
Comments on non-isometric T-duality

Mark Bugden

Mathematical Sciences Institute
Australian National University

Based on [1705.09254]
with P. Bouwknegt, C. Klimč́ık, and K. Wright
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Setting up notation

Consider a non-linear sigma model X : Σ→ M described by the following
action:

S =

∫
Σ
gij dX

i ∧ ?dX j +

∫
Σ
Bij dX

i ∧ dX j

In this talk we will ignore the dilaton, and assume that both g and B are
globally defined fields on M.
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Gauging isometries

Suppose now that there are vector fields generating the following global
symmetry:

δεX
i = v ia ε

a

for εa constant. The sigma model action is invariant under this
transformation if

Lvag = 0 LvaB = 0

If this is the case, we can gauge the model by promoting the global
symmetry to a local one.
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The gauged action

Introducing gauge fields Aa and Lagrange multipliers ηa, the gauged action
is

SG =

∫
Σ
gij DX

i ∧ ?DX j +

∫
Σ
Bij DX

i ∧ DX j +

∫
Σ
ηaF

a

where

F = dA + A ∧ A is the standard Yang-Mills field strength

DX i = dX i − v iaA
a are the gauge covariant derivatives.
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Gauge invariance

The gauged action is invariant with respect to the following (local) gauge
transformations:

δεX
i = v ia ε

a

δεA
a = dεa + C a

bcA
bεc

δεηa = −C c
abε

bηc

Mark Bugden (ANU) Comments on non-isometric T-duality September 2017 6 / 27



T-duality

S [X ]

SG [X ,A, η]

ga
ug

e
iso

m
et

rie
s

in
te

gr
at

e
η

an
d

fix
ga

ug
e

S̃ [η]
integrate

A

and
fix

gauge

Varying the Lagrange multipliers forces the field strength F to vanish. If
we then fix the gauge A = 0 we recover the original model.

On the other hand, we can eliminate the non-dynamical gauge fields A,
obtaining the dual sigma model.
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Can we do it without isometries?

The existence of global symmetries is a very stringent requirement. A
generic metric will not have any Killing vectors.

Question

Is it possible to follow the same procedure when the vector fields are not
Killing vectors?
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Gauging without isometry

Kotov and Strobl1 generalised the standard gauging using Lie algebroids
(see Kyle’s talk).
Chatzistavrakidis, Deser, and Jonke2 applied this non-isometric gauging to
the Buscher procedure we just reviewed.

They introduce a matrix-valued one-form ωb
a satisfying

Lvag = ωb
a ∨ ιvbg

LvaB = ωb
a ∧ ιvbB

1[1403.8119]
2[1509.01829] and [1604.03739]
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The gauged action

The gauged action is almost the same:

SωG =

∫
Σ
gij DX

i ∧ ?DX j +

∫
Σ
Bij DX

i ∧ DX j +

∫
Σ
ηaF

a
ω

where the curvature is now given by

F a
ω = dAa +

1

2
C a
bc(X )Ab ∧ Ac − ωa

biA
b ∧ DX i
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Modified gauge invariance

The modified gauge transformations are now

δεX
i = v ia ε

a

δεA
a = dεa + C a

bcA
bεc + ωa

biε
bDX i

δεηa = −C c
abε

bηc + v iaω
c
biε

bηc
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T-duality

S [X ]

SωG [X ,A, η]

ex
ot

ic
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ly
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ug
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gr
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d

fix
ga

ug
e

S̃ω[η]
integrate

A
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fix
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As with isometric T-duality, we can integrate out the fields in two different
ways, obtaining the original model or a dual model

In principle, we could use this to construct T-duals of spaces which have
no isometries.
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The problem?

This proposal is equivalent to non-abelian T-duality.3

That is, if we can find a set of vector fields and ωb
a which give a

non-isometric T-dual, then there exists a set of Killing vectors for the
model. The T-dual with respect to these Killing vectors is the same as the
non-isometric T-dual.

3[1705:09254] P. Bouwknegt, M.B., C. Klimč́ık, K. Wright
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A necessary condition for gauge invariance

Gauge invariance of the action requires the structure functions to be
constant, as well as the vanishing of the following variation:

δε(ηaF
a
ω) = ηa(dωa

b + ωa
c ∧ ωc

b)εb +O(A) +O(A2).

