 0.08841 ,

5 43

Acknowledgements

Thanks to Don Knuth for encouraging me to
correct and extend my 1976 results for the third
edition of Seminumerical Algorithms, to
Brigitte Vallée for sharing her conjectures and
results with me, and to Philippe Flajolet for his
notes on Mellin transforms.

References

[1] B. C. Berndt, Ramanujan’s Notebooks,

Parts I-V, Springer-Verlag, New York, 1985, ...

Adam W. Bojanczyk and Richard P. Brent, A
systolic algorithm for extended GCD
computation, Comput. Math. Applic. 14 (1987),
233-238.

Richard P. Brent, Analysis of the Binary
Euclidean Algorithm, New Directions and
Recent Results in Algorithms and Complexity,
(J. F. Traub, editor), Academic Press, New
York, 1976, 321-355.

Richard P. Brent and H. T. Kung, Systolic
VLSI arrays for linear-time GCD computation,
in VLSI 83 (F. Anceau and E. J. Aas, editors),
North-Holland, Amsterdam, 1983, 145-154.

Richard P. Brent and H. T. Kung, A systolic
VLSI array for integer GCD computation, in
ARITH-7, Proc. Seventh Symposium on

[7] Hervé Daudé, Philippe Flajolet and Brigitte

Vallée, An analysis of the Gaussian Algorithm
for Lattice Reduction, Proc. ANTS’94, Lecture
Notes in Computer Science, Vol. 877,
Springer-Verlag, 1994, 144-158. Extended
version in Combinatorics, Probability and
Computing 6 (1997), 397-433.

Philippe Flajolet and Brigitte Vallée,
Continued Fraction Algorithms, Functional
Operators and Structure Constants, Theoretical
Computer Science 194 (1998), 1-34.

Carl F. Gauss, Brief an Laplace vom 30 Jan.
1812, Carl Friedrich Gauss Werke, Bd. Xy,
Gottingen, 371-374.

G. H. Hardy, Ramanujan: Twelve Lectures on
Subjects Suggested by his Life and Work,
Cambridge University Press, Cambridge, 1940.

Donald E. Knuth, The Art of Computer
Programming, Volume 2: Seminumerical
Algorithms (third edition). Addison-Wesley,

Computer Arithmetic (K. Hwang, editor), Menlo Park, 1997.

IEEE/CS Press, 1985.
[12] David Ruelle, Thermodynamic formalism,
[6] Richard P. Brent, Further analysis of the Addison Wesley, Menlo Park, 1978.

Binary Fuclidean algorithm, in preparation.

5-45 5-46

[13] Brigitte Vallée, Opérateurs de Ruelle-Mayer
généralisés et analyse des algorithmes de Gauss
et d’Euclide, Acta Arithmetica 81 (1997),
101-144.

[14] Brigitte Vallée, The complete analysis of the
Binary Euclidean Algorithm, Proc. ANTS’98,
Lecture Notes in Computer Science, Vol. 1423,
Springer-Verlag, 1998, 77-94.

15

Brigitte Vallée. Dynamics of the Binary
Euclidean Algorithm: functional analysis and
operators, manuscript, Feb. 1998 (to appear in
Algorithmica).
http://www.info.unicaen.fr/~brigitte
/Publications.bin-gcd.ps

5 47

Lecture 6

Integer Factorisation,
Elliptic Curves
and
Fermat Numbers*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent.

lec06

Abstract

We outline the integer factorisation algorithms
ECM, MPQS and NFS, and then compare their
expected performance on “typical” or “random”
large integers. Finally, we illustrate some of the
conclusions by giving a brief historical summary
of attempts to factor Fermat numbers.

6-2

Outline
Part 1: ECM, MPQS and NFS

e Notation and definitions

¢ Elliptic curves over finite fields

The elliptic curve method (ECM)

e The quadratic sieve (QS and MPQS)
e The number field sieve (NFS)

— Special (SNFS)

— General (GNFS)

Part 2: Comparison Theorems

e Comparison of ECM and MPQS

e Comparison of ECM and GNFS

Part 3: History

e Attempts to factor Fermat numbers

6 3

Notation

n and N always denote positive integers.

Ppr denotes a prime number with n decimal
digits, e.g. p3 = 163. Similarly, ¢,, denotes a
composite number with n decimal digits,
e.g. cqg = 1729.

log or In denotes the natural logarithm,
lg or log, denotes the logarithm to base 2.

Almost Always and Almost Never

If P(n) is a predicate, we say that P(n) holds
almost always if

i S NP

=1
N—o0 N

and we say that P(n) holds almost never if

< :
o R SNP@Y
N—oo N

Ezample (Erdés Kac): For any £ > 0,
n almost always has between (1 — ¢)loglogn
and (1 + ¢)loglogn prime factors.

