
Algebra 1 Honours, ASE Rubik’s Cube

We always compose and apply functions from left to right (opposite of the usual convention).

Lecture 1

We first give a careful definition of the Rubik’s group.

Definition 1. The cube is made up of 27 small cubes called cubies (there are three layers of
nine cubies; one cubie is not visible, and in fact does not really exist). Each cubie has one,
two or three visible faces, called facelets. If a cubie has one facelet it is a center cubie, two
facelets an edge cubie, and otherwise is a corner cubie. The positions occupied by cubies are
called cubicles and the positions occupied by faclets are called slots. A state of the cube is

a bijection {facelets}
∼=−→ {slots}. Note there are 54! states. We set S to be the set of states

of the cube.
Label the center cubies by F,B,U,D,L,R and the corresponding center cubicles by

f, b, u, d, l, r (to label, we can pick F arbitrarily, and then choose U to be an arbitrary
adjacent slot; the others are then determined). We view moves of the cube as elements of
Perm(S), and let F,B,U,D,L,R ∈ Perm(S) be rotation by 90◦ clockwise around the given
face (if one is viewing the face). The Rubik’s group G is the subgroup of Perm(S) they
generate:

G = 〈F,B,U,D,L,R〉 ⊆ Perm(S).

We call elements of the Rubik’s group moves. If σ ∈ S is a state and g ∈ G is a move, the
action of g on σ, written σg, is the value of the permutation g on σ. We denote the start
state (i.e., the state the cube arrives in) by e. The set P of possible states is

P = {eg | g ∈ G}.

Solving the cube amounts to, given σ ∈ P, find g ∈ G such that σg = e.

Definition 2. We will label cubicles by the faces their facelets are on, e.g., ur is the edge
cubicle with one facelet on U and one facelet on R; the cubicle urf is the corner cubicle with
one facelet on U , one facelet on R, and one facelet on F . We always label corner cubicles by
listing the faclets in clockwise order, looking from the corner to the middle of the cube. So
every corner can be written exactly three ways, e.g., urf = rfu = fur, but not ruf.

We can write elements of G using cycle notation, for instance,

R = (urf, bru, drb, frd)(ur, br, dr, fr).

This is telling us how R acts on any given state: the facelet in the u slot of the ufr cubicle
is sent to the b slot of the bur cubicle, etc. In fact, when we write a cycle representing

g ∈ G, we are writing a bijection ψ : {slots} → {slots} such that σg = σ ◦ ψ = {facelets} σ−→
{slots} ψ−→ {slots}, for all states σ ∈ S.

Example 3. To find the cycle notation of a move, pick a corner cubie and record the
positions of its facelets under iterations of the move, until the cubie reaches the position it
started in. Then pick a corner cubie that did not arise in the previous cycle, and repeat. Do
this until all the corner cubies have been accounted for (if a cubie doesn’t move, don’t write
anything). Repeat this for edges, e.g.,

RU = (urf, rfu, fur)(ufl, ulb, ubr, bdr, dfr, luf, bul, rub, rbd, rdf, flu, lbu, bru, drb, frd)(fr, uf, ul, ub, ur, br, dr).

This example shows that the order we write the adjacent facelets of a cubicle is important:
(urf, rfu, fur) is not (urf, urf, urf) because the later is the identity, but RU does move
the facelets currently in the urf cubicle: it rotates them counterclockwise. Similarly, (RU)5
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rotates the facelets in the ubr cubicle counterclockwise. We can shorten cycle notation by
incorporating these twists, e.g.,

RU = (urf)+(ufl, ulb, ubr, bdr, dfr)−(fr, uf, ul, ub, ur, br, dr)

URU−1R−1 = (ulb, ubr)+(dfr, rfu)−(ur, fr, ub).

Here the + means clockwise, and − means counterclockwise. We can do the same for edges,
e.g.,

FRUR−1U−1F−1U = (uf)+(ul, bu)+(ufl)+(ulb, fur)−.

Example 4. Finding cycle notation is a bit tedious. We can use relabeling of the faces to
help. For instance, we found the cycle decomposition of [U,R] = URU−1R−1 above; can
we relabel to find the cycle decomposition of [U,L] = ULU−1L−1? First, we consider the

bijection of faces φ̃ : {f, b, u, d, l, r} → {f, b, u, d, l, r} with φ̃(l) = r, φ̃(r) = l, φ̃(f) = b, φ̃(b) =

f, φ̃(u) = u, φ̃(d) = d (we can write this in cycle notation for permutations as φ̃ = (l, r)(f, b)).
We can extend this to a bijection φ : {slots} → {slots} so e.g., the r slot of the urf cubicle
to the l = φ(r) slot of the ulb = φ(u)φ(r)φ(f) cubicle. If φ is any such bijection, define
φ′ = eφe−1 : {facelets} → {facelets} (recall e : {facelets} → {slots} is the start state) and

set Cφ ∈ Perm(S) to be the permutation that sends σ ∈ S to φ̃−1σφ. The permutation Cφ
relabels a given state: indeed, if σ is a state that takes a facelet X to some slot a, then σCφ
takes (X)φ′ to (a)φ, exactly as one would expect.

