It's T-duality, but not as we know it

Mark Bugden

Mathematical Sciences Institute
Australian National University

Supervisor: Prof. Peter Bouwknegt
December 2016

Outline (Flavours of T-duality)

(1) Abelian T-duality
(2) Non-abelian T-duality
(3) Non-isometric T-duality

Outline (Flavours of T-duality)

(1) Abelian T-duality
(2) Non-abelian T-duality
(3) Non-isometric T-duality

Context

I'm interested in string backgrounds:

They are used to describe strings moving in a fixed gravitational background.

Context

I'm interested in string backgrounds:

They are used to describe strings moving in a fixed gravitational background.

Note: gravitational = geometry

Left image credit: Wikipedia en:User:Jbourjai
Right image credit: Wikipedia en:User:Lunch

Context

String backgrounds are given by a (usually compact) manifold, together with:

- A Riemannian metric
- A two-form gauge field,
- Other fields (dilaton, RR-fields, superfields...) $\phi, C, \psi \ldots$
satisfying the string analogue of the Einstein Field Equations from General Relativity

I study the geometry (and topology) of these string backgrounds.

A simple example

Strings moving on a cylinder provide a simple example of a string background. We can put a flat metric on the cylinder, and choose coordinates such that:

$$
X^{25} \sim X^{25}+2 \pi m R
$$

The integer m is called the winding number.

Duality

Using techniques from Calculus of Variations and Quantum Field Theory, one can study the properties of strings moving in such a background.

One important result is that the momentum, p^{25}, is quantised:

$$
p^{25}=\frac{n}{R}
$$

with $n \in \mathbb{Z}$.

Duality

A surprising feature of this system is that the spectrum of the closed string is invariant under the following transformation:

$n \longleftrightarrow m$

This invariance is the most basic example of something known as (abelian) T-duality.

A few things...

- String theory compactified on small and large circles are equivalent!
- This is a symmetry of the entire interacting theory (not just the spectrum)
- This duality is not present with point particles!
- It's a duality

Abelian T-duality

Does this duality work for more complicated string backgrounds?

Abelian T-duality

Does this duality work for more complicated string backgrounds?
If there is some notion of a 'circular' dimension, then the answer is yes!
*We also want some restrictions on the B field

Abelian T-duality

Does this duality work for more complicated string backgrounds?
If there is some notion of a 'circular' dimension, then the answer is yes!

More technically, if the metric $g_{\mu \nu}$ possesses a Killing vector, then there is a transformation of the fields which leaves the physics invariant*.

Buscher Rules

Explicitly, for coordinates $\left(x^{\mu}, x^{\bullet}\right)$, the transformation of the fields are given by the Buscher rules:

$$
\begin{aligned}
& \hat{g}_{\bullet \bullet}=\frac{1}{g_{\bullet \bullet}} \\
& \hat{g}_{\mu \bullet}=\frac{B_{\mu \bullet}}{g_{\bullet \bullet}} \\
& \hat{g}_{\mu \nu}=g_{\mu \nu}-\frac{1}{g_{\bullet \bullet}}\left(g_{\mu \bullet} g_{\nu \bullet}-B_{\mu \bullet} B_{\nu \bullet}\right) \\
& \hat{B}_{\mu \bullet}=\frac{g_{\mu \bullet}}{g_{\bullet \bullet}} \\
& \hat{B}_{\mu \nu}=B_{\mu \nu}-\frac{1}{g_{\bullet \bullet}}\left(g_{\mu \bullet} B_{\nu \bullet}-g_{\nu \bullet} B_{\mu \bullet}\right)
\end{aligned}
$$

A more interesting example

Consider the Lens space $L(1, k)$, with the following metric and B-field:

$$
\begin{gathered}
d s^{2}=d \eta^{2}+d \xi_{1}^{2}+d \xi_{2}^{2}-k \cdot 2 \cos (2 \eta) \\
B=j \cos (2 \eta) d \xi_{1} \wedge d \xi_{2}
\end{gathered}
$$

where $k, j \in \mathbb{Z}$.

A more interesting example

Consider the Lens space $L(1, k)$, with the following metric and B-field:

$$
\begin{gathered}
d s^{2}=d \eta^{2}+d \xi_{1}^{2}+d \xi_{2}^{2}-k \cdot 2 \cos (2 \eta) \\
B=j \cos (2 \eta) d \xi_{1} \wedge d \xi_{2}
\end{gathered}
$$

where $k, j \in \mathbb{Z}$. The T-dual is the manifold $L(1, j)$, with the following metric and B -field:

$$
\begin{gathered}
d s^{2}=d \eta^{2}+d \xi_{1}^{2}+d \hat{\xi}_{2}^{2}-j \cdot 2 \cos (2 \eta) \\
B=k \cos (2 \eta) d \xi_{1} \wedge d \hat{\xi}_{2}
\end{gathered}
$$

In particular...

A particularly simple case of this is $L(1,1)=S^{3}$ with $B=0$.

Left image credit: Niles Johnson
Right image credit: Wikipedia en:User:Pokipsy76 commonswiki

In particular...

A particularly simple case of this is $L(1,1)=S^{3}$ with $B=0$.

The T-dual is then $L(1,0)=S^{2} \times S^{1}$ with one-unit of flux.