6 4

Elliptic Curves Over Finite Fields

A curve of the form
v=2>+ar+b (1)

over some field F is known as an elliptic curve.
A more general cubic in z and y can be reduced
to the form (1), which is known as the
Weierstrass normal form, by rational
transformations, provided char(F) # 2 or 3.
There is a well-known way of defining an
Abelian group (G, +) on an elliptic curve over a
field. If Py = (z1,y1) and P» = (z2,y2) are
points on the curve, then the point

Ps = (x3,y3) = P + P» is defined by —

(z3,y3) = (N2 — 21 — 20, Az1 —23) —91) ,

where

_ { (337% +a)/(2y1) if =P
(y1 — y2)/(z1 — z2) otherwise.

The zero element in G is the “point at infinity”,
(00, 00). We write it as 0.

6-5

Geometric Interpretation

The geometric interpretation of “4” is
straightforward: the straight line P, P
intersects the elliptic curve at a third point

P} = (z3,—y3), and Pj is the reflection of Pj§ in
the z-axis.

More elegantly, if a straight line intersects the
elliptic curve at three points Q1, @2, Q3 then

Q1 +Q2+Q3=0.

N

Figure 1: The Group Operation

Brief Description of ECM

The elliptic curve method (ECM) for integer
factorisation was discovered by H. W. Lenstra,
Jr. in 1985. Various practical refinements were
suggested by Montgomery, Suyama, and others.

ECM uses groups defined by pseudo-random
elliptic curves over GF(p), where p > 3 is the
prime factor we hope to find. (Fortunately, we
don’t need to know p in advance.) By a
theorem of Hasse (1934), the group order g for
an elliptic curve over GF(p) satisfies

lg—p—1/<2yp.

By a result of Deuring, all g satisfying this
inequality are possible.

ECM is similar to an earlier method, Pollard’s
“p —1” method, but the p — 1 method has the
disadvantage that the group is fixed and the
method fails if p — 1 has a large prime factor.
We can think of ECM as a “randomised”
version of the p — 1 method.

67

Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Making an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W(p) = exp (\/(2 +0(1)) log plog logp)

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oo.

In Lenstra’s algorithm the field F is the finite
field GF(p) of p elements, where p is a prime
factor of N. Since p is not known in advance,
computation is performed in the ring Z/NZ of
integers modulo N rather than in GF(p). We
can regard this as using a redundant group
representation.

6 8

One Trial of ECM

A trial (or curve) is the computation involving
one random group G. The steps involved are —

1. Choose a parameter B.

2. Choose g, yg and a randomly in [0, N).
This defines b = 92 — (23 + azp) mod N.
Set P+ Py= (Io,yo).

3. For each prime < B take its maximal
power ¢ < B and set P + ¢P in the group
G defined by a and b.

If P = 0 then the trial succeeds as a factor of N
will have been found during an attempt to
compute an inverse mod N. Otherwise the trial
fails.

The work involved in a trial is O(B) group
operations. There is a tradeoff involved in the
choice of B, as a trial with large B is expensive,
but a trial with small B is unlikely to succeed.

6-9

Optimal Choice of B

Making Lenstra’s plausible assumption, one
may show that the optimal choice of B is
B = p'/* where

o~ (2Inp/Inlnp)/? .
It follows that the expected run time is

T = p2/a+o(1/a))

The exponent 2/« should be compared with 1
(for trial division) or 1/2 (for Pollard’s “rho”
method).

A Practical Problem

The optimal choice of B depends on the size of
the factor p. Since p is unknown, we have to
guess or use some sort of adaptive strategy.

Fortunately, the expected performance of ECM
is not very sensitive to the choice of parameters,
so the precise strategy does not matter much.

The Second Phase

Both the Pollard “p — 1”7 and Lenstra elliptic
curve algorithms can be speeded up by the
addition of a second phase. The idea of the
second phase is to find a factor in the case that
the first phase terminates with a group element
P # 0, such that |(P)| is reasonably small (say
O(B?)). Here (P) is the cyclic group generated
by P.

There are several possible implementations of
the second phase. One of the simplest uses a
pseudorandom walk in (P). By the birthday
paradox argument, there is a good chance that
two points in the random walk will coincide
after O(|(P)|'/?) steps, and when this occurs a
nontrivial factor of N can usually be found.

6 11

Expected Performance of ECM

In Table 1 we give a small table of log;q W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation.

Table 1: Expected work for ECM

digits D | log;a W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80

6 12

Comparison with Pollard “rho”

10y rho

81 ecm

6 8 10 12 14 16 18

logo W versus decimal digits in factor

Because of the overheads involved with ECM, a
simpler algorithm such as Pollard’s “rho” is
preferable for finding factors of up to about ten
decimal digits, but for larger factors the
advantage of ECM becomes apparent.