We now consider another bijection ψ : {slots} → {slots}, and let Rψ ∈ Perm(S) be defined
by (σ)Rψ = σ ◦ ψ. If ψ is in cycle notation describing a group element g, as described in
Defintion 2, then g = Rψ. I claim that relabeling by φ, doing the move g, then reverting to
the original labeling is given by CφRψCφ−1 (remember we compose from left to right). It
follows from the definitions that CφRψCφ−1 = Rφψφ−1 , thus φψφ−1 is giving our new cycle.
What does this mean? Let’s look at a simple example. Let ψ be the bijection given by the
following cycle:

R = (urf, bru, drb, frd)(ur, br, dr, fr),

and let φ be the relabeling described above. What is φψφ−1? e.g., on ulb it is:

ulb
φ−→ urf

ψ−→ bru
φ−1

−−→ flu.

Another way to say this is, it maps φ−1(urf) 7→ φ−1(bru). Thus, to find the cycle notation
for φψφ−1, we apply φ−1 to every face that appears. If we do this to the cycle notation for
R we get

(ulb, flu, dlf, bld)(ul, bl, dl, f l)

which is the cycle notation for L, exactly as we would hope. Applying φ−1 to the cycle
notation for [U,R] gives

[U,L] = (urf, ufl)+(dbl, lbu)−(ul, bl, uf).

Let’s check one more. What is [U,F ]? Here we use the relabeling given by φ = (f, l, b, r).
Applying φ−1 = (f, r, b, l) to the cycle notation of [U,L] gives:

[U,F ] = (ubr, urf)+(dlf, flu)−(uf, lf, ur).

Questions to try: (you don’t have to hand any of these in, but some may be on the
homework assigned next week)

(1) Write the cycle decomposition of F 2R2.
(2) Try (really hard) to solve the corners of your cube.
(3) Using the example above, (URU−1R)3 = (ulb, bru)(urf, dfr). Does this help you

solve the corners? Can you use this to find a move that involves the four upper
corners? The four left corners? Two left corners and two right corners?
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(4) Try writing down some cycle decompositions of random simple moves and repeating
the above to find interesting cycle decompositions. For instance, can you find a move
that cycles three corners and leaves everything else fixed? How would this help you
solve the corners?

(5) Define the 2 × 2 × 2 Rubik’s group G2 and show that there is a surjective group
homomorphism G→ G2. What is the kernel? Can you find specific moves that are
in the kernel?

Lecture 2

We first show the following. It is meant to be motivation for the more precise description
of possible moves we will prove next.

Proposition 5. Any non-starting state of the cube σ : {facelets} → {slots} that sends all
but two facelets to their starting slots is not a possible state.

Recall a possible state was one of the form eg, where e is the start state and g is any
element of G. Thus the proposition tells us there is no move that transposes two faclets and
fixes the rest.

Proof. First recall that every element of a permutation group Sn can be written as a product
of transpositions, and the parity of the number of transpositions is called the sign of a
transposition (there are usually many ways to write any given element as a product of
transpositions; the sign does not depend on which one we choose). If the sign is 0 we say
the element is even, and if it’s 1, the element is odd.

To apply this to the Rubik’s group, we identify the states of the cube S with the per-

mutation group S54 as follows. Pick a bijection α : {facelets}
∼=−→ {1, . . . , 54}, and set

e−1β : {slots}
∼=−→ {1, . . . , 54} (these are just labelings of the facelets and the slots, such

that the labelings coincide when a facelet is in its starting slot). Now given a state σ :

{facelets}
∼=−→ {slots}, we can consider the bijection βσα−1 : {1, . . . , 54}

∼=−→ {1, . . . , 54} ∈ S54.