Left image credit: Niles Johnson
Right image credit: Wikipedia en:User:Pokipsy76 commonswiki

In particular...

A particularly simple case of this is $L(1,1)=S^{3}$ with $B=0$.

The T-dual is then $L(1,0)=S^{2} \times S^{1}$ with one-unit of flux.

Global statements

Remark (Multiple T-dualities)

Multiple T-dualities can be done simultaneously, if there are multiple commuting Killing vectors.

There are interesting global statements that can be made about (abelian) T-duality:

- Topology of the dual manifold
- Isomorphism of (twisted) K-theories
- Non-commutative string backgrounds
- Non-associative string backgrounds?

Outline (Flavours of T-duality)

(1) Abelian T-duality

(2) Non-abelian T-duality
(3) Non-isometric T-duality

Non-abelian T-duality

A natural generalisation of abelian T-duality considers Killing vectors which don't commute. These are the generators of a non-abelian group of isometries.

One can follow the same procedure for these non-commuting Killing vectors, and derive a set of transformations for the fields in the theory.

These define the non-abelian T-dual.

An example: S^{3} again

Consider again S^{3} with the round metric and $B=0$.

This metric has an $S O(4)$ group of isometries, and we can find the non-abelian T-dual with respect to an $S U(2)$ subgroup of this.

An example: S^{3} again

Consider again S^{3} with the round metric and $B=0$.

This metric has an $S O(4)$ group of isometries, and we can find the non-abelian T-dual with respect to an $S U(2)$ subgroup of this.

The non-abelian T-dual appears to be topologically \mathbb{R}^{3}, together with a curved metric known as the 'cigar' metric.

An example: S^{3} again

Consider again S^{3} with the round metric and $B=0$.

This metric has an $S O(4)$ group of isometries, and we can find the non-abelian T-dual with respect to an $S U(2)$ subgroup of this.

The non-abelian T-dual appears to be topologically \mathbb{R}^{3}, together with a curved metric known as the 'cigar' metric.

Comments

Non-abelian T-duality has some big differences to abelian T-duality:

- The dual space typically has fewer isometries than the original space
- Not a duality!
- May not be an equivalence of string theories
- A solution generating technique
- Topology of dual space not obvious

Outline (Flavours of T-duality)

(1) Abelian T-duality

(2) Non-abelian T-duality
(3) Non-isometric T-duality

Non-isometric T-duality

A very recent generalisation of non-abelian T-duality considers a set of vector fields which may not even be Killing vectors.

If the vector fields satisfy a (milder) set of constraints, one can again derive a set of transformation rules for the string background.

So far, no new examples have been found which realise this non-isometric duality.

A proposed example, and some weirdness

Consider S^{2} with $B=0$. We can choose local coorindates (u, v) for $S^{2} \backslash$ \{equator\}, and in these coordinates the round metric can be written as:

$$
d s^{2}=\frac{1-v^{2}}{1-u^{2}-v^{2}} d u^{2}+\frac{2 u v}{1-u^{2}-v^{2}} d u d v+\frac{1-u^{2}}{1-u^{2}-v^{2}} d v^{2}
$$

A proposed example, and some weirdness

We can try to do non-isometric T-duality on this space, using the vector fields $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$. We expect to get a dual metric and B field, depending on new coordinates (x, y).

A proposed example, and some weirdness

We can try to do non-isometric T-duality on this space, using the vector fields $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$. We expect to get a dual metric and B field, depending on new coordinates (x, y).

The metric we obtain depends on the dual coordinates (x, y), but also on the original coordinates!

A proposed example, and some weirdness

We can try to do non-isometric T-duality on this space, using the vector fields $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$. We expect to get a dual metric and B field, depending on new coordinates (x, y).

The metric we obtain depends on the dual coordinates (x, y), but also on the original coordinates!

Current and future work

- Understand the proposed example, and come up with new examples
- During the construction, multiple choices are made. How do these effect the dual space?
- What global/topological statements can we make about...
- Non-abelian T-duality
- Non-isometric T-duality
- Physics!
- An equivalence of string theories, or just a technique to generate solutions?
- How do the other fields, ϕ, C, ψ, \ldots, participate?
- ...

Selected References

Abelian T-duality:

- T. Buscher, A symmetry of the string background field equations, Phys. Lett. B194 (1987) 59
- P. Bouwknegt, J. Evslin, V. Mathai, T-duality: Topology change from H-flux, Commun. Math. Phys. 249 (2004) 383-415
- P. Bouwknegt, J. Evslin, V. Mathai, On the topology and H-flux of T-dual manifolds, Phys. Rev. Lett. 92 (2004) 181601

Non-isometric T-duality:

- A. Chatzistavrakidis, A. Deser, L. Jonke, T-duality without isometry via extended gauge symmetries of $2 D$ sigma models, J. High Energy Phys. Online (2016)
- A. Chatzistavrakidis, Non-isometric T-duality from gauged sigma models, Proc. of Science, Online, (2016)

Image credits:

- Jbourjai, Image of Calabi-Yau manifold, http://en.wikipedia.org/wiki/File:Calabi_yau.jpg
- Lunch, Image of Calabi-Yau manifold, http://en.wikipedia.org/wiki/File:Calabi-Yau.png
- N. Johnson, Image of Hopf fibration, http://www.nilesjohnson.net/hopf.html