We therefore require that ωb
a is flat:

Rb
a = dωb

a + ωb
c ∧ ωc

a = 0,

and this tells us that ωb
a is of the form K−1dK for some Kb

a (X ).
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A field redefinition

Using this K , we can perform the following field redefinitions:

Âa = K a
bA

b

η̂a = ηb(K−1)ba

v̂a = v ib(K−1)ba
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The non-abelian action!

The gauged action can now be rewritten in terms of the new fields
(X i , Âa, η̂a).

SωG [X , Â, η̂] =

∫
Σ
gij D̂X

i
∧ ?D̂X

j
+

∫
Σ
Bij D̂X

i
∧ D̂X

j
+

∫
Σ
η̂aF̂

a

= SG [X , Â, η̂]

where

F̂ a = dÂa +
1

2
Ĉ a
bc Â

b ∧ Âc
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The gauge transformations become the usual non-abelian gauge
transformations, and a short computation reveals

Lv̂ag = 0 Lv̂aB = 0

Conclusion

This proposal is equivalent, via a field redefinition, to the standard
non-abelian T-duality
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Examples!
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First example

Consider the 3D Heisenberg Nilmanifold, or twisted torus. It has a metric
given by

ds2 = dx2 + (dy − x dz)2 + dz2

The non-abelian T-dual of this space is given by

d̂s2 = dY 2 +
1

1 + Y 2

(
dX 2 + dZ 2

)
B̂ =

Y

1 + Y 2
dX ∧ dZ
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First example

We can gain a better understanding of the geometry by writing the
manifold as a group:

Heis :=


1 x y

0 1 z
0 0 1

 : x , y , z ∈ R


(left-invariant) MC forms = (dx , dy − xdz , dz)
(right-invariant) vector fields = (∂x + z∂y , ∂y , ∂z)
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First example

We could instead try to gauge this space non-isometrically using the
left-invariant vector fields: {∂x , ∂y , x∂y + ∂z}.

These are not all isometries:

Lv1g = −dy ⊗ dx − dz ⊗ dy + 2xdz ⊗ dz

Lv2g = 0

Lv3g = dx ⊗ dy + dy ⊗ dx − xdx ⊗ dz − xdz ⊗ dx

and they don’t commute:

[v1, v3] = v2,

however...
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First example4

If we take ω2
3 = dx and ω2

1 = −dz , with other components vanishing, the
non-isometric gauging constraints are satisfied and we can calculate the
non-isometric T-dual model.

d̂s2 = dY 2 +
1

1 + Y 2

(
dX 2 + dZ 2

)
B̂ =

Y

1 + Y 2
dX ∧ dZ

Unsurprisingly, it is also the T-fold.

4Gauged non-isometrically in [1509:01829]
A. Chatzistavrakidis, A. Deser, L. Jonke
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Second example

Consider S3 with the round metric and B = 0.

This metric has an SO(4) group of isometries, and we can find the
non-abelian T-dual with respect to an SU(2) subgroup of this.

The non-abelian T-dual is well-known. The metric is the ‘cigar’ metric,
and there is also a non-zero B-field.
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Second example

We can write the round metric as

g = λ1 ⊗ λ1 + λ2 ⊗ λ2 + λ3 ⊗ λ3

where the λi are the left-invariant Maurer-Cartan forms.

The right-invariant vector fields are isometries of this metric, so let’s try
gauging with respect to the left-invariant vector fields5.

5These also happen to be isometries of the metric, but let’s try to gauge them
non-isometrically
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Second example

The Lie derivatives of the metric with respect to the left-invariant vector
fields, La are

LLag = −
∑
b

Cb
acλ

c ∨ λb

= −Cb
acλ

c ∨ ιLbg

We can do non-isometric T-duality by taking ωb
a = −Cb

acλ
c .
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Second example

The remaining gauging constraints are satisfied, and we can calculate the
non-isometric T-dual. It is the ’cigar’ metric, as expected.
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Comments

The equivalence of non-isometric and non-abelian T-duality remains
valid for non-exact H

Geometric interpretation of ωb
a as a connection on a Lie algebroid

There are proposals for alternate gauging. Unknown how to
incorporate into T-duality

non-flat ωb
a

include a term φbaiε
b ? DX i into δεA

a

Thanks!
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