6-13

ECM Example

ECM can routinely find factors p of size about
30 decimal digits. The largest factor known to
have been found by ECM is the 53-digit factor

ps3 = 53625112691923843508117942\
311516428173021903300344567

of 2677 — 1, found by Conrad Curry in
September 1998 using a program written by
George Woltman and running on 16 Pentiums.

The group order for the lucky trial was

g = 2%.39.3079- 152077 - 172259 - 1067063 -
3682177 - 3815423 - 8867563 - 15880351

We expect only one in 2,400,000 curves to have
such a “smooth” group order.

Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a large
class of algorithms which try to find two integers
z and y such that z # +y (mod N) but

22 =19? (mod N). (2)

Once such z and y are found, then

GCD (z — y, N) is a nontrivial factor of N.

One way to find x and y satisfying (2) is to find
a set of relations of the form

u? = v2w; (mod N), (3)

where the w; have all their prime factors in a
moderately small set of primes (called the
factor base). Each relation (3) gives a row in a
matrix M whose columns correspond to the
primes in the factor base.

6 15

Linear Algebra mod 2

Once enough rows have been generated, we can
use sparse Gaussian elimination in GF(2) to
find a linear dependency (mod 2) between a set
of rows of M. Multiplying the corresponding
relations now gives an expression of the

form (2). With probability at least 1/2, we have
xz # +y mod N so a nontrivial factor of N will
be found. If not, we need to obtain a different
linear dependency and try again.

Sieving

In quadratic sieve algorithms the numbers w;
are the values of one (or more) polynomials
with integer coefficients. This makes it easy to
find relations by sieving. The inner loop of the
sieving process has the form

while j < bound do

begin

s[i] slj] +

Jj<itg

end
Here bound depends on the size of the
(single-precision real) sieve array s, ¢ is a small
prime or prime power, and c is a
single-precision real constant depending on ¢
(¢ = A(q) =logp if ¢ = p®, p prime).
It is possible to use scaling to avoid floating
point additions, which is desirable on a small
processor without floating-point hardware.

6-17

MPQS

MPQS is a quadratic sieve method which uses
several polynomials to improve the efficiency of
sieving (an idea of Montgomery). MPQS can,
under plausible assumptions, factor a number N
in time

O(exp(c(In N Inln N)Y/2)) |

where ¢ ~ 1. The constants involved are such
that MPQS is usually faster than ECM if N is
the product of two primes which both exceed
N'/3. This is because the inner loop of MPQS
involves only single-precision operations.

P-MPQS and PP-MPQS

In the “one large prime” (P-MPQS) variation
w; is allowed to have one prime factor exceeding
B (but not too much larger than B). This is
analogous to the second phase of ECM and
gives a similar performance improvement.

In the “two large prime” (PP-MPQS) variation
w; can have two prime factors exceeding B —
this gives a further performance improvement at
the expense of higher storage requirements.

6 19

MPQS Examples

MPQS has been used to obtain many impressive
factorisations. Arjen Lenstra and Mark
Manasse (with many assistants scattered around
the world) have factored several numbers larger
than 10199, For example, the 116-decimal digit
number (3329 + 1)/(known small factors) was
split into a product of 50-digit and 67-digit
primes. The final factorisation is

3P 41 = 22.547-16921 - 256057 - 36913801 -
177140839 - 1534179947851 -
2467707882284001426665277\
9036768062918372697435241 - per

Such factorisations require many years of CPU
time, but a real time of only a month or so
because of the number of different processors
which are working in parallel.

6 20

The Magic Words are - - -

At the time of writing, the largest number
factored by MPQS is the 129-digit “RSA
Challenge” number RSA129. It was factored in
1994 by Atkins et al. RS&A had predicted in
Scientific American that it would take millions
of years to factor RSA129.

The factors of RSA129 allow decryption of a
‘secret’ message from RS&A. Using the
decoding scheme 01 = 4,02 = B,...,26 = Z,
and 00 a space between words, the decoded
message reads

THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE

It is certainly feasible to factor larger numbers
by MPQS, but for numbers of more than about
110 decimal digits GNFS is faster. For example,
to factor RSA129 by MPQS required 5000
Mips-years, but to factor the slightly larger
number RSA130 by GNFS required only 1000
Mips-years.

6-21

The Special Number Field Sieve
(SNFS)

Most of our numerical examples have involved
numbers of the form

a®tb, (4)

for small @ and b, although the ECM and
MPQS factorisation algorithms do not take
advantage of this special form.

The special number field sieve (SNFS) is a
relatively new (c. 1990) algorithm which does
take advantage of the special form (4). In
concept it is similar to the quadratic sieve
algorithm, but it works over an algebraic
number field defined by a, e and b.

The details are rather technical and depend on
concepts from algebraic number theory, so we
simply give two examples to show the power of
the algorithm.