Conversely, given any φ ∈ S54, consider the state β−1φα : {facelets}
∼=−→ {slots}. These as-

signments are a bijection S
∼=−→ S54. If e ∈ S is the start state, there is an injection

G→ S
g 7→ e · g,

whose image is the possible states. So combined with the above, we can view G as a subset
of S54, i.e., view each element of G as a permutation of the facelets, and then we can ask
what the sign of that element of G is. We first find the sign of U . Label the facelets on the
outside upper layer 1, . . . , 12, in a clockwise way, and label the non-center facelets on the up
face 13, . . . , 20, again in a clockwise way. Then

U = (1, 4, 7, 10)(2, 5, 8, 10)(3, 6, 9, 12)(13, 15, 17, 19)(14, 16, 18, 20)

and this is an even element (each 4 cycle is odd, and there are 5). We can apply an isomor-
phism to take U to any face, and an isomorphism preserves sign, so D,L,R, F,B are also
all even. Since the product of even elements is even, and the inverse of an even element is
even, every element of G is even, since it is generated by U,D,L,R, F,B. �

To describe the possible states more precisely, we put a mark on one slot of each cubicle
and one facelet of each cubie, in such a way that the marks coincide when a cubie is in its
start cubicle.

Definition 6. The marked slot of a cubicle is the u or d slot, if the cubicle is in the up or
down layer, and is the l or r slot otherwise. The marked facelet of a cubie is the facelet that
is in the marked slot when the cubie is in start position.
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In a given state, the twist of a corner cubie is 0 if the marked facelet is in the marked slot,
1 if the marked facelet is 120◦ clockwise from the marked slot, and 2 otherwise. Analogously,
the flip of an edge cubie is 0 if the marked facelet is in the marked slot and 1 otherwise.

Given a state of the cube, convince yourself that the cubicle and twist or flip of a cubie
determines the slots of all of its facelets. It follows that we can describe a move by per-
mutations of cubies (as opposed to the facelets we were considering), and a twist or flip
of each cubie. If we label the corner cubicles 1, . . . , 8, the edge cubicles 1, . . . , 12, and cu-
bies by their start cubicles, then we can describe a state as a quadruple (ρ, σ,x,y), with
ρ ∈ S8, σ ∈ S12,x = (x1, . . . , x8),y = (y1, . . . , y12) and xi ∈ {0, 1, 2}, yi ∈ {0, 1}.1 The
corresponding state will send the ith corner cubie to the ρ(i)th corner cubicle with twist xi,
and the jth edge cubie to the σ(j)th edge cubicle with flip yj .

Note that since the center cubies are in their start cubicles in every possible state, every
possible state can be described by a quadruple, as above. The following characterizes the
quadruples that are possible states.

Theorem 7 (“Main Theorem of Cubology”). A quadruple (ρ, σ,x,y), with ρ ∈ S8, σ ∈
S12,x = (x1, . . . , x8),y = (y1, . . . , y12) and xi ∈ {0, 1, 2}, yi ∈ {0, 1} represents a possible
state if and only if the following three conditions hold:

(1) sgn ρ = sgnσ,
(2) x1 + . . .+ x8 = 0 mod 3,
(3) y1 + . . .+ y12 = 0 mod 2.

This is a very powerful theorem. It was first proved by Anne Scott, and publicized in
the book “Winning Ways for Your Mathematical Plays, Vol. 4” by Berlekamp, Conway, and
Guy. We will prove it next week in class. The proof of necessity (showing that a possible
position satisfies the three conditions) is relatively easy; the proof of sufficiency (showing
that if a quadruple satisfies these three conditions, then it is possible) is harder.

Using the bijection of G with the set of possible states, given by sending g ∈ G to eg, where
e is the start state, we can also apply the theorem to the Rubik’s group. For instance, this
immediately shows that there is no element of the group that twists two corners in the same
direction and leaves every other facelet fixed, but there are moves that twist three corners
in the same direction and leave every other facelet fixed. You will see other applications of
the theorem in the exercises.

Lecture 3 Summary

We will start writing ′ for inverses, so e.g., L′ = L−1.

• We used Z-commutators, see appendix, to find a corner 3-cycle. We came up with

L′B′[U,R]3BL[U,R]3 = (ulb, luf, bru).

We’ll find a shorter, better corner 3-cycle later, but the idea here was to take the
cycle decomposition of [U,R], and simple conjugation, to come up with this.
• We talked more about the flip and twist of a cubie, and did some examples.
• We talked more about how quadruples describe states.
• We then used F 2R2 and related moves to find an edge 3-cycle. We came up with

(D′F 2)′[(F 2R2)3, F ](D′F 2) = (ur, uf, ul).

Again, we will find a shorter move to do this later, but the point was to take F 2R2

and work from there.
• Finally, we started the proof of the main theorem.

1We can’t describe every state with such a quadruple, just the ones that we can reach by taking apart
the cube and reassembling it, i.e., the states with the center cubies in their start position, and the facelets
on each cubie in their original position on that cubie.