6-22

SNFS Example 1
Consider the 155-decimal digit number

Fy=N=22 41

as a candidate for factoring by SNFS. Note that
8N = m5 4 8, where m = 219, We may work in
the number field Q(a), where « satisfies

a®+8=0,
and in the ring of integers of Q(«). Because
m’+8=0 (mod N),

the mapping ¢ : @ — m mod N is a ring
homomorphism from Z[a] to Z/NZ.

The idea is to search for pairs of small coprime
integers u and v such that both the algebraic
integer u + av and the (rational) integer u + mw
can be factored. The factor base now includes
prime ideals and units as well as rational
primes.

6 23

Example 1 continued

Because
o(u+ av) = (u+mov) (mod N),

each such pair gives a relation analogous to (3).
The prime ideal factorisation of u + av can be
obtained from the factorisation of the norm

u® — 8v® of u + awv. Thus, we have to factor
simultaneously two integers u + mv and

|u® — 8v®%|. Note that, for moderate u and v,
both these integers are much smaller than N, in
fact they are O(N'/4), where d = 5 is the
degree of the algebraic number field.

Using these and related ideas, Lenstra et al
factored Fy in June 1990, obtaining

Fy = 2424833
745560282564788420833739\
5736200454918783366342657 - pog ,

where pgg is an 99-digit prime, and the 7-digit

factor was already known (although SNFS was
unable to take advantage of this).

6 24

Detalils

The collection of relations took less than two
months on a network of several hundred
workstations. A sparse system of about 200,000
relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination,
dependencies (mod 2) between the rows were
found in three hours on a Connection Machine.
These dependencies implied equations of the
form 22 = 42 mod Fy. The second such
equation was nontrivial and gave the desired
factorisation of Fy.

6-25

SNFS Example 2

The current SNFS record is the 211-digit
number 102! — 1, factored early in 1999 by a
collaboration called “The Cabal”. In fact,
102! — 1 = 32 . pg3 - p11g, where

pos = 69262455732438962066278\
23226773367111381084825\
88281739734375570506492\
391931849524636731866879

and pi118 may be found by division.

6-26

Details

The factorisation of N = 102! — 1 used two
polynomials

f(z) =z —10%

and
g(z) = 1025 — 1

with common root m = 10%% mod N. After
sieving and reduction a sparse matrix over
GF(2) was obtained with about 4.8 x 10® rows
and weight (number of nonzero entries) about
2.3 x 108, an average of about 49 nonzeros per
row. Montgomery’s block Lanczos program
took 121 hours on a Cray C90 to find 64
dependencies. Finally, the square root program
needed 15.5 hours on one CPU of an SGI Origin
2000, and three dependencies to find the two
prime factors.

6 27

The General Number Field Sieve
(GNFS)

The general number field sieve (GNFS or just
NFS) is a logical extension of the special
number field sieve (SNFS).

When using SNFS to factor an integer N, we
require two polynomials f(z) and g(x) with a
common root m mod N but no common root
over the field of complex numbers.

If N has the special form a® £ b then it is
usually easy to write down suitable polynomials
with small coefficients, as illustrated by the two
examples given above.

If N has no special form, but is just some given
composite number, we can also find f(z) and
g(z), but they no longer have small coefficients.

6 28

The “Base m” Method

Suppose that g(z) has degree d > 1 and f(z) is
linear. d is chosen empirically, but it is known
from theoretical considerations that the
optimum value is

p (31nN>1/3
Inln N ’

We choose m = | N'/4| and write

d
N = Z ajmj
=0

where the a; are “base m digits” and aq = 1.
Then, defining

d
f(x):x_m7 g(x):Za]x],
7=0

it is clear that f(z) and g(z) have a common
root m mod N. This method of polynomial
selection is called the “base m” method.

6-29

Other Ingredients of GNFS

Having found two appropriate polynomials, we
can proceed as in SNFS, but many difficulties
arise because of the large coefficients of g(z).
The details are the subject of several theses.
Suffice it to say that the difficulties can be
overcome and the method works!

Due to the constant factors involved, GNFS is
slower than MPQS for numbers of less than
about 110 decimal digits, but faster than MPQS
for sufficiently large numbers, as anticipated
from the theoretical run times.

6-30

Some Difficulties Overcome

Some of the difficulties which had to be
overcome to turn GNFS into a practical
algorithm are:

e Polynomial selection. The “base m”
method is not very good. Brian Murphy
has shown how a very considerable
improvement (by a factor of more than ten
for number of 140 digits) can be obtained.

e Linear algebra. After sieving a very large,
sparse linear system over GF(2) is
obtained, and we want to find
dependencies amongst the rows. It is not
practical to do this by Gaussian
elimination because the “fill in” is too
large. Montgomery showed that the
Lanczos method could be adapted for this
purpose. (This is nontrivial because a
nonzero vector z over GF(2) can be
orthogonal to itself, i.e. 7z = 0.) His
program works with blocks width 64.

6 31

Difficulties continued

e Square roots. The final stage of GNFS
involves finding the square root of a (very
large) product of algebraic numbers. Once
again, Montgomery found a way to do
this.

e An idea of Adleman, using quadratic
characters, is essential to ensure that the
desired square root exists with high
probability.

6 32

Scalability of GNF'S

At present, the main obstacle to a fully parallel
and scalable implementation of GNFS is the
linear algebra. Montgomery’s block Lanczos
program runs on a single processor and requires
enough memory to store the sparse matrix. In
principle it should be possible to distribute the
block Lanczos solution over several processors of
a parallel machine, but the communication to
computation ratio will be high. There is a
tradeoff here — by increasing the time spent on
sieving we can reduce the size and weight of the
resulting matrix.

If special hardware is built for sieving, as
pioneered by Lehmer and recently proposed (in
more modern form) by Shamir, the linear
algebra will become relatively more important.
The argument is similar to Amdahl’s law: no
matter how fast sieving is done, we can not
avoid the linear algebra.

6-33

RSA140

At the time of writing, the largest number
factored by GNFS is the 140-digit RSA
Challenge number RSA140. It was split into the
product of two 70-digit primes in February,
1999, by a team coordinated from CWT,
Amsterdam. The amount of computer time
required to find the factors was about 2000
Mips-years.

The two polynomials used were
f(z) = x — 34435657809242536951779007
and

g(z) = +439682082840z°
+390315678538960z*
—73873252938929945722°
—19027153243742988714824>
—63441025694464617913930613x
+318553917071474350392223507494 .

6-34

Polynomial Selection

The polynomial g(z) was chosen (by the
method of Murphy and Montgomery) to have a
good combination of two properties: being
unusually small over the sieving region, and
having unusually many roots modulo small
primes and small prime powers. The effect of
the second property alone makes g(z) as
effective at generating relations as a polynomial
chosen at random for an integer of 121 decimal
digits. In effect judicious polynomial selection
removed at least 19 digits from RSA140,
making it much easier to factor.

The polynomial selection took 2000 CPU-hours
on four 250 MHz SGI Origin 2000 processors.
This is about 200 Mips-years, or 10% of the
total factorisation time. It might have been
better to spend a larger fraction of the time on
polynomial selection — this is an interesting
tradeoff.

6 35

Sieving

Sieving was done on about 125 SGI and Sun
workstations running at 175 MHz on average,
and on about 60 PCs running at 300 MHz on
average. The total amount of CPU time spent
on sieving was 8.9 CPU-years (about 1900
Mips-years).

The Linear Algebra

The resulting matrix had about 4.7 x 10% rows
and weight about 1.5 x 108 (about 32 nonzeros
per row). Using Montgomery’s block Lanczos
program, it took almost 100 CPU-hours and
810 MB of memory on a Cray C916 to find 64
dependencies among the rows of this matrix.
Calendar time for this was five days.

RSA155

At the time of writing, an attempt to factor the
512-bit number RSA155 is well underway. I am
willing to bet £100 that it will be factored
before the year 2000.

6 36

Summary of Part 1

I have sketched some algorithms for integer
factorisation. The most important are ECM,
MPQS and GNFS. The algorithms draw on
results in elementary number theory, algebraic
number theory and probability theory. As well
as their inherent interest and applicability to
other areas of mathematics, advances in public
key cryptography have lent them practical
importance.

Despite much progress in the development of
efficient algorithms, our knowledge of the
complexity of factorisation is inadequate. We
would like to find a polynomial time
factorisation algorithm or else prove that one
does not exist. Until a polynomial time
algorithm is found or a quantum computer
capable of running Shor’s algorithm is built,
large factorisations will remain an interesting
challenge.

6-37

Predictions

From the predicted run time for GNFS, we
would expect RSA155 to take 6.5 times as long
as RSA140. On the other hand, Moore’s law
predicts that circuit densities will double every
18 months or so. Thus, as long as Moore’s law
continues to apply and results in
correspondingly more powerful parallel
computers, we expect to get almost 4 decimal
digits per year improvement in the capabilities
of GNFS, without any algorithmic
improvements. A similar argument applies to
ECM, for which we expect slightly more than 1
decimal digit per year in the size of factor found.

(When) Is RSA Doomed ?

512-bit RSA keys are clearly insecure. 1024-bit
RSA keys should remain secure for at least
thirty years, barring the unexpected (but
unpredictable) discovery of a completely new
algorithm which is better than GNFS, or the
development of a practical quantum computer.

6-38

Part 2: Comparison of Algorithms

We now compare the expected behaviour of
ECM, MPQS and GNFS on large, “random”
or “typical” integers (not integers chosen by a
cryptographer).

If N is a (large) integer with prime factors

p1 > p2 > ..., we assume that the expected
time to factor N by these three methods is
Teem(N), Turgs(N), Tenrs(N) respectively,
where

log Tecm = \/(2 + 0(1)) log p2 log log pa

log Tapgs = \/(1 + o(1)) log N loglog N

log Tanrs = \3/(0—}— 0(1))log N (loglog N)?