5

Lecture 4 Summary

• We talked about conjugation, e.g., F [U,R]F ′.
• Discussed normal subgroups of the cube, and how the usefulness of conjugation shows

most subgroups of the cube group are not normal. We went over the example 〈U,R〉
in detail, showing it is not normal.

• We finished the proof of the main theorem.
• Talked about corollaries, including the order of the group, and how corners can be

moved (mesons and baryons).

Proof of the Main Theorem

(coming soon)
We will use the following moves...edge 3-cycle, corner 3-cycle, monoflip, monotwist,....

Lecture 5 Summary

We talked briefly about how the Rubik’s group G acts on the set of states S. We spent
the rest of the hour going through the step by step solution below.

Solution of the cube

There is a cheat sheet with diagrams on the next page.

(1) Solve the bottom layer.
(2) Solve the middle layer. Use the commutator [U,R][F,R′] = (uf, rf, bu)(ulb, rub, rfu)

to move uf to rf or the commutator [U ′, L′][F ′, L] = (uf, lf, bu)(ulb, rub, rfu) to
move uf to lf . (Note these moves only effect the rf or lf cubie in the middle layer,
and otherwise leave the bottom two layers untouched.) If you need to move a cubie
within the middle layer, first move it to the upper layer using one of the above, and
then use the appropriate one to move it back down in the correct position.

(3) Flip upper layer edges so correct color is on up face. Use F [U,R]F ′ = (ur, fu, ub)(ufl, urf)−(ulb, ubr)+
or its inverse F [R,U ]F ′.

(4) Permute the upper layer edges to their start cubicles. Use (FU)[U,F ′](FU)′ =
(ur, uf, ub)(ulb, fur)−(ufl, rub)+, or its inverse (FU)[F ′, U ](FU)′, or the edge 2-
cycle (FU)[U,F ′](FU)′U ′ = (ul, uf)(ufl, bul, urf).

(5) Permute the upper layer corners to their start cubicles. Use [L′, URU ′] = (ulb, rub, flu)
or its inverse [URU ′, L′].

(6) Untwist the upper corners. Orient the cube so that a twisted corner is in the urf
cubicle. Apply [R′, D′] repeatedly until that corner is untwisted in the urf cubicle.
Then rotate the upper layer so that anther untwisted corner is in urf. Again, apply
[R′, D′]. Repeat this until all upper corners are untwisted. You will end with a
solved cube.

Proof. It is clear that [R′, D′]2 will twist the cubie in urf by 1, and leave the rest
of the upper layer fixed. Thus we can assume that we have untwisted three upper
corner cubies, and are left with one corner untwisted (the bottom two layers will not
necessarily be in their start states). Because the drf cubie is in its start position,
we must have done an even number of iterations of [R′, D′] to get to this point.
Say we have done 2n iterations. Label the corner cubies so 1 = urf, 2 = drf, 3 =
drb, 4 = dlb, and the rest arbitrarily. Let xi be the twist of the ith corner cubie,
and assume that x1 = k. Since we have done 2n iterations of [R′, D′] we must have
x2 = n, x3 = 2n, x4 = 2n. By the Main Theorem we must have

k + 5n = 0 (mod 3) i.e., k = n (mod 3).

If k = 0, then n = 0 mod 3, so 2n = 0 mod 6. Since [R′, D′] has order 6, and we have
done 2n iterations of it, the cube is in its start state. If k = 1, then 2n = 2 mod 6.
Doing four more iterations of [R′, D′] will untwist corner cubie 1, and will bring the
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total iterations of [R′, D′] to 2n + 4 = 0 mod 6, and so the cube is solved. Finally,
if k = 2, then two iterations of [R′, D′] will untwist corner cubie 1 and we will have
done 2n+ 2 iterations of [R′, U ′], and 2n+ 2 = 0 mod 6, so the cube is solved. �

Moves used in solution

All of the moves listed are the clockwise versions. The counterclockwise versions are the
inverses of the moves below. It is very helpful to note that for any group G, with elements
g, x ∈ G, we have

(gxg−1)−1 = gx−1g−1 and [g, x]−1 = [x, g].

So, for example, [L′, URU ′]−1 = [URU ′, L′] will give a counterclockwise 3 cycle of corners.
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Appendix

Monoflip: T = FUD′L2U2D2RU . This flips the uf edge and fixes everything else in the
upper layer, so e.g., [T,U ] = (uf)+(ur)+.

Monotwist: W = R′DRFDF ′. This twists the urf corner by 1 and fixes everything else in
the the upper layer, so e.g., [W,U ] = (urf)+(ubr)−.
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