Here c is some positive constant, and the o(1)
terms are as pp — 0o or N — oo.

6 39

ECM and MPQS

Theorem

Tupgs(N) > eV 8 NTpoar(N) almost always.
Idea of Proof

<log TMPQS)2 S log N
logTeem / — (2+0(1)) log pa

but from the known distribution of log p2/ log N
this is at least 1 4+ £ with probability at least

1 — O(e?). Thus, the Theorem holds if eV'°&
is replaced by any f(N) satisfying

log f(N) =0 (\/logNloglogN) .

Corollary

For all € > 0, Tecm < €Tmpgs holds almost
always.

6 40

ECM and GNFS

Theorem

For all e > 0, Tgnrs < €eTgcm holds almost
always.

However, this is not the full story, because ECM
can find small factors quickly, and after dividing
them out GNFS can finish the factorisation
more quickly than if ECM had not been used.

Let ngvM(N) be the expected time for ECM to

find at least Ak prime factors of N, where k is
the total number of prime factors of N. (It does
not matter how we count multiple factors.)

6-41

The “two thirds” Theorem

Let K be any positive constant, and A € [0, 1].

If A < 2/3 then Ty, < KTanrs almost

always;

if A > 2/3 then TS, > KTgnps almost
always.

Thus, it is better to use a combination of ECM
and GNFS than either alone, and with a
sensible strategy we expect to find about two
thirds of the prime factors by ECM and the
remaining one third by GNFS.

6-42

Part 3: Some History of Fermat
Numbers

For a nonnegative integer n, the n-th Fermat
number is F, = 22" 4+ 1. Tt is known that F), is
prime for 0 < n < 4, and composite for

5 < n < 23. Also, for n > 2, the factors of F,,
are of the form

I

In 1732 Euler found that 641 =5-27+ 1 is a
factor of Fy, thus disproving Fermat’s belief
that all F,, are prime!. Euler apparently used
trial division by primes of the form 64k + 1.

No Fermat primes larger than Fy are known,
and a probabilistic argument makes it plausible
that only a finite number of F,, (perhaps only
Fy,..., Fy) are prime. It is known that F), is
composite for 5 < n < 23.

1«Back of envelope” proof: working mod 641,
5.27 = —1 =522 = 1, but 5* = —2*, 50 23?2 = —1.

6 43

Factorisation of Fermat Numbers

The complete factorisation of the Fermat
numbers Fg, F7,. .. has been a challenge since
FEuler’s time. Because the F,, grow rapidly in
size, a method which factors F,, may be
inadequate for Fj,41.

Fg

In 1880, Landry factored Fg = 274177 - p14 .
Landry’s method was never published in full,
but Williams has attempted to reconstruct it.

Hand Computations

In the period 1877-1970, several small factors of
F,, for various n > 9 were found by taking
advantage of the special form of these factors.
For example, in 1903 Western found the factor
py = 2424833 = 37 - 216 1 1 of Fy.

Significant further progress was only possible
with the development of the digital computer
and more efficient algorithms.

6 44

F7
In 1970, Morrison and Brillhart factored

F7 = 59649589127497217 - pao

by the continued fraction method. This method
has now been superseded by MPQS which,
perhaps surprisingly, has never been the first to
factor a Fermat number.

Fy
In 1980, Brent and Pollard factored
Fg3 = 1238926361552897 - pga

by a modification of Pollard’s “rho” method.
The “rho” method is now largely superseded by
ECM.

Nowadays, F7 and Fg are “easy” to factor by
ECM or MPQS.

6-45

Fy

Logically, the next step after the factorisation of
Fg was the factorisation of Fy. It was known
that

Fg = 2424833 - C148

The 148-digit composite number resisted attack
by methods such as Pollard rho, Pollard p £ 1,
and the elliptic curve method (ECM), which
would have found “small” factors. It was too
large to factor by the continued fraction method
or even by MPQS.

The difficulty was finally overcome by the
invention of the (special) number field sieve
(SNF'S), based on a new idea of Pollard.

In 1990, Lenstra, Lenstra, Manasse and Pollard,
with the assistance of many collaborators and
approximately 700 workstations scattered
around the world completely factored Fy by
SNFS. As we already mentioned, the
factorisation is

Fy = 2424833 - pag - pog .

6-46

F10

After the factorisation of Fy in 1990, Fig was
the “most wanted” number in various lists of
composite numbers.

F19 was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge in 1953 (also
on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM 1 found a 40-digit factor psg =

4659775785220018543264560743076778192897

of Fig in October, 1995. The 252-digit cofactor
C291/pao passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorisation of Fig is

Fio = 45592577 - 6487031809 - pao - p2s2 .

6 47

Fll

F11 was completely factored in 1988, before the
factorisation of Fy and Fyg. In fact,

F11 = 319489 -974849 -
167988556341760475137 -
3560841906445833920513 - psea

The two 6-digit factors were found by
Cunningham in 1899, and I found the remaining
factors in May 1988, using ECM on a Fujitsu
VP100. The 564-digit factor passed a
probabilistic primality test, and a rigorous proof
of primality was provided by Morain.

The reason why Fi1 could be completely
factored before Fg and Fig is that the difficulty
of completely factoring numbers by ECM is
determined mainly by the size of the
second-largest prime factor of the number.

The second-largest prime factor of Fy; has 22
digits and is much easier to find by ECM than
the 40-digit factor of Fyg or the 49-digit factor
of F 9.

6 48

Summary, Fs,... Fq;

A brief summary of the history of factorisation
of Fs,..., Fy is given in the Table.

Table 2: Complete factorisation of F,,, n=15,...,11

n Factorisation Date Comments
5 P3 - P7 1732 Euler
6 P6 - Pla 1880 Landry
7 P17 - P22 1970 Morrison and Brillhart
8 P16 - P62 1980 | Brent and Pollard (p16, pe2)
1980 | Williams (primality of pgz)
9 P7 - P49 - P99 1903 | Western (p7)
1990 Lenstra et al (pag, pgg)
10 P8 * P10 * P40 - P252 1953 Selfridge (ps)
1962 | Brillhart (p10)
1995 | Brent (pao, p252)
11 | pe - pg - P21 - P22 - P56 1899 | Cunningham (pg, pg)
1988 | Brent (p21,p22,P564)
1988 Morain (primality of psea4)

6-49

F12

The smallest Fermat number which is not yet
completely factored is Fio. It is known that

Fio = 114689 -26017793 -
63766529 - 190274191361 -
1256132134125569 - c1187 ,

where the 16-digit factor was found by Baillie in
1986, using the Pollard p — 1 method (and
rediscovered in 1988 using ECM).

F12 has at least seven prime factors, spoiling a
“conjecture” based on the observation that F,
has exactly n — 6 prime factors for 8 <n < 11.

6-50

Fi3
It is known that

Fi3 = 2710954639361 -
2663848877152141313 -
3603109844542291969 -
319546020820551643220672513 - c2391 ,

where the 13-digit factor was found by
Hallyburton and Brillhart (1975), and the two
19-digit factors were found by Crandall (1991).
I found the 27-digit factor in June 1995, using
ECM on an IBM PC equipped with a Dubner
Cruncher board.

F14

F14 = c4933 is composite, but no nontrivial
factors are known. The smallest prime factor
probably has at least 30 decimal digits.

F15

Fi5 = 1214251009 - 2327042503868417 - cog40,

where the 13- and 16-digit prime factors were
found by Kraitchik (1925) and Gostin (1987).
In July, 1997, Brent, Crandall, Dilcher & Van
Halewyn found a 33-digit factor

p33 = 168768817029516972383024127016961

using ECM. The quotient is cggog-

Fi6

Fig = 825753601 -
188981757975021318420037633 - c19694

where the 9-digit factor was found by Selfridge
(1953), and the 27-digit factor was found in
December 1996 by Brent, Crandall & Dilcher
using ECM.

6 52

Fi7

F18

Fi17 = 31065037602817 - ¢ .

Fig = 18631489 - 81274690703860512587777 - ¢ ,

where the 23-digit factor was found by
MclIntosh and Tardif in April 1999, using ECM.

F197"'7F24

Flg, Fog, Fa1, Faog are composite and some small
factors are known.

Fb59 is composite but no factors are known.

The status of Fb4 is unknown.

6-53

References

[1]

A. O. L. Atkin and F. Morain, Elliptic curves
and primality proving, Math. Comp. 61
(1993), 29-68. Programs available from ftp://
ftp.inria.fr/INRIA/ecpp.V3.4.1.tar.Z .

D. Atkins, M. Graff, A. K. Lenstra and P. C.
Leyland, The magic words are squeamish
ossifrage, Advances in Cryptology: Proc.
Asiacrypt’94, LNCS 917, Springer-Verlag,
Berlin, 1995, 263-277.

H. Boender and H. J. J. te Riele, Factoring
integers with large prime variations of the
quadratic sieve, Experimental Mathematics 5
(1996), 257 273. Also ftp://ftp.cwi.nl/
pub/CWIreports/NW/NM-R9513.ps.Z .

R. P. Brent, Large factors found by ECM,
Oxford University Computing Laboratory, May
1999. ftp://ftp.comlab.ox.ac.uk/pub/
Documents/techpapers/Richard.Brent/
champs.txt .

6-54

[5]

R. P. Brent, Factorization of the tenth Fermat
number, Math. Comp. 68 (1999), 429-451.
Preliminary version:
ftp://ftp.comlab.ox.ac.uk:/pub/
Documents/techpapers/Richard.Brent/
rpbl6itr.dvi.gz .

R. P. Brent, Some parallel algorithms for
integer factorisation, Proc. Fifth International
Euro-Par Conference (Toulouse, France, 1-3
Sept 1999), to appear.
ftp://ftp.comlab.ox.ac.uk:/pub/
Documents/techpapers/Richard.Brent/
rpb193.ps.gz .

R. P. Brent, R. E. Crandall, K. Dilcher and C.
Van Halewyn, Three new factors of Fermat
numbers, Math. Comp., to appear. ftp://
ftp.comlab.ox.ac.uk:/pub/Documents/
techpapers/Richard.Brent/rpb175.dvi.gz .

S. Cavallar, B. Dodson, A. K. Lenstra, P.
Leyland, W. Lioen, P. L. Montgomery, B.
Murphy, H. te Riele and P. Zimmermann,
Factorization of RSA-140 using the number
field sieve, announced 4 February 1999. ftp://
ftp.cwi.nl/pub/herman/NFSrecords/
RSA-140 .

[10]

[11]

[12]

[13]

(14]

M. Elkenbracht-Huizing, An implementation of
the number field sieve, Experimental
Mathematics, 5 (1996), 231-253.

L. Euler, Observationes de theoremate quodam
Fermatiano aliisque ad numeros primos
spectantibus, Comm. Acad. Sci. Petropol. 6, ad
annos 1732-33 (1738), 103-107; also Leonhardi
FEulert Opera Omnia, Ser. 1, vol. 11, Teubner,
Leipzig, 1915, 1-5.

L. Euler, Theoremata circa divisores
numerorum, Novi. Comm. Acad. Sci. Petropol.
1, ad annos 1747-48 (1750), 20—48.

P. de Fermat, Oeuvres de Fermat, vol. 1I:
Correspondance, P. Tannery and C. Henry
(editors), Gauthier-Villars, Paris, 1894.

A. K. Lenstra and H. W. Lenstra, Jr. (editors),
The development of the number field sieve,
Lecture Notes in Mathematics 1554,
Springer-Verlag, Berlin, 1993.

A. K. Lenstra, H. W. Lenstra, Jr.,

M. S. Manasse, and J. M. Pollard, The
factorization of the ninth Fermat number,
Math. Comp. 61 (1993), 319-349.

6 56

[15] A. K. Lenstra and M. S. Manasse, Factoring by [21] R. L. Rivest, A. Shamir and L. Adleman, A
electronic mail, Proc. Eurocrypt ’89, LNCS method for obtaining digital signatures and
434, Springer-Verlag, Berlin, 1990, 355-371. public-key cryptosystems, Comm. ACM 21

(1978), 120-126.

[16] A. K. Lenstra and M. S. Manasse, Factoring
with two large primes, Math. Comp. 63 [22] RSA Laboratories, Information on the RSA
(1994), 785-798. challenge, http://www.rsa.com/rsalabs/

html/challenges.html .

[17] H. W. Lenstra, Jr., Factoring integers with
elliptic curves, Annals of Mathematics (2) 126 [23] R. S. Schaller, Moore’s law: past, present and
(1987), 649-673. future, IEEE Spectrum 34, 6 (June 1997),

52-59.

[18] P. L. Montgomery, Square roots of products of
algebraic numbers, Mathematics of [24] J. L. Selfridge, Factors of Fermat numbers,
Computation 1948 — 1993, Proc. Symp. Appl. MTAC 7 (1953), 274-275.

Math. 48 (1994), 567 571.
[25] A. Shamir, Factoring large numbers with the

[19] P. L. Montgomery, A block Lanczos algorithm TWINKLE device (extended abstract),
for finding dependencies over GF(2), Advances preprint, 1999. Announced at Eurocrypt’99.
in Cryptology: Proc. Eurocrypt’95, LNCS 921,

Springer-Verlag, Berlin, 1995, 106-120. [26] P. W. Shor, Polynomial time algorithms for
prime factorization and discrete logarithms on

[20] A. M. Odlyzko, The future of integer a quantum computer, SIAM J. Computing 26
factorization, CryptoBytes 1, 2 (1995), 5-12. (1997), 1484-1509.

Available from http://www.rsa.com/
rsalabs/pubs/cryptobytes . [27] 1. N. Stewart and D. O. Tall, Algebraic Number
Theory, second edition, Chapman and Hall,
1987.
6-57 6-58

[28] A. M. Vershik, The asymptotic distribution of
factorizations of natural numbers into prime
divisors, Dokl. Akad. Nauk SSSR 289 (1986),

269-272; English transl. in Soviet Math. Dokl.
34 (1987), 57-61.
[29] H. C. Williams, How was Fg factored?, Math.

Comp. 61 (1993), 463-474.

